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Abstract 

In this paper we investigate the thermal behaviour of an assembly of consecutive cylinders in a 

counter-rotating configuration cooled by natural convection with the objective of maximizing 

the heat transfer density rate (heat transfer rate per unit volume). A numerical model is used to 

solve the governing equations that describe the temperature and flow fields. The spacing be-

tween the consecutive cylinders is optimised for each flow regime (Rayleigh number) and cyl-

inder rotation speed. It was found that the optimized spacing decreases as the Rayleigh number 

increases and the heat transfer density rate increases, for the optimized structure, as the cylinder 

rotation speed is increased. Results further shows that there is an increase in the heat transfer 

density rate of the rotating cylinders over stationary cylinders. 
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Nomenclature 

�� cylinder diameter, m 

� gravitational acceleration, m s�⁄  

�	 downstream flow length, m 

�
 upstream flow length, m 

� thermal conductivity, W mK⁄  

� assembly length, m 

� pressure, Pa 

�� Prandtl number 
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�� dimensionless heat transfer density rate 

� total heat transfer rate, W 

�� heat transfer rate per unit length, W m⁄  

��� heat transfer rate per unit area, W m�⁄  

���� heat transfer density rate, W m�⁄  

�� Rayleigh number 

�� spacing between cylinders, m 

� temperature, K 

�� wall temperature, K 

�� inlet fluid temperature, K 

U velocity vector, m s⁄  

(�, !, ") velocity components, m s⁄  

($, %) Cartesian coordinates, m 

Greek symbols 

& thermal diffusivity, m� s⁄  

' thermal expansion coefficient, 1 K⁄  

) viscosity,	kg ms⁄   

-. thermal boundary layer thickness, m 

/ kinematic viscosity, m� s⁄  

0 density, kg m�⁄  

1� cylinder angular velocity, rad s⁄  

Subscripts 

4 maximum 

567 optimum 

Superscripts 

~ dimensionless variables 
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^ unit vector 

1. Introduction 

Efficiency is a key aspect in design, which has become prevalent in the design of heat transfer 

devices such as heat sinks and pin fins. Research has been and is still being conducted on this 

subject with the aim of extracting more and more heat from a given space through the maximiz-

ing of the packing of heat-generating material per unit volume. This drive to augment heat trans-

fer devices has become reinforced by modern electronic systems which produce high amounts 

of heat due to the ever increasing power-to-volume ratio employed in such systems. 

The strive for greater heat transfer density rates has been the driving force behind many of the 

miniaturization efforts, augmentations and unconventional ways of designing heat transfer de-

vices. This has lead researchers to study the optimized configurations for various architectures 

such as: the optimal spacing of parallel plates in forced convection, natural convection and 

mixed convection [1-4]; the optimal spacing of cylinders in forced convection and natural con-

vection [5, 6]; and various optimized multi-scale structures [7-12], etc. 

The heat transfer and fluid flow around a single rotating cylinder has been studied previously. 

Badr and Dennis [13] considered the problem of laminar forced convective heat transfer from an 

isothermal circular cylinder rotating about its own axis located in a uniform stream. The authors 

reported that the temperature fields are strongly influenced by the rotational speed of the cylin-

der and contradictory to expectation they found that the overall heat transfer coefficient tends to 

decrease as the rotational of the cylinder increases. They attributed this to the presences of a 

rotating fluid layer around the cylinder that separates the cylinder from the main flow stream. 

Chiou and Lee [14] considered a problem of forced convection on a rotating cylinder cooled 

with an air jet. The results confirmed that the overall heat transfer is enhanced at lower rotation-

al speeds and at higher rotational speeds the effect became reversed. They attributed this to the 

presences of a layer of dead air around the cylinder. Panda and Chhabra [15] considered a prob-

lem of forced convection heat transfer from a heated cylinder rotating in streaming power-law 

fluids. The results show a similar behaviour of the heat transfer rate: for moderate rotational 

velocities at low Reynolds numbers the heat transfer rate is enhanced and there is an envelope of 

conditions (Reynolds number, rotation speed and power-law index) in which rotation has a neg-

ative effect on the heat transfer rate. Similar research includes the works of Gshwendtner [16],  

Mohanty et al. [17], Oesterle et al. [18], Ozerdem [19], Paramane and Sharma [20,21], Yan and 

Zu [22] and Nobari et al. [23]. 

