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Abstract 

     The application of the onset of supercontinentality, the “Great Oxidation Event” (GOE) and the first 
global-scale glaciation in the Neoarchaean-Palaeoproterozoic as panacea-like events providing a 
framework or even chronological piercing points in Earth’s history at this time, is questioned. There is no 
solid evidence that the Kaapvaal craton was part of a larger amalgamation at this time, and its glacigenic 
record is dominated by deposits supporting the operation of an active hydrological cycle in parallel with 
glaciation, thereby arguing against the “Snowball Earth Hypothesis”. While the Palaeoproterozoic 
geological record of Kaapvaal does broadly support the GOE, this postulate itself is being questioned on 
the basis of isotopic data used as oxygen-proxies, and sedimentological data from extant river systems on 
the craton argue for a prolongation of the greenhouse palaeo-atmosphere (possibly in parallel with a 
relative elevation of oxygen levels) which presumably preceded the GOE. The possibility that these 
widespread events may have been diachronous at the global scale is debated.       
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1. Introduction 
 
     Established literature over several decades has resulted in a relatively uniform view of 
Neoarchaean-Palaeoproterozoic global geological evolution becoming well entrenched 
within the minds of possibly a majority of researchers (e.g., Fig. 1). An early (possibly 
the earliest) supercontinent in the Neoarchaean (“Kenorland”) is thought to have 
undergone protracted breakup from about 2.45 to 2.1 Ga followed by dispersal of 
daughter fragments by ~2.0 Ga (e.g., Aspler and Chiarenzelli, 1998). The latter authors 
argued for a poorly constrained “southern” (modern framework) supercontinent as well, 
and many others have supported a specific “Vaalbara” (cf. also expanded “Zimvaalbara” 
to include the Zimbabwe craton) (Cheney, 1996) amalgamation of the Pilbara and 
Kaapvaal cratons (e.g., De Kock et al., 2009 for a recent example). As a result, the 
specific Kenorland example where reasonably solid geological data supports an 
amalgamation of cratonic blocks of North America, and the Baltic and possibly Siberian 
shields, has become broadened into a broader globally applicable concept of universal 
supercontinentality at the end of the Archaean. Insightful comment on the late Archaean 
supercontinental record is provided by Bleeker (2003), who also argues against an 



idealized view of a single Neoarchaean supercontinent (cf. Kenorland); instead, he 
proposes several independent supercratons, each with distinct amalgamation/break-up 
histories, of which Vaalbara is seen as one. While not necessarily disagreeing with the 
general concept of Bleeker (2003), we will later present arguments against a specific 
Vaalbara postulate. 
     It is quite often asserted in global literature (e.g., Leach et al., 2010 recently) that a 
majority of Precambrian earth scientists support the concept of a reducing palaeo-
atmosphere and –hydrosphere before ~2.4 Ga, to be followed by the “Great Oxidation 
Event” (GOE) at some time between about 2.3 and 1.8 Ga (well cited examples include: 
Holland, 1964, 1966, 1984, 1994, 2002; Cloud, 1968, 1973; Walker, 1977; Walker et al., 
1983; Kasting, 1987, 2001; Kasting and Brown, 1998; Rye and Holland, 1998; Kasting 
and Siefert, 2002; Huston and Logan, 2004; Farquhar et al., 2010) (Fig. 1). In contrast, a 
much smaller group of workers, led by Dimroth and later by Ohmoto (e.g., Dimroth and 
Kimberley, 1976; Clemmey and Badham, 1982; Ohmoto, 1992, 1996, 1997, 1999, 2004; 
Lasaga and Ohmoto, 2002) argue for a single, much earlier Archaean rise in oxygen and 
relatively constant values thereafter.  Despite ongoing debate on the timing of the GOE 
within a ca. 500 my chronological envelope, equally diverse disagreement on pO2 levels 
(e.g., Ohmoto, 2004 for a recent overview of the entire debate), never mind the 
alternative minority school of thought, conventional wisdom appears to have crystallized 
about a GOE at ca. 2.3-2.35 Ga which is applied at the global scale. In a recent review, 
Holland (2009) argues convincingly for the GOE having begun between 2.4 and 2.3 Ga. 
Of equal planetary scale is the concept of the first widespread glaciation at some time 
between ca. 2.4 (2.45?) and 2.2 Ga (Fig. 1), with up to three possible glacial horizons, 
couched within a “Snowball Earth model” (e.g., Kirschvink, 1992; Hoffman et al., 1998) 
by a large segment of the scientific community, although the latter hypothesis has 
become somewhat watered down in its subsequent guise of the “Slushball Earth” due to 
conflicting data (e.g., Young, 2004).  
     While it is entirely logical that the widespread evidence on many cratons for glaciation 
at about this time supports a common global event, this is not an assumption that can be 
supported by hard chronological data at present, and it remains possible, remote though 
this may be seen by many perhaps, that glaciation was diachronous rather than a 
simultaneous and almost catastrophic “event” as implicit within the “Snowball Earth 
model” (SEM). Glaciation in better studied and much younger basins right up to the 
Pleistocene is generally accepted as spreading from centres of permanent ice cover over 
large adjacent realms, and then shrinking back towards the normally Polar locations of 
permanent permafrost; there is no reason intrinsically why this concept should not also 
apply to the Palaeoproterozoic glaciation and thus bring with it some measure of 
diachroneity. The point made is that there is no reason to doubt the strong evidence for 
glaciation across the planet in the Palaeoproterozoic; the door on debate, however should 
not be almost kept closed by the SEM nor should perfect global correlation be assumed 
as an absolute given. In this paper we thus wish to argue for a more complex character for 
the Neoarchaean-Palaeoproterozoic Earth and its preserved basin-fill record, and to plead 
for a more open debate and not mere acceptance of what appears to be a broad-based 
consensus. Analogously, while there is every reason to believe in the well founded and 
supported idea of a Neoarchaean “Kenorland”, it is not necessary to extend this example 
into a general concept of universal planetary application; there should still be room to 



accept that some cratons might not have been part of this first inferred supercontinent 
(e.g., Eriksson et al., 2009a). More detailed examination of the proxies used to estimate 
Precambrian redox states are much more complex and will be explored later in this paper. 
     The paper therefore intends to examine briefly the Neoarchaean-Palaeoproterozoic 
geological record of the Kaapvaal craton, and to compare this with models for relatively 
uniform global scale Earth evolution. We will thus examine the supracrustal record of the 
Kaapvaal from about 2.7 Ga to ~1.8 Ga with a view to debating how applicable such 
broad-based ideas might be to a classic Precambrian cratonic terrane.  
 
