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Land Cover Separability Analysis of MODIS Time
Series Data using a combined Simple Harmonic

Oscillator and a mean reverting stochastic process
T. L. Grobler, E. R. Ackrermann, J. C. Olivier, A. J. van Zyl, and W. Kleynhans

Abstract—It is proposed that the time series extracted from
Moderate Resolution Imaging Spectroradiometer satellite data
be modeled as a simple harmonic oscillator with additive colored
noise. The colored noise is modeled with an Ornstein-Uhlenbeck
process. The Fourier transform and maximum likelihood pa-
rameter estimation are used to estimate the harmonic and noise
parameters of the Colored Simple Harmonic Oscillator. Two case
studies in South Africa show that reliable class differentiation
can be obtained between natural vegetation and settlement land
cover types, when using the parameters of the Colored Simple
Harmonic Oscillator as input features to a classifier. The two case
studies were conducted in the Gauteng and Limpopo provinces
of South Africa. In the case of the Gauteng case study we
obtained an average κ = 0.86 for single band classification, while
standard harmonic features only achieved an average κ = 0.61.
In conclusion the results obtained from the Colored Simple
Harmonic Oscillator approach outperformed standard harmonic
features and the minimum distance classifier.

Index Terms—Ornstein-Uhlenbeck, temporal classification,
MODIS and SHO.

I. INTRODUCTION

The classification of land cover is an important problem
in general, and in South Africa it has particular importance
because of mostly unplanned land cover change driven by
settlement expansion and migration of people in the southern
parts of Africa. In this paper we are particularly interested
in the classification performance that can be achieved using
remotely sensed satellite data derived from high temporal
resolution data based on the Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite. When compared to Ad-
vanced Very High Resolution Radiometer (AVHRR) data
MODIS exhibits enhanced spectral and radiometric resolution,
wide geographical coverage and improved atmospheric cor-
rections, while preserving the same temporal resolution [2].
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It has a low spatial resolution (500 meters pixels) but has
a high temporal resolution (8 day sampling interval for the
MCD43A4 product). This makes the classification over time
robust since single date reflectance values of different classes
may be unseparable due to the fact that they share similar
spectral reflectance characteristics over the short term [1], [2].
A good review of classification in remote sensing can be found
in [3]. There are however classification approaches that are
specifically used for the classification of time series that should
be mentioned, including principal component analysis [4], [5]
phenological metrics [6], Fourier analysis [7] and wavelet
analysis [8].
Fourier (or spectral) analysis, on Normalized Difference Veg-
etation Index (NDVI) time series in particular, has been used
extensively for land cover classification (see for example [7],
[9]–[12]), and it has been shown that reliable class separation
can be achieved even when considering only the mean and
seasonal spectral components [7], [12].
The objective of this paper is to extend the Fourier classi-
fication approach by using a novel parsimonious parametric
model of the MODIS time series. The parsimonious parametric
model consists of harmonic and colored noise parameters.
The Fourier transform (FT) is used to extract the mean and
the seasonal harmonic parameters from the time series and
maximum-likelihood parameter estimation is used to extract
the volatility and mean reversion rate of the remaining noise.
The noise (residual) of remote sensing time series are modeled
as either white or colored depending on whether all the infor-
mation carrying frequency components have been removed or
not [13]. As we only remove the mean and seasonal component
we will use an appropriate colored noise model to describe our
residual. The benefit of the approach presented here over the
standard Fourier transform technique is that the less important
Fourier features that by themselves do not contribute that
much to classification accuracy are condensed into two model
parameters that do contribute significantly to classification
accuracy.
To emphasize the benefits of the parsimonious model we will
show that (for two case studies in South Africa) when using
the estimated proposed model parameters as features for a
classifier we obtain better separability (between vegetation and
settlements) and classification results, when compared to the
results of a classifier that uses standard Fourier features [7],
[12] or temporal features [2]. Our proposed technique also
outperforms the minimum distance classifier [14].
The paper is organized as follows. We describe the parsimo-
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nious model in Section II. Section II also includes an algorithm
for estimating the parameters of our proposed model. In the
remaining part of the paper we perform two case studies to
indicate the usefulness of the proposed model parameters, and
the last section presents the conclusions.

