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Abstract

The road damage assessment methodology in this paper utilizes an artificial neural

network that reconstructs road surface profiles from measured vehicle accelerations.

The paper numerically demonstrates the capabilities of such a methodology in the

presence of noise, changing vehicle mass, changing vehicle speeds and road defects. In

order to avoid crowding out understanding of the methodology, a simple linear pitch

plane model is employed. Initially, road profiles from known roughness classes were

applied to a physical model to calculate vehicle responses. The calculated responses and

road profiles were used to train an artificial neural network. In this way, the network

renders corresponding road profiles on the availability of fresh data on model responses.

The results show that the road profiles and associated defects can be reconstructed to

within a 20% error at a minimum correlation value of 94%.

Keywords: Road damage identification, Bayesian regularized NARX network, Road

profile reconstruction, International Organization for Standardization power spectral

density (ISO PSD) classification, International Roughness Index (IRI), Linear pitch-

plane vehicle model.
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1. INTRODUCTION

This paper proposes a procedure for utilizing measured responses on a vehicle to

reconstruct road profiles and their attendant defects. The study seeks to capitalize on the

popularization of vehicle information systems, where sensors are increasingly being

mounted on vehicles for assessing vehicle performance and the structural integrity of

suspensions. González, O'Brien, Li and Cashell [1] argue that despite major

improvements in recent years in the quality of road-profiling equipment, these devices

remain generally expensive to purchase, their use with time is inefficient and their

operation specialized. They demonstrate numerically the applicability of vehicle

acceleration measurements for classifying road roughness.

The procedure proposed here may provide an initial and inexpensive assessment of the

uneven condition of the road surface. The assessment could either be used directly for

making maintenance decisions, especially where condition-triggered maintenance is

employed, or could be utilized as input into more comprehensive road maintenance

management systems such as Highway Design and Maintenance (HDM). Most feeder

and unpaved courses seem to be particularly in need of such procedures, judging from

their relatively poor condition compared to paved courses (Brushett, [2]; Burningham

and Stankevich [3]).

Hugo, Heyns, Thompson and Visser [4] note that the management and scheduling of

maintenance on mine haul roads have not been widely reported in the literature, and that

the management of such roads is often inadequate, leading either to over-maintenance

or a failure to recognize significant road deterioration. For this reason, Hugo et al. [4]
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have developed a methodology for reconstructing the road profile, based on system

characterization. Although the methodology has been successfully applied to a mine

haul road, its reliance on extensive system characterization limits the practical

feasibility of the approach. The difficulties associated with the practical implementation

of such a methodology may be encountered at three levels, namely the determination of

system parameters, the formulation of a mathematical model and the inversion of the

system’s dynamic model. Experiments are largely used for determining system

parameters, and they involve several critical simplifying assumptions. Sometimes the

most effective experimental procedure may be inhibited by either the unavailability of

appropriate technology or the requirements of the business environment.

In relation to heavy vehicle characterisation, effects of inertia and friction in the

suspension components are very important although most numerical simulations do

ignore them as a trade-off between model accuracy and computational efficiency.

Computational efficiency is critical in cases where new hypotheses are being tested or

new concepts are being proved, such as in the present study. However, Cebon [5]

reports the disastrous effect of not accounting for inertia when determining the

suspension parameters, where the leaf spring hysteresis curves for non-corrected springs

exhibited strange compression-expansion behaviour, typical of pneumatic suspensions,

at higher frequencies.

A comprehensive mathematical model which could simulate all the motions of the

vehicle system would be ideal. However, preparing and processing such a model would

require a great deal of time and effort.  Furthermore, the process of obtaining road
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profiles from measured vehicle responses requires determining an inverse of the vehicle

model. It is therefore often necessary to reduce the models dynamically, so as to avoid

excessive computational effort when preparing and processing both the direct and the

inverse models. Though artificial neural networks (ANN) may not provide physical

insight into the behaviour of the vehicle-road interaction system, it may offer significant

advantages by eliminating the need for the characterization and calculation of an inverse

model.

Thompson, Visser, Miller and Lowe [6] used ANNs to assist them with recognizing the

qualitative defects of specific mine haul roads. Thompson et al. [6] realized there was a

need for the ability to analyse, recognize and interpret various forms of the same defect

signature and also a need for the use of multi-sensor data to isolate faults from different

sources. Kang, Lee and Goo [7] used ANNs merely for classifying the severity of faults

on unpaved roads by means of power spectral density (PSD) but did not apply the

ANNs to profile reconstruction and defect recognition.

This work demonstrates that it is possible to use ANNs to reconstruct specific road

defects and classify overall road damage within bounds of very reasonable accuracy by

using the accelerations measured on the vehicle. This, as previously stated, eliminates

the requirement for the extensive system characterization used by Hugo et al. [4].

The paper includes evaluations of the widely used road roughness indicator, the

International Roughness Index (IRI), merely for correlation purposes. The IRI is an

intricate scale represented by statistical values which describe overall roughness levels

ranging from airport runways to rough unpaved roads. Therefore the indicator may be
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useful where the engineer is primarily interested in interpreting and comparing the

overall properties of road surface roughness (in the road’s longitudinal direction), but

might be a poor parameter when analysing the effects that depend on the road surface as

experienced by the road user (Andren [8]). For example, IRI may not indicate the status

of roughness over different ranges of wave numbers.

The article is structured as follows.  Section 2 describes the proposed methodology for

identifying road damage. Relevant theory is presented in Section 3. The section covers

the modelling of a vehicle, the generation of road surface topography and Bayesian-

regularized ANNs. Section 4 describes the dynamic behaviour of the vehicle used in the

study. Section 5 verifies the methodology through analyses and discussions on various

scenarios and correlation with the widely used IRI classification. The article is

concluded in Section 6.

