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1. Introduction

Practitioners in the quality control environment require methods to monitor a process from the start
of the production, whether or not prior (historical or past) information is available for estimating the
parameters. Quesenberry (1991) presented Q-charts assuming that the observations from each sample
are independent and identically distributed normal random variables. However Human and Chakraborti
(2010) highlighted that there are cases where the assumption of normality is not valid. They proposed a Q-
chart design for monitoring the process mean when the measurements are from an exponential distribution
and the parameter of the distribution is unknown. To gain more insight into the performance of a control
chart, one needs to consider the run-length distribution of the proposed chart. The run-length of a
control chart is the number of samples collected until the shift is detected; this can also be viewed as the
waiting time until a signal is observed following a shift or change in the process parameter. To develop
exact expressions for the probabilities of the run-lengths the joint distribution of the charting statistics
is needed. The following is an overview of the problem statement identified in the field of SPC; for more
detail see Human and Chakraborti (2010).

To describe the proposed Q-charts in more detail, let (Xr1,Xr2, . . . ,Xrn), r = 1, 2, . . . represent successive
and independent samples of n ≥ 1 measurements made on a sequence of items and assume that these
values are independent and identically distributed having been collected from an EXP (θ) distribution
where the parameter θ denotes the unknown process mean.

Because we assume θ is unknown, the first sample is used to obtain an initial estimate of θ. This initial
estimate is continuously updated using the new incoming samples as they are collected (as long as the
value of θ does not change).
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To this end, let

Xr =
1

r

r∑

i=1
Xi =

1

rn

r∑

i=1

n∑

j=1
Xij for r = 1, 2, . . . (1)

where Xr denote the overall mean of all the measurements up to and including sample r and Xi denote
the ith sample mean. The sequential sample quantity in (1) is computed as each new sample becomes
available and can be calculated using the following updating formula

Xr =
1

r

[
Xr + (r − 1)Xr−1

]
for r = 1, 2, . . . (2)

The updating formula in (2) allows the computation of Xr from the latest (previous) overall mean Xr−1

and the most recent sample mean Xr . Note that, when r = 1 we have that X1 = X1. Also note

that, as long as the process remains in-control Xr is the MLE of θ when the samples 1, 2, . . . , r are
pooled/combined.

Therefore, the first sample is used to obtain an initial estimate of θ, that is, X1 = X1 estimates θ at

sample number one, and at sample number two X2 is compared to X1 to check if the value of θ is still the
same. If the value of θ is still the same at sample number two, a new updated estimate of θ is obtained.

The updated estimate is X2 =
1
2

[
X2 +X1

]
and includes the information from samples one and two; the

estimate X2 is then used to check if the value of θ is still the same at sample r = 3 by comparing X3 to

X2. This sequential updating-and-testing procedure continues until a change is detected in the value of
θ.

To describe the procedure in more general terms, suppose that there are two independent samples. The
first sample consists of the measurements of the first r − 1 samples combined and the second sample
consists of the measurements of the rth sample only, i.e.
Sample 1: {X11,X12, . . . ,X1n; . . . ;Xr−11,Xr−12, . . . ,Xr−1n} and Sample 2: {Xr1,Xr2, . . . ,Xrn} .

Let Xr−1 in expression (1) denote the overall mean of Sample 1 and let Xr denote the mean of the
observations from Sample 2. The well-known two-sample statistic for testing the hypothesis at time r

that the two independent samples are from exponential distributions with the same unknown parameter,
is based on the statistic

U∗

r =
Xr

Xr−1

for r = 2, 3, . . . (3)

Note that, without loss of generality, it is assumed that Sample 1 is from an exponential distribution with

parameter θ (i.e. Y = 2n(r−1)Xr−1

θ
∼ χ22n(r−1)) and that Sample 2 is from an exponential distribution

with parameter θ1 = λθ where λ > 0 (i.e. X = 2nXr

θ1
∼ χ22n) so that U∗r is in fact a test to check whether

λ = 1 (i.e. the parameters are the same) versus λ �= 1 (i.e. the parameter changed). The distribution of
U∗r when λ = 1 is an F distribution with numerator degrees of freedom 2n and denominator degrees of
freedom 2n (r − 1) . This result is established by re-writing (3) as

U∗

r =
Xr

Xr−1

= λZ with λ =
θ1

θ
= 1 for r = 2, 3, . . .

where Z =
X
2n
Y

2n(r−1)

∼ F2n,2n(r−1), and the two random variables i.e. X and Y, are independent because

it is assumed that successive samples are independent.
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In SPC, once the process encountered a permanent / sustained upward or downward step shift, one is
interested in determining the probability of detecting the change in the parameter θ as soon as possible.
To this end, suppose that from sample κ the process parameter has changed from θ to θ1 = λθ where
λ �= 1 and λ > 0. This can be summarised as follows:

Sample mean: X1,X2, . . . ,Xκ−1︸ ︷︷ ︸
Xκ,Xκ+1, . . . ,Xκ+t−1,Xκ+t,Xκ+t+1, . . .︸ ︷︷ ︸

Distribution of the sample: EXP (θ) EXP (θ1)

