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Abstract

We consider the basic SIR epidemiological model with the Michaelis-Menten formulation of the contact rate.
From the study of Michaelis-Menten basic enzymatic reaction, we design two types of Nonstandard Finite
Difference (NSFD) schemes for the SIR model: Exact-related schemes based on the Lambert W function and
schemes obtained by using Mickens’s rules of more complex denominator functions for discrete derivatives
and nonlocal approximations of nonlinear terms. We compare and investigate the performance of the two
types of schemes by showing that they are dynamically consistent with the continuous model. Numerical
simulations that support the theory and demonstrate computationally the power of NSFD schemes are
presented.
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1. Introduction

One of the most basic enzymatic reaction was proposed more than a century ago by Michaelis and
Menten. Following [1] in this introductory section, the process involves a substrate S that reacts with an
enzyme E to form a complex ES which in turn is converted into a product P and the enzyme. This is
represented schematically by

E + S
k1

⇌

k
−1

ES
k2−→ P + E,

where k1, k−1 and k2 are positive constant parameters associated with the rates of reaction. Denoting,
as usual in biochemistry, by [X ] the concentration of a reactant X , the mass action principle leads to the
following model for this basic enzymatic reaction:

d[S]

dt
= −k1[E][S] + k−1[ES], (1)

d[E]

dt
= −k1[E][S] + (k−1 + k2)[ES], (2)

d[ES]

dt
= k1[E][S]− (k−1 + k2)[ES], (3)

d[P ]

dt
= k2[ES]. (4)
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The system (1)-(4) is supplied with initial conditions:

[S](0) = [S]0, [E](0) = [E]0, [ES](0) = [ES]0 and [P ](0) = [P ]0. (5)

In order to study the dynamics of the complex system (1)-(4), the tradition is to make the so-called Standard
Quasi Steady -State Assumption (sQSSA). That is, at the initial stage of the complex [ES], formation is
very fast after which it is essentially at equilibrium i.e.,

d[ES]

dt
≈ 0 at the low enzyme concentration. (6)

Under the condition (6), the system (1)-(4) is reduced to the scalar equation

d[S]

dt
= −

k2[E]0[S]

[S] +Km

, [S](0) = [S]0, (7)

where Km =
k−1 + k2

k1
is called the Michaelis constant. Eq. (7) is the Michaelis-Menten (M-M) equation. It

was also derived in [2] and [3] with a singular perturbation technique where [S] is one of the leading order
terms of the expansion of the outer solution. Since the enzyme is traditionally considered to be present in
small amounts compared with the substrate, the assumption (6) that leads to (7) means that the substrate
concentration effectively does not change during this initial transient stage. This is typically the case when
the substrate concentration greatly exceeds that of the enzyme [4]:

[E]0
[S]0

<< 1. (8)

On the contrary, at high enzyme concentration, the sQSSA or the assumption (6) is no longer valid. This
well-known fact was recently comprehensibly analysed in [5] with the aid of the reverse Quasi-Steady State
Assumption (rQSSA) where a necessary condition for its validity is the opposite of (8):

[E]0
[S]0

>> 1. (9)

In this case the following full system that results from the conservation law obtained by adding equations
(2) and (3) must be used:

d[S]

dt
= −k1[E]0[S] + (k1[S] + k−1)[ES], (10)

d[ES]

dt
= k1[E]0[S]− (k1[S] + k−1 + k2)[ES]. (11)

Despite the apparent simplification from (1)-(4) or (10)-(11) to (7), the solutions of the M-M equation cannot
be found explicitly. Consequently, it is crucial to construct numerical methods which are reliable in that they
provide useful information on the dynamics of the differential model. The particular type of information
and properties on which many researchers have focused are the linear stability of the hyperbolic critical
point [S̃] = 0 and the positivity of the solutions. Nonstandard Finite Difference (NSFD) schemes which
are elementary stable and preserve the positivity of the exact solutions have been extensively investigated
for general dynamical systems (see the books [6], [7] and [8] and the references therein). In a recent work
[9], which is based on the paper [10] on the exact scheme of the M-M equation via the so-called Lambert
W function [11], the authors designed, for the M-M equation and major related reaction-partial differential
equations, several innovative NSFD schemes that are dynamically consistent and sometimes topologically
dynamically consistent in the sense of [12].

