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Abstract
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1 Introduction

The first appearance of quaternion distributions in the statistical literature from the real representation approach

is in papers of Kabe ([10], [11], [12]). Rautenbach [19] and Rautenbach and Roux ([20], [21]) also utilised the

representation theory in their papers, and more recently there is the refreshing contribution by Teng and Fang

[22].

This paper is set apart from the other recent papers in this field, in that thematrix-variate quaternion normal

distribution as well as the quaternion Wishart distribution are derived from first principles for the first time,

i.e. from their real counterparts, exposing the relations between their respective densities and characteristic

functions.

The paper is organized as follows: In Section 2 a collection of fundamental mathematical results are pre-

sented for use in later sections. This is included since the authors believe that it has didactic value. Section

3 is first devoted to a review on the derivation of the -variate quaternion normal distribution, using the rep-

resentation theory. Armed with these results, the matrix-variate quaternion normal distribution is derived by

generalising this approach. The key idea in Section 4 is how the quaternion Wishart distribution relates to its

real counterpart. We conclude in Section 5 by showing that a simple quaternion hypothesis may be represented

with an associated real hypothesis, and thereafter derive an expression for the density function of Wilks’ statistic

in the case of quaternion Wishart matrices.

The results in this paper should therefore not be seen as corollaries of the work in real normed division

algebras (see for example [5],[6], [7], [13] and [14]), but the significant contribution that is made in the statistical

context, by using the real counterpart approach.

2 Mathematical Preliminaries

A number of useful theorems and other general results that are found in the literature will be discussed in this

section, and will be referred to frequently in subsequent sections.
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Let R denote the field of real numbers, and Q the quaternion (Hamiltonion) division algebra over R, respec-

tively. Hence, every  ∈ Q can be expressed as

 = 1 + 2 + 3 + 4

where , , and  satisfy the following relations:

2 = 2 = 2 = −1  = − =   = − =   = − = 

and where 1 2 3 4 ∈ R. The conjugate of a quaternion element is defined in a similar fashion to that of a
complex number, and is given by:

̄ = 1 − 2 − 3 − 4

Now let ×(R) and ×(Q) denote the set of all  ×  matrices over R and Q, respectively. In the case

of square matrices, say  × , this will be indecated by (R) and (Q) instead. Similar to the scalar form

above, any Z ∈×(Q) may be rewritten as:

Z = [ ]× = X1 + X2 + X3 + X4

where  ∈ Q, and X1, X2, X3, and X4 ∈ ×(R). X1 is the real part of Z, and will be denoted by ReZ.

By setting  = 1, this reduces to the vector form in an obvious way.

We will denote the transpose of a matrix Z
×

as Z0 = Z
×

. The conjugate transpose of Z is therefore given

by

Z̄0 =
£
̄0
¤
× = X

0
1 − X0

2 − X0
3 − X0

4

and we say Z is Hermitian if Z̄0 = Z.

The vec operator is frequently used in expressions involving matrices of quaternions, see for instance Li and

Xue [14], and is defined as

vecZ =
£
 01     

0


¤0 ∈×1(Q)

where  ∈×1(Q)  = 1      are the columns of Z.

We will make use of the representation theory throughout this paper, and although quaternions may be

represented by real matrices in various ways, see for instance Teng and Fang [22], we will use the representation

employed by Kabe (for instance [10] and [12]) and Rautenbach [19]. Specifically suppose that

 = 1 + 2 + 3 + 4 ∈ Q may be represented by z0 ∈4(R), as

z0
4×4

=

⎡⎢⎢⎢⎢⎣
1 −2 −3 −4
2 1 −4 3

3 4 1 −2
4 −3 2 1

⎤⎥⎥⎥⎥⎦ 
Now, if Z

×
∈×(Q), i.e. the case where we have matrices with quaternion elements (or vectors by setting

 = 1), we have Z
×

= []  where  = 1 + 2 + 3 + 4 ∈ Q  = 1     , and  = 1     . By an

elementwise generalization of our representation of the scalar, to the matrix (or vector) form, we have

z0
4×4

=

⎡⎢⎢⎢⎢⎣
1 −2 −3 −4
2 1 −4 3

3 4 1 −2
4 −3 2 1

⎤⎥⎥⎥⎥⎦
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in other words, Z
×

may be represented with the real matrix Z0
4×4

as: Z0
4×4

= [z0] 

Moreover, if we define the mapping



µ
R

4×4

¶
= Q

×
∀R ∈4(R)Q ∈ Q

it was shown in Rautenbach [19] that  is a faithful representation. When R
4×4

∈ 4(R) and (R) = Q ∈
(Q) then it will be indicated as R ' Q.
For the proofs of the results in Lemma 1, see Rautenbach and Roux ([20],[21]) and Mehta [17].

Lemma 1 Suppose R
4×4

∈4(R), Q
×
∈(Q) and R ' Q.