Following a change in the process parameter at sample κ the random variable U∗

κ+t, κ = 2, 3, . . . and
t = 0, 1, 2, . . . can be written as

U∗

κ+t =
Xκ+t

Xκ+t−1

=
Xκ+t

1
κ+t−1

[
(κ− 1)Xκ−1 + tX [κ:κ+t−1]

]

=
θ1
θ

Xκ+t

θ1

1
κ+t−1

[
(κ− 1) Xκ−1

θ
+ t θ1

θ

X[κ:κ+t−1]

θ1

]

=
λ
{
Wκ+t

2n

}

1
κ+t−1

[
(κ− 1)

{
W[1:κ−1]

2n(κ−1)

}
+ tλ

{
W[κ:κ+t−1]

2nt

}]

= (κ+ t− 1)
λWκ+t

W[1:κ−1] + λW[κ:κ+t−1]
(4)

where X[κ:κ+t−1] =
1
t

κ+t−1∑

j=κ
Xj is the mean of all the observations from sample κ to sample κ + t − 1,

and the random variables Wκ+t =
2nXκ+t

θ1
∼ χ22n , W[1:κ−1] =

2n(κ−1)Xκ−1

θ
∼ χ22n(κ−1) and W[κ:κ+t−1] =

2ntX[κ:κ+t−1]

θ1
∼ χ22nt are independent and λ = θ1

θ
. Take note, when t = 0, the term W[κ:κ+t−1] is undefined

and therefore the denominator will only consist of W[1:κ−1].

Q-charts are constructed by plotting the charting statistic on a Shewhart type chart with lower- and
upper control limits (LCL and UCL) and a center line over time. The charting statistic for the Q-chart
is a function of the random variable (4). The process is declared out of control if the charting statistic
plots on or outside the control limits.

As described above the process is regarded to be in control when the charting statistic plots between the
lower- and upper control limits. In terms of the random variable (4), this translates to,

LCL∗κ+t < U∗κ+t = (κ+ t− 1)
λWκ+t

W[1:κ−1] + λW[κ:κ+t−1]
< UCL∗κ+t

which can be rewritten as,

LCLκ+t < Uκ+t =
λWκ+t

W[1:κ−1] + λW[κ:κ+t−1]
< UCLκ+t

Take note that, for example, UCLκ+t =
UCL∗κ+t
κ+t−1 , which is a function of UCL and time. This is also true

for LCLκ+t.
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This paper focuses on the random variable

Uκ+t =
λWκ+t

W[1:κ−1] + λW[κ:κ+t−1]
for κ = 2, 3, . . . and t = 0, 1, 2, . . . (5)

because the distribution of this random variable is unknown and is needed to determine the probabilities
of the run-lengths as explained below.

Once a shift in the process parameter occurred, the run-length is the number of samples collected from
time κ (i.e. first sample after the change) until an out-of-control signal is observed (i.e. charting statistic
plots on or outside the control limits). The discrete random variable defining the run-length is called the
run-length random variable and typically denoted by N . The distribution of N is called the run-length
distribution. The probability of detecting a shift immediately, in other words, the probability of a run-
length of one, is the likelihood that a signal is obtained at time κ and to calculate this probability the
marginal distribution of the random variable Uκ is needed. The probability that the run-length is one,
is one minus the probability that the random variable, Uκ, plots between the control limits,

Pr(N = 1) = 1−
∫ UCLκ
LCLκ

f (uκ) duκ

To develop exact expressions for the probabilities of run-lengths greater than one the joint distribution
of the charting statistics is needed because after a change occurred, the charting statistics are no longer
independent. Consider as an example a run-length of two and define the following two events, A =
{LCLκ < Uκ < UCLκ} and B = {LCLκ+1 < Uκ+1 < UCLκ+1} , then the probability of a run-length of
two is the probability of having no signal in the first sample and having a signal in the second sample,

Pr(N = 2) = Pr (A ∩Bc)
= Pr (A)− Pr (A ∩B)

=
∫ UCLκ
LCLκ

f (uκ) duκ −
∫ UCLκ+1
LCLκ+1

∫ UCLκ
LCLκ

f (uκ, uκ+1) duκduκ+1

Thus for a run-length of two, the bivariate distribution of Uκ and Uκ+1 is required and for a run-length
of three, the trivariate distribution is required, etc.

The distribution of the random variable (5) is derived in Section 2. To simplify the notation, define

U0 =
λW0

X

Uj =
λWj

X+λ
j−1∑

k=0

Wk

where j = 1, 2, . . . and λ > 0 (6)

where X, Wj with j = 0, 1, 2, . . . are independent chi-squared random variables with degrees of freedom a

and vj with j = 0, 1, 2, . . . respectively. The random variables defined in expression (6) are equivalent to
(5) where j has the role of t, i.e. it indicates the number of samples after the parameter θ changed. For
example, Uκ and Uκ+1 in (5) is the same as U0 and U1 in (6). The information regarding κ, the sample
number when the parameter θ changed to θ1 = λθ, in (5) is contained in the degrees of freedom of the
random variable X in (6), i.e. a = 2n (κ− 1) where n represents the sample size, therefore a represents
the total number of observations (for all samples) before the shift occurred. The degrees of freedom for
Wj depends also on the sample size, i.e. vj = 2n.