2. DESCRIPTION OF PROFILE RECONSTRUCTION METHODOLOGY

The proposed profile reconstruction methodology is loosely based on a technique

developed for mine haul road maintenance by Hugo et al. [4]. However, the

methodology proposed here eliminates the difficulties encountered in system

characterization, which were mentioned in Section 1, by utilizing a supervised learning

ANN to reconstruct the road profiles. The network performs the reconstruction by

learning the system input-output behavioural patterns from the vehicle model and

utilizing them to map the outputs from fresh but related inputs.

In effect, the network is similar to the inverse model but with the unique advantage that

it can handle the non-linearity problems that might be difficult for most inverse models
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calculated from direct linear models. In this study, sprung mass acceleration sz&& , front

axle acceleration ufz&&  and driver’s upper torso acceleration 1z&& , were variously used as

network inputs while the road profile ( )r rfz t z=  was the network target.

Fig. 1 presents the procedure used in this study, which can also be applied to a practical

test scenario with some modifications. It comprises the following four main parts:

generation of training data, creation and training of the network, validation and testing

of the network, and identification of road damage. The following discussion covers

these stages with reference to the diagram in Fig. 1 and some mathematical expressions

developed later in Section 3.

The neural network training data was obtained from the linear pitch plane vehicle model

of Fig. 2 and the displacement PSD road classes of Fig 3.  Fig. 3 presents the

displacement PSD classes of a road with varying degrees of roughness, from a very

good condition in class A to a terribly poor condition in class H (ISO 8608 [9]). In this

study, a network was trained for each class using the data generated from its lower and

upper bound displacement PSDs, so that a network structure was realized for each of the

eight ISO PSD classes.  Therefore, during simulation of the network, the algorithm

searched for a network structure that returned the minimum mean square error value to

be used for reconstructing the road profile. The ISO PSD class to which the network

structure belonged, gave the roughness class of the road under test.
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According to the theory developed in Section 3, corresponding roadway inputs on the

front and rear tyres, { },
T

rf rrz z=rz  for each of the ISO PSDs shown in Fig. 3 can be

calculated, accounting for a specified vehicle wheelbase. In order to account for vehicle

vibrations due to extraneous sources, engine/driveline forces edf  and tyre/wheel

assembly non-uniformity forces { },
T

wf wrf f=wf  were also applied accordingly as

random noise to the linear pitch-plane (LPP) model (Fig. 2).

The neural network was created using MATLAB’s newnarxsp.m in the Neural

Networks Toolbox (Mathworks Inc. [10]). This function creates a series-parallel

architecture which feeds back the true output rather than the estimated output. This has

two advantages: firstly, the input to the feed-forward network is more accurate;

secondly, the resulting network has a purely feed-forward architecture and static

backpropagation can be used for training the network (Mathworks Inc., [10]). So the

network target ( )rz t  was fed back via tapped delay lines to form part of network inputs

( ) { }1, ,
T

s uft z z z=u && && && as shown in Fig. 4.  The time lags between network inputs and

outputs were modelled by allowing for 15 delays on both ( )tu  and ( )rz t .  The network

was trained by the trainbr algorithm discussed in Section 3.

ISO PSDs different from the ones used in generating the training data were generated

and their corresponding road profiles calculated. These were used for validating and

testing the network. The network was subsequently simulated and the output of the

network ( )rz t% , was plotted over the actual profile ( )rz t , to validate the network. Then
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road defects were created by adding sinusoidal functions to the actual profiles. The

defects were altered by adding simple changes in geometries to account for increase in

damage. The mean square errors and correlation coefficients were used in determining

the performance of the network, and they are reported in Section 5. The network

showed that it never memorized the relationships because it did not over-fit the data but

was able to reproduce all the prominent curves in the profiles.

The identification process was performed in two stages. First the network outputs

(reconstructed profiles) were matched with the actual road profiles (targets).  Secondly,

PSDs were calculated using MATLAB’s spectrum.welch.m function (Mathworks Inc.

[10]). The function used the Hamming window with a segment length of 256 points.

The resulting PSDs were then plotted over the ISO PSD classification scale shown in

Fig. 3.

3. THEORY

3.1. Vehicle modelling

For demonstrating the concept proposed in this work, the entire system was modelled

by the linear pitch-plane eight-degree of freedom (8DOF) model comprising 4DOFs

associated with the vehicle, 1DOF associated with the driver seat and a further 3DOFs

for the seated driver. The linear pitch-plane (LPP) model was chosen because bounce

and pitch motions are more dominant than roll motion at all frequencies. For most

vehicles, resonances in roll occur at lower frequencies (typically between 0.5 and 1 Hz)

than resonances in bounce (Gillespie [11]). However, at these low frequencies the PSD

ratio of roll displacement input to vertical excitation from the roadway is usually below
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0.1. At high frequencies the PSD ratio approaches unity because the left and right wheel

tracks tend to become more uncorrelated. However the vehicle is less responsive to roll

input at these frequencies.

The driver seat mass is combined with the mass of the seated driver’s lower torso, into a

single mass 0m in the resulting equation of motion. The seat's foam cushion is modelled

by a spring and a damping constant, 0k  and 0c  (Fig. 2) whose values are dependent

upon static pre-loads (Wei and Griffin [12]). Table 1 shows the characteristics of a

1DOF model of the seat with preload values from 300 to 800 N.

The 3DOF seated-driver model is based on ISO 5982 [13] which does not attach any

direct relationships to the body segments. The main advantage of this model is its

relative simplicity and linearity, while taking into account human body mass as a

parameter of the model (Stein and Múčka [14]). The mass of the seated driver was

estimated by the standard assumption that approximately three-quarters of the total

seated person’s mass acts on the vehicle cabin floor via the seat and the rest acts via the

legs and possibly the backrest (Stein and Múčka [14]).