Further studies have been conducted with a row of heat-generating rotating cylinders in forced 
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convection by Joucaviel et al. [24]. Here the authors report that a counter-rotation configuration 

increases the heat transfer more efficiently when compared to a co-rotation configuration. 

Ogunronbi et al. [25] then built onto this work as well as prior research by Bello-Ochende and 

Bejan [10] by considering a multi-scale constructal design. The study presented in this paper 

builds onto prior research by Bello-Ochende and Bejan [12], in which the authors optimized the 

cylinder-to-cylinder spacings in a multi-scale constructal design of heat-generating cylinders 

(without cylinder rotation) cooled by natural convection for one and two degrees of freedom. 

These classical results will be used as a reference (benchmark) for the results reported in this 

paper. It is the purpose of this paper to maximize the heat transfer density rate of a row of heat-

generating rotating cylinders in steady laminar single-phase natural convection. The assembly of 

cylinders rotate in a counter-rotating configuration. 

2. Model 

Consider a row of infinity long, rotating and heat-generating parallel cylinders aligned along a 

single line to form a stacking as shown in Fig. 1. The cylinders rotate at an angular velocity of 

1� in a counter-rotating configuration. The cylinder diameter (��) is fixed and the surface tem-

perature of the cylinders (��) is assumed uniform and constant and greater than that of the fluid 

temperature (��). The cylinders are cooled by natural convection. The objective is to select the 

number of cylinders in the stacking or the cylinder-to-cylinder spacing (��) in such a manner 

that the overall thermal heat transfer between the cylinders and the ambient air is maximized. 

This is done for each flow regime (Rayleigh number) and cylinder rotation speed. The flow is 

assumed steady, laminar, incompressible and two-dimensional. All thermophysical properties 

are assumed constant. The temperature variations are assumed sufficiently small relative to the 

absolute temperature so that the Boussinesq approximation is valid. 

Figure 2 shows the elemental volume that characterises this assembly. The computational do-

main comprises of the upstream section [�
 × 2(�� + ��)], the downstream section [�	 ×

2(�� + ��)] and the flow region [(�� × 2(�� + ��)]. The upstream lengths (�
) and down-

stream lengths (�	) were selected based on mesh independency tests described in section 3. The 

conservation equations (in vector form) for mass, momentum and energy are respectively: 

0=∇U     (1) 

21 ˆ( ) ( )U U P ν U g T T k
ρ

β ∞⋅∇ = − ∇ + ∇ + −     (2) 

TαTU
2)( ∇=∇⋅     (3) 
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Where ; = =� ! ">. is the velocity field, �? = =0 1 0>. is a unit vector indicating the 

direction in which gravity acts and A� = B� B$�⁄ + B� B%�⁄ + B� BC�⁄ . 

The system of coordinates ($, %) and the velocity component (�, !) are defined in Fig. 2. The 

variables are defined in the nomenclature. The numerical work of solving Eqs. (1) to (3) is 

based on dimensionless formulation using the variables: 

oD
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z, y, x =~~~ , 

2/1
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Where the Prandtl number is �� = / &⁄  and the Rayleigh number is defined in terms of the cyl-

inder diameter, 

αν

)DT(Tg
Ra

3
ow ∞−
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Substituting Eqs. (4) to (7) into Eqs. (1) to (3) yields the dimensionless version of the mass, 

momentum and energy equations respectively: 
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=∇U     (8) 
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Where ;D = =�� !� "E>. is the dimensionless velocity field. All geometric dimensions (cylinder 

diameter, cylinder-to-cylinder spacing, upstream and downstream lengths) of the computational 

domain, shown in Fig. 2, were also made dimensionless: 

