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Abstract

For a two-dimensional quantum mechanical problem, we obtain a generalized power-
series expansion of the S-matrix that can be done near an arbitrary point on the Riemann
surface of the energy, similarly to the standard effective range expansion. In order to do
this, we consider the Jost-function and analytically factorize its momentum dependence
that causes the Jost function to be a multi-valued function. The remaining single-valued
function of the energy is then expanded in the power-series near an arbitrary point in
the complex energy plane. A systematic and accurate procedure has been developed for
calculating the expansion coefficients. This makes it possible to obtain a semi-analytic
expression for the Jost-function (and therefore for the S-matrix) near an arbitrary point
on the Riemann surface and use it, for example, to locate the spectral points (bound
and resonant states) as the S-matrix poles. The method is applied to a model similar
to those used in the theory of quantum dots.
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1 Introduction

It is probable that an average reader of this journal perceives the one- and two-dimensional
problems as simplified toy models of quantum mechanics. Although such an attitude has its
roots in the standard courses of quantum mechanics, this perception is far from being ade-
quate. First of all, modern nano-technology allows us to fabricate the microscopic quantum
devices that behave and can be described as one- or two-dimensional. The two-dimensional
tunneling of particles play an important role in superconductive tunnel junctions and even in
some biological molecules [1]. Besides that, the corresponding quantum mechanical problems
are not mathematically simple as one may think. Indeed, in contrast to the motion of a particle
in three-dimensional space, the one-dimensional motion of the same particle on an infinite line
is inherently a two-channel problem, where the channels are the left and right halves of the
line (see, for example, Refs. [2, 3]). As far as the two-dimensional scattering is concerned, its
amplitude as a function of the energy has not a square-root but a logarithmic branching point
(see Refs. [4–10] as well as the subsequent sections of the present paper). Therefore from
both pure mathematical and practical points of view, the two-dimensional quantum problem
is worthwhile to consider.

In the present paper, we focus on solving the two-dimensional problem with the help of power
series that are similar to famous effective-range expansion (where ~k and δ0 are the collision
momentum and the S-wave phase-shift)

k cot δ0(k) = −
1

a
+

1

2
r0k

2 − Pr30k4 +Qr50k
6 + · · · , (1)

in terms of the so called scattering length a, effective radius r0, etc., introduced long ago in
nuclear physics [11].

As we already mentioned, the energy dependent functions of the two-dimensional problem have
a logarithmic branching point at the threshold. As a result there is a controversy concerning
the two-dimensional analog of Eq. (1). Some authors [6–8,12] define the scattering length a′

by including it in the logarithmic term,

cot δ0(k) =
2

π

(

γ + ln
ka′

2

)

+
r20
2π
k2 +O(k4) , (2)

(here γ is the Euler’s constant) while the others [4, 5] try to preserve the traditional form of
the right hand side of Eq. (1) and move the logarithmic term to the left hand side,

cot δ0(k)−
2

π

(

γ + ln
k

2

)

= − 2

a′′
+O(k2) , (3)
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where ln a′ = −π/a′′.

We look at this problem from a more general point of view. What is actually done in the
original effective range expansion (1) is the constructing of the function R(E) = k cot δ0(k)
in which the square-root branching of k ∼ ±

√
E at the threshold is compensated by exactly

the same branching of δ0(k) ∼ ±
√
E. As a result the function R(E) does not have branching

points and is a single-valued analytic function of the energy E ∼ k2, and therefore can be
expanded in a convergent series R(E) = a0 + a1E + a2E

2 + · · · , which is given by Eq. (1).

From this reasoning a next logical step immediately follows: the function R(E) can be ex-
panded in a more general power series R(E) = b0+b1(E−E0)+b2(E−E0)

2+ · · · around an
arbitrary complex energy E0 within the domain of its analyticity. In Refs. [13,14], we realized
this idea for the three-dimensional single-channel and multi-channel problems. In doing this,
instead of using R(E), we expanded the analytic single-valued parts of the Jost functions
(or Jost matrices in the multi-channel case) after explicit separation of the factors that are
responsible for the branching.

In the present paper, we use the same approach as in Refs. [13,14] to obtain similar expansions
of the Jost functions for the two-dimensional problem. First, we analyze the analytic structure
of the Jost functions and split them in the single-valued and logarithmically branching parts.
Then, we derive a set of differential equations that determine the single-valued parts. And
finally, we look for the solutions of these equations in the form of power series of the energy.
The series (2) and (3) together with simple recipes for calculating any number of their expan-
sion coefficients, are easily obtained from our more general expansions that are done around
an arbitrary complex point E0. Using two-dimensional model potential related to quantum
dot theory, we numerically demonstrate the efficiency and accuracy of the proposed method.

2 Jost function

Radial part uℓ of the wave function describing the motion of a particle of mass µ with the
energy E in a circularly symmetric two-dimensional potential U(r) = ~

2V (r)/2µ obeys the
differential equation (a review of the partial-wave analysis for the two-dimensional scattering
is given in the Appendix A)

[

d2

dr2
+ k2 − λ(λ+ 1)

r2
− V (r)

]

uℓ(E, r) = 0 , (4)
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where ℓ = λ + 1/2 is the angular momentum and λ = −1/2, 1/2, 3/2, . . . . To avoid some
mathematical complications, we assume that the potential V (r) is of a short-range, i.e. it
vanishes at large distances faster than any power of 1/r (for example, exponentially). Then
at large distances, where V (r)→ 0, the radial equation simplifies

[

d2

dr2
+ k2 − λ(λ+ 1)

r2

]

uℓ(E, r) ≈ 0 , r →∞ . (5)

This is the Riccati-Bessel equation. As its two linearly independent solutions, we can choose
either the Riccati-Bessel and Riccati-Neumann functions jλ(kr) and yλ(kr), or the two Riccati-

Hankel functions h
(±)
λ (kr). Any other solution of Eq. (5) is a superposition of the two linearly

independent solutions. In particular, we can write the asymptotics of the physical wave function
as a linear combination of the Riccati-Hankel functions,

uℓ(E, r) −→
r→∞

f
(in)
ℓ (E)h

(−)
ℓ−1/2(kr) + f

(out)
ℓ (E)h

(+)
ℓ−1/2(kr) , (6)

where the energy-dependent combination coefficients f
(in/out)
ℓ (E) are called the Jost functions.

When r → ∞, the Riccati-Hankel functions represent the incoming and outgoing circular
waves. Indeed,

h
(±)
ℓ−1/2(kr) =

√

πkr

2
H

(±)
ℓ (kr) −→

|z|→∞
e±i(kr−ℓπ/2−π/4) = ∓ie±i(kr−λπ/2) , (7)

where H
(±)
ℓ (z) are the cylindrical Hankel functions. The Jost functions f

(in/out)
ℓ (E) are there-

fore the asymptotic amplitudes of the incoming and outgoing waves. Since the flux of the
particles is conserving, for real E we have |f (in)

ℓ (E)| = |f (out)
ℓ (E)|. Actually, these two func-

tions are related to each other at different complex values of E as well. Some of such symmetry
properties can be established using the semi-analytic structure of them that is derived in the
subsequent sections. It can also be shown that the partial wave S-matrix is the ratio of these
functions

sℓ(E) =
f
(out)
ℓ (E)

f
(in)
ℓ (E)

, (8)

and that zeros of the Jost function f
(in)
ℓ (E) are the discrete spectral points En,

f
(in)
ℓ (En) = 0 , (9)

i.e. the bound and resonant states of the system.
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3 Transformation of the radial equation

Our goal is to establish the analytic structure of the Jost function, i.e. to find such an ex-
pression for it where all possible nonanalytic dependencies on the energy are given explicitly.
This can be done if we transform the second-order radial equation (4) into an equivalent set
of first-order equations.