Note that, the random variables in (6) are constructed from independent chi-squared random variables
using the variables-in-common (or trivariate reduction) technique. Other bivariate distributions that
are also constructed in this way that is defined on the positive domain includes the usual bivariate F

(Balakrishnan and Lai, 2009) and the extended bivariate F proposed by El-Bassiouny and Jones (2008).
Gupta et al. (2009) derived a non-central bivariate beta type 1 distribution that is defined on the unit
square; applying the appropriate transformation will yield a distribution defined on the positive domain.
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In this paper the distribution of (U0, U1, . . . , Up) i.e. a new generalized multivariate beta distribution is
derived. In terms of the problem identified from the SPC context, this distribution is used to develop
exact expressions for the probability of detecting a change in the parameter θ as explained above. This
new generalized multivariate beta distribution is explored in detail in Sections 2, 3 and 4. Section
2 focuses on the joint and marginal distributions. Because the moments are used to investigate the
correlation structure between the random variables, this statistical property of the distribution is studied
in this paper. In Section 3 a general expression is derived for the product moments of the distribution,
while the correlation of the charting statistics for the bivariate case together with a shape analysis of the
univariate and bivariate distributions are considered in Section 4.

2. The Generalized Multivariate Beta Distribution

In this section the joint distribution of the random variables in (6) is derived. This gives rise to a new
distribution that can be regarded as a generalized multivariate beta distribution. The construction of
these random variables (see (6)) and their dependence structure originated from the problem identified in
SPC. In Section 2.1 the joint density of the new multivariate beta distribution is derived. The marginal
distributions including the univariate distribution, the bivariate distribution and the distribution of a
subset of (U0, U1, . . . , Up) are presented in Section 2.2.

2.1. Multivariate Distribution Function

In this section the joint density of (U0, U1, . . . , Up) is derived.

Theorem 1 Let X, Wj with j = 0, 1, 2, . . . , p be independent chi-squared random variables with degrees

of freedom a and vj with j = 0, 1, 2, . . . , p respectively. Let U0 =
λW0

X
, and Uj =

λWj

X+λ
j−1∑

k=0

Wk

where

j = 1, 2, . . . , p and λ > 0. The joint density of (U0, U1, . . . , Up) is given by

f (u0, u1, . . . , up)

=
Γ

(
a
2+

p∑

j=0

vj
2

)

λ
a
2

Γ(a2 )
p∏

j=0
Γ(

vj
2 )

(
p∏

j=0
u
vj
2 −1
j

)


p−1∏

k=0

(1+uk)

p∑

j=k+1

vj
2




(

λ+ u0 +
p∑

j=1
uj

j−1∏

k=0

(1+uk)

)
−



 a
2
+

p∑

j=0

vj
2





,

uj > 0, j = 0, 1, . . . , p

(7)

Proof The joint density of X,W0,W1, . . . ,Wp is

f (x,w0, w1, . . . , wp) =
1

2

a
2
+

p∑

j=0

vj
2

Γ
(
a
2

) p∏

j=0

Γ
(vj
2

)
x
a
2
−1

e
−
x
2

p∏

j=0

w
vj
2 −1
j e

−
wj
2

Let U = X, U0 =
λW0

X
and Uj =

λWj

X+λ
j−1∑

k=0

Wk

where j = 1, 2, . . . , p. This gives the inverse trans-

formation, X = U,W0 =
1
λ
U0U and Wj =

1
λ
UjU

j−1∏

k=0

(1 + Uk) where j = 1, 2, . . . , p with Jacobian

J (x,w0, w1, . . . , wp → u, u0, u1, . . . , up) =
(
u
λ

)p+1 p−1∏

k=0

(1 + uk)
p−k
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Thus, the joint density of U,U0, U1, . . . , Up is given by

f (u, u0, u1, . . . , up)

= λ



−
p∑

j=0

vj
2





2

a
2
+

p∑

j=0

vj
2

Γ( a2 )
p∏

j=0
Γ(

vj
2 )

u

a
2
+

p∑

j=0

vj
2
−1

u
v0
2 −1
0

(
p∏

j=1
u
vj
2 −1
j

)


p−1∏

k=0

(1 + uk)

p∑

j=k+1

vj
2



 e

−
u
2



1+u0
λ
+

p∑

j=1

uj
λ

j−1∏

k=0
(1+uk)





(Note that
p∏

j=1

[
j−1∏

k=0

(1 + uk)

]vj
2 −1

=
p−1∏

k=0

(1 + uk)

p∑

j=k+1

vj
2 −(p−k)

)

Now, integrating this expression with respect to u using the definition of the gamma integral function
(see Prudnikov 1986, Eq. 2.3.3(1), p322), yields the desired result. �

Remarks

(i) An alternative expression for the joint probability density function in (7) in terms of the hyperge-
ometric function, 1F0(·), can be obtained as follows,

f (u0, u1, . . . , up)

=
Γ

(
a
2+

p∑

j=0

vj
2

)

λ
a
2

Γ(a2 )
p∏

j=0
Γ(

vj
2 )

(
p∏

j=0
u
vj
2 −1
j

)


p∏

k=0

(1 + uk)
−

(
a
2+

k∑

j=0

vj
2

)






λ+

p∏

k=0

(1+uk)−1

p∏

k=0

(1+uk)





−



a
2
+

p∑

j=0

vj
2





using the fact that λ+ u0 +
p∑

j=1
uj

j−1∏

k=0

(1 + uk) = λ+
p∏

k=0

(1 + uk)− 1.