1
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o

D

S
S
~

=

 o

du
uu
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~
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The flow boundary conditions are indicated in Fig. 2. For the cylinder surfaces, the boundary 

conditions are specified as zero slip, zero penetration, constant uniform surface temperature 

�F� = 1 and an angular velocity of 1E�. For the inlet of the computational domain, the boundary 
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conditions are specified as �F = 0,  �F� = 0 and �� = B!� B%�⁄ = 0. For the exit of the computa-

tional domain, the boundary conditions are specified as B(��, !�) B%�⁄ = 0, B�F B%�⁄ = 0 and 

B�F B%�⁄ = 0. For the upstream section (0 ≤ %� ≤ HD
) of the computational domain, the boundary 

conditions are specified as symmetry planes or free slip and no penetration (�� = B(!�, �F) B$�⁄ =

0). For the downstream section (HD
 ≤ %� ≤ HD
 + DD� + HD	) of the computational domain, two 

boundary conditions are specified: symmetry plane or free slip and no penetration (�� =

B(!�, �F) B$�⁄ = 0) at the left side of the flow region and; zero stress (B�F B$�⁄ = 0 and B�� B$�⁄ =

B(!�, �F) B$�⁄ = 0) on the right side of the flow region. By specifying B�� B$�⁄ = 0 on the right 

side of the flow region, fluid is allowed to flow horizontally into the computational domain. 

This entrainment effect nullifies the unrealistic vertical acceleration or chimney effect that 

would have been generated had we specified zero slip on this side.  

The cylinder-to-cylinder spacing is varied and thus we are interested in the geometric configura-

tion that maximizes the overall heat transfer between the cylinders and the surrounding fluid. 

The dimensionless quantity used to evaluate this configuration is the dimensionless heat transfer 

density rate. The heat transfer density rate is ���� = �′ 2��(�� + ��)⁄ , where �′ is the sum of the 

total heat transfer rate integrated over the surface of the cylinders: 

∑∫
=

∇−=
2

1i

2

0
n dT)k('q

π
θ     (12) 

Where the subscript K denotes that gradient of � is taken with respects to the normal direction to 

the cylinder surface. The corresponding dimensionless heat transfer density rate is: 

)T)k(TS(DD

'q
q~

wooo ∞−+
=     (13) 

3. Numerical method 

Equations (8) to (10) were solved using a finite volume code [26], with hexahedron elements. 

The velocity-pressure coupled equations were solved using the Semi-Implicit Method for Pres-

sure-Linked Equations (SIMPLE) algorithm [27]. The derivative terms in these equations were 

solved using the Gaussian finite volume integration for the discretisation scheme with the inter-

polation schemes specified as: central differencing for the gradient term; upwind differencing 

for the divergence term; and central differencing with unbounded, second order, conservative 

numerical behaviour for the Laplacian term. The computational fluid dynamic code [28] solves 

the steady-state Eqs. (8) to (10) by introducing a non-zero time derivative (dummy time varia-

ble). Thus the steady-state problem is viewed as a transient problem with an infinite time step. 
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The convergence criteria at each time step were 

4

1

10~

~~

-

(k)

t

)(k-

t

(k)

t

U

UU
≤

−
 and 6

1

10~

~~

-

(k)

t

)(k-

t

(k)

t

T

TT
≤

−
    (14) 

And the convergence criteria to terminate the time step was 

31
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-

t
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q

qq
≤

− −
    (15) 

In which � is the iteration counter, 7 is the time step counter and ∥•∥ is the Euclidean norm. 