The transformation is done using a method which is known in the theory of differential equa-
tions as the variation parameters method [15, 16]. Following this method, we look for the
unknown function uℓ(E, r) in the form similar to its asymptotics (6), but with the combina-
tion coefficients being new unknown functions of r,

uℓ(E, r) = F
(in)
ℓ (E, r)h

(−)
ℓ−1/2(kr) + F

(out)
ℓ (E, r)h

(+)
ℓ−1/2(kr) , (10)

where F
(in/out)
ℓ (E, r) are the new unknown functions. Since instead of one unknown function,

we introduce two of them, they cannot be independent of each other. In principle, we can
impose any reasonable condition relating them. Looking at the asymptotics (6), we see that

f
(in)
ℓ (E) = lim

r→∞
F

(in)
ℓ (E, r) , f

(out)
ℓ (E) = lim

r→∞
F

(out)
ℓ (E, r) . (11)

Therefore at large distances our new functions become constants, and we should have
[

∂rF
(in)
ℓ

]

h
(−)
λ (kr) +

[

∂rF
(out)
ℓ

]

h
(+)
λ (kr) = 0 . (12)

As the additional condition imposed on these functions, we demand that the relation (12) is
valid not only at large r but at all distances. In the variation parameters method this con-
dition is known as the Lagrange condition. In our case this condition makes F

(in/out)
ℓ (E, r)

to be the Jost functions for the potential which is cut-off at the radius r (in the spirit of the
variable-phase approach).

Substituting the ansatz (10) into the radial equation (4) and using the Lagrange condition
(12) together with known Wronskian of the Riccati-Hankel functions,

h
(−)
λ (kr)∂rh

(+)
λ (kr)− h(+)

λ (kr)∂rh
(−)
λ (kr) = 2ik , (13)

we obtain a set of two first-order equations which are equivalent to the original radial equation
(4),

∂rF
(in)
ℓ = − 1

2ik
h
(+)
λ V

[

F
(in)
ℓ h

(−)
λ + F

(out)
ℓ h

(+)
λ

]

, (14)

∂rF
(out)
ℓ = +

1

2ik
h
(−)
λ V

[

F
(in)
ℓ h

(−)
λ + F

(out)
ℓ h

(+)
λ

]

. (15)
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The boundary conditions for these equations follow from the requirement that the wave func-
tion must be regular everywhere. In particular, this means that uℓ(E, 0) = 0. It seems that

this is not the case because both h
(+)
λ (kr) and h

(−)
λ (kr) that are present in the expression

(10), are singular at r = 0. Their singularities, however, can cancel each other,

h
(+)
λ (z) + h

(−)
λ (z) = 2jλ(z) , (16)

if they are superimposed with a same coefficient. This can be achieved if both F
(in)
ℓ (E, r) and

F
(out)
ℓ (E, r) have the same value at r = 0,

F
(in)
ℓ (E, 0) = F

(out)
ℓ (E, 0) .

Their common value at r = 0 determines the overall normalization of the wave function and
therefore can be chosen arbitrarily. To be consistent, we chose it to be 1/2, which makes
uℓ(E, r) to behave near the origin exactly as the Riccati-Bessel function and thus the solution
with the boundary conditions

F
(in)
ℓ (E, 0) = F

(out)
ℓ (E, 0) =

1

2
(17)

is what is called the regular solution in the theory of three-dimensional scattering.

For our goal of expressing the non-analytic dependencies of the Jost functions in an explicit
form, it is more convenient to re-write the ansatz (10) in terms of the Riccati-Bessel and
Riccati-Neumann functions,

uℓ(E, r) = Aℓ(E, r)jλ(kr)− Bℓ(E, r)yλ(kr) , (18)

and to obtain the corresponding equations for the unknown functions Aℓ(E, r) and Bℓ(E, r).
Since

h
(±)
λ (z) = jλ(z)± iyλ(z) , (19)

this is most simply achieved by making the following linear combinations of Eqs. (14, 15)

Aℓ(E, r) = F
(in)
ℓ (E, r) + F

(out)
ℓ (E, r) , (20)

Bℓ(E, r) = i
[

F
(in)
ℓ (E, r)− F (out)

ℓ (E, r)
]

. (21)

This gives

∂rAℓ = −1

k
yλV (Aℓjλ −Bℓyλ) , (22)

∂rBℓ = −1

k
jλV (Aℓjλ −Bℓyλ) (23)
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with the boundary conditions

Aℓ(E, 0) = 1 , Bℓ(E, 0) = 0 . (24)

4 Complex rotation

Suppose that the potential V (r) is cut off at certain radius r = R, then the right-hand sides
of the sets of equations (14,15) or (22,23) vanish at r > R and thus the derivatives on the

left-hand sides of these equations become zero, i.e. the functions F
(in/out)
ℓ or Aℓ and Bℓ do

not change beyond this point. Therefore, in the spirit of the variable phase approach, the
functions F

(in/out)
ℓ (E, r) are the Jost functions for the potential which is cut off at the point r.

Generally speaking, when the potential asymptotically vanishes at large distances, we should
expect the convergence of the limits (11).

Therefore, the Jost functions can be calculated by numerical integration of the differential
equations (14,15) or (22,23) from r = 0 up to a sufficiently large radius R where the limits
(11) are reached within a required accuracy. This works perfectly for real values of the energy
E. However, when we consider complex energies (for example, in search for resonances),
a technical difficulty arises. This difficulty is caused by the asymptotic behavior (7) of the
Riccati-Hankel functions.

When k is complex, either h
(+)
λ (kr) or h

(−)
λ (kr) exponentially diverges, depending on the sign

of Im k. As a result, either the first or the second of the equations (14,15) does not give a
numerically convergent solution. This difficulty is circumvented by using the deformed integra-
tion path shown in figure 1. Instead of integrating the differential equations along the real axis
from r = 0 to r = R, we can reach the final point via the intermediate point r = R′ in the
complex plane. Moreover, we can safely ignore the arc R′R since the potential is practically
zero at that distance.

Such a complex rotation helps because the asymptotic behavior (divergent or convergent) of

the functions h
(±)
λ (kr) is determined by the sign of Im k. For a given k = |k|eiφ, we can

always find such a rotation angle θ in r = |r|e−iθ that the product kr = |kr|ei(φ−θ) has either
positive or negative (or even zero) imaginary part. Various technical details of using complex
rotation in calculating the Jost functions and Jost matrices can be found in [2,3,13,14,18–25].

7



5 Explicit separation of the non-analytic factors

In order to establish the analytic structure of the Jost functions, we need to have a closer look at
the structure of the Riccati-Bessel and Riccati-Neumann functions. The following expressions
for them (they can be derived using formulae 9.1.2, 9.1.10, and 9.1.11 of Ref. [17]) are the
most useful for this

jλ(kr) = kλ+1

∞
∑

n=0

k2nf (λ)
n (r) , (25)

yλ(kr) = k−λ

∞
∑

n=0

k2ng(λ)n (r) + h(k)jλ(kr) , (26)

where

f (λ)
n (r) =

√
π(−1)n

n!Γ(n+ λ+ 3/2)

(r

2

)2n+λ+1

, for any λ . (27)

If λ is integer then the expansion of yλ(kr) is also simple:

g(λ)n (r) =

√
π(−1)n+λ+1

n!Γ(n− λ+ 1/2)

(r

2

)2n−λ

, (28)

h(k) = 0 . (29)

However, for a half-integer λ, we have a more difficult case:

g(λ)n (r) =







































−(λ− n− 1/2)!√
πn!

(r

2

)2n−λ

, 0 6 n 6 λ− 1
2
,

2

π
ln
( r

R

)

f
(λ)

n−λ− 1

2

(r)−

−(−1)n−λ− 1

2

[

ψ(n+ 1) + ψ(n− λ+ 1
2
)
]

√
πn!(n− λ− 1

2
)!