The vibrations are small for most heavy-vehicle driving conditions, so the geometry can

be assumed to be linear (Cebon [5]). The equation of motion of a linear vehicle model

(with linear geometry and linear springs and dampers representing tyre and suspension

elements) can be written in matrix form as (Gillespie [11])
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( )tMz + Cz + Kz = f&& & (1)

where M  is a matrix representing vehicle body mass, C  is a matrix of vehicle

damping, K  is the stiffness matrix of the vehicle, z  is a vector of vehicle dynamic

responses and ( )tf  is a vector of force inputs acting on the vehicle. It was assumed that

the pitch angle was so small that kinematical motions at the front axle, rear axle, engine

mount and driver’s seat might be approximated by the following equations, respectively

sf s f sz z a q= - (2)

sr s r sz z a q= + (3)

sed s ed sz z d q= - (4)

sd s r sz z d q= - (5)

Eq. (1) was applied to each DOF in Fig. 2 and the respective relationships appear in the

Appendix to this paper. The property matrices M , C and K  are represented by Eqs.

(A9) to (A11).  Then Eq. (1) was recast into multivariable state space equations given

by

1 11
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where I  and 0  represent identity and null matrices with similar dimensions as the

property matrices, 0̂  is a null column vector with a length similar to the forcing vector

f  and Z is a vector containing the states (displacement and velocity vectors). Eq. (6)

was solved using a Runge-Kutta fourth-order integration routine in MATLAB 7.
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3.2. Road surface topography

The ISO-proposed road roughness classification is based on the PSDs of road profiles

(ISO 8608 [9]). The classification identifies eight road roughness levels ranging from

class A to class H in increasing order of roughness, where the first five of these classes

(A to E) are really important in practice. In the ISO classification, the relationships

between the displacement power spectral density ( )uS k  and the wave number k  for

different classes of road roughness may be approximated by (ISO 8608 [9])
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where ( )uS k  is expressed in 3 -1m cycle , k  is expressed in -1cyclesm , ( )0uS k  is the

displacement power spectral density at the datum or cut-off wave number 0k , which is

equal to 1
2p

-1cyclesm . With the constants 1n and 2n  equal to 2.0 and 1.5

respectively (ISO 8608 [9]), Eq. (7) can be used to generate plots of ( )uS k  as a

function of the wave number ratio
0

k
k  as shown in Fig 3. This expresses a

mathematical fit to empirical data, based on extensive measurements of road profiles on

European roads (La Barre, Forbes and Andrews [15]).  Cebon [5] and Wong [16]

recommend different values for the constants, based on earlier ISO standards. Dodds

and Robson [17] also specify different ranges of exponents depending on the class of

the road. This is not critical, however, in the context of the current study which focused

on developing the overall methodology for assessing road damage.
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The displacement power spectral density as given in Eq. (7) is usually calculated from

the measurement of surface roughness described by vertical ordinates at equally spaced

points along the road. However, in the absence of such measurements, pseudo-random

profiles can be generated to fit those spectral densities. Cebon [5] presents a formula for

generating a one-dimensional random profile as:

21
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where ( ) ( )112kS N S kp g= D  and ( )11S kg  is the target spectral density,

2k k Ng p= D  represents wave number in rad / m , D  is the distance interval between

successive ordinates of the surface profile, and kq  is a set of independent random phase

angles uniformly distributed between 0 and 2π.

The road inputs to the vehicle considered here cover a range of wave number ratios

between 0.01 and 10. The frequency (Hz) is related to the wave number ( cycles / m ) by

the relationship f vk= , where v  is the vehicle velocity in m / s . Therefore the vehicle

speeds between 20 and 80 km / h  considered in this study, span different frequency

ranges between 0.009 and 35.4 Hz. This range is sufficient to excite the important

frequencies of the vehicle under study.

Road profiles can be determined by using Eqs. (7) and (8) in the following manner:

Initially the road roughness is specified by a value of the constant ( )0uS k  chosen from

the ISO standard representing a particular road roughness classification, after which Eq.
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(7) can be applied to compute a displacement PSD ( )uS k .  The resulting PSD is

subsequently converted from an implicit function of κ (wave number in cycles / m ) into

an implicit function of g  ( rad / m ) to determine kS  which is passed on to Eq. (8) to

calculate the corresponding road profile.

3.3. Bayesian-regularized NARX neural network

Artificial neural networks are composed of simple elements (neurons) operating in

parallel. The networks typically operate by adjusting the values of the connections

(weights) between the neurons so that particular inputs lead to specific target outputs.

Recently ANN type models have been popularly used to model non-linear dynamics

due to their high adaptability to various non-linear systems, the ready availability of

tools and the proliferation of computer algorithms (Wong and Worden [18]). This paper

describes how the ANN was trained to perform online identification of the vehicle-road

interaction system so that road profiles could be reconstructed from given sets of data

acquired from the vehicle. Although the vehicle model used in this study was linear, the

parameters of interest are not related in a simple linear manner. It would therefore be

inappropriate to use linear system identification models.

One of the popular networks for non-linear function approximation is the Nonlinear

AutoRegressive with Exogenous Inputs (NARX) network (Wong and Worden [18]).

Wong and Worden [18] report that the NARX network’s underlying universal

approximation theory guarantees that a basic 3-layer multilayer perceptron (MLP) can

perform input-output mapping for any continuous function.  It computes the current

output using an MLP that takes as input a series of past system input ( )t i-u  and past
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output values ( )rz t i- . The NARX network’s operation is described by Mathworks Inc

[10]

( )( ) ( ),..., ( 1), ( ), ( ),..., ( 1)r u r z rz t t n t t z t n z t= - - - -g u u u% (9)

where ( )g  is a non-linear mapping function of the MLP, where ( )tu is a vector

containing the acceleration input sequences and ( )rz t  is the target at time t, and un  and

zn  are the maximum input and output lags respectively. The architecture of the NARX

network is shown in Fig. 4. The series-parallel architecture was adapted to reduce the

computational cost, since it has no feedback loop inside the model itself and employs

static backpropagation for the adjustment of parameters (weights). The vehicle-driver

system is assumed to be stable within the limits prescribed by the space of the adjusted

weights and biases (parameters), implying that the systems have bounded inputs and

bounded outputs.