The mesh design received special attention and was tested extensively in the range 10N ⩽ �� ⩽

10P with the grid varying from one geometric configuration to the next. The mesh was uniform 

in the $� direction and double graded in the %� direction so as to put more elements near the cyl-

inder surfaces to more accurately capture the behaviour of the boundary layers. The initial guess 

for the mesh size in the  $� direction was chosen based on the boundary layer thickness scale 

-. ∼ ����(RN P⁄ ). Table 1 (a) shows the mesh refinement summary for the number of nodes for 

the range 10N ⩽ �� ⩽ 10P. For example the mesh refinement study shows, for �� = 10N, the 

heat transfer density rate is insensitive (varies by less than 1%) to further mesh refinement when 

16 elements per unit length were used. Table 1 (b) shows one example of how mesh independ-

ence was achieved for �� = 10�, SF� = 0.3 and �� = 0.71. Table 1 (c) shows the grid refine-

ment study for the upstream and downstream lengths. For example the grid refinement study 

shows for �� = 10�, when �D
 = 1.5 and �D	 = 2.5, the heat transfer density rate is insensitive 

to further doubling of upstream and downstream lengths. 

4. Numerical results and scale analysis 

The flow and temperature fields were simulated in a large number of configurations, in order to 

determine the effect of the cylinder-to-cylinder spacing on the heat transfer density rate at each 

flow regime for each cylinder rotation speed. The Rayleigh number range considered is 

10N ⩽ �� ⩽ 10P and the cylinder rotation speed range considered is 0 ⩽ 1E� ⩽ 10. The optimal 

packing in Fig. 1 is achieved when the cylinder-to-cylinder spacing is such that the thermal 

boundary layers of the cylinders just touch. According to scale analysis, the thermal boundary 

layer of a cylinder with laminar natural convection flow and �� ∼ 1 [29] has a thickness of or-

der: 

-. ∼ ����(RN P⁄ )    (16) 

By setting the thermal boundary layer thickness, -. ∼ 2�� in Eq. (16), we find that: 
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SF�,�XY ∼ 2��(RN P⁄ )    (17) 

The heat transfer density rate can be analysed based on the same scaling argument. The cylinder 

heat flux (heat transfer rate per unit area) scale is ��� ∼ k (�� − ��) -.⁄ , where -. ∼

����(RN P⁄ ). Because �� < ��, cf. Eq. (16) for �� ≫ 1, the heat transfer density rate is 

���� ∼ ��� ��⁄ , such that the dimensionless heat transfer density rate becomes: 

)4/1(

w

2
o

Ra~
)-Tk(T

q'''D
~q~

∞

    (18) 

4.1. Stationary cylinders 

Figure 3 shows that the heat transfer density rate is optimal when �]� has a certain value, when 

there is no cylinder rotation. The optimal spacing, shown in Fig. 3, for �� = 10�, �� = 0.71 

and 1E� = 0 is �]�,�XY = 0.291. There is a 0.6% difference when comparing this optimal spacing 

with that reported in Ref. [12] for a single row of cylinders. The optimal cylinder-to-cylinder 

spacings and corresponding maximum heat transfer density rates for 10N ⩽ �� ⩽ 10P, �� =

0.71 and 1E� = 0 are summarized in Fig. 4. In this figure, the optimal cylinder-to-cylinder spac-

ings can be correlated by the power law, within 0.25%: 

�]�,�XY = 1.76��R`.�a    (19) 

Equation (19) is anticipated well by the scale analysis argument, cf. Eq. (17). This correlation 

also compares well with the power law correlation proposed by Ref. [12]: �]�,�XY = 1.32��R`.�� 

for 10� ⩽ �� ⩽ 10b, there is a 1% difference (�� = 10�), 8% difference (�� = 10P) and 16% 

difference (�� = 10b).  

The corresponding maximum heat transfer density rates, reported in Fig. 4, can be correlated by 

the power law, within 0.05%: 

��c = 0.72��`.�d    (20) 

Again Eq. (20) is anticipated well by the scale analysis argument, cf. Eq. (18). This correlation 

also compares well with the power law correlation proposed by Ref. [12]: ��c = 0.65��`.�` for 

10� ⩽ �� ⩽ 10b, there is a 3% difference (�� = 10�), 1% difference (�� = 10P) and 1% dif-

ference (�� = 10b). 