(r

2

)2n−λ

, λ+ 1
2
6 n <∞ ,

(30)

h(k) =
2

π
ln

(

kR

2

)

, (31)

where R is an arbitrary number (in the units of length). It is arbitrary because any increase or
decrease of h(k) cased by the change of R is compensated by the corresponding change in the
first term of Eq. (30). The parameter R is introduced to separate the r and k dependencies
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in the original term containing ln(kr/2) = ln(kR/2) + ln(r/R) and to have dimensionless
products under the logarithm. In practical calculations the parameter R can always be taken
as the unit of the length, i.e. R = 1. The ψ-function in Eq. (30) is defined as follows [17]

ψ(n) =
Γ′(n)

Γ(n)
=















−γ , n = 1 ,

−γ +
n−1
∑

m=1

m−1 , n > 2 ,
(32)

where γ = 0.577 . . . is the Euler constant.

Eqs. (25, 26) represent the Riccati-Bessel and Riccati-Neuman functions in the form of infi-
nite series. Each term of these series is a product of a function depending on k and another
function depending on r, i.e. the k and r dependencies are given in a separable form.

What do the above formulae tell us about the Jost functions? The functions jλ(kr) and yλ(kr)
are involved in the coefficients of the differential equations (22,23) that determine the Jost
functions. This means that the Jost functions are not single valued functions of the energy.
Indeed, for each choice of E, we have two possible values of the momentum

k = ±
√

2µE

~2
.

The index λ = −1/2, 1/2, 3/2, . . . of the Riccati functions is a half-integer. This means that
the differential equations involve such multi-valued functions as square-root and logarithm of
the momentum.

Therefore the Jost functions are defined on a complicated Riemann surface and the threshold
point E = 0 is a branching point of this surface. It would be desirable to find an expression
for the Jost functions in terms of the powers of

√
k, the logarithmic function h(k), and some

entire single valued functions of E. In order to do this, we notice that the series in Eqs.
(25,26) involve only even powers of k, i.e. the powers of the energy k2 = 2µE/~2. Since for
any finite r these series are absolutely and uniformly convergent on the whole complex plane
of E, they define some entire functions, i.e.

jλ(kr) = kλ+1j̃λ(E, r) , (33)

yλ(kr) = k−λỹλ(E, r) + kλ+1h(k)j̃λ(E, r) , (34)
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where the ”tilded” functions

j̃λ(E, r) =
∞
∑

n=0

(

2µE

~2

)n

f (λ)
n (r) , (35)

ỹλ(E, r) =
∞
∑

n=0

(

2µE

~2

)n

g(λ)n (r) , (36)

are single-valued entire functions of complex variable E.

Let us find a similar structure for the functions Aℓ(E, r) and Bℓ(E, r) and through them for

F
(in/out)
ℓ (E, r). For this, we replace the set of equations (22,23) with their linear combinations.

Namely, we multiply Eq. (23) by h(k) and subtract the result from Eq. (22); and as the second
equation, we take Eq. (23) multiplied by k−(2λ+1). As a result, we obtain:

∂r(Aℓ − hBℓ) = −1

k
(yλ − hjλ)V (Aℓjλ − Bℓyλ) , (37)

∂rk
−(2λ+1)Bℓ = −k−2(λ+1)jλV (Aℓjλ −Bℓyλ) . (38)

Now, taking into account Eqs. (33, 34), we see that

yλ − hjλ = k−λỹλ + kλ+1hj̃λ − kλ+1hj̃λ = k−λỹλ

and

Aℓjλ −Bℓyλ = Aℓk
λ+1j̃λ −Bℓk

−λỹλ −Bℓk
λ+1hj̃λ

= kλ+1(Aℓ − hBℓ)j̃λ − k−λBℓỹλ .

Substituting these expressions into Eqs. (37, 38), we have

∂r(Aℓ − hBℓ) = −k−(λ+1)ỹλV
[

kλ+1(Aℓ − hBℓ)j̃λ − k−λBℓỹλ
]

, (39)

∂rk
−(2λ+1)Bℓ = −k−(λ+1)j̃λV

[

kλ+1(Aℓ − hBℓ)j̃λ − k−λBℓỹλ
]

. (40)

If we introduce the ”tilded” functions

Ãℓ(E, r) ≡ Aℓ(E, r)− h(k)Bℓ(E, k) , (41)

B̃ℓ(E, r) ≡ k−(2λ+1)Bℓ(E, r) , (42)
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then Eqs. (39, 40) assume the following form

∂rÃℓ = −ỹλV
(

Ãℓj̃λ − B̃ℓỹλ

)

, (43)

∂rB̃ℓ = −j̃λV
(

Ãℓj̃λ − B̃ℓỹλ

)

(44)

with the boundary conditions [that follow from (24)]

Ãℓ(E, 0) = 1 , B̃ℓ(E, 0) = 0 . (45)

For any finite r, all the coefficient functions in Eqs. (43, 44) are entire functions of the
parameter E and the boundary conditions are E-independent. According to the Poincaré
theorem [26] the solutions of these equations, i.e. the functions Ãℓ(E, r) and B̃ℓ(E, r), are
entire (analytic single-valued) functions of the complex variable E.

Therefore the structure we wanted to find is as follows:

Aℓ(E, r) = Ãℓ(E, r) + k2λ+1h(k)B̃ℓ(E, r) , (46)

Bℓ(E, r) = k2λ+1B̃ℓ(E, r) , (47)

where Ãℓ(E, r) and B̃ℓ(E, r) are single-valued analytic functions of E. Apart from these
single-valued functions, the original functions Aℓ and Bℓ involve the factors k2λ+1 and h(k).
Since λ is half-integer, the power (2λ+ 1) is always even and thus k2λ+1 is also single-valued
function of E, but h(k) has a logarithmic branching point at E = 0.

The functions F
(in/out)
ℓ have similar structure

F
(in)
ℓ (E, r) =

1

2
(Aℓ − iBℓ) =

1

2

{

Ãℓ(E, r) + k2λ+1[h(k)− i]B̃ℓ(E, r)
}

, (48)

F
(out)
ℓ (E, r) =

1

2
(Aℓ + iBℓ) =

1

2

{

Ãℓ(E, r) + k2λ+1[h(k) + i]B̃ℓ(E, r)
}

. (49)

6 Analytic structure of the Jost functions

What we have established in the previous Section, is valid for any complex E and any finite
distance r. In other words, so far we have established that the Jost functions (11) have the
structure (48, 49) if the potential is cut off at certain radius r = R (does not matter how
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large R is). The problem is that to prove analyticity of Ãℓ(E, r) and B̃ℓ(E, r) with respect to
variable E, we used the Poincaré theorem which requires that the coefficients of Eqs. (43,44)
be holomorphic functions of E. If E is a real positive number and the potential is of a short
range, this is true even if r → ∞. Indeed, in such a case both j̃λ(kr) and ỹλ(kr) oscillate
with finite amplitudes even at infinity and thus the coefficients of Eqs. (43,44) simply tend
to zero (i.e. remain holomorphic) when r → ∞. If however E is negative or complex, then
generally speaking this is not true. As we will see shortly, there still is a domain of complex E
where the coefficients remain holomorphic. In other words, if we extend r to infinity, we have
to narrow the domain of E.

The Riccati-Bessel and Riccati-Neumann functions are linear combinations of the Riccati-
Hankel functions and thus at large distances behave as exponential functions (7). If the mo-
mentum has a nonzero imaginary part, then one or the other of these exponentials is diverging
and thus both j̃λ(kr) and ỹλ(kr) tend to infinity when r →∞. To some extent the situation
can be saved by using a short-range (exponentially decaying) potential V (r) ∼ exp(−ηr),
which compensates the divergence of j̃λ(kr) and ỹλ(kr) within certain domain D of the
complex E-plane along its real axis. The borders of the domain D are determined by the
requirement that none of the coefficients of Eqs. (43,44) are divergent. The behavior (con-
vergent or divergent) of these coefficients is determined by the product exp(±2ikr) exp(−ηr).
For a given η it is not difficult to find the domain D,

D =
{

E :
∣

∣

∣
2Im

√

2µE/~2
∣

∣

∣
< η
}

, (50)

which gives the condition

(ImE)2 <
~
4η4

16µ2
+

~
2η2

2µ
ReE . (51)

Similar analyticity domain was obtained by Motovilov [27] for the three-dimensional multi-
channel T -matrix, using a rigorous analysis of the corresponding scattering operators.