1. R is symmetric if and only if Q is a quaternion Hermitian matrix.

2. R is orthogonal if and only if Q is symplectic.

3. R is nonsingular with inverse R
4×4

−1 = [] =

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣

1 −2 −3 −4
2 1 −4 3

3 4 1 −2
4 −3 2 1

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦if and only if Q is non-

singular with inverse Q
×
−1 = [] = [1 + 2 + 3 + 4 ] 

4. There exists a symplectic matrix H such that: Q = HDH
−1 = HDH̄

0 where D = (1     ) with

 = R + 0 + 0 + 0,  = 1      the real characteristic roots of Q.

5. If R is symmetric, then detR = (detQ)
4
.

6. Let 
0

4×1
= [11 21 31 41     1 2 3 4]

0
and 

×1
= [1     ]

0
with  = 1+2+3+4  =

1     . Let R be symmetric, such that Q is quaternion Hermitian. It now follows that 0
0
R

0
= ̄0Q

7. R is symmetric positive definite if and only if Q is a positive definite quaternion Hermitian matrix.

From this it is clear that the eigenvalues of a Hermitian matrix are all real since they correspond to that

of the real associated, symmetric, matrix (for which they are repeated with multiplicity 4). Moreover, if the

eigenvalues are all positive, then the real associated, symmetric matrix are positive definite, and we may conclude

that the Hermitian quaternion matrix is a positive definite quaternion matrix. In other words, If Q ∈(Q) is

a Hermitian positive definite matrix, then its eigenvalues   = 1      are real and positive and there exists

a Hermitian positive matrix, written as Q
1
2 such that Q = Q

1
2Q

1
2 , see Teng and Fang [22]. For more technical

results and a review on quaternion matrix algebra, see Zhang [23].

The trace operator is frequently used in the symplification of expressions, and although the multiplication

of quaternions is noncommutative, we may go about it as follows, see Zhang [23].

Let Re tr(A) =tr(ReA) for A ∈(Q), we have

Re tr(A) = 1
2
tr(A+ Ā0)

Re tr(AB) = Re tr(BA) ∀AB ∈(Q)
(1)

Moreover, if A = Ā0 ∈(Q), i.e. a Hermitian matrix, and using Lemma 1(4) then this becomes

Re tr(A) = tr(A) =
P

=1



where 1      are the eigenvalues of A.
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We now define some concepts specifically pertaining to the development of the quaternion distribution theory,

and show how they interact with their real associated counterparts.

Definition 2 Let


×1

= 1 + 2 + 3 + 4

be a quaternion probability vector with real associated probability vector given by

0
4×1

=
£
 0
1

0
2

0
3

0
4

¤0


A function () of the  quaternion variables  = 1+ 2+3+4  = 1      is called the probability

density function (pdf) of  if

() = 0
(0)

where 0
(0) is the 4-variate real pdf of 0

4×1
.

Note, here we require the associated counterpart of 
×1

to be 0
4×1

and not necessarily Z0
4×4

as defined earlier.

This is due to the derivation of the quaternion normal distribution, which is discussed in Section 3.

The notion of an associated real probability matrix may be introduced in a similar fashion. Let Z
×

=

X1 + X2 + X3 + X4 be a quaternion probability matrix. The associated real probability matrix is given by

Z0
×4

= [X0
1X

0
2X

0
3X

0
4] 

Definition 3 Let Z
×

= X1+ X2+ X3+X4 be a quaternion probability matrix. The characteristic function

of Z is defined as

Z(T) = 
£
exp 

2

¡
Z̄0T+ T̄0Z

¢¤
 (2)

where T
×

= T1 + T2 + T3 + T4 is a quaternion matrix and  is the usual imaginary complex unit.

If we let V = Z̄0T+ T̄0Z, say, then it follows that V̄0 = T̄0Z+ Z̄0T = V implying that V is Hermitian and

hence, from (1), the characteristic function may be written as

Z(T) = 
£
exp 

2
Re tr

¡
Z̄0T+ T̄0Z

¢¤
= 

£
exp Re tr

¡
Z̄0T

¢¤
(3)

In the case of a quaternion probability vector, 
×1

= 1 + 2 + 3 + 4, (2) reduces to

() = 
h
exp



2

³
̄
0
+ ̄

0

´i

 (4)

where 
×1

= 1+ 2+ 3+4 is a quaternion vector and  is the usual imaginary complex unit. An expression

for the characteristic function of 
×1

in terms of Re tr can be derived in a similar fashion as in (3) and is given

by

() = 
h
exp Re tr

³
̄
0

´i



The nature of the problem will determine the form of the characteristic function used in its derivation.