On the other hand, despite the restrictive validity of the equation (7) in the context of enzyme kinetics,
its right-hand side is extensively used in ecological models of interacting populations and in epidemiology of
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infectious diseases as a functional response, which captures well the fact that the number of contact made
by an average invading or infective individual tends to saturate (see, for instance, [13], [14], [15], [16] and
[17]). The purpose of the current work is primarily to explore how the study in [9] can be extended to
epidemiological models. We restrict the analysis to the basic SIR model. We design, for this model, an
exact scheme-related method and NSFD schemes that are obtained by using Mickens’ rules [6]. One focus
of the work is to compare and investigate the performance of these two types of numerical schemes.

The rest of the paper is organized as follows. In the next section, we study the M-M equation versus
the decay equation, with the aim of emphasizing from their exact schemes that these equations have the
same dynamics only near the critical point [S̃] = 0. Some of the NSFD schemes obtained in [9] are briefly
discussed in Section 3, in preparation of Section 4 where new schemes are investigated for the SIR model.
Section 5 provides concluding remarks pertaining to how the new NSFD schemes fit in the literature and
how the study can be extended. As a matter of principle, numerical simulations that illustrate the power of
NSFD schemes discussed in a given section are presented in the same section.

2. The M-M equation versus the decay equation

For convenience, the Michaelis-Menten (M-M) ordinary differential equation (7) is written as

du

dt
= −

au

1 + bu
, a > 0, b ≥ 0, (12)

with initial condition
u(0) = u0, (13)

where u = [S] is the concentration of the substrate S and the positive constant parameters are related by
a

b
= k2[E]0 and

1

b
= Km when b > 0. The theory of enzyme kinetics and of the M-M equation, which comes

from a singularly perturbed system of ODE’s, can be found in [1]. The M-M equation (12) has only one
fixed-point, namely ũ = 0. This fixed-point is hyperbolic since the derivative of the right-hand at ũ = 0 is
different from 0, i.e.,

(

−
au

1 + bu

)′

= −
a

(1 + bu)2
. (14)

Consequently, the Hartman-Grobman theorem [18] is valid. Near the fixed-point ũ = 0, the M-M equation
has the same asymptotic behavior as the decay equation

du

dt
= −au, a > 0, (15)

which is its linearized form about this fixed point. More so, due to the negative sign in (14), the fixed-point
ũ = 0 is globally asymptotically stable. This result explains why the study of the M-M equation has been
extensively replaced by that of the decay equation.

Considered with the same initial condition in (13), the equations (15) and (12) have exact solutions

u(t) = exp(−at)u0, (16)

and

u(t) =
1

b
W

(

(b exp(−at)u0 exp(bu0)
)

, (17)

respectively. The closed form expression (17) for the solution of the M-M equation is established in [11], on
the basis of the Lambert W function, also called the Omega function or the product log, which is given by
the relation

z = W (z) exp(W (z)), (18)

as the multivalued (single valued in the case when arguments are non negative real numbers) inverse of the
non-injective complex-valued function

w 7→ w exp(w).

From the exact solutions in (16) and (17), we deduce the following intrinsic properties of the M-M equation:
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Theorem 1. For any given initial value u0 ≥ 0, we have

0 ≤ u(t) ≤ u(t) ≤ u0, ∀t ≥ 0, (19)

lim
b→0

u(t) = u(t), ∀t ≥ 0, (20)

and
u(t) ↓ 0 as t → ∞, (21)

where the latter notation means that the function u(t) decreases monotonically to the hyperbolic fixed-point
0 as t → +∞.