The faster the potential decays, the wider is the domain. An example of such a domain is
shown in figure 2 for the model used in section 9. It is a parabolic domain along the real
axis, whose border is shown by the solid curve. It crosses the real axis at E ≈ −0.0332 (in
donor Hartree units). When r → ∞, we can only use the Poincaré theorem within D, and
thus we can say that at least within this domain the functions Ãℓ(E,∞) and B̃ℓ(E,∞) are
the holomorphic functions of variable E.

If the potential V (r) (or at least its long-range tail) is an analytic function of complex variable
r and exponentially decays along any ray r = |r|eiθ within certain sector of the complex r-
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plane, then the domain D can be extended by using the complex rotation described in section
4. With a complex radius, the product exp(±2ikr) exp(−ηr) vanishes at infinity if E is within

D = {E : |2Im (kr)| < ηRe r} , (52)

which generalizes Eq. (50). It is easy to show that if E = |E| exp(iχ) then such a domain
can be defined by the following inequality

sin2
(χ

2
+ θ
)

<
~
2η2 cos2 θ

8µ|E| . (53)

With θ = 0 this condition is transformed into (51). An example of such a domain with the
rotation angle θ = 0.05π for the potential (84) is shown by the dashed curve in Fig. 2.

The physically interesting domain of the E-plane where the structure (48, 49), can be used in
practical calculations, lies on the positive real axis (scattering) and in the close vicinity below
it (pronounced resonances). Therefore, we can say that to all practical purposes this structure
is valid at an arbitrary point E.

If we denote the asymptotic values (within D) of the ”tilded” functions as

ãℓ(E) = lim
r→∞

Ãℓ(E, r) , b̃ℓ(E) = lim
r→∞

B̃ℓ(E, r) , (54)

Then the Jost functions and the S-matrix can be written as follows

f
(in)
ℓ (E) =

1

2

{

ãℓ(E) + k2λ+1[h(k)− i]b̃ℓ(E)
}

, (55)

f
(out)
ℓ (E) =

1

2

{

ãℓ(E) + k2λ+1[h(k) + i]b̃ℓ(E)
}

, (56)

sℓ(E) =
ãℓ(E) + k2λ+1[h(k) + i]b̃ℓ(E)

ãℓ(E) + k2λ+1[h(k)− i]b̃ℓ(E)
. (57)

To find the Jost functions or the S-matrix on any sheet of the Riemann surface, we need
to calculate the functions ãℓ(E) and b̃ℓ(E) only once (because they are single valued). The
choice of the sheet is determined by an appropriate choice of the value of the logarithmic
function h(k). Please note that k2λ+1 = k2ℓ is a single-valued function of E.
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7 Power-series expansions of the Jost functions

The functions ãℓ(E) and b̃ℓ(E) are holomorphic (i.e. single-valued and analytic) and therefore
can be expanded in Taylor series near any point E0 within the domain D of the complex energy
plane. The expansion around the point E0 = 0 will give us the standard effective-range series.
But we can also do such an expansion near an arbitrary point,

ãℓ(E) =
∞
∑

n=0

α(ℓ)
n (E0)(E − E0)

n , (58)

b̃ℓ(E) =
∞
∑

n=0

β(ℓ)
n (E0)(E − E0)

n . (59)

How the expansion coefficients α
(ℓ)
n and β

(ℓ)
n can be found? For this purpose, we can derive

differential equations, the solutions of which asymptotically tend to α
(ℓ)
n and β

(ℓ)
n . Indeed,

such an expansion can be done at any fixed radius r because the functions Ãℓ(E, r) and
B̃ℓ(E, r) reach their limits (54) at r if the potential is cut off at this radius (in the spirit of
the variable-phase approach). Therefore for each r, we have

Ãℓ(E, r) =
∞
∑

n=0

A(ℓ)
n (E0, r)(E − E0)

n , (60)

B̃ℓ(E, r) =
∞
∑

n=0

B(ℓ)
n (E0, r)(E − E0)

n , (61)

where
α(ℓ)
n (E0) = lim

r→∞
A(ℓ)

n (E0, r) , β(ℓ)
n (E0) = lim

r→∞
B(ℓ)
n (E0, r) . (62)

Therefore, the differential equations mentioned above, should determine the functionsA(ℓ)
n (E0, r)

and B(ℓ)
n (E0, r). In order to obtain such equations, we expand the ”tilded” functions j̃λ(E, r)

and ỹλ(E, r) in the Taylor series near an arbitary point E0

j̃λ(E, r) =
∞
∑

n=0

s(λ)n (E0, r) (E − E0)
n , (63)

ỹλ(E, r) =
∞
∑

n=0

c(λ)n (E0, r) (E − E0)
n , (64)
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which are more general expansions than the series (35,36) for the particular case of the thresh-

old energy E0 = 0. Any number of the expansion coefficients s
(λ)
n (E0, r) and c

(λ)
n (E0, r) can

be found using the recurrence relations derived in the Appendix B.

Substituting the expansions (60,61,63,64) into Eqs. (43,44), and equalizing the factors of the
same powers of (E − E0), we obtain the equations we are looking for,

∂rÃ(ℓ)
n = −

∑

i+j+k=n

c
(λ)
i V

(

Ã(ℓ)
j s

(λ)
k − B̃

(ℓ)
j c

(λ)
k

)

, (65)

∂rB̃(ℓ)
n = −

∑

i+j+k=n

s
(λ)
i V

(

Ã(ℓ)
j s

(λ)
k − B̃

(ℓ)
j c

(λ)
k

)

, (66)

with the boundary conditions

Ã(ℓ)
n (E0, 0) = δn0 , B̃(ℓ)

n (E0, 0) = 0 , n = 0, 1, 2, 3, . . . (67)

These conditions follow from the fact that the corresponding boundary conditions (45) do not
depend on E. Therefore, starting with the initial values (67) at r = 0, and numerically solving
first N+1 pairs of differential equations of the system (65, 66) up to a sufficiently large radius
rmax, we obtain first N + 1 expansion coefficients

α(ℓ)
n (E0) = Ã(ℓ)

n (E0, rmax) , β(ℓ)
n (E0) = B̃(ℓ)

n (E0, rmax) , n = 0, 1, 2, . . . , N (68)

These coefficients give us the following approximate formulae for the Jost functions

f
(in)
ℓ (E) ≈ 1

2

N
∑

n=0

{

α(ℓ)
n (E0) + k2λ+1[h(k)− i]β(ℓ)

n (E0)
}

(E − E0)
n , (69)

f
(out)
ℓ (E) ≈ 1

2

N
∑

n=0

{

α(ℓ)
n (E0) + k2λ+1[h(k) + i]β(ℓ)

n (E0)
}

(E − E0)
n , (70)

which are valid for any complex value of E within a domain around the chosen central point
E0. Apparently, the closer E is to E0, the better is the accuracy of these formulae. It is
interesting to note that Eq. (9) of Ref. [10] is the first term of our Eq. (69) for the particular
case of E0 = 0.

An alternative way of using formulae (69,70) is to treat the expansion coefficients α
(ℓ)
n (E0),

β
(ℓ)
n (E0), n = 0, 1, . . . , N as fitting parameters. Adjusting them in such a way that the
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corresponding cross section (see Appendix A.4) reproduces experimental data in vicinity of
a real energy E0, one then can use the Jost function (69) at the nearby complex energies
for locating possible resonances. The obvious advantage of such an approach is that the
resonance energy and the width are deduced directly from experimental data using correct
analytic structure of the S-matrix.

