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Abstract

Measurements are not readily available for grinding mills owing to the nature

of the milling operation. State and parameter estimation for a grinding mill

which forms part of a run-of-mine ore milling circuit has been implemented.

These estimates may then be used in an advanced control algorithm. The

estimation was done with dual particle filters as well as with a simultaneous

estimation scheme, on simulated data, to compare the performances. The

sensitivity analyses for the different schemes show the class of systems in

which dual estimation may produce superior results.
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1. Introduction

Mineral processing operations are generally difficult to control owing to

the presence of strong external disturbances, poor process models and process

variables that are difficult to measure [1]. Run-of-mine (ROM) ore milling is

an example of such a process, as grinding ore down to a fine product is usually

the first step in any metallurgical extraction process [2]. Compensating for

the effects of strong external disturbances on the milling circuit through the

use of disturbance observers has previously been addressed [3], [4]. The use

of model-plant mismatch detection [5] to access the quality of the available

model has also been addressed [6]. In this paper the focus is on simultaneous

state and parameter estimation concerning the mill, for which measurements

are not readily available.

State estimation is important for advanced control techniques such as

model predictive control ([7]) in which the state values are used to determine

the optimal control signal. This is especially true for nonlinear predictive

control where nonlinear observers are necessary to produce estimates of the

unmeasured state variables [8].

The parameters with large variances that are contained in the milling cir-

cuit have a big effect on the grinding performance [9] and accurate estimation

of these parameter values would be valuable if they were to be incorporated

into the control strategy.

Particle filters are sophisticated model estimation techniques that make

use of sequential Monte Carlo (SMC) estimation based on point mass (parti-

cle) representations of probability densities [10]. Because the method approx-

imates the posterior distribution by a set of weighted samples (the particles)
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without making any explicit assumption about the form of the distribution,

it can be used in general nonlinear, non-Gaussian systems [11]. Because of

the nonlinearities present in the milling equations, the method of particle

filtering is preferred for state and parameter estimation.

This paper presents the application of particle filtering to a simulated

ROM ore milling circuit for state and parameter estimation. The paper also

investigates the performance of dual estimation over simultaneous estimation

through a sensitivity analysis and shows a comparison of the two estimation

approaches.

2. State estimation

Consider the general state-space representation of a dynamic system

ẋ(t) = f (x(t), u(t), θ(t), v(t)) (1)

y(t) = g (x(t), θ(t), e(t)) (2)

where x ∈ R
n is the state vector and y ∈ R

m is the output vector, f(·) and
g(·) are possibly nonlinear functions describing the state transitions and the

outputs respectively, u(t) contains the exogenous inputs, θ(t) represents the

parameters, v(t) is the state noise and e(t) is the measurement noise.

2.1. State augmentation

In order to do simultaneous state and parameter estimation, the param-

eters are first augmented as states to the system, and then the procedure

reduces to a pure state estimation problem. Consider the original system
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in (1) and (2); the original state vector (x(t)) is now augmented with the

parameters (θ(t)) to be

x∗(t) =





x(t)

θ(t)



 . (3)

Each parameter is now defined a state transition equation in the form

θ̇k(t) = ẋnx+k(t) = 0 + w(t) (4)

where w(t) is the parameter noise, nx is the original number of states and

k ∈ 1, . . . , np with np the number of parameters to be estimated. The model

used to describe the parameter transitions in (4) is called a random walk

model, in which no dynamic transition term is included. Any change in the

parameter is attributed to the noise term only. This noise term will later

be a tuning knob in the parameter estimation procedure as a large variance

in w(t) makes for faster tracking but with a larger estimation variance. A

small variance in w(t) will make the tracking much smoother but also much

slower. The system equations now become

ẋ∗(t) = f (x∗(t), u(t), v∗(t)) (5)

y(t) = g (x∗(t), e(t)) (6)

with v∗(t) the augmented noise vector v∗(t) =





v(t)

w(t)



 comprising the orig-

inal state noise and the parameter noise.