2. The supracrustal record of the Kaapvaal craton from ~2.7-1.8 Ga: brief overview 
 
     Formation of the Kaapvaal cratonic nucleus by ~3.1 Ga (Fig. 2: Barberton-South and 
Barberton-North cratonic terranes) was succeeded by the accretion of composite terranes 
from both north (Murchison-North Kaapvaal terrane; Fig. 2) and west (modern 
orientations) (Fig. 2; Kimberley block) concomitant with formation of the Earth’s oldest 
known large sedimentary depository, the Witwatersrand basin, from ca. 3.0 to ca. 2.7 Ga 
(e.g., de Wit et al., 1992; Robb and Meyer, 1995; Zeh et al., 2009). A complex, double 
flexural foreland basin model is interpreted for the latter, encompassing the 
Witwatersrand Supergroup in its foredeep sub-basin and the Mozaan Group of the partly 
co-eval (Beukes and Cairncross, 1991) Pongola Supergroup in its back-bulge sub-basin 
(Catuneanu, 2001) (Fig. 3).  
     Two major mantle plumes, that of the ca. 2.7 Ga Ventersdorp Supergroup (cf. Hatton, 
1995) and of the 2058±0.8 Ga (Buick et al., 2001) Bushveld Complex, each related to 
global superplume events (e.g., Condie, 2004a; Eriksson et al., 2004), “bracket” evolution 
of the ~2.66 – 2.05 Ga Transvaal Supergroup supracrustals, preserved in three basins 
across the craton (Transvaal itself, Griqualand West, Kanye in Botswana – see Fig. 6; 
Catuneanu and Eriksson 1999, 2002; Eriksson et al., 2001, 2006). The Ventersdorp 
Supergroup was laid down on the Witwatersrand foredeep strata and surrounding cratonic 
rocks following a ~100 my lacuna (Maphalala and Kröner 1993; Beukes and Nelson 
1995) during which the Witwatersrand strata were subject to tectonic shortening and 
erosion (Hall, 1996; Eriksson et al., 2002). The basal ~2 km thick, 2714±8 Ma 
(Armstrong et al., 1991) Klipriviersberg Group flood basalts (Fig. 4b) include komatiites 
(van der Westhuizen et al., 1991). Crustal extension followed, forming fault-bounded 
basins accommodating an immature clastic sedimentary – bimodal volcanic lithological 
association, the unconformity-based, 2709±4 Ma Platberg Group (Armstrong et al., 1991; 
van der Westhuizen et al., 1991) (Fig. 4b). Undated uppermost sheet-like sedimentary 
and volcanic units (respectively, the Bothaville and Allanridge Formations) testify to a 
final phase of thermal subsidence, minor komatiites in the latter supporting residual 
graben and plume influences (van der Westhuizen et al., 1991; Eriksson et al., 2002).  
     The ca. 2657-9 Ma and 2664 Ma (respectively, unpublished report, South African 
Committee for Stratigraphy; Barton et al., 1995) “protobasinal” (a descriptive 
appellation) successions, preserved within discrete fault-bounded depositories at the base 
of the Transvaal Supergroup basin-fill within the Transvaal preservational basin  (TB) 
(Fig. 5), are considered possible time (Olsson et al., 2010) and geodynamic equivalents of 
late-stage Ventersdorp deposits, formed within a wide rift zone beneath the Transvaal 
depository (e.g., Catuneanu and Eriksson, 1999). They have no equivalents beneath the 



