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ABSTRACT 

LEVINS, R. 2000. Models for regional heartwater epidemiology in a variable environment. Onderste­
poort Journal of Veterinary Research, 67:163-165 

A model of the epidemic dynamics of heartwater with in a cattle production unit was presented by 
Yonow et al. (1998) . Here, the model is expanded to a region consisting of several farms to study the 
effect of environmental variability on control strategies. We have shown that: 

• In a region , where the environment of each farm is modelled with constant epidemiologic param­
eter values, while the between-farm parameter values differ, regional variation in the removal rate 
of infected cattle increases the average fraction of infected cattle across the region , while regional 
variation in the transmission rate of infection from ticks to cattle decreases the average fraction of 
infected cattle, thereby requiring control measures that keep the removal rate uniform and the 
transmission rate variable. 

• In a region, where in addition to regional variation between farms, the epidemiologic parameters 
of each farm are time-variant, then temporal variation in both the transmission rate and removal 
rate increases the average fraction of infected cattle across the region , thereby requiring control 
measures that keep both parameters uniform. 

Keywords: Concave, convex, heartwater, time averaging, time-variant, variable environment 

INTRODUCTION 

Yonow, Brewster, Allen & Meltzer (1998) presented 
a model for the determination of the epidemiology of 
heartwater within a cattle production unit and found 
the equilibrium values for the fraction of cattle in­
fected and fraction of infected ticks. However, when 
the scope of the study is expanded from an individual 
farm to a region consisting of several farms, a range 
of conditions on the parameters has to be included. 
It will be shown that parameter variation affects the 
epidemiology, the estimates of transmission and 
acquisition rates, as well as the strategy for control. 

The model used by Yonow et al. (1998) is a non-linear 
system of two ordinary differential equations, describ­
ing the dynamic interaction between the cattle and 
ticks in a farm . The system is adapted from the origi­
nal equations developed by Ross (1911) and Mac­
donald (1957) to study the epidemiology of malaria. 
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~: = Cy(l-x) - rx 

r:Jt = Ax(l - y) - .uy 

where x is the fraction of cattle infected; 
y is the fraction of ticks infected; 

(1 ) 

(2) 

C is the transmission rate from ticks to cattle; 
A is the acquisition rate by ticks from cattle; 
r is the rate of removal of infected caUle by 

death or culling; and 
.u is the death rate of ticks. 

163 



Heartwater epidemiology in variable environment 

It is further assumed that all the system parameters 
are constant. At the steady state, when dx =!b!. = 0 

dt dt ' 
we can solve for the equilibrium values of x and y to 
get: 

AC -IJ.T 
x* =A(C + r) (3) 

AC -IJ.T 
y* = C(A + /1) (4) 

Here x* and y* represent the equilibrium values of x 
and y, respectively. However, when one moves from 
an individual farm to a region consisting of different 
farms, then under this "spatial" variability, although 
the parameter values may be constant in each sepa­
rate farm, in principle they vary from farm to farm. 
This inherent variability can be further complicated 
by making the system parameters time-dependent 
in each farm so that the environment of a farm is no 
longer driven by constant parameter values. There­
fore under spatial variability of a region, in section 2, 
we consider the situation when parameters are con­
stant in each farm but vary across the farms in a 
region; then in section 3, we remove the constancy 
assumption and instead assume that some or all of 
the system parameters are time-variant in each farm 
so that a farm is now taken to be a variable environ­
ment. Furthermore, in each section we make diag­
nostic use of the results and interpret them as effec­
tive control strategies. 

SPATIAL VARIATION 

Suppose that the system of equations 1-2 holds for 
each separate farm, but the parameter values vary 
from farm to farm. Then the regional value of each 
parameter is obtained by averaging across a sam­
ple of farms. However, if a variable is a non-linear 
function of some parameter, then the average of the 
function is not the same as the function evaluated at 
the average value of the parameter. This crucial ob­
servation is the key to making inferences about de­
vising effective control strategies. 

Consider x * as a function of the removal rate r . 
Clearly x* is a non-linear, concave, function of r, as 
can be detected from Fig. 1 and equation 3. There­
fore, if r varies around some average value Y, then 
x* increases faster for r < Y than when it decreases 
for r > r (cf. Fig . 1). Hence on average x* increases 
in the region if r varies from farm to farm; the con­
cavity of the curve results in the average fraction of 
infected cattle being greater than the fraction infected 
at the average value r. Therefore, when r varies, for 
a given level of tick infection, we observe more cat­
tle being infected than would be expected. But if the 
average regional fraction of infected cattle is falsely 
assumed to be the fraction of infected cattle at the 
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FIG. 1 Fraction of cattle infected at equilibrium x*, as a function 
of the removal rate of infected cattle r, where ° ~ r ~ 1. 
The concavity of the curve results in the average fraction 
of infected cattle being greater than the fraction infected 
at average value r. The constants of the system are: A = 
0,25; C = 0,32; and J.I = 0,08 

average value r, then observing a greater fraction of 
infected cattle may result in overestimating the trans­
mission rate of the disease. On the other hand, y* is 
a linear function of r (ct. equation 4), and its average 
value over the region is not affected by variation in r. 