8 Effective-range expansion

Far away from the interaction region the radial wave function (18) is a linear combination of
the Riccati-Bessel and Riccati-Neumann functions

uℓ(E, r) −→
r→∞

aℓ(E)jλ(kr)− bℓ(E)yλ(kr) , (71)

where
aℓ(E) = lim

r→∞
Aℓ(E, r) , bℓ(E) = lim

r→∞
Bℓ(E, r) . (72)

The functions jλ and yλ in (71) can be written in their asymptotic form,

jλ(kr) −→
r→∞

sin

(

kr − λπ

2

)

, (73)

yλ(kr) −→
r→∞

− cos

(

kr − λπ

2

)

, (74)

which gives

uℓ(E, r) −→
r→∞

aℓ(E) sin

(

kr − λπ

2

)

+ bℓ(E) cos

(

kr − λπ

2

)

=

= N sin

[

kr − λπ

2
+ δℓ(E)

]

,

where aℓ and bℓ are replaced with their common normalization factor N and the scattering
phase shift δℓ,

aℓ(E) = N cos δℓ(E) , (75)

bℓ(E) = N sin δℓ(E) . (76)

16



Using the relations (46, 47) at large distances (r →∞),

aℓ(E) = ãℓ(E) + k2λ+1h(k)b̃ℓ(E) , (77)

bℓ(E) = k2λ+1b̃ℓ(E) , (78)

we can construct the so called effective-range function which is a holomorphic function of the
energy. This is done by taking the ratio

cot δℓ =
aℓ
bℓ

=
ãℓ + k2λ+1hb̃ℓ

k2λ+1b̃ℓ
,

and moving all the ”troublesome” terms and factors which may generate singularities, to the
left hand side of the equation,

k2λ+1 cot δℓ =
ãℓ

b̃ℓ
+ k2λ+1h ,

k2λ+1 [cot δℓ(E)− h(k)] = k2ℓ [cot δℓ(E)− h(k)] =
ãℓ(E)

b̃ℓ(E)
. (79)

Both the numerator and denominator in the last ratio can be written in the form of power
series (58, 59) with E0 = 0

k2λ+1 [cot δℓ(E)− h(k)] =

∞
∑

n=0

α(ℓ)
n (0)En

∞
∑

n=0

β(ℓ)
n (0)En

. (80)

Using Eq. (3.6.22) of the book by Abramowitz et al.,

a0 + a1x+ a2x
2 + · · ·

b0 + b1x+ b2x2 + · · ·
=
a0
b0

[

1 +

(

a1
a0
− b1
b0

)

x+

(

a2
a0
− b1(a1b0 − a0b1)

a0b20
− b2
b0

)

x2 + · · ·
]

,

the division of two polynomials in Eq. (80) is done as follows

k2λ+1 [cot δℓ(E)− h(k)] = −
1

a(ℓ)
+
r
(ℓ)
0

2
k2 + · · · , (81)
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where the scattering length a(ℓ) and the effective radius r
(ℓ)
0 for the state with the angular

momentum ℓ are given by

a(ℓ) = −β
(ℓ)
0

α
(ℓ)
0

, (82)

r
(ℓ)
0 =

~
2

µ

(

α
(ℓ)
1

β
(ℓ)
0

− α
(ℓ)
0 β

(ℓ)
1

β
(ℓ)2
0

)

. (83)

9 A numerical example related to quantum dot the-

ory

To demonstarate how the proposed method works, we use the following circularly-symmetric
potential, which is motivated by the models that are currently used in the theory of quantum
dots,

U(r) = V0(r − r0)e−r/R , (84)

with V0 = 25, r0 = 2, and R = 2, where V0 (as well as all the energies in this example) is
measured in the so called ”donor Hartree units” and the distances in the units of ”donor Bohr
radius”, which were chosen to be 10.96meV and 101.89 Å, respectively. These values for the
units are relevant to the motion of electrons in the semiconductor material GaAs [28], where
the effective electron mass is µ = 0.063me (with me being free electron mass).

Although, strictly, the potential (84) should be considered as an abstract quantum-mechanical
”toy” model, we chose its shape in such a way that it resembles the potentials that are cur-
rently used to describe two-dimensional quantum dots (see, for example, Refs. [28–31]). As
is seen in Fig.4, our potential has a repulsive barrier which is not present in the traditional
quantum-dot models. The main reason for introducing such a barrier was to enrich our ”toy”
model spectrum with resonances. However, one can argue that such a barrier may appear in
real quantum dots as well. Indeed, when electrons fill up the lower levels of a dot, they should
repel each other and tend to stay mostly at its periphery. This means that for an additional
incoming electron the attractive force at the centre is reduced and a repulsion appears at the
border. In other words, the original empty-dot confining-potential (shown with the dashed
curve) is transformed into something that looks like our ”toy” potential. Of course, this spec-
ulative reasoning does not mean that we claim that our potential is anything more than an
abstract model.
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Since nothing special is associated with the angular momentum, we only consider here the
S-wave states (ℓ = 0). For such a case, the potential (84) supports three bound states and
a squence of resonances. These spectral points (given in Table 1 and shown in Fig. 3) were

located using the exact approach, i.e. as the roots of Eq. (9), where f
(in)
ℓ is the asymptotic

value (11) of the solution of Eq. (14).

To make sure that we did not miss any of the bound states and/or narrow resonances, we
calculated the S-wave scattering phase-shift and checked if it obeys the Levinson’s theorem. In
Refs. [9,32,33] it was shown that in the absence of a zero-energy bound state for the P -wave
and always for the S-wave, this theorem is the same as for the three-dimensional scattering,
namely,

δℓ(0)− δℓ(∞) = πNℓ , (85)

where Nℓ is the number of bound states with the angular momentum ℓ. If the energy moves
to the right along the real axis, the phase shift increases by π near each resonance which is
not far from the real axis. The smaller is the width, the more sharp is the increase. When
calculating the phase shift numerically, it is easy to miss a sharp jump corresponding a narrow
resonance. The curve ”A” in Fig. 5 is an example of such omissions (the first two resonances
are missed because of a too large step along the E-axis). The correct phase shift is shown
by the curve ”B”. It starts with 3π at the threshold and tends to zero at the infinity, in
accordance with Eq. (85).

Calculating the first two expansion coefficients and using Eqs. (82,83), we found the following
scattering length and effective radius,

a0 = −0.4521260323 [dimensionless] , r0 = 0.0586790752 [length2] .

As a first test of the expansions (69,70), we performed them at several scattering energies
(i.e. on the real energy axis) and compared the approximate cross section obtained from the
approximate Jost functions (see Appendix A.4) with the corresponding exact cross section
that was calculated using the exact Jost functions via numerical integration of the system of
differential equations (14,15). Fig. 6 shows the exact cross section in the interval E ∈ (0, 10]
(thick curve) and the approximate cross sections (thin curves) when only the first five terms
of the series (69,70) were taken into account for E0 being 1, 5, and 7. It is seen that within
rather wide interval around each E0 the expansion reproduces the cross section very well even
with all its zigzags.

The next step was to test our expansions at complex energies. To begin with, we performed
them around a point on the real axis, namely, around E0 = 7 (far away from the threshold
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energy) and looked at the Jost function at the nearby complex energies. Why 7? Simply
because there is a resonance not far from this point (third resonance of Table 1). To check

the accuracy of the expansion, we compared the approximate values of f
(in)
ℓ (E) at various

points around E0 with the corresponding exact values of the Jost function. Apparently, the
closer the point E is to the center of the expansion, the more accurate should be the result.
Fig. 7 shows three closed contours around E0 = 7. Within the smallest of them the relative
error of f

(in)
ℓ (E) obtained by the expansion (69) with N = 4 is less than 1%. The other

two contours show the domains of 5% and 10% accuracy. The important fact is that even if
the expansion is done on the real axis, the semi-analytic formulae (69,70) remain valid at the
nearby complex points.

The star in Fig. 7 is a resonant zero of the exact Jost function. As is seen, the 1%-contour has a
”dent” near this point. The reason for it is that in calculating the relative error, we have an ex-
act value of f

(in)
ℓ (E) in the denominator and this value is zero at the resonance. By the way, the

approximate Jost function (69) with N = 4 has zero at E = 7.1051679246− i
2
0.5683685515

which is not far from its exact position. This means that the expansion done on the real axis
can be used for locating narrow resonances.