other two Transvaal basins on the craton. Some of the protobasinal rocks have been 
affected by northward-directed tectonic shortening, apparently synchronous with 
deposition of the succeeding undated and unconformably-based Black Reef Formation 
(Eriksson et al., 2006).  
     Thin Black Reef sheet sandstones and lesser conglomerates (Fig. 5) also occur in the  
Kanye (KB) basin, where they form the base of the supergroup. These inferred fluvial 
deposits pass up into a thick transgressive epeiric marine succession (Chuniespoort-
Taupone Groups, respectively in TB and KB; equivalent Ghaap Group in Griqualand 
West basin; Fig. 6) (Button 1973; Key 1983; Henry et al., 1990; Els et al., 1995). The 
Schmidtsdrif Subgroup forms the base of the Transvaal succession in the Griqualand 
West basin (GB) with a lowermost clastic-chemical sedimentary Vryburg Formation 
(100-300m thick; minor 2642±3 Ma andesites; Walraven and Martini 1995), overlain by 
carbonate and mudrock formations (Fig. 8). The Schmidtsdrif palaeoenvironment varied 
from fluvial to either marginal marine (Beukes 1979) or deeper marine settings 
(Altermann and Siegfried 1997).  
     A transgressive epeiric sea advanced onto a large part of the Kaapvaal craton 
following Black Reef-Schmidtsdrif sedimentation, forming a thick platform-cover 
succession (Chuniespoort-Taupone-Ghaap Groups) (<2642±3 Ma - at least 2432±31 Ma, 
Trendall et al., 1990; 2.65-2.40 Ga, Knoll and Beukes, 2009) (Fig. 8). This comprised: (1) 
lowermost stromatolitic carbonate lithologies (~1200 m in TB, >2.5 km in GB); (2) 
medial banded iron formations (BIF) (~640 m in TB); (3) uppermost mixed siliciclastic 
and chemical sedimentary rocks (≤1100 m Duitschland Formation in TB – Fig. 5; Koegas 
Subgroup in GB) (Altermann and Siegfried 1997; Eriksson et al. 2001, 2006) (Fig. 8). 
Palaeoenvironmental settings varied from exposed peri-tidal flats to deep carbonate 
platform conditions (Eriksson and Altermann, 1998). Further transgression at ca. 2500 
Ma (Fig. 8) drowned the carbonate platform and ushered in deposition of BIF across all 
three depositories (Altermann and Nelson, 1998). Final withdrawal of the epeiric sea off 
the Kaapvaal craton was coeval with deposition of mixed clastic and chemical sediments 
of the Koegas Subgroup (GB) and the Duitschland Formation (TB) (Eriksson et al., 
2005).  
     The Koegas gradationally overlies the BIF in the Griqualand West basin, and 
comprises alternations of clastic deposits (ascribed to deltaic and shoreline [tidal] 
settings) and dolomites and BIF (interpreted as shelf deposits removed from clastic input) 
due to third-order sea level cyclicity (Beukes, 1983, 1984). An age of 2415±6 Ma (Pb-Pb; 
quoted by Kirschvink et al., 2000) is based on a personal communication. The Koegas 
lithologies have been deformed by a major thrusting event which did not penetrate higher 
into succeeding stratigraphy (cf., the Makganyene Formation – Fig. 8) (Altermann and 
Hälbich, 1990, 1991). The Duitschland Formation in the NE part of the Transvaal basin, 
although commonly correlated with the Koegas (Fig. 8), is undated; in contrast to the 
latter, it overlies an unconformity which extends down through uppermost cherty-shaly 
BIF (confusingly referred to as a carbonate-rich succession, the “Tongwane Formation” 
by Martini, 1977) in the upper Penge Iron Formation and oversteps regionally onto 
preceding carbonates (e.g., Potgieter, 1992; Hälbich et al., 1993). Gentle folding in the 
underlying ferruginous and carbonate units has led to locally apparently conformable 
relationships with Duitschland lithologies, but the unconformable relationship is clear in 
regional three-dimensional geometry (Hälbich et al., 1993). Correlation of the Koegas 



with the “Tongwane Formation” has further exacerbated stratigraphic confusion arising 
from the lower Duitschland contact. The Duitschland Formation is dominated by marls 
and mudrocks, with relatively abundant dolostones and limestones, minor relatively thin 
beds of quartzite and conglomerate, and two thin diamictites with the one at the base of 
the unit being considered glacigenic (Frauenstein et al., 2009) (Fig. 9); highly variable 
thicknesses (15m to ca. 1100 m are related to variation in the basal unconformable down-
cutting patterns across its limited outcrop area in the NE of the basin; Potgieter, 1992; 
Hälbich et al., 1993; Bekker et al., 2001; Frauenstein et al., 2009). This geometry, allied 
to the predominant marly composition of the Duitschland, suggest an origin related to 
major weathering and erosion of Chuniespoort chemical lithologies during the hiatus 
(estimated between ca. 80 my and 200 my; respectively, Eriksson et al., 2001; Mapeo et 
al., 2006) separating the Chuniespoort Group from the succeeding Pretoria Group 
(Eriksson et al., 2001). 
     In all three preservational Transvaal basins (Fig. 6), the rocks of the chemical 
sedimentary platform, including the localized Koegas Subgroup (GB only) and 
Duitschland Formation (TB only) which occur either at their upper part (Koegas) or 
unconformably overlie them (Duitschland), are unconformably succeeded by an 
essentially clastic sedimentary-lesser volcanic succession, known as the Pretoria-
Postmasburg-Segwagwa Groups (respectively in the TB, GB, KB) (e.g., Eriksson et al. 
2006). At the base of the Pretoria Group (Fig. 5), the Rooihoogte Formation reflects a 
palaeo-karst – fill deposit, largely comprised of variably reworked weathered cherty 
detritus from the Chuniespoort carbonates, underlining the significant time gap between 
this chemical sedimentary group and the Pretoria succession. Eriksson et al. (2001) have 
noted a possible relationship between Duitschland deposits and the Rooihoogte, 
encompassing analogous source areas and genesis, despite the angular unconformity 
separating the two (a view shared by Bekker et al., 2001; Frauenstein et al., 2009). The 
lithostratigraphy, interpreted depositional environments and sequence stratigraphy of the 
Pretoria Group have been studied in some detail (e.g., Eriksson et al., 1991, 2001b, 2005, 
2006; Eriksson and Reczko, 1995; Catuneanu and Eriksson, 1999; Moore et al., 2001) 
(Fig. 5). There are relatively widespread, minor lenticular occurrences of interpreted 
glacigenic beds within the upper part of the Timeball Hill Formation (Visser, 1971; 
Coetzee et al., 2006; Eriksson et al., 2006) (Figs. 5). These lithologies include not only 
diamictites (with striated pebbles), but also slumped wackes, conglomerates and varved 
shales (Visser, 1971; Eriksson et al., 1994) (Fig. 7). The profile shown in this figure 
comprises largely of diamictite where the sandy-silty mudstone matrix (95% of volume) 
supports mainly chert clasts (remaining 5%); clasts commonly exhibit orientation of long 
axes roughly parallel to regional bedding, and there are weak trends of upward-fining and 
decreased clast rounding upwards in the diamictite. These characteristics support 
reworking of glacial moraines and an overall periglacial setting (Visser, 1971). 
     The Pretoria Group succession is poorly dated: basal black shales (TB) at 2316±7 Ma 
(Re-Os; Hannah et al., 2004); detrital zircons within successively higher sandstone units 
within the Kanye basin at 2250±14/15 Ma near the base, 2236±13 Ma in the middle, and 
2193±20 Ma in the upper part (Mapeo et al., 2006; comparable data in Dorland et al., 
2004). A major floor basalt (Hekpoort-Tsatsu-Ongeluk Formations, respectively TB, KB, 
GB) is common to all three basins and is dated at 2222±13 Ma (in the GB; Pb-Pb; 
Cornell et al., 1996). Pretoria-Segwagwa sedimentation terminated prior to emplacement 