This implies that an effective control strategy should 
aim at increasing the average value r in the region , 
but at the same time reducing the variance of r from 
farm to farm. In other words, a program should be­
gin with increasing r in the farms with the lowest r ­
values. Hence, improvement begins with the worst off. 

Similarly, since x* is a linear function of the death rate 
of ticks /1 , if there is variation in /1 from farm to farm , 
this will not affect the average level of infected cat­
tle. However, since y* is a non-linear, concave, func­
tion of /1 (cf. equation 4), variation in /1 will increase 
the regional average fraction of infected ticks. But if 
the average regional fraction of infected ticks is falsely 
assumed to be the fraction of infected ticks at the 
average value /1 , then this would result in underesti­
mating the ticks' vectorial capacity. 

Suppose now that the contagion rate C varies across 
a region. Since y is the fraction of the tick population 
infected, C depends on the absolute number of ticks 
so that Cy measures the vulnerability of cattle to in­
fection. C may vary if the absolute size of the tick 
population varies or if the rate of successful trans­
mission per tick bite varies. Now x* is a convex func­
tion of C, as can be detected from Fig. 2 and equa­
tion 3. Therefore, if C varies around some average 
value C, then x* decreases faster for C < C than when 
it increases for C> C (ct. Fig. 2). Thus the variation 
in C is beneficial: it reduces the average fraction of 
cattle infected and therefore leads to underestimates 
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FIG. 2 Fraction of cattle infected at equilibrium x*, as a function 
of the transmission rate C, where 0,1 ::; C ::; 0,86. The 
convexity of the curve results in the average fraction of 
infected cattle being smaller than the fraction infected at 
average value C. Here C depends both on the absolute 
population size of ticks and the probability of successful 
t ransmission per tick bite . Any resistance among the 
cattle will reduce C. The constants of the system are: A 
= 0,2; r = 0,1; and J.1 = 0,12 

of vectorial capacity. The convexity of the curve re­
sults in the average fraction of infected cattle being 
smaller than the fraction infected at the average 
value C. Therefore in order to reduce the regional 
average fraction of cattle infected, a reduction in the 
tick population is desired, but beginning with those 
farms in which the tick populations are already low. 
In other words, th is strategy starts improvement with 
the best off. 

Finally, since C depends on the tick population it will 
vary with the rate of fecundity as well as that of 
mortality of ticks. Let f denote the rate of fecundity 
of ticks. Suppose further that C is a decreasing func-

tion of mortality, e.g. C =.1. . Then x* will be a non-
f.1 

linear, concave, function of tick mortality f.1, and there­
fore the greatest improvement will come about by 
increasing the tick mortality where it is the lowest, i.e. 
improvement from below. 
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SPATIAL AND TEMPORAL VARIATION 

Suppose now that some or all of the system ~aram­
eters are time-variant for each farm. In a varying en­
vironment the derivatives of x and y average to zero 
in the long run. This property is used in the method 
of "time averaging", developed by Puccia & Levins 
(1985), to derive expl icit solutions for the average 
values of the variables under study in order to learn 
about the existing correlations between different 
variables and the time varying parameters. Divide 
equation 2 by 1 to get: 

dy -Ax-~ 
dt(l - y) - 1 - y (5) 

The left hand side of equation 5 is the derivative of 
- log(1 - y), and therefore has an average value of 
zero (see Puccia & Levins 1985). Take expected 
value from both sides of equation 5 to get: 

f.1 y 
E{x } = AE {1 - y } (6) 

where E stands for expected or average value. Clear­
ly, E{x } is a concave function of y. Therefore, E{x } is 
increased by any environmental variation that causes 
y to vary. Suppose now that A and f.1 are con~tant but 
there is temporal variation in r or C. Then, In ord~r 
to reduce E{x } , we need to make r or C more un.l­
form. C depends on the total tick population and Will 
vary seasonally; therefore control measures should 
be focused on the season of greatest population. The 
removal rate r is more accessible: the screening for 
sick or infected animals should be done uniformly 
throughout the year. 
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