2.2. State estimation procedure

Let Yt = {y0, . . . , yt} represent the sequence of all measurements up to

the current time, then the general state estimation problem is formulated
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as the solution of the conditional distribution function p(xt|Yt), which is the

distribution of the state given all the observations up to time t. The general

solution to the latter is then given by [12]:

p(xt|Yt−1) =

∫

p(xt|xt−1)p(xt−1|Yt−1)dxt (7)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
(8)

where (7) is also known as the Chapman-Kolmogorov equation. Equations

(7) and (8) give a recursive procedure for state estimation that consists of

two steps:

1. Prediction step: Predict the pdf, p(xt|Yt−1) from the state transition

equation f(·) via (7).

2. Update step: Determine p(xt|Yt) from p(xt|Yt−1) via (8).

This recursive procedure is only a conceptual solution though, as the

equations are not computable in general [13]. Solutions do exist in special

cases, but when the analytic solution is intractable, particle filters may be

employed that approximate the optimal Bayesian solution.

3. Particle filtering

Particle filtering is a technique of implementing a recursive Bayesian filter

by Monte Carlo simulations. The required posterior density function (pdf)

is represented by a set of random samples and associated weights. The idea

of representing a pdf in this fashion is illustrated in Fig. 1. The locations of

the particles represent the locations at which the pdf is evaluated and the

sizes of the particles represent the associated weights, giving an indication of
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Figure 1: PDF represented by particles and associated weights

the value of the pdf at this location. This representation is expandable to an

arbitrary number of dimensions and is applicable to any distribution, even

multi-modal and other non-Gaussian distributions.

As the number of particles becomes very large, this method of represent-

ing the pdf becomes equivalent to the functional description of the posterior

pdf. The posterior density function at time t may then be approximated as

[13]:

p(xt|Yt) ≈
Ns
∑

i=1

wi
tδ(xt − xi

t) (9)

where Ns is the number of particles and {xi
t, w

i
t}Ns

i=1 is the set of particles and

associated weights. These weights are defined to be [10]

wi
t ∝ wi

t−1

p(yt|xi
t)p(x

i
t|xi

t−1)

q(xi
t|xi

t−1, yt)
(10)

where q(xi
t|xi

t−1, yt) is a proposal distribution called an importance density.

Ideally the importance density should be the true posterior distribution
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p(xt|Yt) but as this is not known in general, a proposal distribution is used.

The importance density plays an important role in the design and is discussed

in Section 3.2.

3.1. Degeneracy

It has been shown [14] that the variance of the importance weights of

(10) can only increase over time. This has a harmful effect on accuracy and

is known as degeneracy because after only a couple of iteration steps all but

one particle will have negligible normalized weights. Practically this means

that a lot of computational time is spent to update particles that produce

negligible contributions to the approximation of the posterior distribution.

An indication of the degree of degeneracy is the effective number of particles

defined by

N̂eff =
1

Ns
∑

i=1

(wi
t)

2

. (11)

Degeneracy may be eliminated through the use of resampling that elim-

inates particles with low importance weights and multiplies particles with

high importance weights. This means that the particles located at xi
t with

weights wi
t are replaced by particles located at xi∗

t with uniform weights.

One possible resampling scheme is systematic resampling [15], for which the

pseudo-code is listed in Algorithm 1. The algorithm uses the cumulative sum

of weights (CSW) defined as

CSWi =
i

∑

j=1

wj
t (12)

and draws samples from u ∈ [0, 1] to map new samples from the CSW. This

process is illustrated in Fig. 2 where the original particles that give form
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Figure 2: Resampling procedure

to the CSW are shown at the bottom of the figure. Samples are uniformly

drawn at the points indicated by the left-pointing triangles and based on the

value of the CSW function at that point, the resampled particles (xi∗
t ) are

determined from the locations of the original particles (xi
t). From Fig. 2 it is

visible that particles with larger weights have a bigger chance of being drawn

(and consequently duplicated) than particles with smaller weights.