Let us consider a sequence {tk = k∆t}k≥0 of equally-spaced time points where the parameter ∆t > 0 is
the step size. We denote by uk an approximation to the solution u at the point t = tk. Setting from (16)
and (17), uk = u(tk) and uk = u(tk), the exact schemes of the decay and M-M equations are [6], [10]:

uk+1 = exp(−a∆t)uk (22)

and

uk+1 =
1

b
W

(

(b exp(−a∆t)uk exp(buk)
)

, (23)

respectively. The exact scheme (22) is a non-standard finite difference (NSFD) scheme on observing that it
is equivalent to

uk+1 − uk

φ1(∆t)
= −auk+1, (24)

or
uk+1 − uk

φ2(∆t)
= −auk, (25)

where

φ1(∆t) =
exp(a∆t)− 1

a
and φ2(∆t) =

1− exp(−a∆t)

a
. (26)

In view of the property (20), that must be replicated by the numerical methods, the equivalent form [10]

uk+1 − uk

φ2(∆t)
=

W
(

(b exp(−a∆t)uk exp(buk)
)

− buk

bφ2(∆t)
, (27)

which is indeed a NSFD method, is useful for the exact scheme (23).
Despite the similarity in the dynamics of the M-M and decay equations, as stated in Theorem 1, the

decay equation is not a good approximation of the M-M whenever the initial value u0 is far away from
the fixed-point ũ = 0. This fact which is in accordance with Hartman-Grobman theorem is illustrated in
Figure 1 and Table 1 where the error uk − uk ≥ 0 is computed from the formulae (22) and (23). While the
different rows display the expected convergence, the columns show the considerable discrepancy between
uk and uk when the initial condition is far away from the fixed-point. Note that here and after, in the
simulations involving the Lambert W function, we use the Matlab built-in function “lambertw(*)”.

u0 = 10 u0 = 5.0 u0 = 1.0 u0 = 0.5
∆t 2 1 0.5 2 1 0.5 2 1 0.5 2 1 0.5

uk 1.35 1.35 1.35 0.68 0.68 0.68 0.14 0.14 0.14 0.07 0.07 0.07
uk 8.20 8.20 8.20 3.39 3.39 3.39 0.28 0.28 0.28 0.10 0.10 0.10

uk − uk 6.85 6.85 6.85 2.71 2.71 2.71 0.14 0.14 0.14 0.03 0.03 0.03

Table 1: Error between solutions of M-M and decay equations for a = 0.1, b = 1 and t = 20.
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Figure 1: Comparison of the exact schemes of M-M and decay equations for u0 = 10 and ∆t = 2.

3. Dynamically consistent NSFD schemes

Exact schemes that are effective in applications do not exist in many cases. This is specifically the

case when the right-hand side of (12) has a more general form f(u) including a term such as −
aun

1 + bun

that appears in the studies of chemostats, morphogenesis, continuous ventilation-volume, spruce budworm
outbreak, calcium-stimulated-calcium release mechanism, etc. (see [10] and the references therein). In
this section, we discuss briefly the following three NSFD schemes for the M-M equation, obtained in [9]
by a judicious use of Mickens’ rules [6] on the denominator of the discrete derivatives and the nonlocal
approximation of nonlinear terms:

uk+1 − uk

φ1(∆t)
= −

auk+1

1 + buk
, (28)

uk+1 − uk

φ1(∆t)
= −

auk+1

1 + buk+1
, (29)

uk+1 − uk

φ2(∆t)
= −

auk

1 + buk
. (30)

While the schemes (28) and (30) are explicit, the implementation of the method (29) hinges on the fact that
it is equivalent to a quadratic equation in uk+1, with a unique nonnegative root given by

uk+1 =







buk − ea∆t +
√

(buk − ea∆t)2 + 4buk

2b
if b > 0,

ukea∆t if b = 0.
(31)

By analogy with the continuous model, we denote the sequence {uk} in ( 28)–(30) by {uk} when b = 0.
Thus, each uk is a discrete solution of the decay equation (15). We have the following result that actually
states more than the local property of elementary stability of all the NSFD schemes (28)–(30), which simply
means that these schemes have only ũ = 0 as a fixed-point and this fixed-point is linearly stable as for the
continuous model (see, e.g. [19] and [6]):

Theorem 2. The NSFD schemes (28)–(30) are dynamically consistent with all the properties stated in
Theorem 1. More precisely, for u0 ≥ 0 and any ∆t > 0, we have

0 ≤ uk ≤ uk ≤ u0, ∀k ≥ 0,

lim
b→0

uk = uk, ∀k ≥ 0

5



and
uk ↓ 0 as k → ∞.