II. PROPOSED MODEL

The rationale behind modeling remotely sensed time series
data is to extract phenological markers from the data and for
this reason models are normally used on vegetation index data
only. The models are used to enable noise reduction so that
meaningful markers can be extracted from the data. However
in this paper we will not restrict ourselves to vegetation index
data only. We will use our model as an aid to perform a
separability analysis between different classes and not only
to extract phenological markers. A simple model that can be
used to represent remote sensed satellite time series is a Simple
Harmonic Oscillator (SHO) given by

A sin(2πfst+ ϕ) + C, (1)

where
{A,C} (2)

are the harmonic features proposed by [7], [12]. Many other
models have also been proposed as an improvement on an
SHO [12], [13], [16]–[20]. In particular [20] modeled MODIS
time series with a harmonic non-linear solution of a chaotic
attractor

A sin(2πfst+ ϕ+ α cos(2πfst+ ξ)) + C (3)

and [12] modeled NDVI time series with a triply modulated
cosine

A(t) sin(2πfst+ ϕ(t)) + C(t). (4)

However as was shown in [7], [12] an SHO as underlying
noise free model is effective. In this paper we will represent
the mean C and seasonal component A of MODIS data
with an SHO and model the remaining noise and harmonic
components with a mean reverting stochastic process.

The structure of this section is as follows. We present our
proposed model in Section II-A and the algorithm to estimate
the parameters of our model in Section II-C. We compare
our model to the models in the literature in Section II-B.
Since the parameters of our model can be used as features in
classification we also present an alternative feature extraction
method of the data in Section II-D.

A. Colored Simple Harmonic Oscillator

Assuming we have an observed MODIS pixel xc(t) belong-
ing to class c ∈ C. With xc(t) we mean the set of signals
{xb

c(t)}b∈{1···8} shown in Fig. 1 (here x[i] is the discrete
analogue of x(t)), where b represents the MODIS band (seven
land bands or NDVI). The c is omitted if we do not know to
which class a MODIS pixel belongs. Each observed signal
belonging to the same class is a sample path of a stochastic
process Xb

c (t). We can therefore model each MODIS class
c as a set of stochastic processes Xc(t) = {Xb

c (t)}b∈{1···8}.
Since Xb

c (t) is a stochastic process we can assign an analytic
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Fig. 1: Time series data representation for a single pixel.

expression (if such an expression exists) to each sample path
(MODIS pixel) xb

c(t;θ
b
c) of Xb

c (t), where θb
c is a set of random

values with a joint probability density function. We thus have
that θc = {θb

c}b∈{1···8}. For convenience we will sometimes
omit θb

c from xb
c(t;θ

b
c).

We will see that the distribution of θb
c is determined by the

parameter set {Ab
c, ϕ

b
c, C

b
c +µb

c, λ
b
c, σ

b
c}. To reduce clutter, we

will often omit the super- and subscripts b and c.
The proposed analytic expression for each MODIS pixel

(sample path) is given by

x(t;θ) = s(t; {A,ϕ,C}) + η(t; {µ, λ, σ}), (5)

where s(t) is an SHO with period Ts =
1
fs

= 45 and equation

s(t; {A,ϕ,C}) = A sin(2πfst+ ϕ) + C. (6)

The noise process η(t; {µ, λ, σ}) is an Ornstein-Uhlenbeck
process that satisfies the stochastic differential equation

dη(t) = λ(µ− η(t))dt+ σdW (t). (7)

Here µ ∈ R is the long-term mean of the process, λ > 0 is
the rate of mean reversion, σ > 0 is the volatility or average
magnitude, per square-root time, of the random fluctuations,
and W (t) is a standard Brownian motion on t ∈ [0,∞). That
is, dW (t) ∼ N (0,

√
dt). Of course, one should, for each class

and band, expect µ to be insignificant compared to C, and to
have µ = 0 if the parameter C can be estimated without error.

It is important to notice that although (7) is a noise process,
the mean reversion rate mainly models the remaining harmonic
components (the remaining dependency after the subtraction
of the SHO) of the underlying noise free signal, while the
volatility parameter of (7) mostly models the actual noise
added to the signal and the inter annual variation.

The Ornstein-Uhlenbeck process is widely used in mathe-
matical finance for the modeling of the dynamics of interest
rates and volatilities of asset prices. The Ornstein-Uhlenbeck
process is the continuous-time analogue of the discrete time
AR(1) process and, when initialised with the equilibrium
distribution, is also stationary, Gaussian, Markov and mean
reverting. The Ornstein-Uhlenbeck process can model a wider
spectrum of noise types than just white noise.