The network was trained by a Levenberg-Marquardt algorithm which computes the new

weights neww  via the relationship (Mathworks Inc. [10]; Hagan and Menhaj [19];

Bishop [20])

( ) 1
( )T T

new old oldl
-

= + +w w J J I J ε w (10)

where I  is the identity matrix, ( )oldwe  is an error vector at the current point, J  is a

Jacobian matrix (typically consisting of first partial derivatives of the error with respect

to the parameters) and λ is a parameter governing the step size. This value is expected to

vary during the minimization process. The Levenberg-Marquardt algorithm was chosen

because of its good performance in function approximation and its computational
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efficiency based on the fact that it avoids the more costly evaluation of the Hessian

matrix (Mathworks Inc. [10]).

To enable the network to perform as well on novel inputs as on training set inputs, the

NARX network utilized Bayesian regularization. Typical training only involves

reducing the sum of squared errors, whereas regularization includes minimizing the sum

of squares of the network weights to achieve optimal network performance. Therefore

the objective function in regularization is written as

D W= +ε βε αε (11)

where Dε  is the sum of squared errors, Wε  is the sum of squares of the network weights,

and α  and β  are parameters of the objective function (Hagan and Menhaj [19]; Bishop

[20]), compromising between fitting the data and producing a smooth network response.

In Bayesian regularization this is performed by searching for the optimal weight that

maximizes the posterior probability which is equivalent to minimizing the regularized

objective function (Bishop [20]).

4. DESCRIPTION OF THE VEHICLE DYNAMICS

The linear pitch-plane (LPP) model of Fig. 2 is now used to numerically demonstrate

the procedure for reconstructing the road profiles, using ANN simulation. The model

takes into account pitch motion which forms an important part of overall heavy-vehicle

vertical vibratory response during normal road operation (Gillespie [11]). In this

evaluation, road profiles were synthetically generated from known cases of road damage

that were determined within the ISO roughness classifications (Fig. 3).
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An LPP model of the haul truck which had been characterised by Hugo [21] was

developed. Hugo [21] determined the tyre characteristics in situ whereas those for the

hydro-pneumatic struts were determined by fitting the ideal gas law and the energy

equation to experimental observations on the nitrogen and oil in the struts. Tyre

damping tc was assumed to be negligible. Although the struts exhibited non-linear

characteristics, they were conveniently linearized around their equilibrium states. Table

2 shows the model parameters used in the LPP model.

The distances of the front fa  and rear ra  axles from the centre of gravity (cog) of the

vehicle were 3.7 and 1.8 m respectively. The driver's seat was located 0.2 m away from

the vehicle’s cog towards the front axle. The engine and driveline forces were assumed

to act at 2.5 m away from the cog on the front axle side. Tables 1 and 3 show the model

parameters, assuming that the total standing mass of the driver was 70 kg.

When the models were subjected to unit step road inputs, the sprung mass responses

exhibited fading sinusoidal vibrations at the frequency of 4.1 Hz, corresponding to axle

hop resonance, and at 0.95 Hz, corresponding to the sprung mass bounce resonance

(Figs. 5(a) and (b)). The first sinusoidal motion dominated the vibration of the vehicle

immediately after both axles had passed the step and died out within a short while after

that. The second part of the motion persisted much longer.

Figs. 5(a) and (b) furthermore show that the rear suspension deflection was in phase and

vibrated at the same frequency with the vehicle body vibration, while the front

suspension deflection was at a slightly higher frequency being dominated by pitch
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motion at a frequency of 1.4 Hz. This was expected since the moment arm of the front

suspension from the cog was more than twice as long as that for the rear suspension.

The influence of pitch motion on the vibration of the truck is represented by the

differences between quarter-car (QC) model results (Figs. 5(a) and (c)) and LPP model

results (Figs. 5(b) and (d)). The differences in the phases and magnitudes of

displacements between the two model results are significant and justify the preference

for the LPP model.

5. NUMERICAL STUDIES

The proposed methodology is demonstrated for different vehicle speeds for cases of

generally varying roughness grades, emerging and growing defects and for different

vehicle payloads and various levels of noise. In all these cases the NARX network was

composed of twenty neurons with tangent sigmoid (tansig) transfer functions in the

hidden layer and one neuron having a linear (purelin) transfer function in the output

layer. The network used a training function trainbr which updates the weights and

biases according to the Levenberg-Marquardt optimization (Eq. (10)) by minimizing a

combination of squared errors and weights (Eq. (11)) in order to obtain a combination

enabling the network to generalize well (Mathworks Inc. [10];  Bishop [20]).

The computational efficiencies of the network for various combinations of inputs and

delays were computed and are presented in Table 4. The results show that the

differences in errors and correlations were influenced more by the number of input

delays than by the number of network inputs. Though the sprung mass acceleration sz&&

with 8 delays shows the best performance, it exhibited too much inflexibility in the

presence of road surface imperfections, like speed humps or potholes. The use of front
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unsprung mass acceleration ufz&&  with 15 delays might provide an alternative efficient

solution computationally, but the practical difficulties of mounting accelerometers on

the vehicle axle frustrate its application. Hence the sprung mass acceleration sz&&  with 15

delays was chosen owing to its relatively better stability, comparative computational

efficiency, and ease of practical implementation. So a single-input single-output, 1-20-1

NARX network was created, which had to yield road profile, ( )r rfz t z=%  as its output. It

is envisaged however that the use of the sprung mass acceleration as sole network

inputs might not be as efficient in a practical test situation, owing to the existence of so

many influential features which could better be represented by complementing the

sprung mass acceleration with other responses.