This can be simplified using the binomial series 1F0(α; z) = (1− z)−α for |z| < 1 (Mathai, 1993,

p25) with 1− z =
λ+

p∏

k=0

(1+uk)−1

p∏

k=0

(1+uk)
and α = a

2 +
p∑

j=0

vj
2 , then

f (u0, u1, . . . , up) =

Γ

(
a
2 +

p∑

j=0

vj
2

)

λ
a
2

Γ
(
a
2

) p∏

j=0
Γ
(vj
2

)




p∏

j=0

u
vj
2 −1
j








p∏

k=0

(1 + uk)
−

(
a
2+

k∑

j=0

vj
2

)


1F0





a

2
+

p∑

j=0

vj

2
;

1− λ
p∏

k=0

(1 + uk)






(8)

(ii) The joint density of (U0, U1, . . . , Up) can also be expressed in terms of the product of beta type II
densities by expanding 1F0(·) in expression (8) in series form. Therefore,

f(u0, u1, . . . , up) = λ
a
2

∞∑

b=0

(
a
2

)
b

b!
(1− λ)b

p∏

j=0

BetaII
(
vj

2
,
a

2
+
j−1∑

k=0

vk

2
+ b

)
(9)

where (α)i is the Pochhammer coefficient defined as (α)i = α (α+ 1) . . . (α+ i− 1) = Γ(α+i)
Γ(α) and

BetaII (·) denotes the known beta type II distribution. This alternative representation of the joint
density is used in some of the subsequent derivations.

6



(iii) The joint density of (U0, U1, . . . , Up) can be used to calculate the probability of a run-length of
p+ 1, for p = 1, 2, . . . . (See also Human and Chakraborti (2010) expressions (19) to (21).)

(iv) If λ = 1, i.e. the process is in control, the joint density (7) simplifies to

f (u0, u1, . . . , up) =
Γ

(
a
2+

p∑

j=0

vj
2

)

Γ( a2 )
p∏

j=0
Γ(

vj
2 )

(
p∏

j=0

u
vj
2 −1
j

)


p∏

k=0

(1 + uk)
−

(
a
2+

k∑

j=0

vj
2

)

 , uj > 0

This confirms the independency of the random variables when λ = 1.

2.2. Marginal Distributions

This section focuses on the density of any subset of random variables of the generalized multivariate
beta distribution. The marginal density of Uj , j = 0, 1, . . . p, in general is derived in Section 2.2.1. In
Section 2.2.2 the bivariate density of (Uj , Uj+m) is derived which will be used to investigate the correlation
structure which is discussed in Section 4. This section is concluded with the derivation of the density
of a subset of (U0, U1, . . . , Up) . The marginal distributions derived in this section will also be used to
determine the moments in Section 3.

2.2.1. Univariate distribution

Theorem 2 Let X, Wj with j = 0, 1, 2, . . . , p be independent chi-squared random variables with degrees

of freedom a and vj with j = 0, 1, 2, . . . , p respectively. Let U0 =
λW0

X
and Uj =

λWj

X+λ
j−1∑

k=0

Wk

where

j = 1, 2, . . . , p and λ > 0. If the joint density of U0, U1, . . . , Up is given by (7), then the marginal density
of

(a) Uj , j = 1, 2, . . . p is given by

f (uj) =
Γ

(
a
2+

j∑

k=0

vk
2

)

Γ(
vj
2 )Γ

(
a
2+

j−1∑

k=0

vk
2

)λ
a
2
u
vj
2 −1
j (1 + uj)

−

(
a
2+

j∑

k=0

vk
2

)

2F1

(
a
2 +

j∑

k=0

vk
2 ,

a
2 ;

a
2 +

j−1∑

k=0

vk
2 ;

1−λ
1+uj

)
, uj > 0

(10)
and of

(b) U0 is given by

f(u0) =
Γ(a2 +

v0
2 )λ

a
2

Γ(a2 )Γ(
v0
2 )

u
v0
2
−1

0 (λ+ u0)
−(a2 +

v0
2 )

, u0 > 0 (11)

where 2F1 (·) denotes the Gauss hypergeometric function.