The message behind Theorem 2 is that the NSFD schemes (28), (29) and (30) perform as excellently as
(23) or (27). This, along with the theory in Theorem 1, is supported by Figure 2 where a = 0.1, ∆t = 2
while b = 1 and b = 0. In particular, for all the examples presented in this section, we take a = 0.1 and
∆t = 2, which is considered to be large for standard numerical schemes.
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Figure 2: NSFD schemes (28), (29) and (30) versus the exact scheme (23).

On the contrary, the standard finite difference scheme

uk+1 − uk

∆t
= −

auk

1 + buk
, (32)

fails to have positive solutions, to satisfy all the above-mentioned properties for arbitrary values of ∆t and
to be elementary stable, as abundantly reported and illustrated in the literature (see, for instance, [19], [20],
[6], [7] and [8]). Further comments on the power of the NSFD schemes presented in the paper are made in
the concluding section.

In [9], the above study was extended to the advection and or diffusion equations with an M-M reaction
term. The study of such partial differential equations is essential for the modeling of the spread in space
of infectious diseases that are mentioned in the last section of this work. For simplicity, we consider the
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advection equation:
∂u

∂t
+ d

∂u

∂x
= −

au

1 + bu
, d > 0, u(0, x) = u0(x), (33)

which under the condition 0 ≤ u0(x) ≤ M admits a unique solution such that 0 ≤ u(t, x) ≤ M. Since the
solutions only move along the characteristics, which lead to the substitution (t, x) → U(t) := u(t, x + dt),
the discrete analogue of which is (k∆t,m∆x) → u(k∆t, (m+ k)∆x) whenever the functional relation

φi(∆t) = φi(d
−1∆x) i.e., ∆x = d∆t, i = 1, 2, (34)

holds. We consider the following NSFD schemes for (33):

uk+1
m − uk

m−1

φ1(∆t)
= −

auk+1
m

1 + buk
m−1

, (35)

uk+1
m − uk

m−1

φ2(∆t)
= −

auk
m−1

1 + buk
m−1

, (36)

and
uk+1
m − uk

m−1

φ2(∆t)
=

W
(

(b exp(−a∆t)uk
m−1 exp(bu

k
m−1)

)

− buk
m−1

bφ2(∆t)
. (37)

All these NSFD schemes preserve the positivity and boundedness properties in the following precise manner:

Theorem 3. Under the relation (34), we have

0 ≤ u0
m ≤ M =⇒ 0 ≤ uk

m ≤ M, ∀k ≥ 0, ∀m ∈ Z, and sup
m

uk
m =: Sk ↓ 0 as k → ∞.

Figure 3 illustrates the positivity and boundedness properties in Theorem 3 for the explicit NSFD scheme
(35) with initial value u0(x) = e−x2

, x ∈ R. Figure 3(a) shows a side-view profile corresponding to Figure
3(b) taken at x = 0. With d = 0.1 and b = 1, we take the space step size in accordance with (34), i.e.
∆x = 0.2. The results compare nicely with the exact scheme-related method (37), as also shown in figure 4.
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Figure 3: Positivity and boundedness of the NSFD scheme (35) versus the exact scheme-related method (37).
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Figure 4: Error figure corresponding to Figure 3.

4. The SIR model

It is well-known that the mass action principle is not suitable for the modeling of the spread of diseases,
specifically in the situation when the total population is very large. The standard incidence formulation is
preferable [21]. More generally, one should assume that the number of adequate contacts per infective in
unit time is a function of the total population in such a way that this number grows less rapidly as the total
population increases [13], [14] and [17]. The Michaelis-Menten, as a functional response, captures well this
fact and the tendency for the infective individuals to saturate. To be more specific, we assume that the
total population N is divided into the three compartments consisting of susceptible (S), infectious (I) and
recovered (R) individuals:

N = S + I +R.

The SIR model with M-M contact rate reads as

dS

dt
= µK −

aSI

1 + bI + bR+ bS
− µS,

dI

dt
=

aSI

1 + bI + bR+ bS
− (µ+ γ)I, (38)

dR

dt
= γI − µR,

where K > 0 is the carrying capacity, µ > 0 is the natural death rate and γ > 0 is the recovery rate. By
adding the equations in (38), we obtain the conservation law

dN

dt
= µK − µN, (39)

which has the exact scheme [6]

Nk+1 −Nk

φ(∆t)
= µK − µNk+1 or Nk+1 =

Nk + µφ(∆t)K

1 + µφ(∆t)
, (40)

where
φ(∆t) = (1− exp(−µ∆t))/µ.