The length of the road under study was 512 m and was sampled similarly for all

velocities at 4 samples per m. The results include evaluations of the correlation

coefficient R and the error e . The correlation coefficient was calculated by using

MATLAB’s postreg.m function, and the error e  was computed from the mean square

error values between the reconstructed and actual profiles using MATLAB’s mse.m

function. The correlation coefficient indicates how well the network’s reconstructed

profile matches the actual road topography, whereas the error measures the accuracy of

fit between the two profiles.

The following sections contain an investigation of various case studies of interest under

testing situations. Section 5.1 addresses the general problem of reconstructing a road

profile of any roughness class and the ability to identify its class within the ISO PSD

classification scale in Fig. 3. Section 5.2 deals with the problem of reconstructing and
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identifying emerging defects over the road surface. The problems of applying the

methodology under changing or growing defects are presented in Section 5.3. The

methodology is applied to different noise levels and vehicle payloads in Sections 5.5

and 5.6 respectively.

5.1.  General road roughness identification

The aim of this case study was to show whether the methodology could be applied to

identifying roads that typically fell into different roughness classes shown in Fig. 3.

Four roads belonging to classes A, C, D and F were arbitrarily chosen and generated

using Eqs. (7) and (8) as outlined in Section 2. The resulting profiles were applied to the

vehicle model to determine the responses. The vehicle responses were then applied to

the NARX network previously trained with road profiles lying on class boundaries to

reconstruct the corresponding road profiles.

Fig. 6 plots the actual profiles over reconstructed profiles for the four test roads. The

figure shows that actual and reconstructed profiles correlated uniformly at 98.1% with a

reconstruction error around 10% attaining a maximum of 11% for test profile F. These

network performance indicators (correlation coefficients and error percentages) were

averaged over a set of ten tests. The errors resulted from network failure to fit corners in

the road profiles perfectly. In a previous study (Ngwangwa, Heyns, Labuschagne and

Kululanga [22]) it was noted that the errors were also influenced by the distance

between the displacement PSD of the profiles used during network training and those

used in the test. These errors can be reduced by generating more training profiles

between any two class boundaries, however, that causes network training to become

onerous. Alternatively, training with Gaussian noise at different levels of noise was
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shown to improve network performance although that resulted in increasing the

roughness class and required some sort of correction for the added noise.

In Fig. 7, the reconstructed profiles were correctly classified into their respective

roughness grades A, C, D and F as can be observed from their good correspondence

with the actual PSDs (dotted line). These roughness classes are actually interpreted on

the ISO PSD scale as very good, average, poor and extremely poor respectively. IRI

scale (Sayers and Karamihas [24]) identifies the same test roads by the values 2.5, 10.0,

19.9, and 79.8 representing the regions covered by new pavements, maintained unpaved

roads or damaged pavements with frequent shallow depressions some deep, rough

unpaved roads with erosion gulleys and deep depressions. The test road corresponding

to ISO PSD class F or IRI value of 79.8 was used here merely for theoretical purposes

because it lies outside the practical limits of allowable road severity.

5.2.  Defect identification under different speeds

The purpose of this case study was to show the ability of the methodology in identifying

localized surface irregularities in the longitudinal direction of the road at different

vehicle speeds. The pothole had a width of 2 m and was located along the road at a

distance of 50 m from the start. It had an amplitude of 0.012 m expressed as a sinusoidal

function of distance x, so that the defect profile can be given by

1 2
20.012sin and

0 otherwise
def

x x x x x
z

p
l

ì ³ £ï= í
ïî

(12)
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where x represents the distance along the test road, l  is the defect wavelength, and defz

is the profile's vertical ordinate at distance x. Therefore the road profile to be

reconstructed was given by the summation of Eqs. (8) and (12).

rx r defz z z= + (13)

However, the use of PSD classification restricted the defects, making them periodic in

nature. The identification of the pothole was examined for the vehicle speeds of 20, 30,

50 and 80 -1km h .  Figs. 8(a), (b), (c) and (d) show results of reconstructing the same

pothole when the vehicle traverses it at the speeds given above. The correlation values

and error percentages on top of the graphs represent network performance over the

entire road length.

The pothole was correctly located between 50 and 52 m at all vehicle speeds. The minor

shift of 0.2 m in the reconstructed profile might have been caused by an inability to

model network delays perfectly, given the inefficiencies of a trial and error procedure.

However, it may be argued that for a heavy vehicle travelling at speeds above 20 -1km h ,

such a small delay, corresponding to a maximum time delay of 0.036s, may be

insignificant. Besides, the benefits obtained by achieving a zero delay fit by a trial and

error procedure could not justify the time and effort required to achieve such a goal.

Figs. 9 and 10 show the profile reconstructions and classifications for three different

damage scenarios at each of the specified vehicle speeds. The different damage

scenarios are applied to a class A road. The results in Fig. 9 show very good

correspondence between the actual and reconstructed profiles with a bit of random

performance around some of the sharp turns, in that the reconstructed profiles either

overshoot or smoothen out. This network behaviour makes it difficult to distinguish
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among different degrees of roughness within any particular roughness class. In Fig.10,

for example, it can be observed that for the same underlying roughness, the road class

either lies close to the lower or upper boundary of class A. The higher PSDs between

wave number ratios of 0.4 and 1.1 correspond to surface defects with various

wavelengths. IRI classification shows that the test roads are typically new pavements

but fails to reflect the small surface imperfections.

5.3.  Identification under changing/growing defects

In this case study, the underlying rationale was to show the neural network’s

capabilities under changing/growing defects. The defect changes are represented in

terms of damage scenarios Dam. # iN , where iN  denotes 1, 2, 3, and 4. These damage

scenarios are distinguished by the lengths of deteriorated road sections and assumed

wavelengths of the defects. Fig.11 shows that the reconstructed profiles are above 96%

level of correlation with errors under 20% for all the damage scenarios. In both graphs

(a) and (b) the dash-dotted lines trend average network performance taken over the four

different vehicle speeds.