The ensemble mean for Xc(t) is defined as

yc(t) = {E [Xb
c (t)]}b∈{1···8}. (8)
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B. Summary of Model Comparisons

There are however some drawbacks to (3) and (4). Firstly fit-
ting (3) to the data over a long period makes the model locally
inaccurate, since the model does not compensate for annual
variation. In other words (3) is useful only if we want to model
each observed year separately, since continuous boundary con-
ditions are not supported by Levenberg-Marquardt. Secondly
the technique (Levenberg-Marquardt) used to estimate the
parameters of (3) produces a local minimum if the initial
estimate of the parameters is not close to their true values.
Furthermore (3) can represent a wide variety of underlying
noise free models, including period-halving bifurcations, but
if this set of possible functions is extensive enough to model all
noise free remotely sensed signals remains an open question.
The model (4) is more general than (3), since the amplitude,
mean and phase can be functions of time. The phase is also
not restricted to a cosine. However a drawback of (4) is that it
can not be described in a single parsimonious model equation,
since A,C and ϕ are functions of time. Lastly the noise
process superimposed on the underlying noise free signal is
not modeled by either (3) or (4) (or rather the noise is assumed
to be white).

In contrast to the above the Colored Simple Harmonic
Oscillator (CSHO) is a parsimonious model, where (7) not
only models the noise (allows color) and remaining harmonic
components, but to a certain extent also compensates for
annual variation due to the volatility build into the Ornstein-
Uhlenbeck process. The CSHO model however does not
explicitly try to represent the true underlying noise free model
(not a smoothing technique). This is however not a problem,
since we do not want to extract phenological markers from the
data. Furthermore the assumption of an SHO as underlying
noise free model is reasonable for the case studies presented
in this paper, since the mean and seasonal harmonics in our
data dominate the other harmonics significantly. Lastly (5) can
also be used to create simulated data. Simulated data is useful
for creating standardized testing platforms.

C. Harmonic and Noise features

To estimate the harmonic parameters of (5) we will use the
Fourier transform, while the noise parameters will be estimated
via maximum-likelihood parameter estimation. We define the
Fourier transform of an observed MODIS pixel x(t) as

X (f) = {F [xb(t)]}b∈{1···8}. (9)

The subscript c is omitted here, since we do not know to which
class an observed pixel belongs.

For each band b we can estimate {Â, ϕ̂, Ĉ} as follows

Â = 2|F [xb(t)](fs)| (10)

ϕ̂ = arg(F [xb(t)](fs)) (11)

Ĉ = |F [xb(t)](0)| (12)

To estimate the parameters µ̂, λ̂ and σ̂ for xb(t) a maximum
likelihood parameter estimation is used. We first calculate

η̂b(t) = xb(t)− Â sin(2πft+ ϕ̂) + Ĉ. (13)

Now let ηb[i] be the discrete time analogue of ηb(t), with
δ being the time step of ηb[i], i.e. t = iδ, and n being the
total amount of samples we have of ηb(t). The log-likelihood
function of ηb[i] is given by [15]

L(µ, λ, σ̄) = −n

2
ln(2π)− n ln(σ̄)− · · ·

· · · 1

2σ̄2

n∑
i=1

[
ηb[i]− ηb[i− 1]α− µ(1− α)

]2
,

(14)

where
σ̄2 = σ2 1− e2α

2λ
(15)

and
α = e−λδ. (16)

By respectively setting the partial derivative of (14) with
respect to µ, λ, σ̄ equal to 0 and respectively solving for
µ, λ, σ̄, such that µ is independent of λ and σ̄, we get the
following maximum likelihood estimators

µ̂ =
ηyηxx − ηxηxy

n(ηxx − ηxy)− (η2x − ηxηy)
, (17)

λ̂ = −1

δ
ln

ηxy − µ̂ηx − µ̂ηy + nµ̂2

ηxx − 2µ̂ηx + nµ̂2
, (18)

ˆ̄σ =
1

n
[ηyy − 2α̂ηxy + α̂2ηxx · · ·

− 2µ(1− α̂)(ηy − α̂ηx) + nµ2(1− α̂)2], (19)

with

ηx =
n∑

i=1

η̂b[i− 1], ηy =
n∑

i=1

η̂b[i]