Proof (a) Let T =
j−1∑

k=0

Wk , therefore T ∼ GAM (2, b) with b =
j−1∑

k=0

vk
2 . The joint density of Wj ,X

and T is given by

f (wj, x, t) =
1

2
a
2
+
vj
2
+b

Γ
(vj
2

)
Γ
(
a
2

)
Γ(b)

w
vj
2 −1
j x

a
2
−1

t
b−1

e
−

wj
2
−
x
2
−
t
2
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By applying the transformation Uj =
λWj

X+λT and Y = X + λT with Jacobian J (wj , x, t→ uj , y, t) =
y
λ

the joint density of Uj , Y and T is

f (uj , y, t) =
λ
a
2
−

vj
2
−1

2
a
2
+
vj
2
+b
Γ
(vj
2

)
Γ
(
a
2

)
Γ (b)

u
vj
2 −1
j y

vj
2

(y
λ
− t
) a
2
−1

t
b−1

e
−
y
2 (1+

uj
λ )− t

2
(1−λ)

Therefore, the marginal density of Uj is,

f (uj) =
λ
a
2
−

vj
2
−1

2
a
2
+
vj
2
+b

Γ
(vj
2

)
Γ
(
a
2

)
Γ (b)

u
vj
2 −1
j

∫
∞

0

y
vj
2 e

−
y
2 (1+

uj
λ )
∫ y

λ

0

t
b−1
(y
λ
− t
) a
2
−1

e
−
t
2
(1−λ)

dtdy

Using Gradshteyn and Ryzhik (2007) Eq. 3.383(1), p347, and Eq. 7.522(9), p815 and relation Eq.
9.131(1), p1008, the desired result (10) follows after simplification.

(b) For j = 0, the marginal density of U0 can be obtained using a similar approach as in (a). �

Remarks

(i) The marginal density, f(u0), can be used to calculate the probability of a run-length of one as
explained in the introduction. (See also Human and Chakraborti (2010) expression (18).)

(ii) If λ = 1, i.e. when the process is in control, the marginal density (10,11) simplifies to a beta type

II density with parameters vj
2 and a

2 +
j−1∑

k=0

vk
2 .

f (uj) =
Γ

(
a
2+

j∑

k=0

vk
2

)

Γ(
vj
2 )Γ

(
a
2+

j−1∑

k=0

vk
2

)u
vj
2 −1
j (1 + uj)

−

(
a
2+

j∑

k=0

vk
2

)

, uj > 0

(See also remark (iv) of Section 2.1.)

2.2.2 Bivariate distribution

Theorem 3 Let X, Wj with j = 0, 1, 2, . . . , p be independent chi-squared random variables with degrees

of freedom a and vj with j = 0, 1, 2, . . . , p respectively. Let U0 =
λW0

X
and Uj =

λWj

X+λ
j−1∑

k=0

Wk

where

j = 1, 2, . . . , p and λ > 0. If the joint density of U0, U1, . . . , Up is given by (7), then the bivariate density
of Uj and Uj+m is given by

f(uj , uj+m)

= λ
a
2
∞∑

b=0

(a2 )b
b! (1− λ)b ×BetaII

(
vj
2 ,

a
2 +

j−1∑

k=0

vk
2 + b

)
×BetaII

(
vj+m
2 , a2 +

j+m−1∑

k=0

vk
2 + b

)
(12)
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=

λ

a
2 Γ



a
2+

j∑
k=0

vk
2



Γ



a
2+

j+m∑
k=0

vk
2





Γ(
vj
2 )Γ(

vj+m
2 )Γ



a
2+

j−1∑
k=0

vk
2



Γ



a
2+

j+m−1∑
k=0

vk
2




u
vj
2 −1
j (1 + uj)

−



a
2+

j∑
k=0

vk
2





u
vj+m

2 −1
j+m ×

(1+uj+m)
−



a
2+

j+m∑
k=0

vk
2





3F2

(
a
2+

j+m∑

k=0

vk
2 ,

a
2+

j∑

k=0

vk
2 ,

a
2 ;

a
2+

j+m−1∑

k=0

vk
2 ,

a
2+

j−1∑

k=0

vk
2 ;

1−λ
(1+uj)(1+uj+m)

)

(13)
where uj , uj+m > 0 , j = 0, 1, 2, . . . , p , m = 1, 2, 3, . . . and 3F2 (·) denotes the hypergeometric function.

Proof Equation (12) follows from integrating the appropriate variables from the joint distribution in
the form given in (9). Expression (13) in terms of the hypergeometric function, 3F2 (·) , follows from
expanding the product of the beta type II densities, rearranging the terms and simplifying

f(uj , uj+m)

= λ

a
2

Γ(
vj
2 )Γ(

vj+m
2 )

u
vj
2 −1
j (1 + uj)

−



 a
2+

j∑
k=0

vk
2





u
vj+m

2 −1
j+m (1 + uj+m)

−



a
2+

j+m∑
k=0

vk
2





×

∞∑

b=0

Γ



a
2+

j+m∑
k=0

vk
2 +b



Γ



a
2+

j∑
k=0

vk
2 +b



Γ(a2+b)

Γ



a
2+

j+m−1∑
k=0

vk
2 +b



Γ



a
2+

j−1∑
k=0

vk
2 +b



Γ(a2 )b!