3.2. Importance density

The optimal importance density function that minmizes the variance of

importance weights conditioned upon xi
t−1 and yt has been shown [14] to be

q(xt|xi
t−1, yt)opt = p(xt|xi

t−1, yt) (13)

=
p(yt|xt, x

i
t−1)p(xt|xi

t−1)

p(yt|xi
t−1)

(14)

This optimal importance density is however only useable in a specific class
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Algorithm 1 Systematic resampling

[{xj
t

∗

, wj
t}Nj=1] = RESAMPLE[{xi

t, w
i
t}Nj=1]

• Initialize the CSW: c1 = w1
t

• FOR i = 2 : N

– Construct CSW: ci = ci−1 + wi
t

• END FOR

• Begin at bottom of the CSW: i = 1

• Draw a starting point: u1 ∼ U [0, 1

N
]

• FOR j = 1 : N

– Move along the CSW: uj = u1 +
1

N
(j − 1)

– Find the smallest value of i such that uj 6 ci

– Assign sample: xj
t

∗

= xi
t

– Assign weight: wj
t =

1

N

• END FOR
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of problems where it is possible to sample from p(xt|xi
t−1, yt) and where

p(yt|xi
t−1) =

∫

p(yt|xt)p(xt|xi
t−1)dxt (15)

can be calculated up to a normalizing constant, which is not the case in

general. One popular suboptimal choice is the transitional prior

q(xt|xi
t−1, yt) = p(xt|xi

t−1) (16)

which, if it is furthermore assumed that the process noise is additive zero-

mean Gaussian noise, simply becomes

p(xt|xi
t−1) = N (xt; ft−1(x

i
t−1),Qt−1) (17)

which can easily be calculated. This assumption also means that particles

can be drawn from a Gaussian distribution with a mean equal to the previ-

ous particle location propagated through the system equations and standard

deviation equal to the noise standard deviation as

xi
t ∼ N (ft−1(x

i
t−1),Qt−1). (18)

3.3. SIR particle filter

Now that all the elements of the particle filtering algorithm have been

described, the complete algorithm can be given. The sampling importance

resampling (SIR) particle filter [16] is a version of the general particle filtering

algorithm [13] in which the importance density is chosen as the transitional

prior and resampling is done at each step. The assumptions required to use

the SIR particle filter are very weak [10], making it suitable for a wide variety

of implementations. The SIR type particle filter is used throughout in this

study.
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Figure 3: One iteration of the particle filter algorithm (adapted from [10])

One iteration of the SIR particle filter algorithm is presented in Fig.3;

the pseudo-code describing the algorithm is listed as Algorithm 2.

Because resampling is done at every time step it is unnecessary to pass

the weights on between successive iterations, as all the weights are uniform

wi
t =

1

N
.

4. Dual paricle filtering

Under certain circumstances, which will be explored in Section 6, simul-

taneous state and parameter estimation through augmenting the parameters

as states might not produce good results. In these situations dual estima-

tion may be implemented, which makes use of two particle filters running in

parallel, as shown in Fig. 4. Here one particle filter is used solely for state

estimation and the other solely for parameter estimation.

In the dual estimation framework the two particle filters operate in an

iterative fashion. At each time step the current state estimate is given as a
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Algorithm 2 SIR particle filter

[{xi
t}Ni=1] = SIR[{xi

t−1}Ni=1, yt]

• FOR i = 1 : N

– Draw xi
t ∼ p(xt|xt−1)

– Calculate w̃i
t = p(yt|xt)

• END FOR

• Calculate the sum of the weights: Σw = SUM[{w̃i
t}]

• FOR i = 1 : N

– Normalize: wi
t =

w̃i
t

Σw

• END FOR

• Resample using Algorithm 1

[{xi
t}Ni=1] = RESAMPLE[{xi

t, w
i
t}Ni=1]
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State
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estimator TÖ

xÖ
y

Figure 4: Dual state and parameter estimation

known input to the particle filter doing parameter estimation. Similarly the

current parameter estimate is given as a known input to the particle filter

doing the state estimation. The state estimator draws particles as

xi
t ∼ p(xt|xi

t−1, θ̂t−1) (19)

and then the weights are calculated as

w̃i
t,x = p(yt|xi

t). (20)

The parameter estimator draws particles as

θit ∼ p(θt|θit−1, x̂t−1) (21)

and then the weights are calculated as

w̃i
t,θ = p(x̂t|θit, x̂t−1). (22)

The SIR particle filter given in Algorithm 2 is still directly applicable

in this case although the samples are drawn from different distributions and
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different transitional priors are used. This method has previously been imple-

mented with two Kalman filers as discussed in [11] but as far as the authors

know it has not been done with two particle filters.