The dynamics of the SIR model is summarized in the following result [13], [14]:

Theorem 4.

(1) The system (38) is a dynamical system on the following biologically feasible compact set

Ω = {(S, I, R) ∈ R
3
+; S + I +R ≤ K}.
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(2) The basic reproduction number and the disease-free equilibrium of the model are

R0 =
aK

(1 + bK)(µ+ γ)
,

and
E∗ ≡ (S∗, I∗, R∗) = (K, 0, 0),

respectively.
(3) If R0 ≤ 1, then E∗ is globally asymptotically stable (GAS).
(4) If R0 > 1, then E∗ is unstable. In this case, there exists a unique endemic equilibrium E∞ ≡
(S∞, I∞, R∞), which is locally asymptocally stable (LAS) and is given by

S∞ = K/R0,

I∞ =
µ(1 + bK)

a
(R0 − 1),

R∞ = K − S∞ − I∞.

We consider two types of NSFD schemes for the SIR model. The first type is motivated by Mickens’
rules and the NSFD schemes (28)–(30) for the M-M. However, we present only the scheme related to (29)
since it its implementation is not straightforward. The said NSFD scheme reads as follows:

Sk+1 − Sk

φ(∆t)
= µK −

aSk+1Ik
1 + bIk + bRk + bSk+1

− µSk+1,

Ik+1 − Ik
φ(∆t)

=
aSk+1Ik

1 + bIk + bRk + bSk+1

− (µ+ γ)Ik+1, (41)

Rk+1 −Rk

φ(∆t)
= γIk+1 − µRk+1.

With

Ak = b[1 + µφ(∆t)],

Bk = (1 + bIk + bRk)[1 + µφ(∆t)]− b[Sk + µKφ(∆t)] + aφ(∆t)Ik,

Ck = (1 + bIk + bRk)[Sk + µKφ(∆t)],

the implementation of (41) is done via the Gauss-Seidel structure:

Sk+1 =
−Bk +

√

(Bk)2 + 4AkCk

2Ak

,

Ik+1 =

Ik + φ(∆t)
aSk+1Ik

1 + bIk + bRk + bSk+1

1 + φ(∆t)(µ + γ)
, (42)

Rk+1 =
Rk + γφ(∆t)Ik+1

1 + φ(∆t)µ
.

In order to motivate the second type of schemes, we focus on the equation

dS

dt
= −

aSI

1 + bI + bR+ bS
, S(0) = S0. (43)

For (43), we can in view of (23) or (27), consider the scheme

Sk+1 =
1 + bIk + bRk

bφk(∆t)
W

[

bSk

1 + bIk + bRk

exp

(

bSk

1 + bIk + bRk

)

exp

(

−aIk∆t

1 + bIk + bRk

)]

,
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or equivalently

Sk+1 − Sk

φk(∆t)
=

1 + bIk + bRk

bφk(∆t)
×

{

W

[

bSk

1 + bIk + bRk

exp

(

bSk

1 + bIk + bRk

)

exp

(

−aIk∆t

1 + bIk + bRk

)]

−
bSk

1 + bIk + bRk

}

, (44)

where

φk(∆t) =
1 + bIk + bRk

aIk

[

1− exp

(

−aIk∆t

1 + bIk + bRk

)]

= ∆t+O[(∆t)
2
] (45)

for nonnegative Ik and Rk. For convenience, we put

Sk,∆t : =
bSk

1 + bIk + bRk

exp

(

bSk

1 + bIk + bRk

)

exp

(

−aIk∆t

1 + bIk + bRk

)

and

Sk,0 : =
bSk

1 + bIk + bRk

exp

(

bSk

1 + bIk + bRk

)

(46)

from where we note, by definition (18) of the Lambert W function, that

W (Sk,0) =
bSk

1 + bIk + bRk

. (47)

Then, it is easy to check by the mean-value theorem and the differentiability property of the Lambert W
function that we have the following approximation of the nonlinear term in (43):

(1 + bIk + bRk)
W (Sk,∆t)−W (Sk,0)

bφk(∆t)
=

−aIkS
∗
k

1 + bIk + bRk + bS∗
k

≈
−aI(tk)S(tk)