It now follows that

Z(T) =  [exp Re tr (X0
1T1 +X

0
2T2 +X

0
3T3 +X

0
4T4)]
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such that

Z(T) = Z0(T0) (5)

Z0(T0) is the characteristic function of the associated real probability matrix, Z0
×4

= [X0
1X

0
2X

0
3X

0
4] and

further is T0
×4

= [T01T
0
2T

0
3T

0
4] a real matrix. It is therefore clear that the characteristic function of a

quaternion probability matrix is equivalent to the characteristic function of a  × 4-variate real probability
matrix. A similar result holds for the special case in which  = 1, yielding a quaternion probability vector.

3 The quaternion normal distribution

The -variate quaternion normal distribution forms the basis from which the quaternion distribution theory is

further developed, and will be discussed in Section 3.1. We briefly note the univariate as a special case of the

-variate quaternion normal distribution.

In Section 3.2 we derive the matrix-variate quaternion normal distribution using the real representation

thereof. We derive the probability density and characteristic function, and emphasise the relationship between

the quaternion and associated real cases.

3.1 The -variate quaternion normal distribution

In this section the approach of Kabe ([10], [11], [12]), Rautenbach [19] and Rautenbach and Roux ([20], [21])

are followed in deriving the -variate quaternion normal distribution. Although the results in this section 3.1

are in general not new, it is shown how they relate to those given by Teng and Fang [22], and with particular

emphasis on the quaternion and related real characteristic functions.

Definition 4 Let


×1

= [1     ]
0
=

⎡⎢⎢⎢⎢⎣
11 + 21 + 31 + 41

12 + 22 + 32 + 42

...

1 + 2 + 3 + 4

⎤⎥⎥⎥⎥⎦
be a quaternion probability vector with real associated probability vector

0
4×1

= [11    121    231    341    4]
0
=

"
 0
1

1×
  0

2
1×

  0
3

1×
  0

4
1×

#0


Then,  has a -variate quaternion normal distribution if 0 has a 4-variate real normal distribution.

Teng and Fang [22] used a different matrix structure for representing quaternions by matrices. They supposed

that 
×1

= 1 + 2 + 3 + 4 may be represented by

Z00
4×4

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
×1

2
×1

3
×1

4
×1

−2
×1

1
×1

−4
×1

3
×1

−3
×1

4
×1

1
×1

−2
×1

−4
×1

−3
×1

2
×1

1
×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

"
 1
4×1

  2
4×1

  3
4×1

  4
4×1

#

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Thus the conjugate ̄
×1

= 1 − 2 − 3 − 4 of 
×1

may be represented as

Z̄00
4×4

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
×1

−2
×1

−3
×1

−4
×1

2
×1

1
×1

4
×1

−3
×1

3
×1

−4
×1

1
×1

2
×1

4
×1

3
×1

−2
×1

1
×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

"
 ∗1
4×1

  ∗2
4×1

  ∗3
4×1

  ∗4
4×1

#


From this it is clear that 0 =  ∗1. Teng and Fang [22] showed that any of the  ,  = 1 2 3 4 may be used

to arive at the same form of the probability density function for the -variate quaternion normal distribution.

The covariance matrix Σ of  relates to its real associated covariance matrix Σ0, i.e. the covariance matrix

of 0, in the following way:

Σ0
4×4

= cov
¡
0 

0
0

¢
= 

∙³
0 − 

0

´³
0 − 

0

´0¸
= 1

4

⎡⎢⎢⎢⎢⎣
Σ1 −Σ2 −Σ3 −Σ4
Σ2 Σ1 −Σ4 Σ3

Σ3 Σ4 Σ1 −Σ2
Σ4 −Σ3 Σ2 Σ1

⎤⎥⎥⎥⎥⎦
' 1

4
(Σ1 + Σ2 + Σ3 + Σ4)

= 1
4
cov

¡
 0

¢
(6)

where Σ1
×

is a real symmetric matrix, and Σ2
×
, Σ3
×

and Σ4
×

are skew symmetric matrices. Returning to the

 ,  = 1 2 3 4 defined by Teng and Fang [22], they showed that
1
4
cov
¡
 0

¢ 'cov¡  
0


¢
,  = 1 2 3 4.

In order to apply the representation theory discussed in Section 2, i.e. by an elementwise expansion of the

quaternion probability vector, we now rearrange the components of the real associated probability vector as

follows:

∗0
4×1

= [11213141    1234]
0


The components of 
0
and Σ0 are rearranged accordingly in forming ∗

0
4×1

and Σ∗0
4×4

respectively, and now yield

the pdf of ∗0 as

∗0 (
∗
0) = (2)

− 1
2
(4) {detΣ∗0}−

1
2 exp

½
−1
2

³
∗0 − ∗

0

´0
Σ∗0
−1
³
∗0 − ∗

0

´¾
(7)

for ∗0 ∈ ∗0 =
©
∗0 = [11 21 31 41     1 2 3 4]

0
−∞  1 2 3 4 ∞  = 1     

ª


Since 0
(0) = ∗0 (

∗
0) for all 0 and corresponding ∗0, we may use 

∗
0 as real associated probability vector

when deriving the pdf of .