ηxx =

n∑
i=1

η̂b[i−1]2, ηxy =

n∑
i=1

η̂b[i−1]η̂b[i], ηyy =

n∑
i=1

η̂b[i]2,

(20)
where the relation between σ and σ̄ was defined in (15) and
α is given by (16). A resimulated example pixel reconstructed
using (5) and the estimated parameters is given in Fig. 2. The
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Fig. 2: A true and simulated MODIS vegetation pixel in
spectral band four (Gauteng).

estimated parameters can now be used as input features of a
classifier.
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D. Temporal features

Selecting temporal features for classification purposes is an-
other well known approach [2]. If we want to choose the most
relevant reflectance values (temporal features) from a MODIS
pixel x(t) to use as features for a classifier, we need to select
those reflectance values from x(t) where the annual ensemble
mean of two different classes are at a maximum distance from
each other. Mathematically we can write the following. We
would like to select τ s.t. the following optimization problem
is maximized.

sup
τ∈[0,45]

∥ȳc1(τ)− ȳc2(τ)∥2, (21)

where ȳ represents the annual ensemble mean. The solution τ
can be extended to a sequence τ , since the annual ensemble
mean is periodic, we can thus obtain a maximum more than
once during the observation period T . Now we select the
actual reflectance values from the observed MODIS pixel,
ζ = x(τ ) = {xb(τ )}b∈{1···8}. We can of course construct
a smaller ζ from any subsets of ȳc1(t), ȳc2(t) and x(t), as
long as the subsets are constructed using the same spectral
bands.

III. CLASSES, STUDY AREAS AND DATA DESCRIPTION

The data used for the two case studies is discussed in detail
in the following sections.

A. Classes

Two classes of land cover type, namely settlements and
natural vegetation is considered in this paper. The most
prevalent form of land cover change in South Africa is that
of settlement expansion, driven by formal as well as informal
new settlements, which is caused by migration of people in
the southern parts of Africa [21]. As such, the detection or
classification of the land cover in South Africa is an important
issue, as natural vegetation is being converted into settlement
on a continuing and often informal (unplanned) basis. In this
study the settlements class contains pixels consisting of about
50% buildings, and 50% vegetation, whereas the vegetation
class contains pixels with more than 90% vegetation.

B. Study Area

Every pixel within each class has eight associated time
series, with observations every eight days. The first seven time
series correspond to the seven MODIS spectral land bands,
while the 8th time series corresponds to NDVI. The eight time
series extracted from a single pixel is shown in Fig. 1.

The time series data is derived from the MODIS MCD43A4
Bidirectional Reflectance Distribution Function (BRDF) cor-
rected 500 m land surface reflectance product corresponding
to a total area of approximately 230 km2 in Gauteng and
800km2 in Limpopo, South Africa. The Gauteng and Limpopo
provinces are shown in Fig. 3.
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Fig. 3: Experimental study area: Gauteng and Limpopo, South
Africa.

C. Data Description

The Gauteng dataset consists of 925 MODIS pixels, while
the Limpopo data set contains 3232 MODIS pixels, identified
by means of visual interpretation of high resolution Système
Probatoire d’Observation de la Terre (SPOT) images between
2000 and 2008. Each pixel contains eight time series (seven
MODIS bands, and NDVI), with N = 368 observations. The
Gauteng and Limpopo datasets are respectively divided into
the two classes: settlements (333 Gauteng pixels and 1735
Limpopo pixels) and natural vegetation (592 Gauteng pixels
and 1497 Limpopo pixels). The entire Gauteng data set and a
subset of the Limpopo dataset were used in the studies [14]
and [12] respectively.

IV. SEPARABILITY ANALYSIS: GAUTENG CASE STUDY

We will investigate the separability of two classes in Gaut-
eng by using a model in Section IV-B. Before we can perform
our separability analysis we first need to verify that our data
indeed fits the proposed model well, which is done in Section
IV-A.

A. Model Validation

We know that the differences ∆η = η[t + 1] − η[t] of
the Ornstein-Uhlenbeck process are Gaussian. The question
of how does the actual estimated noise η̂b[t] (13) in Gauteng
behave in comparison remains.

If we restrict our attention to an SHO, as the underlying
noise free model, we find that the additive noise process
is highly correlated. The differences ∆η̂b of the estimated
noise process are however not Gaussian (the null hypothesis
is rejected by the Kolmogorov-Smirnov test).