1 + bI(tk) + bR(tk) + bS(tk)
, (48)

where

S∗
k = W

[

bSk

1 + bIk + bRk

exp

(

bSk

1 + bIk + bRk

)

exp

(

−aIk(∆t)θ

1 + bIk + bRk

)]

,

for some θ ∈ (0, 1). At this stage, it is important to observe that

W (Sk,0)−W (Sk,∆t) ≥ 0, (49)

whenever Sk, Ik and Rk are nonnegative.
Based on the equations and notation in (44)–(48), we propose the following new NSFD scheme for the

SIR model (38):

Sk+1 − Sk

φk(∆t)
= µK + (1 + bIk + bRk)

W (Sk,∆t)−W (Sk,0)

bφk(∆t)
− µSk+1,

Ik+1 − Ik
φk(∆t)

= −(1 + bIk + bRk)
W (Sk,∆t)−W (Sk,0)

bφk(∆t)
− (µ+ γ)Ik+1,

Rk+1 −Rk

φk(∆t)
= γIk+1 − µRk+1. (50)

For the implementation of the NSFD scheme (50), we use its equivalent formulation:

Sk+1 =
1

1 + µφk(∆t)

[

µKφk(∆t) +
1 + bIk + bRk

b
W (Sk,∆t)

]

,

Ik+1 =
1

1 + (µ+ γ)φk(∆t)

{

Ik +
1 + bIk + bRk

b
[W (Sk,0)−W (Sk,∆t)]

}

,

Rk+1 =
Rk + γφk(∆t)Ik+1

1 + µφk(∆t)
. (51)
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The NSFD scheme (50) differs from usual ones in that the denominator function varies with the discrete
time, as seen from (45). However, this is not a problem in view of the asymptotic relation in (45) that, as

mentioned earlier, holds due to the fact that the sequence
aIk

1 + bIk + bRk

is bounded for Ik ≥ 0 and Rk ≥ 0.

Theorem 5. The NSFD schemes (41) and (50) are both dynamically consistent with the properties of the
SIR model stated in Theorem 4 in the sense that we have the following facts:
(1) The first scheme satisfies the discrete conservation law (40) and the second scheme satisfies a similar
law with however the denominator function φ(∆t) replaced by φk(∆t) given in (45).
(2)

0 ≤ S0, I0, R0 ≤ N0 ≤ K =⇒ 0 ≤ Sk, Ik, Rk ≤ Nk ≤ K.

(3) The NSFD schemes have no ghost fixed points. More so:
(3.1) If R0 ≤ 1, then E∗ is the only fixed point of the discrete system and this fixed-point is globally asymp-
totically stable;
(3.2) If R0 > 1, then E∗ is unstable; E∞ is the only additional fixed-point of the discrete scheme and this
fixed-point is locally asymptotically stable.

Proof. The claim (1) is obvious by adding the respective equations in (41) and (50). Using this fact and the
workable formulations (42) and (51) together with (49), the claim (2) follows. It is easy to check that the
NSFD schemes have no ghost fixed points. Equally, it is easy to check the stability/instabilty of the fixed-
points, which are hyperbolic, by linearization and by looking at the eigenvalues of the involved Jacobian
matrices. Thus, what deserves some details is the global attractiveness of the disease-free fixed point which
we outline below when R0 < 1. For the NSFD scheme (41), we have:

Ik+1 ≤

1 + φ(∆t)
aSk+1

1 + bSk+1

1 + φ(∆t)(µ + γ)
Ik from the second equation in (42)

=

1 + φ(∆t)
1

b

abSk+1

1 + bSk+1

1 + φ(∆t)(µ + γ)
Ik

≤
1 + φ(∆t)

aK

1 + bK
1 + φ(∆t)(µ + γ)

Ik as the function 0 ≤ x 7→
x

1 + x
is increasing

=
1 + φ(∆t)R0(µ+ γ)

1 + φ(∆t)(µ + γ)
Ik by definition of R0 in Theorem 4.

When R0 < 1, we have
1 + φ(∆t)R0(µ+ γ)

1 + φ(∆t)(µ + γ)
< 1,

and the last estimate implies that
lim
k→∞

Ik = 0,

which if incorporated in the third and the first equations in (41) yields

lim
k→∞

Rk = 0 and lim
k→∞

Sk = K.