(
1−λ

(1+uj)(1+uj+m)

)b

=

λ

a
2
Γ



a
2+

j∑
k=0

vk
2



Γ



a
2+

j+m∑
k=0

vk
2





Γ(
vj
2 )Γ(

vj+m
2 )Γ



 a
2+

j−1∑
k=0

vk
2



Γ



 a
2+

j+m−1∑
k=0

vk
2




u
vj
2 −1
j (1 + uj)

−



a
2
+

j∑
k=0

vk
2





u
vj+m

2 −1
j+m (1 + uj+m)

−



a
2
+

j+m∑
k=0

vk
2





×

∞∑

b=0



a
2+

j+m∑
k=0

vk
2





b



a
2+

j∑
k=0

vk
2





b

(a2 )b


a
2+

j+m−1∑
k=0

vk
2





b



a
2+

j−1∑
k=0

vk
2





b

b!

(
1−λ

(1+uj)(1+uj+m)

)b
�

Remarks
In the following two remarks the cases m = 1 and j = 0 in expression (13) is considered respectively,
since the bivariate density will be illustrated for these cases in Section 4.

(i) If m = 1,

f(uj , uj+1) =

λ

a
2
Γ



a
2+

j∑
k=0

vk
2



Γ



a
2+

j+1∑
k=0

vk
2





Γ(
vj
2 )Γ(

vj+1
2 )Γ



a
2+

j−1∑
k=0

vk
2



Γ



a
2+

j∑
k=0

vk
2




u
vj
2 −1
j (1 + uj)

−



a
2+

j∑
k=0

vk
2





u
vj+1
2 −1

j+1 ×

(1 + uj+1)
−



a
2+

j+1∑
k=0

vk
2





2F1

(
a
2 +

j+1∑

k=0

vk
2 ,

a
2 ;

a
2 +

j−1∑

k=0

vk
2 ;

1−λ
(1+uj)(1+uj+1)

)

(ii) If j = 0, f(u0, um) =
λ

a
2 Γ(a2+

v0
2 )Γ

(
a
2+

m∑
k=0

vk
2

)

Γ( v02 )Γ(
vm
2 )Γ(a2 )Γ



a
2+

m−1∑
k=0

vk
2




u
v0
2 −1
0 (1 + u0)

−( a2+
v0
2 ) u

vm
2 −1
m ×

(1 + um)
−

(
a
2+

m∑
k=0

vk
2

)

2F1

(
a
2 +

m∑

k=0

vk
2 ,

a
2 +

v0
2 ;

a
2 +

m−1∑

k=0

vk
2 ;

1−λ
(1+uj)(1+um)

)

Take note in this case
j−1∑

k=0

vk
2 = 0 for j < 1.
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2.2.3 Distribution of a subset

Theorem 4 Let X, Wj with j = 0, 1, 2, . . . , p be independent chi-squared random variables with degrees

of freedom a and vj with j = 0, 1, 2, . . . , p respectively. Let U0 =
λW0

X
and Uj =

λWj

X+λ
j−1∑

k=0

Wk

where

j = 1, 2, . . . , p and λ > 0. If the joint density of U0, U1, . . . , Up is given by (7), then the joint density of
the subset Ur, Ur+1, . . . , Up where r = 0, 1, . . . , p is given by

f(ur, ur+1, . . . , up) = λ
a
2
∞∑

b=0

(a2 )b
b! (1− λ)b

p∏

j=r
BetaII

(
vj
2 ,

a
2 +

j−1∑

k=0

vk
2 + b

)
, uj > 0, j = r, . . . , p (14)

=
λ

a
2
Γ

(
a
2+

p∑
k=0

vk
2

)

Γ



a
2+

r−1∑
k=0

vk
2




p∏

k=r

Γ( vk2 )






p∏

j=r
u
vj
2 −1
j (1 + uj)

−



a
2+

j∑
k=0

vk
2








×

2F1




a
2 +

p∑

k=0

vk
2 ,

a
2 ;

a
2 +

r−1∑

k=0

vk
2 ;

1−λ
p∏

j=r

(1+uj)




 , uj > 0, j = r, . . . , p

(15)

Proof This proof is similar to theorem 3. �

3. Moments

Theorem 5 provides a derivation of the joint moments of U0, U1, . . . , Up. The product moments for the

bivariate case, E
(
urju

s
j+m

)
and a subset, E(uhrr u

hr+1
r+1 . . . u

hp
p ) are given in Theorem 6 and 7, respectively.

The moments for the bivariate case will be used in Section 4 to investigate the correlation structure.

Theorem 5 The joint moments of U0, U1, . . . , Up, where (U0, U1, . . . , Up) has joint density (8), is given
by

E
(
uh00 uh11 . . . uhpp

)
=

λ
a
2
Γ

(
a
2 +

p∑

k=0

vk
2

)

Γ
(
a
2

) p∏

k=0

Γ
(
vk
2

)

∞∑

b=0

(
a
2 +

p∑

k=0

vk
2

)

b

b!
(1− λ)b

p∏

j=0

Γ
(vj
2 + hj

)
Γ

(
a
2 +

j−1∑

k=0

vk
2 + b− hj

)

Γ

(
a
2 +

j∑

k=0

vk
2 + b

)

(16)

Take note
j−1∑

k=0

vk
2 = 0 if j < 1.