of the major layered mafic Bushveld Complex intrusion at 2058±0.8 Ma (Buick et al., 
2001) (Fig. 5), as evidenced from regional compressive deformation of the sedimentary 
strata (Bumby et al., 1998; Eriksson et al., 1998). The Postmasburg Group succession in 
the Griqualand West basin is truncated compared to the other two basins, and there is 
debate on correlation of this thinner basin-fill with that of the two sister depositories (e.g., 
Moore et al., 2001 for a discussion). In the GB, the lowermost Makganyene Formation 
(Fig. 8) diamictites overlie a high angle regional unconformity that locally penetrates 
through both Koegas and BIF units into the uppermost carbonate succession (Altermann 
and Nelson, 1998; Altermann, W., pers. comm., 2010). The Makganyene Formation 
exhibits highly variable thickness (mostly 3-70m, maximum of 500 m) and comprises 
mostly of massive and coarsely bedded (seen through bedding parallel clast orientation) 
diamictites, associated with subordinate lenticular conglomerates, sandstones and 
mudrocks (locally varved) (Visser, 1971; Polteau et al., 2006) (Fig. 10). Although 
striations on large chert clasts, rafted stones and localised exposures of glacial pavements 
support a glacial origin (Visser, 1971, 1999; Eyles and Januszczak, 2004), a limited 
mountain glaciation (with fluvial and marine reworking) is inferred, centred on the 
Vryburg Rise between the Transvaal and Griqualand West sub-basins (Fig. 6) (Visser, 
1971). In turn, these inferred glacial deposits are unconformably overlain by the Ongeluk 
Formation flood basalts (Fig. 8), for which a near-equatorial palaeomagnetic position has 
been inferred (Evans et al., 1997). The Ongeluk lavas are succeeded by the Hotazel 
(jaspillites, volcanic-exhalative Mn deposits) and Mooidraai (dolomites) Formations 
(Beukes, 1986), neither of which has an obvious correlate in the Pretoria Group (compare 
with Fig. 5).  
     Intrusion of the Bushveld Complex in north-central Kaapvaal was followed almost 
immediately by sedimentation within the two Waterberg basins, the large Main and 
smaller Middelburg depositories, both bounded by fundamental Archaean cratonic 
structures within Kaapvaal (Fig. 11); the basin-fills are dated between ca. 2.06 and 1.88 
Ga (SACS, 1980; Jansen, 1982; Walraven and Hattingh, 1993; Eglington and Armstrong, 
2004; Hanson et al., 2004). These basins form part of a global group of basin-fills marked 
by the first occurrences of red beds (indicating free oxygen in the extant atmosphere) as 
well as fully-developed erg deposits, at ~2.0-1.8 Ga (e.g. Eriksson and Cheney, 1992; 
Eriksson and Simpson, 1998). Waterberg depositional palaeoenvironments were 
predominantly fluvial, with subordinate alluvial fan, lake and desert settings (Vos and 
Eriksson, 1977; Callaghan et al., 1991; Van der Neut and Eriksson, 1999; Simpson et al., 
2002, 2004; Eriksson et al., 2008). Active tectonism including synsedimentary faulting 
strongly influenced Waterberg deposition (Jansen, 1975; Callaghan et al., 1991; Bumby 
et al., 2001, 2004), and prevailing palaeoclimatic conditions appear to have been 
essentially semi-arid (Callaghan et al., 1991; Simpson et al., 2002, 2004).  
 
3. Discussion 
 
3.1. Kaapvaal craton and supercontinentality 
 
     There is general agreement that the supercontinent cycle has a relation to mantle 
plume-type processes (e.g., Condie, 2004a, b; Condie et al., 2001; Zhong et al., 2007) and 
the plate tectonic paradigm, with the recent postulate of a critical role for the tectosphere 