4.2. Rotating cylinders 

Figure 5 shows the optimal cylinder-to-cylinder spacing and the heat transfer density rate for 

�� = 10N and �� = 0.71 at different cylinder rotation speeds (0 ⩽ 1E� ⩽ 10). The optimal cyl-
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inder-to-cylinder spacing decreases and the maximum heat transfer density rate increases as the 

cylinder rotational speed is increased. There is a 63% increase in the maximum heat transfer 

density rate for the optimized structure when the cylinder rotation speed is increased from sta-

tionary to 1E� = 10. 

The optimal cylinder-to-cylinder spacings for 10N ⩽ �� ⩽ 10P, �� = 0.71 and 0 ⩽ 1E� ⩽ 10 

are summarized in Fig. 6. A cylinder rotational speed of 1E� = 0.01 has no impact on the opti-

mal cylinder-to-cylinder spacing when compared to that of stationary cylinders. The optimal 

cylinder-to-cylinder spacing is reduced by 3.5% for �� = 10P and by less than 1.5% for 

10N ⩽ �� ⩽ 10� when the cylinder rotational speed is increased from stationary to 1E� = 0.1. 

There is a 57% decrease in the optimal cylinder-to-cylinder spacing for �� = 10� when the cyl-

inder rotation speed is increased from stationary to 1E� = 10 and a 17% decrease in the optimal 

cylinder-to-cylinder spacing for �� = 10� when the cylinder rotation speed is increased from 

stationary to 1E� = 1.  

When the Rayleigh number is equal to 10� and the cylinder rotational speed is greater than 1, 

the results become non-physical because the laminar model of the flow collapses due to a wake 

and consequent turbulence, which dominates the flow behind the rotating cylinders. This is also 

the case for when the Rayleigh number is equal to 10P and the cylinder rotational speed is 

greater than 0.1.  

The optimal cylinder-to-cylinder spacings, reported in Fig. 6, can be correlated by a power law, 

within 0.33%, of the form �]�.�XY = e��f where e is equal to 1.77, 1.75, 1.65, 1.27 and n is 

equal to − 0.27, − 0.27, − 0.27, − 0.37 for the cylinder rotation speeds 0.01, 0.1, 1 and 10 re-

spectively. These individual correlations can be simplified into one power law correlation, with 

an error of less than 1%: 

�]�.�XY = −0.051E�
`.ga + 1.69��R`.�b    (21) 

The maximum heat transfer density rates for 10N ⩽ �� ⩽ 10P, �� = 0.71 and 0 ⩽ 1E� ⩽ 10 are 

summarized in Fig. 7. A cylinder rotational speed of 1E� = 0.01 has less than a 0.4% increase on 

the maximum heat transfer density rate when compared to that of stationary cylinders. The max-

imum heat transfer density rate is increase by 2.5% for �� = 10P and by less than 1.5% for 

10N ⩽ �� ⩽ 10� when the cylinder rotational speed is increased from stationary to 1E� = 0.1. 

There is a 46% increase in the maximum heat transfer density rate for �� = 10� when the cyl-

inder rotation speed is increased from stationary to 1E� = 10 and a 13% increase in the maxi-

mum heat transfer density rate for �� = 10� when the cylinder rotation speed is increased from 

stationary to 1E� = 1.  
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The maximum heat transfer density rates, reported in Fig. 7, can be correlated by a power law, 

within 0.05%,  of the form ��c = e��f where e is equal to 0.72, 0.72, 0.70, 1.22 and n is equal 

to 0.29, 0.29, 0.31, 0.25 for the cylinder rotation speeds 0.01, 0.1, 1 and 10 respectively.  Again 

these individual correlations can be simplified into one power law correlation, with an error of 

less than 1%: 

��c = 0.321E�
`.Pd + 0.71��`.�d    (22) 