Theorem 5 Let 
×1

be a probability vector that has a -variate quaternion normal distribution, as given in

Definition 4, with  [] ≡  and Σ ≡ [] as given in (6). The pdf of 
×1
∼ Q(;Σ), is given by:

() = 2
2−2 (detΣ)−2 exp

n
−2 ¡ − 

¢0
Σ−1

¡
 − 

¢o
(8)

where  ∈  =
©
 = [1     ]

0
:  = 1 + 2 + 3 + 4−∞  1 2 3 4 ∞  = 1     

ª
Proof See Rautenbach and Roux [21].

Remark 6 1. Let tr(·) be the trace on (Q). Rautenbach and Roux [21] argued that the trace, as used by

Kabe ([10], [11], [12]) in simplifying the exponent of (), is not allowed, because of the noncommutativity
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property of quaternions, i.e. tr(AB) 6=tr(BA) However, from (1), and the fact that for a quaternion

random vector 
×1
, we have ̄

0
 ∈ R, and from Lemma 1 (6) we may write

exp
n
̄
0
Σ−1

o
= exp

n
Re(̄

0
Σ−1)

o
= exp

n
Re tr

³
̄
0
Σ−1

´o
= exp

n
Re tr

³
Σ−1̄0

´o
 (9)

2. Rautenbach [19] showed that

() = 2
2−2 (detΣ)−2 exp

n
−2 ¡ − 

¢0
Σ−1

¡
 − 

¢o
with Σ0 as associated covariance matrix or

() = 2
2−2 (detΣ)−2 exp

n
−2 ¡ − 

¢0
Σ−1

¡
 − 

¢o
with Σ00 as the associated covariance matrix, which is obtained by using the representation used by Teng

and Fang [22] as discussed above.

Example 7 The pdf of the univariate quaternion normal distribution is obtained by setting  = 1 in (8), and

is given by

() = 4
−2−41 exp

½
− 2
21
( − ) ( − )

¾
(10)

for  ∈  = { = 1 + 2 + 3 + 4−∞  1 2 3 4 ∞}  21 ≡ () = (1) + (2) +

(3) + (4) and  ≡  [] =  [1] +  [2] +  [3] +  [4] are the variance and expected

value of the quaternion probability variable  = 1 + 2 + 3 + 4 ∼ Q( 21), respectively. Note that

Σ∗0 =
1

4

⎡⎢⎢⎢⎢⎣
21 0 0 0

0 21 0 0

0 0 21 0

0 0 0 21

⎤⎥⎥⎥⎥⎦ ' 21

Theorem 8 The characteristic function of 
×1
∼ Q(;Σ), is given by:

() = exp

½


2

¡
̄0+ ̄

0

¢− 1

8
̄
0
Σ

¾
(11)

for every quaternion vector 
×1

and  the usual imaginary complex unit.

Proof. See Rautenbach and Roux [21].

If we let  = ̄0+ ̄
0
 then ̄0 = ̄

0
+ ̄0 = , i.e.  ∈ R, so that we can rewrite (11) in the form

() = exp

½
Re

¡
̄0
¢− 1

8
̄
0
Σ

¾
= exp

½
∗
0

0
∗0 −

1

2
∗0
0
Σ∗0

∗
0

¾
= ∗0 (

∗
0)

so that (5) holds in the multivariate case.
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3.2 The matrix-variate quaternion normal distribution

We now turn our attention to the derivation of the matrix-variate quaternion normal distribution by expanding

our results of the previous section. Once again our goal is to emphasise the relationship between the real

associated form and its resultant counterpart. In Theorem 10 the relationship between characteristic function

of the matrix-variate quaternion normal distribution and its real associated counterpart will be established.

Theorem 9 Let 
×1

  = 1      be  probability vectors each having a -variate quaternion normal distribu-

tion, as given in Definition 4. Now, suppose (for  = 1       = 1     ) that

Z
×

= [ ] =

⎡⎢⎢⎣
11    1
...

. . .
...

1    

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

01
1×
...

0
1×

⎤⎥⎥⎥⎥⎦ =
"
(1)
×1

     ()
×1

#

i.e. the rows of Z are Q(;

Σ) distributed,  = 1      with dependence structure given by R

×
not

necessarily equal to I. It may be assumed without loss of generality that R is real-valued. Similarly, define

μ
×

=
£


¤
  = 1       = 1     

Then

vecZ
×1

=

⎡⎢⎢⎢⎢⎢⎣
(1)
×1
...

()
×1

⎤⎥⎥⎥⎥⎥⎦ ∼ Q (; vecμΣ⊗R)

i.e. a matrix-variate quaternion normal distribution where μ
×1

=

⎡⎢⎢⎢⎢⎢⎣

(1)

×1
...


()

×1

⎤⎥⎥⎥⎥⎥⎦
(denote Z

×
∼ Q (× ;μΣ⊗R))

Proof.