Proof By expanding the hypergeometric function in series form in expression (8) it follows that

E
(
uh00 uh11 . . . u

hp
p

)

=
λ

a
2
Γ

(
a
2+

p∑
k=0

vk
2

)

Γ( a2 )
p∏

k=0

Γ( vk2 )

∞∑

b=0

(
a
2+

p∑
k=0

vk
2

)

b

b! (1− λ)b
p∏

j=0






∞∫

0

u
vj
2 +hj−1
j (1 + uj)

−



a
2+

j∑
k=0

vk
2 +b





duj






Evaluation of the above integrals using the definition of the beta type II integral function (see Prudnikov
1986, Eq 2.2.4(24), p298), yields the desired expression (16). �
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Theorem 6 The product moment of Uj , Uj+m, where (Uj , Uj+m) has bivariate density (13), is given by

E
(
urju

s
j+m

)
=

λ

a
2 Γ(

vj
2 +r)Γ(

vj+m
2 +s)Γ



a
2+

j−1∑
k=0

vk
2 −r



Γ



a
2+

j+m−1∑
k=0

vk
2 −s





Γ(
vj
2 )Γ



 a
2+

j−1∑
k=0

vk
2



Γ(
vj+m

2 )Γ



a
2+

j+m−1∑
k=0

vk
2





3F2

(
a
2 +

j−1∑

k=0

vk
2 − r, a2 +

j+m−1∑

k=0

vk
2 − s, a2 ;

a
2 +

j+m−1∑

k=0

vk
2 ,

a
2 +

j−1∑

k=0

vk
2 ; 1− λ

)

(17)

where j = 0, 1, 2, . . . and m = 1, 2, 3, . . .

Proof This proof is similar to theorem 5. �

Remarks
In the following two remarks the cases j = 1 and m = 1 in expression (17) is considered respectively,
since the correlation will be plotted for these cases in Section 4.

(i) If j = 0,

E (ur0u
s
m) =

λ

a
2 Γ( v02 +r)Γ(

vm
2 +s)Γ(a2−r)Γ



a
2+

m−1∑
k=0

vk
2 −s





Γ(a2 )Γ(
v0
2 )Γ(

vm
2 )Γ



a
2+

m−1∑
k=0

vk
2




2F1

(
a
2 − r, a2 +

m−1∑

k=0

vk
2 − s; a2 +

m−1∑

k=0

vk
2 ; 1− λ

)

Take note that
j−1∑

k=0

vk
2 = 0 if j < 1.

(ii) If m = 1, E
(
urju

s
j+1

)
=

λ

a
2
Γ(

vj+1
2 +s)Γ(

vj
2 +r)Γ



a
2+

j∑
k=0

vk
2 −s



Γ



a
2+

j−1∑
k=0

vk
2 −r





Γ(
vj
2 )Γ



a
2+

j−1∑
k=0

vk
2



Γ(
vj+1
2 )Γ



a
2+

j∑
k=0

vk
2




×

3F2

(
a
2 +

j∑

k=0

vk
2 − s, a2 ,

a
2 +

j−1∑

k=0

vk
2 − r; a2 +

j−1∑

k=0

vk
2 ,

a
2 +

j∑

k=0

vk
2 ; 1− λ

)

Theorem 7 The joint moments of a subset (Ur, Ur+1, . . . , Up) where r = 0, 1, . . . , p with joint density
(15), is given by

E
(
uhrr . . . uhpp

)

=

λ
a
2
Γ

(
a
2 +

p∑

k=0

vk
2

)

Γ

(
a
2 +

r−1∑

k=0

vk
2

)
p∏

k=r

Γ
(
vk
2

)

∞∑

b=0

(
a
2 +

p∑

k=0

vk
2

)

b

(
a
2

)
b

(
a
2 +

r−1∑

k=0

vk
2

)

b

b!

(1− λ)b
p∏

j=r

Γ
(vj
2 + hj

)
Γ

(
a
2 +

j−1∑

k=0

vk
2 + b− hj

)

Γ

(
a
2 +

j∑

k=0

vk
2 + b

)

Proof This proof is similar to theorem 5. �

4. Shape analysis and computations

In this section the shape of the univariate and bivariate marginal densities of the generalized multivariate
beta distribution will be illustrated for different values of the parameters λ, a and vj . The effect of the
different parameters on the correlation between Uj and Uj+m will also be investigated. In the SPC
application discussed in the introduction vj = 2n, therefore it depends on the sample size at each point
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in time. In this section it will be assumed that the sample sizes at each point in time are equal, in effect
vj = v.