(Santosh et al., 2009). These generalizations are in turn related to divergent views on the 
antiquity of a Phanerozoic-style plate tectonic regime (e.g., de Wit, 1998; Eriksson and 
Catuneanu, 2004) and possible models for the transition from thermally-dominated to 
plate tectonics-dominated geodynamic regimes (e.g., Trendall, 2002). Approaches 
applied to support postulates of Precambrian supercontinental assemblies include 
geochronology, matching of basin-fill stratigraphies or mobile belt segments on separate 
cratonic blocks, correlation of widespread impact ejecta/fallout units (e.g., Glikson, 
2008), and palaeomagnetic techniques (e.g., Pesonen et al., 2003). However, spherule 
beds on two separate cratons does not necessarily imply juxtaposition, as they may reflect 
global-scale events (or even lesser scales of bolide-related fallout), and chronological 
equivalence is also not exclusively ascribable to amalgamation (Eriksson et al., 2009a). 
Palaeomagnetic studies are commonly accepted as a really quantitative means of testing 
postulated amalgamations of cratons, but such techniques are fraught with problems also, 
and their application to terranes older than ~1.8 Ga has been seriously questioned (e.g., 
Meert, 2002; see, however, Bleeker and Ernst, 2006; discussion in Eriksson et al., 2009a).  
     As discussed in the first paragraph of this paper, a “southern” supercontinent 
(incorporating Kaapvaal) has been inferred (e.g., Aspler and Chiarenzelli, 1998) as a 
necessary complement to the “northern” Kenorland amalgamation to support the concept 
of global supercontinentality emerging in the Neoarchaean. A comparison of the basic 
geology of all possible “southern” cratons that might have been amalgamated into this 
postulated supercontinent in the ~3.1 – 2.8 Ga interval provided no support for this 
Kenorland-analogy (Eriksson et al., 2009a). The latter authors and Nelson et al. (1999) 
also emphasized that there is an alternative explanation (to an assumption of contiguity) 
for similarities in geological character across ancient craton boundaries, namely that they 
can be ascribed to global events, such as superplume events (e.g., Condie, 2004a), 
eustatic and glaciation events (Eriksson et al., 2009a).  
     A small supercontinent, “Vaalbara” (expanded “Zimvaalbara” to include also, the 
Zimbabwe craton; Stanistreet, 1993; Cheney, 1996) representing conjunction of Pilbara 
and Kaapvaal cratons has enjoyed literature support (e.g., de Kock et al., 2009, recently). 
However, precise zircon chronology for the 3650-2200 Ma period does not support a 
Vaalbara assemblage, nor does palaeomagnetic data (never mind its possibly 
questionable application to rocks of this age) (Wingate, 1998; Nelson et al., 1999; 
Eriksson et al., 2009a). The other main discussion point in terms of possibly applying 
Neoarchaean supercontinentality to Kaapvaal is the evolution of the Limpopo mobile belt 
at the junction between the Zimbabwe and Kaapvaal cratons; within this belt, a high-
grade Central Zone is flanked by Northern and Southern Marginal Zones (respectively, 
NMZ and SMZ), with the tripartite terrane orientated along an approximate ENE-WSW 
direction. There has been a long-running controversy on the age of the Limpopo belt 
collision between the two cratons, with two main proposed ages of ca. 2.6 Ga and ca. 2.0 
Ga (e.g., de Wit et al., 1992; McCourt and Armstrong, 1998). Recent studies (e.g., 
Boshoff et al., 2006; Zeh et al., 2007; Perchuk et al., 2008; Van Reenen et al., 2008; 
Millonig et al., 2008; Gerdes and Zeh, 2009) provide unequivocal support for a Central 
Zone – Kaapvaal amalgamation at ca. 2.65-2.51 Ga, with a strong metamorphic overprint 
at ca. 2.03 Ga, which marked the much younger major collision between the Zimbabwe 
craton and the already assembled Kaapvaal-Central Zone plate (e.g., Jaeckel et al., 1997; 
Holzer et al., 1998; Kröner et al., 1999; Van Reenen et al., 2004; Zeh et al., 2004, 2007; 



Rigby et al., 2008a; Rigby, 2009). The earlier amalgamation of the small exotic plate of 
the Central Zone with Kaapvaal formed the SMZ, and the NMZ (as well as 
remobilization of the SMZ) occurred during the ca. 2.0 Ga collision. The large igneous 
province record of Zimbabwe and Kaapvaal also supports their amalgamation having 
occurred at ca. 2.0 Ga (Söderlund et al., 2010).  
     The geological evidence currently available from the Kaapvaal craton does thus not 
provide strong support for any amalgamation of this craton prior to ca. 2.0 Ga, with 
strong evidence in favour of the latter age for such an event. Although examination of a 
single craton as done here, cannot be considered as very significant when pondering the 
concept of a global supercontinentality from the Neoarchaean, such a panacea view of 
Earth evolution should perhaps be considered as not necessarily pervasive at that time. 
The onset of the supercontinent cycle may thus have been diachronous, at least for some 
cratons (including Kaapvaal) (cf., Eriksson et al., 2009a).  
 
3.2. Kaapvaal craton and the “Great Oxidation Event” (GOE) 
 
     Within the “mainstream” model of Neoarchaean-Palaeoproterozoic atmospheric 
evolution, the GOE is thought to have occurred at ca. 2.3-2.35 (-1.8) Ga. Within this 
“conventional” model the Earth’s earliest large carbonate platforms (e.g., on Kaapvaal, 
the Malmani and Campbellrand Subgroups and equivalent in the Kanye basin; Fig. 8) are 
thought to have provided sinks for very high levels of CO2 in the Neoarchaean 
atmosphere (e.g., Falkowski and Raven, 1997). The concomitant precipitation of 
carbonate within these developing platforms would have had to overcome not only 
kinetic barriers but also the effects of inferred acidic seawater related to the palaeo-
greenhouse atmosphere (Wright and Altermann, 2000; Wright and Oren, 2005). It is 
postulated that this was only achieved due to significant changes in near-shore oceanic 
chemistry at about 2.5 Ga made possible by the vast colonies of microbial organisms that 
arose as stable cratonic platforms emerged globally (whether in supercontinents or not) 
(Gandin et al., 2005; Gandin and Wright, 2007). Growing oxygen contents in the 
hydrosphere, initially (and atmosphere, subsequently) resulted from photosynthesis and 
as a consequence, banded iron formations (BIF; e.g., in the Asbesheuwels and Koegas 
Subgroups in GB and in the Penge [TB] and Hotazel [GB] Formations) formed in the 
more distal parts of the large epeiric seas on early cratons like Kaapvaal, where Fe2+, 
transported from deeper anoxic ocean basins, was precipitated (cf., Cloud, 1973; Kasting, 
1987) beneath an as yet essentially anoxic palaeo-atmosphere. Within this classical 
model, the GOE occurred once oceanic iron had become oxidized and free oxygen 
accumulated within the atmosphere; the model is supported by the overall sedimentary 
succession on many of Earth’s cratons of this age. Lyons et al. (2009) stress the 
possibility that deeper parts of the global ocean were oxygen-deficient and even euxinic, 
and that such conditions may have persisted for much if not the entire Proterozoic. 
Oxygenation of the hydrosphere may thus have been largely restricted to shallow, shelf-
like depths. 
     Also in support of the classic explanation for the GOE on the Kaapvaal craton, there is 
good evidence for iron pigmentation of the clastic sedimentary strata of both Pretoria and 
Waterberg Groups (Eriksson and Cheney, 1992). Within the former group, the 
colouration is restricted to matrix material (red beds sensu lato), while in the latter group, 