In fact, the t location-scale distribution is a good fit. It has
density function

p(x) =
Γ
(ν + 1

2

)
σ
√
νπΓ

(ν
2

)[ν +
(x− µ

σ

)2

ν

]−
(ν + 1

2

)
, (22)

with location parameter µ, scale parameter σ > 0, and shape
parameter ν > 0. The t location-scale distribution is useful for
modeling data distributions with heavier tails (more prone to
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outliers) than the normal distribution. It approaches the normal
distribution as ν approaches infinity, and smaller values of ν
yield heavier tails.

We argue however that the Ornstein-Uhlenbeck process
is a good model fit for η̂b[t], since we only sacrifice the
capability to model the outliers effectively and in return gain
a mathematical tractable model.
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(b) Ornstein-Uhlenbeck increments.

Fig. 4: Increment distributions for a randomly selected veg-
etation pixel; t location-scale and Gaussian approximations
(N = 367). Derived using the recorded digital number.

In Fig. 4a we have the t location-scale and Gaussian
approximations of the increment distribution of a randomly
selected vegetation pixel and in Fig. 4b we have the increment
distribution of an Ornstein-Uhlenbeck process.

B. Ensemble Mean and Hellinger Distance

Below we investigate the separability between the ensemble
means of the classes as well as the estimated parameters of
the classes.

1) Ensemble Mean: The ensemble mean for Xc(t) was
defined in (8). The yearly ensemble mean for each class can
be estimated by taking the daily average over all pixels and
then over all years. In other words we assume inter annual
variability and average it to obtain the yearly ensemble mean
for each class for the period 2000 to 2008. The estimated
yearly ensemble mean of both real world data and synthesized
data generated using (5) show the same sinusoidal behavior
with a period of one year (indicated in Fig. 5 and Fig. 6 for
the real world data). We can now fit sinusoids through the data
and assume this is the true value of ȳc(t).
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Fig. 5: The yearly ensemble mean of the MODIS land bands
for the vegetation and settlement classes (Gauteng).
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Fig. 6: The yearly ensemble mean of NDVI for the vegetation
and settlement classes (Gauteng).

2) Hellinger distance: As discussed in Section II-C the
parameters of xb(t) can be estimated. After estimation we can
construct a probability density function for each parameter
in each class using kernel density estimation. We can then
calculate the Hellinger distance between the density functions
of each parameter of the two classes. Recall that the Hellinger
distance between probability density functions p and q is
defined as

HD(p, q) =

√
1−

∫ ∞

−∞

√
p(x)q(x) dx. (23)

A Hellinger distance of HD(p, q) ≈ 0 indicates that the
densities are not separable, whereas a distance HD(p, q) ≈ 1
indicates that the densities are trivially separable. The calcu-
lated Helinger distances between the parameters of vegetation
and settlements are given in Fig.7.
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Fig. 7: Hellinger distance between the parameter probability
density functions of the vegetation and settlements classes for
each MODIS band (Gauteng).

3) Separability Discussion: From Fig. 5, Fig. 6 and Fig. 7
we can draw the following conclusions regarding vegetation
and settlement separability. First we notice that vegetation
and settlement pixels are separable by using only the mean
component of (5) in bands 2 and 4. We also notice that
vegetation and settlement pixels are trivially separable in bands
7 and NDVI when using the amplitude of (5). The phase
parameter provides good separability in all the MODIS land
bands. What is interesting from Fig. 7 is that we notice that
the estimated noise parameters can also be used to separate
vegetation and settlement classes. The mean reversion rate of
(7) provides very good separability between settlements and
vegetation classes in bands 2, 5, 7 and NDVI. It is noteworthy
to mention that band 5 has very low separability except when
using λ. Lastly the volatility σ of (7) has a HD(p, q) ≈ 0
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in almost all of the MODIS bands, which implies that the
vegetation and settlement classes are not that separable when
using the parameter σ by itself.