1. In order to apply the methodology set out in Section 3.1, we define the real associated probability vector

of () as

()
×1

=

⎡⎢⎢⎣
1
...



⎤⎥⎥⎦ =

⎡⎢⎢⎣
11 + 21 + 31 + 41

...

1 + 2 + 3 + 4

⎤⎥⎥⎦
= (1)

×1
+ (2)

×1
+ (3)

×1
+ (4)

×1

with associated real counterpart given by

∗(0)
×4

=

"
(1)
×1

(2)
×1

(3)
×1

(4)
×1

#


8



From this we now have

Z
×

=

"
(1)
×1

     ()
×1

#

=

"
(11)
×1

+ (21)
×1

+ (31)
×1

+ (41)
×1

    (1)
×1

+ (2)
×1

+ (3)
×1

+ (4)
×1

#

from which the real associated matrix Z∗0
×4

of Z
×

immediately follows as

Z∗0
×4

= [] =

"
(11)
×1

(21)
×1

(31)
×1

(41)
×1

    (1)
×1

(2)
×1

(3)
×1

(4)
×1

#

=

"
∗(01)
×4

     ∗(0)
×4

#


where  = 1     4  = 1       = 1      If we note that

vec∗(0)
4×1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1)
×1
(2)
×1
(3)
×1
(4)
×1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


then we have

vecZ∗0
4×1

=

"
 0
(11)
1×

 0
(21)
1×

 0
(31)
1×

 0
(41)
1×

     0
(1)
1×

 0
(2)
1×

 0
(3)
1×

 0
(4)
1×

#0
=

⎡⎢⎢⎢⎢⎢⎣
vec∗(01)
4×1
...

vec∗(0)
4×1

⎤⎥⎥⎥⎥⎥⎦
' vec Z

×1


In a similar fashion, we can show that vecμ∗0
4×1

' vecμ
×1



2. We can now rewrite the problem in terms of  real associated probability vectors as ∗0
4×1

  = 1     

each having a 4-variate real normal distribution, as given in (7). The real associated quantity vecZ∗0
4×1

now has a density given by  (vecμ∗0Σ
∗
0 ⊗R), i.e. a real matrix-variate normal distribution, where R

×
denotes the dependence structure of the rows of Z∗0 and is equal to that of Z and since R is real-valued.

3. Thus, the pdf of Z∗0 is given by:

Z∗0

Ã
μ∗0
×4

 Σ∗0
4×4

 R
×

!
= (2)−2 det(R)−2 det(Σ∗0)

−
2 exp

½
−1
2
tr
h
Σ∗0
−1
(Z∗0 − μ∗0)0R−1 (Z∗0 − μ∗0)

i¾

and by the isomorphic relations already established above the pdf of Z follows as

Z

µ
μ
×

 Σ
×

 R
×

¶
=

22

2 (detR)
2
(detΣ)

2
exp

n
−2Re tr

h
Σ−1

¡
Z− μ¢0R−1 (Z− μ)io (12)

from which the desired result follows.
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We now establish the relationship between the characteristic function of the matrix-variate quaternion normal

distribution and that of its real associated matrix-variate normal distribution.

Theorem 10 Let Z
×
∼ Q (× ;μΣ⊗R) as defined in Theorem 9 above. The characteristic function of

Z is given by

Z(T) = expRe 

½
μ̄0T− 1

8
ΣT̄0RT

¾
(13)

where T
×
∈×(Q) and where  is the usual complex unit.

Proof. From (3) and (12) we have

Z(T) = 
£
exp Re tr

¡
Z̄0T

¢¤
=

Z


22

2 (detR)
2
(detΣ)

2

× exp
n
−2Re tr

h
Σ−1

¡
Z− μ¢0R−1 (Z− μ)− 

2
Z̄0T

io
dZ

(14)

where

 =
©
Z = []

0
:  = 1 + 2 + 3 + 4;−∞  1 2 3 4 ∞  = 1       = 1     

ª
is

the region of variability for Z. We can rewrite the argument of Re tr in the form

Σ−1
¡
Z− μ¢0R−1 (Z− μ)− 

2
Z̄0T = Σ−1

∙µ
Z−

³
μ+



4
RTΣ

´¶
R−1

³
Z−

³
μ+



4
RTΣ

´´¸

+Σ−1
"
μ̄0R−1μ−

µ
μ+



4
RTΣ

¶0
R−1

³
μ+



4
RTΣ

´#


Noting the fact that Σ and R are Hermitian, that the conjugate of Re tr is again Re tr,and that according to

(1) the arguments of Re tr may be rearranged, (14) reduces to

Z(T) = expRe tr

(
−2Σ−1

"
μ̄0R−1μ−

µ
μ+



4
RTΣ

¶0
R−1

³
μ+



4
RTΣ

´#)

=expRe tr

½
μ̄0T− 1

8
ΣT̄0RT

¾
 as required.