grain surfaces are stained partially red by iron oxides (red beds sensu stricto). This 
provides partisan evidence for a GOE at ca. 2.3-1.8 Ga, characterized by partially 
oxidizing palaeo-atmospheric conditions affecting Kaapvaal at least during early 
diagenesis of both groups of sediment, if not during deposition thereof. Physical evidence 
from Transvaal and Waterberg stratigraphies of Kaapvaal thus provides direct support of 
some of the major tenets of the classical GOE model at ~2.3 Ga (e.g., Karhu and Holland, 
1996). Similarly, Lowe and Tice (2007) argue for a collapse of the greenhouse 
atmosphere after ca. 2.4 Ga, followed by global cooling, global ca. 2.4-2.2 Ga glaciation, 
and finally, permanent oxygenation of the palaeo-atmosphere.  
     However, despite data from Kaapvaal apparently supporting the classical and long-
standing model of a ca. 2.3 Ga GOE, it is this model itself which is currently being 
debated in the latest research, including new geochemical data derived from Kaapvaal 
supracrustal lithologies. Rapid fluctuation in pre-GOE Mo isotopic values (an oxygen 
proxy)  from black shales from the Ghaap Group (Transvaal Supergroup, ca. 2.64-2.5 Ga; 
Fig. 8) have been taken to support the GOE, as they indicate rapid chemical changes in 
Neoarchaean oceans as frequently recurring oxygen-free conditions alternated with 
cyanobacterial production of oxygen (Voegelin et al., 2010). In direct contrast, however, 
Mo isotopic data from Ghaap Group carbonate rocks coeval with the black shales, show 
an opposite trend of constancy and support a near-continuous presence of oxygen, albeit 
at lower levels than in the black shales (Voegelin et al., 2010). The latter authors suggest 
that fluctuation of Mo isotopes in the black shales may rather reflect detrital inputs and 
concomitant dilution effects, or redox changes in the depositional environment, or both, 
thereby stressing the possible influence of basin-scale palaeoenvironmental influences. Cr 
isotopes (another accepted oxygen proxy) from Precambrian BIF indicate a transient rise 
in atmospheric and oceanic oxygen at ca. 2.8-2.6 Ga, prior to the GOE of 2.45-2.2 Ga, 
followed by a decline to pre-GOE levels again at ca. 1.8 Ga (Frei et al., 2009). The GOE 
may thus have been a passing event, without necessarily leading to a first step-wise rise 
in global oxygen (Frei et al., 2009). 
     Support for the latter postulate is provided from field data derived from the Waterberg 
Group on Kaapvaal. Study of fluvial sediments within three formations of the Waterberg 
Group and from the Pretoria Group (Transvaal Supergroup) indicate locally elevated 
palaeoslope values for channel systems, allied to evidence for rapid, mass-flow type 
sedimentation, with inferred local ponding of muddy detritus in short-lived lakes (cf., 
Rainbird, 1992) (Eriksson et al., 2009b). The palaeoclimatic interpretation of such 
systems suggests a continuum of a greenhouse palaeo-atmosphere, at least for parts of 
Kaapvaal at ca. 2.3-1.8 Ga (Eriksson et al., 2009b). Physical (sedimentary) as opposed to 
(geo-)chemical evidence thus also questions a ca. 2.3 Ga GOE as a globally applicable 
universal occurrence. Eriksson et al. (2009b), while not negating the overall validity of 
enhanced oxygen levels in this general time period (ca. 2.4-1.8 Ga), argue rather for a 
diachronous change in global oxygen levels during the Palaeoproterozoic, which may 
possibly be a better model than the simple panacea of a universally applied 2.3 Ga GOE. 
 
3.3. Kaapvaal craton and a “Snowball Earth” glacigenic event at ca. 2.4-2.2 Ga  
 
     The Proterozoic Eon was marked at its onset and termination by major glacial events, 
with evidence on many cratons for large continental ice sheets, and with sedimentological 