Finally, we tested the expansion around a point in the fourth quadrant (where the resonances
are) of the complex energy plane. When solving the differential equations (65,65) we used the
complex rotation of the coordinate (see Sec.4) with such an angle θ that Im (k0r) = 0 (where
k0 is the momentum corresponding to E0). This guarantees that E0 is within the domain D
(see Sec.6).

Fig. 8 shows the exact positions of two resonances (indicated with stars), the center of the
expansion (cross) at E0 = 7.55− i1.06 which is in the middle between them, and two pairs of
the approximate locations of these resonances: open circles for three terms of the expansion
and filled circles for five expansion terms. It is seen that the expansion converges, i.e. the
more terms are taken into account, the more accurately the resonances are reproduced. It
should be noted that the chosen position of E0 is the ”worst case”. If we move E0 a bit closer
towards one of the resonances, it is reproduced much more accurately.

10 Conclusion

In this paper, we show that the Jost function for the two-dimension scattering can be written
as a sum of two terms, one of which is an analytic single-valued function of the energy E
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while the other term can be factorized in an analytic function of E and a logarithmic func-
tion of the momentum. This means that the (logarithmic) branching point of the Riemann
energy-surface is given in the Jost function explicitly via the logarithmic factor. The remain-
ing energy-dependent functions are defined on single energy plane which does not have any
branching points anymore. For these energy-dependent functions, we derive a system of first-
order differential equations. Then, using the fact that the functions are analytic within certain
domain D, we expand them in the power series around an arbitrary point E0 ∈ D and obtain
a system of differential equations that determine the expansion coefficients.

A systematic procedure developed in this paper, allows us to accurately calculate the power
series expansion of the Jost function practically at any point on the Riemann surface of the
energy. Actually, the expansion is done for the single-valued functions of the energy, while the
choice of the sheet of the Riemann surface is done by appropriately choosing the sheet of the
logarithmic function of the momentum.

The method suggested in this paper, makes it possible to obtain a semi-analytic expression
for the two-dimensional Jost function (and therefore for the corresponding S-matrix) near an
arbitrary point on the Riemann surface and thus to locate the resonant states as the S-matrix
poles. Alternatively, the expansion can be used to parametrize experimental data, where the
unknown expansion coefficients are the fitting parameters. Such a parametrization will have
the correct analytic structure. After fitting the data given at real energies, one can use the
semi-analytic Jost function to search for resonances in the nearby domain of the Riemann sur-
face. The efficiency and accuracy of the suggested expansion is demonstrated by an example
of a two-dimensional model potential.

In this paper, we restrict our consideration to a class of circularly symmetric short-range po-
tentials (that vanish at infinity faster than any power of 1/r). In principle, the theory should
remain the same for any potential vanishing faster than the centrifugal term (∼ 1/r2) of
Eq. (4). In such a case this equation asymptotically behaves as Eq.(5) and therefore all our
derivations remain valid. The only difficulty is that the analyticity domain D must be much
more narrow than it is given by the condition (51) and shown in Fig. 2. Moreover, it is unclear
how to obtain this condition for such a potential. This however does not mean that the theory
is not applicable in such a case. Indeed, using the complex rotation, we can always extend D
to practically whole E-plane no matter how narrow the initial D is.

As far as the potentials vanishing as ∼ 1/r2 or slower are concerned, our theory needs modifi-
cation. In such a case the asymptotic solutions of Eq. (4) are different from the Riccati-Bessel
functions. In particular for potential with Coulombic tails the Riccati-Bessel and Riccati-
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Neumann functions should be replaced with the corresponding regular and irregular Coulomb
functions that have much more complicated power-series expansions.

The theory also needs a modification for potentials that are not circularly symmetric. In such
a case the angular momentum is not conserved and instead of a single radial equation (4),
we have a set of coupled equations for different ℓ, which can be considered as a single matrix
equation. The Jost function becomes matrix as well as all the other quantities in the theory.
Similarly, a matrix-generalization of the proposed method is needed for multi-channel systems.
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APPENDICES

A Two-dimensional partial-wave decomposition

The partial-wave decomposition of the wave function, scattering amplitude, and cross section
for a particle moving on a plane, is done using the cylindrical coordinates where the z-axis
(perpendicular to the plane) is needed to define the orbital angular momentum. All the
steps of such a decomposition are similar to the three-dimensional case, but the resulting
formulae are not obvious and cannot be easily obtained from the corresponding 3D-analysis.
The derivations of various formulae of this type are given in several different papers (see, for
example, Refs. [34,35]). Usually these derivations are very concise with many details omitted.
Since such derivations are not present in the standard textbooks on quantum mechanics, we
feel that it is worthwhile to collect everything in one place. This is why we include this
Appendix.

A.1 Radial Schrödinger equation

Consider a particle of mass µ, moving on a plane and being affected by a force that is described
by a potential U(~r), which is assumed to be of a short-range and circularly symmetric,

U(~r) = U(|~r|) .
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To make the derivations simple, we assume that our particle does not have spin (this restriction
can be easily revoked later). In the coordinate representation, the Hamiltonian H of such a
particle is most conveniently expressed using the polar coordinates,

H = − ~
2

2µ
∆+ U ,

∆ =
1

r

∂

∂r

(

r
∂

∂r

)

+
1

~2r2
L̂2 ,

where

L̂2 = ~
2 ∂

2

∂ϕ2

is the two-dimensional operator of the square of the angular momentum. Its eigenfunctions
Ym(ϕ) obeying the equation

L̂2Ym(ϕ) = −~2m2Ym(ϕ)

and normalized as
∫ 2π

0

Y∗
m(ϕ)Ym′(ϕ)dϕ = δmm′ , (86)

are easy to find,

Ym(ϕ) =
1√
2π
eimϕ , m = 0,±1,±2, . . . (87)

From the definition of the Fourier series on the interval [0, 2π] it follows that

+∞
∑

m=−∞

Ym(ϕ)Y∗
m(ϕ

′) = δ(ϕ− ϕ′) . (88)

Each value of the angular momentum (except for zero) is represented twice: with two oppo-
site signs. Classically, these two states correspond to the motion of the particle at the same
distance r from the center and with the same velocity, but at different sides of the center (see
Fig. 9).

The quantum number of the angular momentum ℓ = |m| is always non-negative and irrespec-

tive of its magnitude (if ℓ 6= 0) the vector ~ℓ can have two (only two) directions: up or down
(like the spin 1/2). The quantum numberm = ±ℓ is its z-component. In principle, we can use

the same notation for the eigenfunctions of the operator L̂2 as in the three-dimensional case,
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namely, Yℓm with two subscripts. However, because of the relation m = ±ℓ, the subscript ℓ
is redundant.

This can be formulated in a different way. The functions (87) form a complete ortho-normal
set on the interval ϕ ∈ [0, 2π]. This means that any (reasonable) function f(ϕ) defined on
this interval, can be written as their linear combination, and such a combination can be written
in the following two (equivalent) ways

f(ϕ) =
+∞
∑

m=−∞

amYm(ϕ) =
∞
∑

ℓ=0

∑

m=±ℓ

ãℓmYm(ϕ) , am = ã|m|m .

In other words the following summations are equivalent

+∞
∑

m=−∞

←→
∞
∑

ℓ=0

∑

m=±ℓ

.

The operator corresponding to the quantum number m is obtained as follows. The gradient
operator in the cylindrical coordinates is

~∇ = ~̂r
∂

∂r
+ ~̂ϕ

1

r

∂

∂ϕ
+ ~̂z

∂

∂z
, (89)

where
~̂r = [ ~̂ϕ× ~̂z] , ~̂ϕ = [~̂z × ~̂r] , ~̂z = [~̂r × ~̂ϕ]

are the corresponding unit vectors. Then

[~r × ~p] = r~̂r × ~

i
~∇ =

~r

i

(

~̂z
1

r

∂

∂ϕ
− ~̂ϕ

∂

∂z

)

and thus

ℓz =
~

i

∂

∂ϕ
.