Note that Z(T) = expRetr
©
μ̄0T− 1

8
ΣT̄0RT

ª
= exp 

©
μ∗0

0T∗0 − 1
2
Σ∗0T

∗
0
0RT∗0

ª
= Z∗0 (T

∗
0), satisfying

(5).

4 The quaternion Wishart distributions

Is it possible to find the density function of the quaternion Wishart matrix from the real associated Wishart

matrix?

In this section, we derive the quaternion Wishart distribution from the real matrix-variate normal distri-

bution associated with the matrix-variate quaternion normal distribution by which it is defined. We once

again emphasise the link between the characteristic functions of the quaternion and real associated Wishart

distributions.

Kabe ([10], [11], [12]) derived the hypercomplex Wishart distribution directly from the hypercomplex normal

distribution using the  generalized Sverdrup’s lemma. Teng and Fang [22] showed that the maximum likelihood

estimator Σ̂ of Σ followed a quaternion Wishart distribution. They used a Fourier transform on the results
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given by Andersson[1] to yield explicit expressions for the probability density and characteristic functions of the

quaternion Wishart distribution. The non-central quaternion Wishart distribution was discussed by Kabe [12],

while Li and Xue [14] derived the singular quaternion Wishart distribution. More technical results, specifically

regarding Selberg-type squared matrices, gamma and beta integrals are found in the paper by Gupta and Kabe

[9].

Theorem 11 Let Z
×
∼ Q (× ;0Σ⊗ I) (see Theorem 9). Then for  ≥ ,W = Z̄0Z is said to have the

quaternion Wishart distribution with  degrees of freedom, i.e. W ∼ Q (Σ), with density function given

by

(W) =
22

QΓ(2) (detΣ)
2
exp

©−2Re tr ¡Σ−1W¢ª
det (W)

2−2+1
 (15)

withW = W̄0  0 and where QΓ (·) is the multivariate quaternion gamma function, as given in [8].

Proof

Let W∗
0

4×4
= Z∗0

0
4×

Z∗0
×4

where Z∗0
×
∼  (× 4;0Σ∗0 ⊗ I) is the real associated matrix of Z as given in Theorem

9. Let T = ()   = 1 2      where  =  and  = 1 + 2 + 3 + 4 From (5) we have

W(T) = W0
(T0)

= det(I4 − 2Σ∗0T∗0)−

2 

where T∗0
4×4

is the real associated symmetric vector of T
×
. Let Y∗0 = (I4 − 2Σ∗0T∗0) then

Y∗00 = (I4 − 2T∗0Σ∗0) = Y∗0 and from Lemma 1 (1) Y is Hermitian. Therefore,

W(T) = det(Y)−2

= det
¡
I − 

2
ΣT

¢−2
Let S = −T, using the definition of the quaternion Gauss hypergeometric function of matrix argument (see
[13]), we have

det
³
I − 

2
ΣT

´−2
= det(

1

2
Σ)−2 det(S)−2 det

¡
I + 2Σ

−1S−1
¢−2

= det(
1

2
Σ)−2 det(S)−2

∞X
=0

X


(2)Q(−2Σ− 1
2S−1Σ−

1
2 )

!

where Q(·) is the zonal polynomial of the quaternion Hermitian matrix (see [8] and [13]). Using the inverse
Laplace transformation ([4], equation 4.13) and 0Q 0(;A) =etr(A) we have that

(W) =
22(−1)

(2)
2(−1)+ 2

2 det(Σ)
−2

∞X
=0

X


(2)

!

Z
S−S0∈Φ

etr(WS)det (S)
−2Q(−2Σ− 1

2S−1Σ−
1
2 )dS

= 22 det(Σ)
−2

∞X
=0

X


(2)

!QΓ(2 )
det(W)2−2(−1)−1Q(−2WΣ−1)

=
22

QΓ(2)
det(Σ)

−2
det(W)2−2(−1)−1 0Q 0(−2Σ−1W)

and the desired result follows. ¥

Remark 12 What is the distribution of ̄
0
, for 

×1
a -variate quaternion normal distributed probability

vector, from the real representation perspective?

11



Rautenbach ([19], p 161) answered this question:

Let 
×1
∼ Q(; 0 I). If  = ̄

0
, then  = 4 ∼ 24 (chi-squared distribution with 4 degrees of freedom)

distribution. Also, if  ∼ Q ¡;Σ¢ then 4 ¡ − 
¢0
Σ−1

¡
 − 

¢ ∼ 24 (see [21]).

5 Applications illustrating the role of the quaternion normal distri-

butions in hypothesis testing

The reader is referred to the valuable contribution of Bhavsar [3] where asymptotic distributions of likelihood

ratio criteria for two testing problems are considered. In this section we show that a simple quaternion hypothesis

may be represented with an associated real hypothesis, and thereafter derive an expression for the density

function of Wilks’ statistic in the case of quaternion Wishart matrices.