and palaeomagnetic data indicating that the ice may have extended to sea level, even at 
low latitudes (e.g., Evans et al., 1997; Williams and Schmidt, 1997; Schmidt and 
Williams, 1999; Sohl et al., 1999). Both major Proterozoic glaciogenic intervals correlate 
with inferred supercontinent rifting, and both also encompass thin yet widespread 
successions of limestone-dolostone (“cap carbonates” in SEH parlance) sharply overlying 
glacial or related deposits (e.g., Kirschvink, 1992; Hoffman et al., 1998). The observation 
of negative δ13C isotopic excursions in carbonate rocks within inferred glacial and related 
successions across many of the Palaeoproterozoic (and Neoproterozoic) cratons has 
served to support the SEH (e.g., Kaufman et al., 1991, 1997; Frimmel et al., 2002). 
     There are strong arguments against the elegant simplicity of the SEH, notably those of 
Young (summary, 2004)) and those offered by Williams in many publications (synthesis,   
2004). Some of their most cogent data arguing against the classic version of the SEH 
include: (1) strong evidence of seasonality; (2) thick successions of glacigenic deposits 
dominated by facies indicative of waterlain deposition accompanying glacial conditions; 
(3) gradual climatic change (rather than the abrupt and rapid changes implicit in the SEH) 
supported by geochemical and sedimentological evidence; (4) problematic spatial, 
chronological and genetic relations of BIF (inferred to follow on cap carbonate beds 
within the SEH); (5) insufficient precise chronology to justify global correlations of 
discrete glacial horizons between and even within single cratonic terranes. The ultimate 
causes of global-scale glaciation in the Palaeoproterozoic (and Neoproterozoic for that 
matter) remain elusive (e.g., Young, 2004 and references therein; see, however the “large 
obliquity” postulate of Williams, e.g. 2004 and references therein).  
     Hambrey and Harland (1981) document at least three discrete glacial successions 
within the Palaeoproterozoic sedimentary record within the interval of ~2.45 – 2.22 Ga. 
The best preserved example is from the Huronian Supergroup of Canada (where an 
association with long-lived rifting of the “Kenorland” supercontinent [Williams et al., 
1991; Aspler and Chiarenzelli, 1998] has been proposed), while those from Kaapvaal 
while less complete, are also well studied (e.g., Visser, 1971; Bekker et al., 2001; Polteau 
et al., 2006). Examination of the nature of the glacigenic deposits from Kaapvaal 
(examples shown in Figs. 7, 9 and 10) indicates a strong spatial (and thus also 
chronological) association with waterlain facies such as varved shales, glacio-fluvial 
conglomerates, laminated mudrocks (see also, Visser, 1971; Polteau et al., 2006); while not 
necessarily regular enough or on a scale suitable to indicate any observable measure of 
seasonality, these characteristics of the Kaapvaal deposits do compare favourably with 
points #’s 2 and 3 in the previous paragraph. In addition, neither Makganyene Formation 
diamictites not those in the upper part of the Timeball Hill Formation of the Transvaal 
Supergroup show any relationship with cap carbonates or BIF. For the Duitschland 
Formation (Fig. 9) the thin lower diamictite (interpreted as being glacigenic) is succeeded 
by breccias and clastic sedimentary rocks, but the upper diamictite is overlain directly by 
a carbonate bed; however, this diamictite is generally not interpreted as having any 
evidence for glacial deposition (Frauenstein et al., 2009 and references therein). The 
Duitschland Formation (and its diamictites) are undated; those from the upper Timeball 
Hill Formation are separated by almost 2 km of stratigraphic thickness from the dated 
lowermost Timeball Hill shales (2316±7 Ma; Re-Os; Hannah et al., 2004); the 
Makganyene Formation diamictites are not directly dated and are overlain, 
unconformably, by the Ongeluk flood basalts (2222±13 Ma; Pb-Pb; Cornell et al., 1996).  



     Chronological constraints on the Kaapvaal Palaeoproterozoic glacial successions thus 
fits the general paucity of age data applicable to these beds globally. A strong case for the 
SEH cannot be made on the basis of the glacigenic deposits preserved within the 
Transvaal basins of the Kaapvaal craton, as outlined above. Opponents of this panacea 
theory such as Young (e.g., 2004 and references therein) stress that alternative 
geodynamic influences such as an association with rifting and the early onset of the 
supercontinent cycle in the Palaeoproterozoic appear to be relevant. Certainly, modeling 
of the geodynamic setting of the Pretoria Group basin does support a rift-related setting 
(e.g., Catuneanu and Eriksson, 1999; Eriksson et al., 2001; Fig. 5). However, there are no 
data to support a similar setting for either Makganyene or Duitschland Formations. In 
addition, as outlined earlier in this paper (and elsewhere; e.g., Eriksson et al., 2009a), a 
supercontinental affinity for Kaapvaal during the Palaeoproterozoic does not appear to be 
well supported by general geological data, nor precise chronology or (probably) 
imprecise palaeomagnetic data. 
 
4. Conclusions 
 
     Condie et al. (2009) have argued in favour of a possibly global scale magmatic 
shutdown from ca. 2.45-2.2 Ga; the geodynamic changes wrought by such an event 
would have impacted greatly on palaeo-atmospheric and –hydrospheric systems also, and 
offer a possible scenario to accommodate the “Great Oxidation Event” (GOE; at ca. 2.4-
2.3 Ga; Holland, 2009) and the first global-scale glaciation. Such a postulated global 
shutdown or even slowdown of the mantle thermal – plate tectonic engine of Earth could 
also explain the inferred protracted breakup of the Kenorland supercontinent (from ca. 
2.45- 2.21 Ga; Aspler and Chiarenzelli, 1998). It could also explain why perhaps there 
was no “southern” equivalent to this inferred first cratonic amalgamation, and why the 
evidence from both Kaapvaal and Pilbara seems not to support any kind of “Vaalbara” 
assembly (for an alternative view, see Bleeker, 2003).  Any significant slowdown (or 
even the extreme shutdown) of the plate tectonic and thermal systems would have 
worked against major plate movements and supercontinental assemblies in the ca. 2.45-
2.2 Ga period. Such an event, which was on the geological time scale a passing influence, 
could also explain the possible return of post-GOE oxygen levels in the extant 
atmosphere and hydrosphere to values similar to those that prevailed prior to the GOE (as 
proposed by Frei et al., 2009).  
     Evidence from the Kaapvaal craton suggests that supercontinentality was not a global 
phenomenon until possibly ca. 2.0 Ga, and that the onset of this cyclicity was 
diachronous on the global scale prior to that. Analogously, evidence (such as the studied 
fluvial systems of ca. 2.3 – 1.8 Ga age) from Kaapvaal suggests that greenhouse 
palaeoclimatic conditions may have persisted there through this period, and that a 
possible GOE might also have been diachronous on the global scale. Study of the 
Palaeoproterozoic glacial deposits from this craton do not provide any real support for the 
“Snowball Earth Hypothesis” (SEH), and the current lack of precise chronological data 
both for this craton’s glacial deposits and those of global scale, do not allow any 
judgement of whether these freezing events were real piercing points in the geological 
time scale or whether they too were diachronous from craton to craton.  