Figure 8 shows the effect of cylinder rotational speed on the thermal boundary layer for a row of 

rotating cylinders shown in Fig. 1 for �� = 10�, �� = 0.71 and SF� = 0.5. Fig. 8 (a) shows, for 

1E� = 0, that the thermal boundary layer between two consecutive cylinders touches near the 

centreline of the cylinders. Fig. 8 (b) shows, for 1E� = 10, that the thermal boundary layer be-

tween two consecutive cylinders (where the cylinder rotation aids the flow direction) is extend-

ed and touches just past the top of the cylinders. Similarly, the thermal boundary layer between 

two consecutive cylinders (where the cylinder rotation opposes the flow direction) remains rela-

tively unchanged. 

In Fig. 9 we drew to scale the optimized flow configuration for �� = 10N and �� = 0.71 for a 

cylinder rotation speed of (a) 1E� = 0 and (b) 1E� = 10. The addition of rotation to the cylinders 

serves to maximize the packing (minimize the cylinder-to-cylinder spacing) of heat generating 

cylinders. 

5. Conclusions 

In this paper we showed numerically the effect of counter-rotation on a row of heat-generating 

cylinders which were cooled by natural convection. The cylinder-to-cylinder spacing was opti-

mized for each flow regime and rotational speed on the cylinders. In the Rayleigh number range 

considered it was shown that the maximum heat transfer density rate increased and the optimal 

cylinder-to-cylinder spacing decreased with an increase in cylinder rotation speed. Thus from a 

heat transfer density rate point of view it is beneficial to add rotation to the cylinders. Further 

research may include a multi-scale constructal design or focus on a three-dimensional numerical 

model. 
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Figure Captions: 

Fig. 1: Single row of counter-rotating cylinders in natural convection. 

Fig. 2: The computational domain and boundary conditions for a set of counter-rotating cylin-

ders. 

Fig. 3: The maximization of the heat transfer density rate for the assemble shown in Fig. 1 for 

�� = 10�, �� = 0.71 and 1E� = 0. 

Fig. 4: The optimal cylinder-to-cylinder spacings and corresponding heat transfer density rates 

for a row of cylinders shown in Fig. 1 for �� = 0.71, 1E� = 0 and 10N ⩽ �� ⩽ 10P. 

Fig. 5: The maximization of the heat transfer density rate for the cylinders shown in Fig. 1 for 

�� = 10N and �� = 0.71 at different cylinder rotation speeds. 

Fig. 6: The optimal cylinder-to-cylinder spacings for a row of rotating cylinders shown in Fig. 1 

for �� = 0.71. 

Fig. 7: The maximum heat transfer density rates for a row of rotating cylinders shown in Fig. 1 

for �� = 0.71. 

Fig. 8: The effect of cylinder rotational speed on the thermal boundary layer for a row of rotat-

ing cylinders shown in Fig. 1 for Ra = 10�, Pr = 0.71 and SFi = 0.5: (a) ωE i = 0; and 

(b) ωE i = 10. 

Fig. 9: The effect of cylinder rotational speed on the cylinder-to-cylinder spacing of a row of 

rotating cylinders shown in Fig. 1 for Ra = 10� and Pr = 0.71: (a) ωE i = 0; and (b) 

ωE i = 10. 
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Table 1  

(a) Mesh refinement summary: Number of elements per unit length at each Rayleigh number 

(�� = 0.71). 

�� klm4mK7n/� 

10N 16 

10� 48 

10� 48 

10P 100 

   

(b) Mesh refinement study for �� = 10� (�D
 = 1, �D	 = 2, �]� = 0.3 and �� = 0.71). 

klm4mK7n/� �� ��p − ��pqN

��p
 

12 6.988  

24 6.035 0.1365 

48 5.499 0.0887 

96 5.531 0.0058 

   

(c) Grid refinement summary: Upstream and downstream lengths at each Rayleigh number 

(�� = 0.71). 

�� HDr HDs 

10N 1.5 3.5 

10� 1.0 2.5 

10� 1.0 2.0 

10P 0.5 1.5 
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