5.1 Example: Quaternion hypothesis test for 01 :  = 0, Σ known

Suppose that 
2×1

= 1+2+3+4 ∼ Q
¡
2;Σ

¢
where 

2×1
= [1 2]

0
= 

1
+

2
+

3
+

4
and

Σ
2×2

=

"
21 11 + 12 + 13 + 14

11 − 12 − 13 − 14 22

#

is a positive definite Hermitian matrix. We are interested in testing the quaternion null hypothesis

01 :  = 0 Σ known based upon a random sample, 1     , against 1 :  6= 0 Σ known

In order to derive a test criterion for such a test, consider the following likelihood function

 =

µ
2



¶4 £
21

2
2 −

¡
211 + 212 + 213 + 214

¢¤−2
× exp

(
−2 ¡2122 − ¡211 + 212 + 213 + 214

¢¢−1 "
22

X
=1

(1 − 1) (1 − 1)

−2Re
X

=1

(1 − 1) (11 + 12 + 13 + 14) (2 − 2) + 21

X
=1

(2 − 2) (2 − 2)

!#)


The likelihood ratio criterion is given by Λ∗ =
max
01

(Σ)

max
1

(Σ)
. Under 0 we have

max
01


¡
Σ

¢
=
¡
2


¢4 ¡
21

2
2 −

¡
211 + 212 + 213 + 214

¢¢−2
× exp

n
−2 ¡2122 − ¡211 + 212 + 213 + 214

¢¢−1
×
∙
22

P
=1

̄11 − 2Re
P
=1

̄1 (11 + 12 + 13 + 14) 2 + 21

P
=1

̄22

¸¾ (16)

Rautenbach ([19], Theorem 6.3.2) showed that the maximum likelihood estimator of  is given by

̂ = 1


P
=1

 = (avg 1 avg 2)
0
(where avg  =average value of 1      = 1 2)

such that
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max
1


¡
Σ

¢
= 

¡
̂Σ

¢
=
¡
2


¢4 ¡
21

2
2 −

¡
211 + 212 + 213 + 214

¢¢−2
exp

n
−2 ¡2122 − ¡211 + 212 + 213 + 214

¢¢−1
×
∙
22

P
=1

(1 − avg 1) (1 − avg 1)

−2Re
P
=1

(1 − avg 1) (11 + 12 + 13 + 14) (2 − avg 2)

+21

P
=1

(2 − avg 2) (2 − avg 2)
¸¾

(17)

From (16) and (17) it now follows that

Λ∗ =exp
n
−2

³
21

2
2 −

¡
211 + 212 + 213 + 214

¢−1 £
21avg̄1avg 1

−2Re avg ̄1 (11 + 12 + 13 + 14) avg 2 + 22avg ̄2avg 2
¤ª

=exp
©−2avg̄0Σ−1avg ª 

The null hypothesis, 01, is now rejected at the 100% significance level, in favour of 1, if

exp
©−2avg ̄0Σ−1avg ª ≤ ∗ where the constant 

∗
 is such that  [Λ

∗ ≤ ∗|01] = . Thus, 01 is rejected

if  = 4avg̄0Σ−1avg  ≥ −2 ln∗ = 0. Under 01 avg  ∼ Q
¡
2; 0 1


Σ
¢
and from Remark 12 it follows

that  = 4avg ̄
0
Σ−1avg  ∼ 28. Since 

£
 ≥ 281−

¤
=  the null hypothesis is rejected if  ≥ 281−

where 281− is the 100 (1− )

percentile of 28.

An alternative approach in deriving a test criterion in this case involves the use of the real associated

probability vector of . We know that ∗0
8×1
∼ 

³
8;∗

0
Σ∗0

´
, i.e. a real multivariate normal distribution, where

∗
0

8×1
= [11 21 31 41 12 22 23 24]

0
and

Σ∗0 =
1

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

21 0 0 0 11 −12 −13 −14
0 21 0 0 12 11 −14 13

0 0 21 0 13 14 11 −12
0 0 0 21 14 −13 12 11

11 12 13 14 22 0 0 0

−12 11 14 −13 0 22 0 0

−13 −14 11 12 0 0 22 0

−14 13 −12 11 0 0 0 22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


The test criterion for testing ∗01 : 
∗
0
= 0, Σ∗0 known, against 

∗
1 : 

∗
0
6= 0, Σ∗0 known, based upon a random

sample ∗01     
∗
0 of 

∗
0 is given by

0 = 
³
avg ∗0

0
Σ∗0
−1
avg ∗0

´
∼ 28

where avg ∗0 = [avg 11 avg 21 avg 31 avg 41 avg 12 avg 22 avg 32 avg 42]
0
such that the null

hypothesis is rejected if 0 ≥ 281− where 
2
81− is the 100(1− ) percentile of 28.