     In conclusion, this paper strives to underline the complexity of events such as the SEH 
or the GOE, and of the onset of the supercontinent cycle – while they each make an 
attractive candidate for global events of significant chronological precision, thereby 
enabling a definite framework to be applied to the evolution of the Neoarchaean-
Palaeoproterozoic Earth at this time, this might be an over-simplification through 
widespread acceptance of panacea-type hypotheses. We suggest that such events while 
real and generally of widespread if not necessarily always global compass, may have 
been diachronous events at the planetary scale; their possible application for correlation 
and relative dating should thus be treated with some caution. 
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Figure captions  
 
Fig. 1. Schematic summary of Earth evolution from ca. 4.4 – 1.6 Ga, emphasizing major 
inferred changes and events and their possible impact on the sedimentary record 
(modified after Eriksson et al., 2007). “Superevents” identified at ca. 2.7 Ga and from ca. 
2.2-1.8 Ga refer to combinations of major global events (cf., Eriksson et al., 2004). 
 
Figure 2. (a) Sketch map of the Kaapvaal craton, showing southeastern nucleus (made up 
of Barberton-South [BS] and –North [BN] terranes), accreted Murchison-North Kaapvaal 
(MNK) terrane, major Archean greenstone belts and the Witwatersrand-Pongola, 
Ventersdorp and Transvaal basins. The Colesberg magnetic lineament is inferred to be 
the suture of the assembled B-S, B-N, MNK terranes with the Kimberley (=westerly 
accreted terrane) cratonic block. The Central Zone (LCZ terrane) of the Limpopo mobile 
belt subsequently accreted to the north of the assembled Kaapvaal craton. (Modified after 
de Wit et al. 1992; Cheney, 1996; Tinker et al. 2002; Zeh et al. 2009). 
 
Fig. 3. Sketch map (at top) and schematic profile through inferred Witwatersrand 
foreland basin system (below). The cross-sectional profile 2-2’ on the map is shown 
below in the profile. Note that the preserved Witwatersrand basin equates to the foredeep 
depozone, with area “B” being an area of subsequent erosion of these foredeep strata. The 
two solid line half-circles, centred on the areas of maximum loading (numbered “1” and 
“2” for accreting northern and western composite terranes, respectively), outline the 
approximate distribution of the foredeep depozone; the forebulge developed outside the 
area covered by these two half-circles, with its apex (point “A”; see also profile, below) 
enclosed by the -130 mgal isoline of the gravity field. The three dashed circles suggest 
contour lines of the foreland system centred around the forebulge apex, A, with the 
outermost circle marking the position of the back-bulge axis (which equates with the 
depo-axis of the Pongola Supergroup basin), as also suggested in theoretical flexural 
profile models (cf. Catuneanu, 2001 and references therein). For the “greater 
Witwatersrand basin”, the forebulge remained emergent, thereby separating discrete 
foredeep (fill = Witwatersrand Supergroup) and back-bulge (fill = Pongola Supergroup) 
sub-basins. Modified after Catuneanu (2001).  
 
Figure 4. (a) Schematic geodynamic history chart proposed for the “greater 
Witwatersrand basin” (=Witwatersrand and correlated Pongola Supergroups), showing 
chronology, stratigraphy and major granitic events affecting this basin and its hinterland, 
as well as major terrane accretion and amalgamation events affecting the Kaapvaal 
craton, and flexural retroarc foreland basin system stages for the greater Witwatersrand 
depository. (b) Geodynamic history chart for the Ventersdorp basin. Minimum age of ca. 
2.66 Ga for the upper part of the Ventersdorp Supergroup (Olsson et al., 2010) remains 
speculative. 
 
Fig. 5. Schematic geodynamic history chart for the Transvaal Supergroup, in the 
Transvaal basin, showing lithostratigraphy, chronology, inferred tectonic settings and 
depositional paleoenvironments, as well as interpreted sequence stratigraphy (modified 
after Catuneanu and Eriksson 1999). Age near base of Pretoria Group (lower Timeball 



Hill Formation) from Hannah et al. (2004); remaining age data taken from references in 
Eriksson et al. (2001).    
 
Fig. 6. (a) Sketch map of three Transvaal (Supergroup) sub-basins: Transvaal itself and 
Griqualand West (separated by the Vryburg rise, a palaeohigh), with the Kanye basin to 
the north of the palaeohigh.  
 
Fig. 7. Profile through the upper ca. 50 m of the Timeball Hill Formation (Pretoria 
Group) showing a ca. 35 m thick diamictite succeeded by locally varved mudrocks and a 
thin chert conglomerate bed. Field profile measured by first author in Magaliesberg 
village.  
 
Fig. 8. Lithostratigraphy of the Chuniespoort-Ghaap Groups, in the Transvaal and 
Griqualand West sub-basins of the Transvaal Supergroup, showing inferred correlations, 
age data and interpreted regressive-transgressive trends. The two left-hand columns are 
for the Prieska and Ghaap Plateau divisions of the Griqualand West sub-basin. Note that 
vertical scale reflects time and not thickness. Note also contact relationships with 
succeeding units of the Duitschland Formation, Pretoria and Postmasburg Groups. 
Modified after Eriksson et al., 2006.  
 
Fig. 9. Vertical profile through the Duitschland Formation on the farm Duitschland, 
simplified from original in Frauenstein et al. (2009).  
 
Figure 10. Typical profile through the Makganyene Formation, Griqualand West sub-
basin; profile from Visser (1971), measured on farm Bolham Ku. Q 825, situated about 
45 km south of Kuruman. 
 
Figure 11. Sketch map showing the location of the Waterberg Group in South Africa: 
larger Main basin in the NE and smaller Middelburg basin east of Pretoria. Note that the 
Main Basin is bounded by Melinda (Palala) fault zone and Thabazimbi-Murchison  
lineament (TML), whereas the Middelburg basin is bounded by Kanye axis. 
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