Fig.12 shows average network performance over all the damage scenarios at each

vehicle speed. The profiles are reconstructed at an average correlation level of above

97% with errors lying between 10 and 11%. These results show that the level of damage

does not necessarily have any significant influence on network performance at any

given vehicle speed. Errors resulted from the usual network shortcomings as previously

pointed out and the difficulties encountered in accurately estimating the necessary

number of delays in the feedback loop of the NARX network.
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Fig. 13 shows the displacement PSDs with the corresponding IRI values in m per km.

The general level in the values of IRI indicates that the road is in very good condition

and in terms of the condition of pavements; it implies that the pavement lies between

new pavements to older pavements (Sayers and Karamihas [24]). This interpretation

agrees with the classification using the ISO PSDs where the road roughness, especially

at higher wave numbers, belongs to class A.

The ISO PSDs show that for Dam. #1 the road lies in class A at lower wave numbers

and slightly under class A at very high wave numbers. Dam. #2 largely lies within class

A, though at lower wave numbers, it lies very close to its upper boundary. In Dams. #3

and #4 the displacement PSD lies in class C around a wave number ratio of 0.6.

However, that information is so obscure in the IRI classifications of 2.36 and 2.41, both

of which may typically be interpreted as new pavements having near-perfect conditions

though not absolutely perfect. This implies that the surface irregularities have to grow

beyond these levels in order for the IRI classification to signal emergence of surface

imperfections that need attention. Typically IRI values in excess 3.5 may be considered

significant.

The analysis helps to underscore the advantage of ISO PSD classification over IRI

classification. The only shortcoming of the ISO PSD classification being that the road

defects should be estimated as periodic functions. The more interesting result in this

analysis consists in that both classifications agree on the underlying roughness class.

Thus it is possible to use the two methods simultaneously to enhance more

understanding of the nature of road damage.
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5.5. Identification under noisy conditions

In this case study, Band-Limited White (BLW) Noise was applied to a class A road

having a surface irregularity. The added BLW Noise lay in the frequency range 1 – 25

Hz with signal-noise ratios (SNR) between 0 and 0.5.  Fig. 14 shows that the error in

reconstructing the road surface profiles grows with noise level and it might be necessary

for practical purposes to keep the SNR below 0.2. Fig. 15 shows ISO PSD and IRI

classifications at 0.2 SNR level for different vehicle speeds.  IRI classifies the road

around an average roughness level of 2.5 indicative of new pavements without surface

imperfections, although the picture is slightly different at the lowest vehicle speed of 20

km/h where it approaches a domain of new pavements with surface defects.  ISO PSD

lines largely lie within class A with slight upward shift in lower wave numbers which

are emphasized around the wave number ratios 0.4 – 1.1 corresponding to the surface

defects’ wavelengths.

It is further noted that profiles with smaller SNR are well classified into class A whereas

those with larger SNR tend to shift upwards into higher roughness classes particularly in

lower wave numbers. Theoretically, that is expected because small levels of noise make

the NARX network behave like a regularised network.  Bishop [20] notes that during

training, provided the noise amplitude is small, so that the neglect of the higher-order

terms in the Taylor expansion is valid, the minimization of the sum-of-squares error

with noise added to the input data is equivalent to the minimization of the regularized

sum-of-squares error without the addition of noise.
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5.6. Identification under different vehicle weight

The gross weights of vehicles vary significantly during operation owing to changes in

payloads. It is assumed that suspension characteristics remain generally invariant over a

larger proportion of the vehicle’s operational period. Therefore this case study examines

how the methodology performs under vehicle weight changes for different speeds. The

weights are changed by adding to the gross vehicle weight (GVW) proportions of its

own weight between 0 and 0.5. The vehicle was assumed to operate along a lower-

boundary class E rough road at a speed of 20 -1km h .

The results in Fig.16 show that profiles are accurately reconstructed with errors around

20% at greater than 94% correlation level. The road roughness is also accurately

classified in terms of both ISO PSD and IRI classifications as shown in Fig.17. The IRI

classification of 22.66 implies a rough unpaved road which corresponds to ISO PSD’s

lower-boundary E road. The results show that changes in vehicle weight do not

significantly affect the performance of the network, at least within practical limits of

payload variation.

6. CONCLUSIONS

This work was aimed at numerically demonstrating a methodology for classifying road

damage based on road profile reconstruction and using artificial neural networks. The

use of neural networks is believed to offer two main advantages. The primary advantage

is that it does not require excessive system characterization. All it requires is the road

profile data representative of various degrees of road roughness as network targets, and

accelerations measured on the vehicle system as network inputs. In this particular study,

the use of accelerations other than those measured on the sprung mass offered no
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significant advantages. However, determining the optimal number of network inputs

might be application-specific and is a subject of further study in this work.

The second advantage of the neural network based methodology is that it requires

relatively fewer analytical skills to create the network than the parametric model. The

current developments in technical computing have ensured that most neural network

models become standard and implemented in technical software e.g. MATLAB,

whereas the development of physical parametric models still demands a great deal of

technical skills, even in virtual-computing environments. Besides, the physical

parametric models require the calculation of the inverse models in order to determine

the road profiles from measured vehicle accelerations, which may also be very rigorous

on their own.

The performance of the methodology has been demonstrated for varying roughness

grades, emerging surface defects, and changing or growing surface defects under

varying conditions of noise, vehicle payload and speed through evaluations of

correlation coefficients and mean square errors. The network performance does not

exhibit any clear dependencies on the different conditions under study except that under

harsh noisy conditions, the performance deteriorated significantly.