Figure 1 illustrates the effect of the parameters λ, a and v on the univariate marginal density (see (10,11)).
Panels (i) to (iii) focus on the random variable U0. In panel (iv), the influence of j is investigated, where
j represents the position of the random variable in the process. For larger values of j the density moves
towards the vertical axis. In all four panels, the solid black line (λ = 1.5, a = 20 and v = 10) is
the same and is used as a reference. In panel (i) the role of λ is investigated. Take note that when
λ = 1, the density simplifies to that of a beta type II density. Panel (ii) shows that for larger values of
a = 2n (κ− 1) = v (κ− 1) (meaning the shift took place after a long time) the plot moves towards the
vertical axis. Take note that a depends on the sample size at each point in time as well as κ, the sample
from which the process parameter has changed. Panel (iii) examines the effect of the v. Note that for
the special case when individual samples are considered (i.e when n = 1 so that v = 2), the shape is
different.

l = 1.5

l = 0.5

l = 1

0.0 0.5 1.0 1.5 2.0
u0

1

2

3

4

5

6

f Hu0L

a = 100

a = 60

a = 20

0.0 0.5 1.0 1.5 2.0
u0

1

2

3

4

5

6

f Hu0L

(i) a = 20, v = 10 (ii) λ = 1.5, v = 10

v = 2

v = 10

v = 20

0.0 0.5 1.0 1.5 2.0
u0

1

2

3

4

5

6

f Hu0L

j = 5

j = 2

j = 0

0.0 0.5 1.0 1.5 2.0
u j

1

2

3

4

5

6

f Iu jM

(iii) λ = 1.5, κ = 3 (iv) λ = 1.5, a = 20, v = 10
Fig. 1 The marginal density function for different values of the parameters λ, a and v

Figure 2 plots that bivariate density (see (13)) for different values of the parameters λ, a and v. In each
panel the reference case (λ = 1.5, a = 20, v = 10) will be included for easy comparison. Panels (i) to
(iii) consider the two consecutive random variables U0 and U1, while panel (iv) illustrates the bivariate
density for consecutive random variables further along in the process (for example (U1, U2)) and random
variables that are not consecutively observed (for example (U0, U3)). Panel (i) shows the effect of λ. For
λ < 1 there was a downward shift in the process parameter, while for λ > 1 an upward shift occurred.
The role of a is investigated in panel (ii), where a has to do with when the shift took place. For bigger
values of a, the process was longer in control. Note that for v = 2 (i.e. individual samples) in panel (iii)
the shape is different.
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(i) f (u0, u1) with a = 20, v = 10
λ = 0.5 λ = 1 λ = 1.5

(ii) f (u0, u1) with λ = 1.5, v = 10
a = 20 a = 60 a = 100

Fig.2 The bivariate density function for different values of the parameters λ, a and v
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(iii) f (u0, u1) with λ = 1.5, κ = 3
v = 2 v = 10 v = 20

(iv) λ = 1.5, a = 20, v = 10
f (u0, u1) f (u1, u2) f (u0, u3)

Fig.2 (cont) The bivariate density function for different values of the parameters λ, a and v

Substituting the appropriate values for r and s in (17) it is straightforward to calculate the correlation
between Uj and Uj+m. Take note that j represents the number of samples after the change in the
parameter value and m indicates how far apart the two random variables are. The software package
Mathematica was used to compute these correlations. In Figure 3 panel (i) the correlation is plotted
as a function of λ for j = 0,m = 1, a = 20, v = 10. The shape will be similar for other values of the
parameters j,m, a and v. The sign of the correlation depends on the value of λ, for λ < 1 (downwards
shift in the process parameter) the correlation is positive while for values of λ > 1 (upwards shift) the
correlation is negative. For λ = 1, the random variables Uj and Uj+m, m > 0, are uncorrelated. Panels
(ii) to (iv) investigate the influence of the other parameters on the correlation for the cases where λ = 0.5
and λ = 1.5. Panel (ii) plots the correlation between consecutive observations since m = 1. For larger
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values of j (long time after the change in the parameter took place) the correlation gets very small in
absolute terms. Panel (iii) shows that the further apart the two random variables are, the smaller
the correlation in absolute terms. Panel (iv) looks at the influence of κ, the sample number when the
parameter changed. Only values for κ > 1 were considered, since it is assumed that the process started
in control.

(i) Role of λ (ii) Role of j
j = 0,m = 1, a = 20, v = 10 m = 1, a = 20, v = 10

λ = 0.5 λ = 1.5

0.5 1.0 1.5
l
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0.2
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0 5 10 15 20
j0.00
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0.12

0.14

r

5 10 15 20
j

-0.08

-0.06

-0.04

-0.02

0.00

r

(iii) Role of m (iv) Role of κ
j = 0, a = 20, v = 10 j = 0, m = 1, v = 10

λ = 0.5 λ = 1.5 λ = 0.5 λ = 1.5

0 5 10 15 20
m0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r

5 10 15 20
m

-0.08

-0.06

-0.04

-0.02

0.00

r

5 10 15 20
k0.00

0.05

0.10

0.15

r

5 10 15 20
k

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

r

Fig. 3 The correlation for different values of the parameters λ,j,m and κ

5. Conclusion

A new generalized multivariate beta distribution with density in a closed form is proposed, motivated
by a Statistical Process Control problem where a distribution is needed for the run-length of a Q-chart
that monitors the process average when measurements are from an exponential distribution with unknown
parameter. The joint moments of this generalized multivariate beta distribution are derived to shed light
on the nature of this distribution, specifically the correlation structure. The computational aspect of
the run-length (i.e. evaluating multiple integral expressions as given towards the end of the introduction)
will be addressed in a follow-up paper.
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