A possible drawback of the dual estimation algorithm is the relative time

delay between when the state and parameter estimates become available. The

iterative nature of the dual estimation algorithm makes it computationally

expensive. However, given that processes in the mineral processing industry

usually have large time constants and sampling times, they are suited for

dual estimation applications. For this system the sampling time is 10 sec-

onds which is more than enough time for the estimation algorithms to be

completed.

5. Description of the ROM Ore Milling Circuit

This section gives a description of a ROM ore milling circuit, operated in

a closed circuit topology, similar to the description of [4]. This is the process

for which state and parameter estimation is done.

Precious metal-bearing ore (such as gold or platinum) is fed to the milling

circuit at about 100 t/h, see Fig. 5. The ore is ground down to a product with

a particle size of 80% smaller than 75 µm (P80 = 75µm). A hydrocyclone is

used in closed circuit with the mill to separate the product from the out-of-

specification material. The metal, which leaves the milling circuit as part of

the overflow of the cyclone, is then extracted through a leaching or flotation

process downstream. The underflow of the cyclone that contains the out-of-

specification material is fed back into the mill for further grinding.

The feed to the mill consists of the underflow of the cyclone, feed ore,
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water and steel balls. Steel balls are added to help with the grinding down

of ore inside the mill. The addition of steel balls is usually done in discrete

quantities by the operator but in this study it will be treated as a continuous

variable. The mill discharges sufficiently ground slurry into a sump through

an end-discharge grate. The slurry is diluted with water in the sump and

pumped to the hydrocyclone for classification. The product of the milling

circuit is the overflow of the hydrocyclone.

The controlled variables in the milling circuit are the product particle

size (PSE), the fraction of the mill volume filled with material (LOAD), and

the volume of slurry in the sump (SLEV). The manipulated variables are

the feed-rate of solids into the mill (MFS), the feed-rate of water into the

mill (MIW), the feed-rate of steel balls into the mill (MFB), the flow-rate

of water into the sump (SFW), and the flow-rate of slurry into the cyclone

(CFF). The operating point of the milling circuit variables and constraints

on these variables are based on [9] and given in the nomenclature table.

The milling circuit model is based on phenomenological equations and

consists of separate modules for the feeder, mill, sump and hydrocyclone

such that arbitrary circuit topologies may be constructed. The model uses

five states, namely water, rocks, solids, fines, and steel balls to describe the

flow of material through the milling circuit. All the equations that consti-

tute the non-linear model are based on these material classifications. A full

description of these equations can be found in [9].

5.1. Mill module

As this study is concerned with the combined state and parameter esti-

mation for the mill, the phenomenological equations describing the milling
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Solids Feed (MFS)

Mill Water (MIW)

Steel Balls (MFB)

Mill Load

(LOAD)

Sump Water

(SFW)

Cyclone Feed (CFF)

Particle size (PSE)

Sump

Level

(SLEV)

Figure 5: ROM ore milling circuit

Mill
(Xmw, Xms, Xmf, Xmr, Xmb)

Vwi

Vsi

Vfi

Vri

Vbi

Vso

Vwo

Vfo

Figure 6: Mill showing component flows and states

module are given here. The mill has five states, which are the holdups of the

five classifications of material in the mill, namely water, rocks, solids, fines,

and steel balls (see Fig. 6). Fig. 6 also shows the streams into and out of the

mill that have been broken up into these separate components.
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Nomenclature

Minimum Maximum Nominal %∆ Description

Variables

MIW 0 100 33.33 Flow-rate of water to the mill [m
3

h
]

MFS 0 200 100 Flow-rate of solids to the mill [ t
h
]

MFB 0 4 2 Flow-rate of steel balls to the mill [ t
h
]