Apparently, both L̂2 and ℓz commute with the Hamiltonian. The quantum numbers ℓ and
m are therefore conserving. When specifying m, we implicitly specify the quantum number ℓ
as well. This means that the quantum state of the particle is determined by two conserving
quantum numbers, namely, the energy E and the z-component of the angular momentum m.
The corresponding wave function, obeying the Schrödinger equation,

HψEm(~r) = EψEm(~r) ,
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can be factorized in the radial and angular parts

ψEm(~r) =
um(E, r)√

r
Ym(ϕ) , (90)

where
√
r in the denominator is introduced to obtain the radial equation without the first

derivative. Substituting this factorized form into the Schrödinger equation, we obtain
[

d2

dr2
+ k2 − m2 − 1/4

r2
− V (r)

]

um(E, r) = 0 , (91)

where k is the wave number (linear momentum) defined by

k2 =
2µ

~2
E (92)

and V (r) is the reduced (in the units of [length]−2) potential

V (r) =
2µ

~2
U(r) .

Noting that Eq. (91) is exactly the same for both choices of the sign for m, we conclude that
um(E, r) actually depends on ℓ but not on m. The radial equation can therefore be re-written
in the way we used to see it in the three-dimensional problems

[

d2

dr2
+ k2 − λ(λ+ 1)

r2
− V (r)

]

uℓ(E, r) = 0 , (93)

where we introduced

λ = ℓ− 1

2
(94)

and did the replacement

ℓ2 − 1

4
=

(

ℓ− 1

2

)(

ℓ+
1

2

)

= λ(λ+ 1) .

Formally, Eq. (93) looks exactly like the radial equation of the three-dimensional problem.
The only difference is that λ is not an integer number

λ = −1

2
,
1

2
,
3

2
,
5

2
, . . .

This simple fact makes a huge difference: it changes the analytic properties of the Jost function
and thus the S-matrix, because the Riccati-Neumann function yλ(kr) with a half-integer λ
has a logarithmic branching point on the Riemann surface of the energy [17].
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A.2 Plane-wave and circular waves

Consider a two-dimensional plane wave normalized to the δ-function

〈~r|~k〉 = ei
~k~r

2π
, 〈~k′|~k〉 = δ

(

~k′ − ~k
)

=
1

k
δ(k′ − k)δ(ϕ′ − ϕ) , (95)

where ϕ is the polar angle of the momentum ~~k. This plane wave can be expanded over the
full set {Y} of the angular functions (87),

ei
~k~r

2π
=
eikr cosϕ

2π
=
∑

ℓm

am(kr)Ym(ϕ) , (96)

where the x-axis is directed along the coordinate vector ~r. The expansion coefficients

am(kr) =
1

(2π)3/2

∫ 2π

0

ei(kr cosϕ−mϕ)dϕ (97)

can be found using the integral representation of the Bessel function [17]

Jm(z) =
1

πim

∫ π

0

eiz cosϕ cos(mϕ)dϕ =
1

2πim

∫ π

0

eiz cosϕ
(

eimϕ + e−imϕ
)

dϕ

=
1

2πim

∫ π

−π

ei(z cosϕ−mϕ)dϕ =
im

2π

∫ 2π

0

ei(−z cosϕ−mϕ)dϕ . (98)

Comparing Eq. (97) with (98) and using the symmetry property of the Bessel function
Jm(−z) = (−1)mJm(z), we see that

am(kr) =
im√
2π
Jm(kr) (99)

and thus

ei
~k~r

2π
=

1

2π

∑

ℓm

imeimϕJm(kr) =
1

2π

+∞
∑

−∞

imeimϕJm(kr) =
1√
2π

+∞
∑

−∞

imJm(kr)Ym(ϕ) . (100)

Using another symmetry property, J−m(z) = (−1)mJm(z), we see that the product imJm(kr)
does not depend on the sign of m and thus this expansion can be re-written as

ei
~k~r

2π
=

1

2π

[

J0(kr) +
∞
∑

ℓ=1

iℓ
(

eiℓϕ + e−iℓϕ
)

Jℓ(kr)

]

=
1

2π

∞
∑

ℓ=0

ǫℓi
ℓ cos(ℓϕ)Jℓ(kr) , (101)

26



where ǫℓ is the ”multiplicity” of an ℓ-state, i.e. is the analog of the factor (2ℓ + 1) of the
3D-case,

ǫℓ =

{

1 , ℓ = 0 ,

2 , ℓ > 0 .
(102)

Expressing the Bessel function via the Riccati-Hankel functions,

Jℓ(z) =

√

1

2πz

[

h
(−)
ℓ−1/2(z) + h

(+)
ℓ−1/2(z)

]

,

we obtain the following decomposition of the 2D plane wave in the incoming (−) and outgoing
(+) circular waves

ei
~k~r

2π
=

1

2π
√
kr

∞
∑

ℓ=0

∑

m=±ℓ

iℓ
[

h
(−)
λ (kr) + h

(+)
λ (kr)

]

Ym(ϕ) , (103)

where λ is defined by Eq. (94).

In the above, we assumed that vector ~r was directed along the x-axis. If this is not the case,
then the dot-product

~k~r = kr(cosϕk cosϕr + sinϕk sinϕr) = kr cos(ϕr − ϕk)

depends on the two polar angles. In this general case the plane wave is expanded over two sets
of functions {Y(ϕk)} and {Y(ϕr)} depending on the angles of the momentum and co-ordinate
vectors. In a similar way as we did it above, it is not difficult to show that

ei
~k~r

2π
=

+∞
∑

−∞

imJm(kr)Y∗
m(ϕr)Ym(ϕk) =

∞
∑

ℓ=0

iℓJℓ(kr)
∑

m=±ℓ

Y∗
m(ϕr)Ym(ϕk)

=
1

2π

∞
∑

ℓ=0

ǫℓi
ℓ cos [ℓ(ϕr − ϕk)] Jℓ(kr)

=
1√
2πkr

∑

ℓm

iℓ
[

h
(−)
λ (kr) + h

(+)
λ (kr)

]

Y∗
m(ϕr)Ym(ϕk)

=
1√
2πkr

∑

ℓm

iℓu
(0)
ℓ (E, r)Y∗

m(ϕr)Ym(ϕk) , (104)
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where
u
(0)
ℓ (E, r) = h

(−)
λ (kr) + h

(+)
λ (kr) = 2jλ(kr) (105)

is a regular solution of the radial Schrödinger equation (93) for the case V (r) ≡ 0. These
partial-wave decompositions can be conveniently written in the following symbolic form

|~k〉 =
∑

ℓm

|kℓm〉Ym(ϕk) , |~r〉 =
∑

ℓm

|rℓm〉Ym(ϕr) , (106)

〈rℓm|kℓ′m′〉 = δℓℓ′δmm′iℓJℓ(kr) = δℓℓ′δmm′iℓ
√

2

πkr
jλ(kr) , (107)

〈~r|kℓm〉 = iℓ
√

2

πkr
jλ(kr)Y∗

m(ϕr) , 〈~k|rℓm〉 = (−i)ℓ
√

2

πkr
jλ(kr)Y∗

m(ϕk) , (108)

〈kℓm|k′ℓ′m′〉 = 1

k
δ(k − k′)δℓℓ′δmm′ , 〈rℓm|r′ℓ′m′〉 = 1

r
δ(r − r′)δℓℓ′δmm′ , (109)

∫ ∞

0

∑

ℓm

|kℓm〉〈kℓm|k dk = 1 ,

∫ ∞

0

∑

ℓm

|rℓm〉〈rℓm|r dr = 1 . (110)

A.3 Scattering wave function

The plane wave (104) is a scattering wave function ψ~k(~r) for the particular case of V (r) ≡ 0.
Apparently, the structure of its partial-wave decomposition should be the same for all potentials

ψ~k(~r) =
N√
2πkr

∑

ℓm

iℓuℓ(E, r)Y∗
m(ϕr)Ym(ϕk) ,

where the factor N is determined by the choice of the potential and the collision energy (for
the free motion, N = 1 at all energies). The purpose of this factor is to always have exactly
the same normalization, namely,

〈ψ~k|ψ~k′〉 = δ
(

~k − ~k′
)

. (111)

An appropriate value for N can be found as follows. The Riccati-Hankel functions h
(±)
λ (kr) are

two linearly independent solutions of the radial Schrödinger equation (93) without the potential
term. This means that for a short-range potential, its solution asymptotically behaves as a
linear combination of the Riccati-Hankel functions,

uℓ(E, r) −→
r→∞

f
(in)
ℓ (E)h

(−)
λ (kr) + f

(out)
ℓ (E)h

(+)
λ (kr) , (112)
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where the combination coefficients depend on the energy and are called the Jost functions. In
fact, they are the amplitudes of the incoming (−) and outgoing (+) circular waves. On the
other hand, at large distances the wave function ψ~k(~r) consists of the two parts: the initial

(incident) wave ψ
(0)
~k

(~r) and a scattered circular wave that goes in all directions with certain
amplitude F ,

ψ~k(~r) −→r→∞
ψ

(0)
~k

(~r) + F (E,ϕk, ϕr)
eikr√
r
.