From the above discussion it is once again clear that two different approaches exist in order to test01 :  = 0

against 1 :  6= 0 with Σ known. We may either conduct an analysis using quaternion quantities directly

with  or, by utilising the real associated quantity, 0, as test criterion respectively. From this it is clear that

the quaternion hypothesis 01 :  = 0 against 1 :  6= 0 may also be expressed in terms of real quantities,
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i.e. ∗01 : 
∗
0
= 0 against ∗1 : 

∗
0
6= 0.

5.2 Example: Wilks’ statistic

Let the rows of X
1×

and Y
2×

be independently Q(; 0Σ) and Q(;Σ) distributed, respectively. From

Theorem 9 we know that X ∼ Q(1×0Σ⊗ I1) and Y ∼ Q(2×;μΣ⊗ I2), and from Theorem 11 it
furthermore follows that A = X0X ∼ Q(1Σ) and B = Y

0Y ∼ Q(2ΣΩ) (the non-central quaternion

Wishart distribution with Ω = Σ−1μμ̄0, see [12]).

Wilks’ statistic

Λ =
det (A)

det (A+B)

(with A and B as defined above) can be used as a likelihood ratio criterion for testing whether the matrix mean

μ is equal to zero or not.

What is the corresponding density function expression for Wilks’ statistic in the case of quaternion Wishart

matrices?

Mehta [18] provides many useful results for quaternion randommatrices, for instance, on p 282 the probability

density function for the determinant of a  ×  random Hermitian matrix taken from the Gaussian unitary

ensemble is calculated. The present work proposes the distribution of Wilks’ statistic based on Meijer’s -

function (see [16]) in a numerical feasible form. Since Λ is real according to Lemma 1(5) (also see Mehta [18],

p 284), the result follows similarly as that given in Bekker, Roux and Arashi [2].

From the definition of the non-central quaternion matrix-variate beta type I distribution (see [15]), it follows

that


h
det (U)

−1
i

=
exp {Re tr(−2Ω)}
Q(21 22)

Z
0U=Ū0I

det (U)
+21−2 det (I −U)22−2+1 1Q1 (2(1 + 2); 22; 2Ω(I −U)) dU

=
exp {Re tr(−2Ω)}
Q(21 22)

∞X
=0

X


(2(1 + 2))
! (22)

Z
0U=Ū0I

det (U)
+21−2 det (I −U)22−2+1Q (2Ω(I −U)) dU

where Q(·) is the quaternion multivariate beta function (see [12]) and 1Q1 (·) is the quaternion confluent
hypergeometric function with a matrix argument (see [15]).

Let T = (I−U), after applying equation (3.13) of [4] to the above expression, and then simplifying, we obtain


h
det (U)

−1
i
=
exp {Re tr(−2Ω)}

QΓ(21)

∞X
=0

X


QΓ(2(1 + 2) )QΓ(21 + − 1)
!QΓ(2(1 + 2) + − 1 ) Q (2Ω)

From QΓ() = (−1)
Q

=1

Γ (− 2(− 1))  Re()  2(− 1)(see [8]) the density function of Λ = det(U) is
uniquely determined by the inverse Mellin transform as given in ([16], Definition 1.8, p 23). Therefore,

Λ () =
exp {Re tr(−2Ω)}

QΓ(21)

∞X
=0

X


Q (2Ω)
QΓ(2(1 + 2) )

!
0


Ã


¯̄̄̄
¯ 1     1     

!

where  = 2(1+2− )++1,  = 1      and  = 21−2+1,  = 1     , and (·) is Meijer’s -function
(see Mathai, [16], p 60).
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For Ω = 0, using the definition of the quaternion matrix-variate beta type I distribution (see [15]), the

distribution of Wilks’ statistic, under the null hypothesis, is given by

Λ () =
QΓ(2(1 + 2))

QΓ(21)
0


Ã


¯̄̄̄
¯ 1     1     

!

where  = 2(1 + 2 − ) + 1,  = 1      and  = 21 − 2 + 1,  = 1     .

Remark 13 Hotelling’s  2 statistic is given by  2 =  0A−1 where 
×1
∼ Q(; 0Σ) and which is indepen-

dently distributed of A
×
∼ Q(Σ). From Lemma 1(6) this is equal to 

∗
0
0
A−10  0 where  ∗0

4×1
∼ (4; 0Σ0)

(from  4)and which is independently distributed of A0
4×4

∼ 4(Σ0) (from Theorem 11). Once

again, this problem reduces to a problem in the real space, and familiar techniques and inference procedures in

the real distribution theory may be applied.

6 Concluding remarks

In this paper we focussed on the real representation of the matrix-variate quaternion normal distribution in

distribution theory. For the first time the quaternion Wishart distribution was derived from the real associated

Wishart distribution via the characteristic function. A simple quaternion hypothesis was represented with an

associated real hypothesis, and thereafter an expression for the density function of Wilks’ statistic in the case

of quaternion Wishart matrices was derived.
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