V. CLASIFICATION RESULTS: GAUTENG CASE STUDY

We compare the classification results when using the pa-
rameters of the CSHO as features with the results obtained
when using the proposed harmonic features (2) of [7], [12]
and the temporal features [2] in Section II-D. We also compare
the CSHO approach with the classification technique proposed
in [14]. We are however not proposing a novel classification
technique, instead we are using the classification results to
validate the usefulness of the parameters of the proposed
model. The proposed model only models no change pixels, but
can be extended to model changed pixels as well. Furthermore
change from vegetation to settlements when employing coarse
resolution data is such a rare event that the assumption of no
change is acceptable. A large amount of pixels will still be
classified correctly under this assumption.

We start of by explaining the different classifiers used in
Section V-A and Section V-B. We divide the classification
results into two main sections. We will first discuss the
classification results obtained by using up to two MODIS
bands at a time in Section V-C. We then report our results
of the remaining band combinations in Section V-D.

A. Minimum Distance Classifier

The minimum distance classifier [14] classifies the observed
signal x(t) as class c by choosing the class with the lowest
model error. Where the model error for each class c is defined
as the accumulated euclidean distance between the observed
signal x(t) and the signal model (yearly ensemble mean)
ȳc(t). Mathematically we want to find a c s.t. the following
optimization problem is minimized

inf
c∈C

∫ T

0

∥x(t)− ȳc(t)∥2 dt. (24)

Any subset of x(t) and ȳc(t) can be used for classification,
as long as both subsets are constructed from the same spectral
bands. The euclidean differences are normalized with the
difference between the maximum and minimum observed
value in each band.

B. Support Vector Machine

A Support Vector Machine (SVM) constructs a hyperplane
or set of hyperplanes in a high or infinite dimensional space,
which can be used for classification, regression, or other tasks
[22]–[24]. We chose an SVM as classification technique since
SVMs, unlike neural networks, are robust to the overfitting
problem (increased spectral view increases feature set sizes).
The first documented use of SVMs in remote sensing was in
[25]. Since then there have been many important studies and
results [26]–[29]. SVMs have also been applied to MODIS [2],
[30]–[34]. A linear kernel with a C selected via grid search
was chosen. The linear kernel proved sufficient to validate the
usefulness of the features of the CSHO. We used 50% of the
pixels for training and 50% for validation.

C. Two band classification results

In Fig. 8a we have the κ coefficients of every single band as
well as every two band combination produced by the minimum
distance classifier. In Fig. 8b to Fig. 8d we have the single
and two band SVM classification results for different feature
sets. The features used to produce the results in Fig. 8b to
Fig. 8d were temporal features, harmonic features and the
parameters of the CSHO respectively. We can see that overall
the parameters of the CSHO outperforms the other features
and classification technique. By further inspection we also
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(a) Minimum distance classifier
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(b) Temporal features [2]
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(c) Harmonic features [7], [12]
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(d) Harmonic and noise features

Fig. 8: Two band classification results in Gauteng.

see that the best band to use in combination is band two
in the case of Fig. 8a and Fig. 8b. However according to
Fig. 8c and Fig. 8d the best band to use in combination is
band seven. This difference can be explained with the aid of
Fig. 5 and Fig. 7. The minimum distance classifier and the
SVM with temporal input features will perform well if there
exists a large average euclidean distance between the yearly
ensemble means of the classes, while the remaining feature
sets rely on the separability of the harmonic components for
good classification results. As we can see from Fig. 5 the
yearly ensemble mean is the most separable in band two,
while according to Fig. 7 the seasonal component is the
most separable in band seven, which explains the mentioned
discrepancy. In general band five is the worst band to use in
combination.

As an interesting side note we end our analysis by looking
at the best and worst two band combination from Fig. 8a. The
class models of the best and worst two band combination are
displayed in Fig. 9b and Fig. 9a respectively.

It is clear from Fig. 9 that in the case of band four and seven
the class models of settlement and vegetation are further apart
than in band one and five.

D. Multi band classification results

Finally we present the graphs of the average kappa co-
efficients for each method in Fig. 10. For example if we
restrict ourselves to two spectral bands we get 28 unique band
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Fig. 9: Two dimensional yearly ensemble mean models.

combinations. The 28 κ coefficients for all four methods are
displayed in Fig. 8. The average of the 28 κ coefficients of
each method form the four points in Fig. 10 each with an x
coordinate equal to 2. The most important result from Fig. 10
is that the average classification accuracy increases as one uses
more spectral bands for classification. It is important to note
here that even though the different methods perform on aver-
age similar when using a high number of spectral bands we
still get a large improvement when a low number of spectral
bands are used with the harmonic and noise feature set. The
effectiveness of the harmonic and noise features validates our
proposed model and is significant, since it is obviously more
advantageous to classify more accurately without having to
increase the spectral view.
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Fig. 10: Average κ coefficients for all band combinations.