The methodology was observed to correlate well with IRI which is a widely used

roughness indicator. The study reinforces the combined use of IRI and ISO PSD

classification to enhance road surface condition interpretation. More promising is the

fact that a practical test case inherently includes the filtering effects of tyre
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envelopment, which were not considered in this numerical study. Therefore some of the

requirements for stringent accuracy in this numerical study might be superfluous in a

practical situation. Accordingly the proposed methodology aptly provides a

methodology for approximating and making reliable initial judgements of road surface

damage.
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APPENDIX

The dynamic equations of motion for the system in Fig. 2 may be derived by

considering the free-body diagrams. The system has a total of 8 DOFs comprising:

sprung mass vertical displacement sz , sprung mass pitch sq , front axle vertical

displacement ufz , rear axle vertical displacement urz , seat displacement 0z , and

displacements on the driver’s body ( 1 2 3, ,z z z ). In the following, dynamic equations are

formulated for each mass.

The formulation of sprung mass motions requires the kinematic relations in Eqs. (2) to

(5) presented under Section 3. So the dynamics of the sprung mass can be written as

( ) ( ) ( )
( ) ( ) ( )0 0 0 0

s s sf sf uf sf sf uf sr sr ur

sr sr ur sd sd ed

M z k z z c z z k z z

c z z k z z c z z f

+ - + - + - +

- + - + - =

&& & &

& & & &
(A1)

( ) ( ) ( )
( ) ( ) ( )0 0 0 0

s s f sf sf uf f sf sf uf r sr sr ur

r sr sr ur r sd r sd ed ed

I a k z z a c z z a k z z

a c z z d k z z d c z z d f

q - - - - + - +

- - - - - = -

&& & &

& & & &
(A2)
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For the front and rear axles, the equations of motion are

( ) ( )
( ) ( )

uf uf sf uf sf sf uf sf

tf uf rf tf uf rf wf

m z k z z c z z

k z z c z z f

+ - + - +

- + - =

&& & &

& &
(A3)

( ) ( )
( ) ( )

ur ur sr ur sr sr ur sr

tr ur rr tf ur rr wr

m z k z z c z z

k z z c z z f

+ - + - +

- + - =

&& & &

& &
(A4)

The equations for the seat and driver are

( ) ( ) ( )
( ) ( ) ( )
0 0 0 0 0 0 1 0 1

1 0 1 3 0 3 3 0 3 0
sd sdm z k z z c z z k z z

c z z k z z c z z

+ - + - + - +

- + - + - =

&& & &

& & & &
(A5)

( ) ( ) ( ) ( )1 1 1 1 0 1 1 0 2 1 2 2 1 2 0m z k z z c z z k z z c z z+ - + - + - + - =&& & & & & (A6)

( ) ( )2 2 2 2 1 2 2 1 0m z k z z c z z+ - + - =&& & & (A7)

( ) ( )3 3 3 3 0 3 3 0 0m z k z z c z z+ - + - =&& & & (A8)

Upon making the necessary substitutions for the kinematic equations in the relevant

equations above, and grouping like terms according to degrees of freedoms and their

derivatives, the above equations can be rewritten in the compact matrix form of Eq. (1),

where the property matrices and force vector are given by Eqs. (A9) to (A11).

( )0 1 2 3s s uf urdiag M I m m m m m mé ù= ë ûM (A9)
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1 1 1 1 0,1

2 2 2 2 0,2

3 3 3

4 4 4

5 5 0,5 1,5 3,5

6 6 0,6 1,6 2,6

1,7 2,7

0,8 3,8

zs s zuf zur z

zs s zuf zur z

zs s zfu

zs s zur

zs s z z z

zs s z z z

z z

z z

k k k k k
k k k k k
k k k
k k k
k k k k k
k k k k k

k k
k k

q

q

q

q

q

q

é ù
ê ú
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

K (A10)

where all elements with zero values are not indicated and the matrix elements are given

by the following relationships:

1 0 1 0

1 1 0,1 0

,

, ,
zs sf sr s sf f sr r r

zuf sf zur sr z

k k k k k k a k a k d
k k k k k k

q= + + = - + -

= - = - = -

2 2 2
2 0 2 0

2 2 0,2 0

,

, ,
zs sf f sr r r s sf f sr r r

zuf sf f zur sr r z r

k k a k a k d k k a k a k d

k k a k k a k k d
q= - + - = + +

= = - =

3 3 3, ,zs sf s sf f zuf sf tfc c c c a c c cq= - = = +

4 4 4, ,zs sr s sr r zur sr tfk k k k a k k kq= - = - = +

5 0 5 0 0,5 0 1 3

1,5 1 3,5 3

, ,
,

zs s r z

z z

k k k k d k k k k
k k k k

q= - = = + +

= - = -

0,6 1 1,6 1 2 2,6 2, ,z z zk k k k k k k= - = + = -

1,7 2 2,7 2,z zk k k k= - = , 0,8 3 3,8 3,z zk k k k= - =

The corresponding equations for the damping matrix C  and its elements are similar.

[ ]T
1 2 3 4 0 0 0 0F F F F=f (A11)

where

1 2, ,ed ed edF f F d f= = - 3 ,tf rf tf rf wfF c z k z f= + +& 4 tr rr tr rr wrF c z k z f= + +&
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FIGURE CAPTIONS

[1]  Fig. 1. Identification procedure employed in the numerical verification.

[2]  Fig. 2. A linear pitch-plane (LPP) vehicle model with a seated-driver model.

[3]  Fig. 3. ISO PSD road roughness classification determined by Eq. (7).

[4]  Fig. 4. A series-parallel architecture of the NARX model used for road profile

reconstruction.

[5]  Fig. 5. Vehicle responses to unit step road input for quarter car (QC) model

displacements (a) and PSDs (c), sprung mass responses (solid) and unsprung mass
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responses (dotted), for LPP (b) and (d) with displacements of the rear suspension

(dashed) and front suspension (dotted).

[6]  Fig. 6. Actual (solid) vs. reconstructed profiles (dotted) for different road roughness

classes.

[7]  Fig. 7. Classification by ISO PSD and IRI (in m per km) on the reconstructed

profiles showing class boundaries (dashed), actual test road PSDs (dotted) and PSDs of

reconstructed profiles (solid).