CFF 400 500 442 Flow-rate of slurry to the cyclone [m
3

h
]

SFW 0 400 267 Flow-rate of water to the sump [m
3

h
]

PSE 60 90 80 Product particle size [% < 75µm]

LOAD 30 50 45 Total charge of the mill [%]

SLEV 2 37.5 30 Level of the sump [m3]

Internal flows

Vwi, Vwo Flow of water into/out of the mill [m
3

h
]

Vsi, Vso Flow of solids into/out of the mill [m
3

h
]

Vfi, Vfo Flow of fines into/out of the mill [m
3

h
]

Vri, Vro Flow of rocks into the mill [m
3

h
]

Vbi, Vbo Flow of steel balls into the mill [m
3

h
]

States

Xmw 0 50 8.53 Holdup of water in the mill [m3]

Xms 0 50 9.47 Holdup of solid ore in the mill [m3]

Xmf 0 50 3.54 Holdup of fine ore in the mill [m3]

Xmr 0 50 20.25 Holdup of rocks in the mill [m3]

Xmb 0 20 6.75 Holdup of steel balls in the mill [m3]

Parameters

αf 0.05 0.15 0.1 50 Fraction of fines in the ore [dimensionless]

αr 0.05 0.15 0.1 50 Fraction of rocks in the ore [dimensionless]

φf 14 42 28 50 Power needed per ton of fines produced [ kW·h

t
]

φr 55 83 69 20 Rock abrasion factor [ kW·h

t
]

φb 89 99 94 5 Steel abrasion factor [ kW·h

t
]

Constants

εws 0.6 Maximum water-to-solids volumetric flow at zero pulp flow [dimensionless]

VV 40 Volumetric flow per “flowing volume” driving force [h−1]

Pmax 2000 Maximum mill motor power [kW]

δPv
1 Power change parameter for volume [dimensionless]

δPs
1 Power change parameter for fraction solids [dimensionless]

vPmax
0.45 Fraction of mill volume filled for maximum power [dimensionless]

ϕPmax
0.51 Rheology factor for maximum mill power [dimensionless]

αP 0.82 Fractional power reduction per fractional reduction from maximum mill speed

[dimensionless]

vmill 100 Mill volume [m3]

αφf
0.01 Fractional change in kW/fines produced per change in fractional filling of mill

[dimensionless]

χP 0 Cross term for maximum power [dimensionless]
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The state equations are given by

Ẋmw = MIW − Vwo (23)

Ẋms =
MFS

Ds

(1− αr)− Vso +RC (24)

Ẋmf = αf

MFS

Ds

− Vfo + FP (25)

Ẋmr = αr

MFS

Ds

− RC (26)

Ẋmb =
MFB

Db

− BC (27)

where each of the feed streams has been replaced by its respective expression;

RC is the amount of rocks consumed,

RC ,
1

Dsφr

· Pmill · ϕ ·
(

Xmr

Xmr +Xms

)

, (28)

BC is the amount of balls consumed,

BC ,
1

Dbφb

· Pmill · ϕ ·
(

Xmr

Xmr +Xms

)

, (29)

FP is the amount of fines produced,

FP ,
Pmill

Dsφf

[

1 + αφf

(

LOAD
vmill

− vPmax

)] , (30)

and the flows out of the mill are given by

Vwo = VV · ϕ ·Xmw

(

Xmw

Xmw +Xms

)

(31)

Vso = VV · ϕ ·Xmw

(

Xms

Xmw +Xms

)

(32)

Vfo = VV · ϕ ·Xmw

(

Xmf

Xmr +Xms

)

(33)
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where ϕ is the rheology factor

ϕ ,

√

√

√

√

max
[

0,
(

Xmw −
(

1

εws
− 1

)

Xms

)]

Xmw

. (34)

No rocks or steel balls can exit the mill as they are restricted by the discharge

grate. Two other important expressions contained in the milling equations

are the total charge in the mill (LOAD) and the power drawn from the mill

motor (Pmill) given by

LOAD = Xmw +Xms +Xmr +Xmb (35)

Pmill = Pmax · {1− δPvZ
2
x

−2χpδPvδPsZxZr − δPsZ
2
r}, (36)

where Zx is the effect of the load on the power consumption defined as Zx ,

(Xmw + Xms + Xmr + Xmb)/(vPmax · vmill − 1) and Zr is the effect of the

rheology on power consumption defined as Zr , (ϕ/ϕPmax) − 1. All the

other parameters and constants in the milling equations are listed in the

nomenclature table.