This proves that the disease-free fixed-point E∗ of the NSFD scheme (41) is globally attractive when R0 < 1.
Regarding the global attractiveness of E∗ for the scheme (50), the same procedure applies provided that in
(51), we write the contribution of the Lambert W function with S∗

k as in the middle relation in (48). Then
we replace Sk+1 and φ(∆t) in the above reasoning with S∗

k and φk(∆t), respectively.
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For numerical experiments, we take a = 0.1, b = 1, K = 1000 and ∆t = 2 together with the following
set of data:

µ γ R0 E∗ E∞

0.2 0.1 0.333 (1000, 0, 0) Not applicable
0.04 0.03 1.427 (1000, 0, 0) (700.77; 170.97; 128.33)

Figures 5, 6, 7 and 8 illustrate Theorem 5 when the schemes (41) and (50) are used. The results are
further displayed in Table 2. The performance of the exact related scheme (51) seems to be excellent when
R0 < 1.
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Figure 5: Comparison of NSFD schemes (42) and (51) for R0 < 1.
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Figure 6: Comparison of NSFD schemes (42) and (51) for R0 < 1.
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Figure 7: Comparison of NSFD schemes (42) and (51) for R0 > 1. The horizontal solid line denotes the endemic equilibrium
solution.
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Figure 8: Comparison of NSFD schemes (42) and (51) for R0 > 1. The horizontal solid line denotes the endemic equilibrium
solution.
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Solution Ik for R0 > 1 Solution Ik for R0 < 1
t = k∆t Scheme (42) Scheme (51) Scheme (42) Scheme (51)

0 500 500 500 500
20 293.8048 298.1990 27.4599 20.6642
40 217.8604 225.2046 2.1706 1.2624
60 186.1466 196.2524 0.1785 0.0627
80 172.8557 185.7154 0.0147 0.0006
100 167.9855 183.3749 0.0012 0.0000
120 166.9604 184.3909 0.0001 0.0000
140 167.5036 186.3452 0.0000 0.0000
160 168.4890 188.1366 0.0000 0.0000
180 169.4146 189.4034 0.0000 0.0000
200 170.1108 190.1506 0.0000 0.0000

Table 2: Table of Ik solution for large k.

5. Conclusion

This paper is an extension of the authors’ work [9] to the basic SIR epidemiological model where the
contact between the susceptible individuals and the infected individuals is expressed by a nonlinear term
which is similar to the right-hand side of the Michaelis-Menten ordinary differential equation. Using the
specific form of the nonlinear term, we introduced new NSFD schemes based on the one hand on Mickens’
rules [6] and on the other hand on the exact scheme of the M-M equation defined via the LambertW function.
We showed theoretically and computationally that the new NSFD schemes are dynamically consistent with
the continuous model. The NSFD schemes that are not exact perform as efficiently as the exact-related
schemes, confirming thus the power of the nonstandard approach. In addition, the designed schemes are
very efficient compared to standard schemes. This is due mainly to the structure of the denominator function
φi(∆t), which reflects the dynamics of the continuum models and which has very large permissible step size
compared to standard schemes. In particular, all simulations were performed on an Intel Core Quad CPU,
2.50GHz, 2.0GB RAM, with a typical run requiring less than 2 seconds of computation time. The fact that
the computer time is not a concern for NSFD schemes was also observed for complex and chaotic phenomena
such as vibro-impact problems, see [22].

Our future interest is in the extension of the results of this study to more complex epidemiological models.
In line with [23], a typical model we have in mind is the spread of diseases in space governed by the following
advection-reaction-diffusion system:

∂S

∂t
+ d

∂S

∂x
=µK −

aSI

1 + bI + bR+ bS
− µS + c

∂2S

∂x2
,

∂I

∂t
+ d

∂I

∂x
=

aSI

1 + bI + bR+ bS
− (µ+ γ)I + c

∂2I

∂x2
, (52)

∂R

∂t
+ d

∂R

∂x
=γI − µR+ c

∂2R

∂x2
.

When there is no diffusion, c = 0, NSFD schemes can be obtained from the discrete advection schemes
(35)-(37) combined with the approach in Section 4.
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