[8]  Fig. 8. Reconstruction at different vehicle speeds: (a) 20 km/h, (b) 30 km/h, (c) 50

km/h, and (d) 80 km/h with actual profiles (solid) and reconstructed profiles (dash-dot).

[9]  Fig. 9. Network reconstructions at different speeds for three selected stages of road

damage with actual profiles (dashed) over reconstructed profiles (dotted).

[10]  Fig. 10. Identification under different vehicle speeds for growing defects, IRI

values in m per km.

[11]  Fig. 11. Average correlation and error percentages for the different damage levels:

20 km/h (          ), 30 km/h (           ), 50 km/h (          ) and 80 km/h (          ).

[12]  Fig.12. Average correlation coefficients and error percentages for each vehicle's

speed.
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[13]  Fig. 13. Displacement PSDs with IRI values for ride interpretation in m per km.

[14]  Fig. 14. Errors at each noise-signal ratio (SNR) averaged over 10 test runs when

trained without noise.

[15]  Fig. 15. ISO PSD classification at 0.2 SNR for different vehicle speeds, IRI values

in m per km.

[16]  Fig.16. Reconstructed profiles in different payloads expressed as proportions of

normal gross vehicle mass (GVM): (a) no added payload (b) 0.1 GVM (c) 0.2 GVM (d)

0.3 GVM (e) 0.4 GVM (f) 0.5 GVM.

[17]  Fig. 17. ISO PSD classification for the different vehicle payloads in Fig. 16, IRI
values in n per km.
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Table 1. Static pre-load dependent parameters of the SDOF cushioned seat (from

Wei and Griffin [12])

Pre-load
(N)

Damping Constant,
0 (N s / m)c

Spring Constant,
0 (N / m)k

300 260 42 300
400 270 44 121
500 276 50 210
600 280 59 300
700 285 68 000
800 293 73 000
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Table 2. Parameters of QC and LPP models extracted from Hugo [21]

Model Mass (kg) and Inertia (kg m2)
Damping
Constants
( )N s / m

Stiffness Constants ( )N / m

QC Ms mu cs ks kt

32895 8578 40×103 2.6×106 2.7×106

LPP Ms Is muf mur csf csr ksf ksr ktf ktr

65790 263160 8578 8578 40×103 46152 2.6×106 3×106 2.7×106 5.4×106
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Table 3. Parameters of the driver model based on ISO 5982 [13] as adapted from

Stein and Múčka [14]

i
mi
kg

ci
(Ns / m)

ki
(N / m)

0 2 --- ---
1 6 387 9 999
2 2 234 34 400
3 42.5 1390 36 200
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Table 4. Summary of NARX network computational efficiency for different

numbers of input vectors and delays

Inputs
(Fig. 2)

No.
Delays

ENOP
n/N

SSE
(%)

SSW
(%)

Overall
Corr.
(%)

Duration
(s)

sz&& 8 60/361 11.68 8.37 97.76 713

sz&& 15 116/641 11.04 9.52 97.52 1418

ufz&& 15 121/641 10.97 11.39 97.89 1410

{ },
T

s ufz z&& && 15 151/941 10.50 10.93 96.96 2735

{ }1, ,
T

s ufz z z&& && && 8 95/681 11.20 10.76 97.23 1569

{ }1, ,
T

s ufz z z&& && && 15 163/1241 10.37 11.16 96.73 4655

ENOP – Effective number of training parameters represented by n while N is the total

number of training parameters available network

SSE – sum of squared errors

SSW – sum of squared weights

Corr. – Correlation
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Fig. 1. Identification procedure employed in the numerical verification.
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Fig. 2. A linear pitch-plane (LPP) vehicle model with a seated-driver model.
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Fig. 3. ISO PSD road roughness classification calculated by Eq. 7.
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Fig. 4. A series-parallel architecture of the NARX model used for road profile

reconstruction.
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Fig. 5. Vehicle responses to unit step road input for quarter car (QC) model

displacements (a) and PSDs (c), sprung mass responses (solid) and unsprung mass

responses (dotted), for LPP (b) and (d) with displacements of the rear suspension

(dashed) and front suspension (dotted).



47

Fig. 6. Actual (solid) vs. reconstructed profiles (dotted) for different road

roughness classes.
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Fig. 7. Classification by ISO PSD and IRI (in m per km) on the reconstructed

profiles showing class boundaries (dashed), actual test road PSDs (dotted) and

PSDs of reconstructed profiles (solid).
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Fig. 8. Reconstruction at different vehicle speeds: (a) 20 km/h, (b) 30 km/h, (c) 50

km/h, and (d) 80 km/h with actual profiles (solid) and reconstructed profiles (dash-

dot).
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Fig. 9. Network reconstructions at different speeds for three selected stages of road

damage with actual profiles (dashed) over reconstructed profiles (dotted).
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Fig. 10. Identification under different vehicle speeds for growing defects, IRI

values in m per km.
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Fig. 11. Average correlation and error percentages for the different damage levels:

20 km/h (          ), 30 km/h (           ), 50 km/h (          ) and 80 km/h (          )
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Fig. 12. Average correlation coefficients and error percentages for each vehicle's

speed.
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Fig. 13. Displacement PSDs with IRI values for ride interpretation in m per km.
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Fig. 14. Errors at each noise-signal ratio (SNR) averaged over 10 test runs when

trained without noise.
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Fig. 15. ISO PSD classification at 0.2 SNR for different vehicle speeds, IRI values

in m per km.
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Fig. 16. Reconstructed profiles in different payloads expressed as proportions of

normal gross vehicle mass (GVM): (a) no added payload (b) 0.1 GVM (c) 0.2 GVM

(d) 0.3 GVM (e) 0.4 GVM (f) 0.5 GVM.
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Fig. 17. ISO PSD classification for the different vehicle payloads in Fig. 16, IRI

values in m per km.
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