The outputs are

g(x) =























Vwo

Vso

Vfo

LOAD

Pmill























. (37)

All five mill states as well as both the parameters αr and φf are to be

estimated from these equations.
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5.2. Controller

In order to run the simulations the milling circuit needs to be operated

under feedback control as the load inside the mill and the sump level are both

open-loop unstable. These basic stabilization requirements coupled with the

metallurgical needs from the circuit operation necessitates the incorporation

of a feedback controller. Once the state and parameter estimates are available

an advanced control strategy that makes use of full state feedback as well as

incorporating the parameter values into the control signal calculation would

provide good controller performance. Such a control strategy has however

not yet been formulated and an alternative control strategy needs to be

implemented to illustrate the state and parameter estimation.

PID control is the most commonly used methodology for controlling ROM

ore milling circuits [17]. Variables are usually coupled in SISO loops and most

of the time the derivative action is not implemented [1]. The decentralized PI

controller used by [4] to control the ROM ore milling circuit is therefore used

here. The manipulated variables are paired with the controlled variables as

CFF → PSE, MFS → LOAD, and SFW → SLEV . The feed of steel

balls into the mill is kept constant at the nominal value and the feed of water

into the mill is derived from MFS through a constant water-to-solids ratio

for feed into the mill as discussed by [18].

6. Sensitivity analysis

The effect a parameter or a state has on the output is a good indication

of how easily that parameter or state can be estimated from output data.

The investigation of these effects is done through a sensitivity analysis [19].
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The output sensitivity for the simultaneous estimation algorithm with

respect to the augmented state vector (x∗) from Section 2.1 gives the output

sensitivity with respect to the states and parameters and is given by

Sy,s =
∂y

∂x∗

(38)

=
∂g

∂x

∂x

∂x∗

+
∂g

∂θ

∂θ

∂x∗

(39)

=
∂g

∂x





∂x
∂x

∂x
∂θ



+
∂g

∂θ





∂θ
∂x

∂θ
∂θ



 (40)

=
∂g

∂x





I

∂x
∂θ



 (41)

=





∂g

∂x

∂g

∂x
∂x
∂θ



 (42)

where we used the fact that in this case ∂g

∂θ
= 0 to go from (40) to (41).

This is because the parameters are not contained in the output equations,

but only in the state transition equations. The first row of (42) applies to

state estimation and the second row to parameter estimation. The partial

derivatives ∂g

∂x
can easily be determined from y = g(x∗) but the derivatives

∂x
∂θ

are not directly calculable for the lack of a direct expression for the state

values. The time derivative of the states are however known through (5)

from which ∂x
∂θ

may be derived by writing

dx

dt
= f(x, u), (43)

then taking the partial derivative to θ on both sides to give

∂

∂θ

(

dx

dt

)

=
∂f

∂θ
+

∂f

∂x

∂x

∂θ
(44)
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and then changing the order of differentiation to give

d

dt

(

∂x

∂θ

)

= Ṡx =
∂f

∂θ
+

∂f

∂x
Sx. (45)

Sx is then found by integrating the function (45) from the initial time (to)

to the final time (tf ).

For the dual estimation algorithm, a change in a parameter causes a

change in the states and then the state transition equations are used to

calculate the particle weights for parameter estimation (see (22)). This means

that the sensitivity function to consider in this case is ∂x
∂θ

= Sx as defined

previously. This change in the state will then cause the output to change,

from which the particle weights are calculated for state estimation (see (20)).