VI. SEPARABLITY ANALYSIS: LIMPOPO CASE STUDY

The settlement class in Limpopo consists mostly of informal
settlements. When we compare the informal settlement pixels
in Limpopo to the formal settlement pixels in Gauteng we
notice that informal settlements are less dense and for this
reason contain a lot more residual vegetation. We discuss
the separability between vegetation and settlements in Section
VI-A.

A. Ensemble Mean and Hellinger Distance

1) Ensemble Mean: The estimated yearly ensemble means
of the vegetation and settlement classes are given in Fig. 11
and Fig. 12. If we compare the Limpopo results to the Gauteng
results we notice the same sinusoidal behavior. The differences
between the yearly ensemble means of the two provinces can
be ascribed to differences in indigenous vegetation of the two

regions, geographical location and settlement density. We also
notice that the ensemble means in Limpopo are more separable
than in the case of Gauteng.
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Fig. 11: The yearly ensemble mean of the MODIS land bands
for the vegetation and settlement classes (Limpopo).
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Fig. 12: The yearly ensemble mean of NDVI for the vegetation
and settlement classes (Limpopo).

2) Hellinger Distance: The Hellinger distances between
the different parameters of the CSHO model in Limpopo is
displayed in Fig. 13. The Hellinger distances are much less
than in the case of Gauteng. In other words the two classes
in Limpopo is less separable than in Gauteng due to a high
amount of residual vegetation in the settlement class. Even
though the yearly ensemble means in Limpopo are more
separable the two classes are actually less separable due to
a high amount of inter class variation (high variance exist in
the data).
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Fig. 13: Hellinger distance between the parameter probability
density functions of the vegetation and settlements classes for
each MODIS band (Limpopo).

3) Separability Discussion: According to Fig. 13, Fig. 11
and Fig. 12 the mean component contributes the most to the
separability of the two classes, while the seasonal component
contributes very little, except in the case of NDVI. However
the most important result from Fig. 13 is that we can confirm
that the noise parameters further enhance ones capability to
discern between the two classes.
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VII. CLASIFICATION RESULTS: LIMPOPO CASE STUDY
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(b) Temporal features [2]
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(c) Harmonic features [7], [12]
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Fig. 14: Two band classification results in Limpopo.

All the one band and two band classification results for
the Limpopo case are given in Fig. 14. On average the
harmonic an noise feature results are better than the remaining
results in Fig. 14, supporting the usefulness of the proposed
feature set. In Fig. 14d we see that the best band to use in
combination is band four. It is important to note that this
is not the best band predicted by Fig. 13. This discrepancy
can be explained by realizing that a large Hellinger distance
indicates that one should be able to find a hyperplane that
provides good separability, but that this relation between large
distance and good separability is not necessarily a perfect
one to one relation. The weak performance of the minimum
distance classifier in spite of highly separable yearly ensemble
means confirms a high amount of variance in the data.

VIII. EXTENDABILITY

The focus of this paper is on the two classes namely
vegetation and settlement, but the approach presented here is
well suited to solve a multi class classification problem as well.
The model itself can be applied to different classes, because
it is quite general. It models the basic mean and seasonal
components inherent in the remote sensing time series and
then models the remaining residue with an appropriate color
noise model. Furthermore it is well known that SVM’s can
solve multi class classification problems [2] and as such would
be well suited for extending the approach to multiple classes.
Lastly since we do not perform feature reduction on our model
parameters we also do not have to perform preliminary class
analysis before applying our algorithm to such problems.

IX. CONCLUSIONS

To achieve class differentiation or accurate classification, we
proposed a parsimonious model for the time series extracted
from MODIS data for settlement and vegetation pixels. The
model we proposed consisted of a harmonic and noise com-
ponent whose parameters were estimated by using the Fourier

transform and maximum-likelihood parameter estimation re-
spectively. Using two case studies we showed that when using
the estimated proposed model parameters as features for a
classifier we obtain better separability and classification results
(between vegetation and settlements in Gauteng and Limpopo)
if compared to the Fourier features [7], [12], temporal features
[2] or the minimum distance classification technique in [14].
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