The sensitivity function describing this effect is ∂y

∂x
. The output sensitivity

function for the dual estimation algorithm is therefore given by

Sy,d =





∂g

∂x

∂x
∂θ



 . (46)

The only difference between the sensitivity functions Sy,s and Sy,d is therefore

the extra ∂g

∂x
term which is present in the second row of Sy,s pertaining to

parameter estimation. This is because in the simultaneous estimation algo-

rithm a change in a parameter value must firstly cause a change in the state

values before having an effect on the outputs, from which both the state and

parameter values are then inferred. In the dual estimation scheme a change

in a parameter value has a direct effect on the state transition equations from

which the parameter values are inferred.

This implies that for systems where ∂g

∂x
is ill-conditioned, deteriorated

accuracy for parameter estimation would result using the simultaneous for-

mulation.
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In order to determine the conditioning of the matrix, the condition num-

ber is calculated. This is the ratio (C) of the largest to the smallest singular

values of a matrix [20]. The condition number of a matrix gives an esti-

mate of the worst-case loss of precision when solving a linear system with

that matrix. The condition number for a n× n square matrix with elements

randomly chosen from a normal distribution is of the order
√
n [21]. This

result suggests that this problem would be more common in systems with

high dimensionality.

7. Estimation results

In order to illustrate the accuracy of the simultaneous estimation as well

as the dual estimation algorithms, a simulation run for the milling circuit is

performed while kept in feedback control by a PI controller over a period of

20 hours. The value of φf is decreased by 20% at time 2 hours, the value of

αr is decreased by 20% at time 8 hours and the value of αf is increased by

20% at time 14 hours. Time plots for the manipulated variables are shown

in Fig. 7.

The nominal data generated by the simulation are processed by both

estimation schemes to determine estimates of all five of the states and both

the parameters φf and αr. The particle filters used by the simultaneous as

well as the dual estimation schemes are specified with 50 particles each. Even

though the dual estimation scheme makes use of two particle filters, the sum

of the dimensions equals the dimensionality of the simultaneous estimation

scheme such that an equal number of function evaluations are required. The

initial estimates of the states and parameters are randomly selected from a
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Figure 7: Manipulated variables

region (±0.01) around the actual initial values in each case.

The state estimation results from the simultaneous estimation algorithm

are shown in Fig. 8 and the parameter estimates are shown in Fig. 9.

The state estimation results from the dual estimation algorithm are shown

in Fig. 10 and the parameter estimates are shown in Fig. 11.

The condition number of the matrix dg

dx
for the entire simulation run is

shown in Fig. 12. Here it can be seen that the condition number of this

matrix is very large for the entire simulation run, resulting in ill-conditioning

of the system.

It is clear from the results that the dual state and parameter estimation

scheme produces superior results to the simultaneous estimation scheme for

this system. It is especially noticeable that when αr changes value, the

simultaneous estimation scheme cannot correctly attribute the amount of

change in the output caused by a change in the parameter and the amount
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Figure 8: State estimates from simultaneous estimation algorithm
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Figure 9: Parameter estimates from simultaneous estimation algorithm
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Figure 10: State estimates from dual estimation algorithm
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Figure 11: Parameter estimates from dual estimation algorithm
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of change caused by the subsequent change in the state value. For this reason

the accuracy of state and parameter estimation deteriorates.

8. Conclusion

A change in a parameter value causes the state transition equation to

change value. At this point the dual estimation algorithm will use the state

transition equation information to infer the values of the parameters. The

states will then change to cause a change in the outputs. At this point the

dual estimation algorithm uses the outputs to determine the state values. It

is only at this point where the simultaneous estimation algorithm infers the

values of the states and parameters. The disregard of the information sup-

plied by the state transition equations in the simultaneous estimation scheme

may lead to deteriorated estimation accuracy depending on the conditioning

of the matrix ∂g

∂x
. This result was obtained from the sensitivity analysis done
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for both estimation schemes in Section 6.

This simulation study shows how the dual estimation scheme outperforms

simultaneous estimation in such a situation.

Run-of-mine ore milling circuits are generally difficult to control, partly

because of unavailable process variable measurements. This study shows that

accurate state and parameter estimation can be done for a grinding mill with

the application of dual particle filters. These estimates may then be used in

an advanced process control scheme to improve control performance.
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