If ψ~k(~r) is properly normalized then ψ
(0)
~k

(~r) ≡ ei
~k~r/(2π). This means that the radial wave

function at large distances should also be split in two parts one of which coincides with the
function (105). In doing such a splitting of the function (112), we obtain

uℓ(E, r) −→
r→∞

f
(in)
ℓ

[

h
(−)
λ + h

(+)
λ +

(

f
(out)
ℓ

f
(in)
ℓ

− 1

)

h
(+)
λ

]

and see that N = 1/f
(in)
ℓ , i.e.

ψ~k(~r) =
1√

2πkrf
(in)
ℓ (E)

∑

ℓm

iℓuℓ(E, r)Y∗
m(ϕr)Ym(ϕk) . (113)

A.4 Cross section

Defining the partial-wave S-matrix and the amplitude,

sℓ(E) =
f
(out)
ℓ (E)

f
(in)
ℓ (E)

, fℓ(E) =
sℓ(E)− 1√

2πik
,

and using
h
(+)
λ (kr) −→

r→∞
−i exp [i(kr − λπ/2)] ,

as well as the fact that

∑

m

Y∗
m(ϕr)Ym(ϕk) =











1

2π
, ℓ = 0

1

2π

(

e−iℓϕreiℓϕk + eiℓϕre−iℓϕk

)

, ℓ > 0

=
ǫℓ
2π

cos [ℓ(ϕk − ϕr)] ,
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we can write the asymptotic behaviour of the scattering wave function as

ψ~k(~r) −→r→∞

1

2π

[

ei
~k~r + F(E,ϕ)e

ikr

√
r

]

, (114)

where ϕ = ϕk−ϕr is the scattering angle and the total scattering amplitude has the following
partial-wave expansion

F(E,ϕ) =
∞
∑

ℓ=0

ǫℓfℓ(E) cos(ℓϕ) . (115)

The cross section for a two-dimensional scattering has the units of length. The number of
particles scattered into the angle spanned by the arc r dϕ, is the product of the flux in that
radial direction and the length of the arc. The corresponding cross section dσ is defined as
such a length that after its multiplication by the total incoming flux, it gives the same number
of particles, i.e.

∣

∣

∣

~j(in)
∣

∣

∣
dσ = j(out)r (ϕ)rdϕ .

Using standard definition for the particle flux ~j = ~/(2iµ)(ψ∗~∇ψ− ψ~∇ψ∗) with the operator
~∇ given by Eq. (89), it is not difficult to find that the incoming [corresponding to the first
term of the wave function (114)] and outgoing (obtained from the second term of the same
wave function) fluxes are

~j(in) =
~~k

(2π)2µ
, j(out)r (ϕ) =

~k |F(E,ϕ)|2
(2π)2µr

and thus the differential cross section is

dσ

dϕ
= |F(E,ϕ)|2 .

Using the integral

∫ 2π

0

cos(ℓϕ) cos(ℓ′ϕ)dϕ =











0 , ℓ 6= ℓ′

2π , ℓ = ℓ′ = 0

π , ℓ = ℓ′ 6= 0











=
2π

ǫℓ
δℓℓ′

the total cross section can be written as follows

σ =

∫ 2π

0

|F(E,ϕ)|2 dϕ =
∑

ℓ

σℓ ,

σℓ = 2πǫℓ |fℓ(E)|2 =
ǫℓ
k
|sℓ(E)− 1|2 , (116)

where σℓ is the partial-wave cross section.
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B Expansion coefficients for the holomorphic parts of

the Riccati-Bessel and Riccati-Neumann functions

The Riccati-Bessel and Riccati-Neumann functions jλ(kr) and yλ(kr) can be written in the
following factorized form

jλ(kr) = kλ+1j̃λ(E, r) , (117)

yλ(kr) = k−λỹλ(E, r) + kλ+1h(k)j̃λ(E, r) , (118)

where the ”tilded” functions are holomorphic with respect to the energy variable E. This
means that we can expand them in the Taylor series,

j̃λ(E, r) =
∞
∑

n=0

s(λ)n (E0, r) (E − E0)
n , (119)

ỹλ(E, r) =
∞
∑

n=0

c(λ)n (E0, r) (E − E0)
n , (120)

near an arbitrary point E0. The expansion coefficients,

s(λ)n (E0, r) =
1

n!

∂n

∂En
j̃λ(E, r)

∣

∣

∣

∣

E=E0

, (121)

c(λ)n (E0, r) =
1

n!

∂n

∂En
ỹλ(E, r)

∣

∣

∣

∣

E=E0

, (122)

are expressed via the corresponding derivatives. In order to find them, we notice that

E =
~
2k2

2µ
=⇒ ∂

∂E
=

µ

~2k

∂

∂k
(123)

and also make use of the relations (which follow from Eq.(9.1.30) of the handbook by M.
Abramowitz and I. A. Stegun)

d

dz

[Jλ(z)

zλ+1

]

= −Jλ+1(z)

zλ+1
, (124)

d

dz

[

zλJλ(z)
]

= zλJλ−1(z) , (125)
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where Jλ(z) stands for either jλ(z) or yλ(z). Therefore

∂

∂E
j̃λ(E, r) =

µ

~2k
· ∂
∂k

[

jλ(kr)

kλ+1

]

=
µrλ+2

~2k
· ∂

∂(kr)

[

jλ(kr)

(kr)λ+1

]

=

= −µr
λ+2

~2k

jλ+1(kr)

(kr)λ+1
= −µr

~2
j̃λ+1(E, r)

and thus
∂n

∂En
j̃λ(E, r) =

(

−µr
~2

)n

j̃λ+n(E, r) , (126)

s(λ)n (E0, r) =
1

n!

(

−µr
~2

)n
[

jλ+n(kr)

kλ+n+1

]

E=E0

=
1

n!

(

−µr
~2

)n
√

πr

2

[

Jℓ+n(kr)

kℓ+n

]

E=E0

. (127)

As it should be (since j̃λ(E, r) is single-valued), the expansion coefficients s
(λ)
n (E0, r) do not

depend on the choice of the sign of the momentum k0 = ±
√

2µE0/~2. Indeed,

jλ+n(kr)

kλ+n+1
=

√

πkr

2

Jλ+n+1/2(kr)

kλ+n+1
=

√

πr

2

Jλ+n+1/2(kr)

kλ+n+1/2
, (128)

and since (see Eq.(9.1.35) of M. Abramowitz et al.)

Jν(ze
iπ) =

(

eiπ
)ν
Jν(z) , (129)

the numerator and denominator in Eq. (128) acquire the same phase factor when k changes
its sign.

Finding the derivative ∂nE ỹλ(E, r) is a little bit more complicated. The first derivative can be
written as

∂

∂E
ỹλ(E, r) =

µr1−λ

~2k

{

∂

∂(kr)

[

(kr)λyλ(kr)
]

− ∂

∂(kr)

[

h(k)(kr)λjλ(kr)
]

}

.
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Using Eq. (125) and explicit form of the function h(k) given by Eq. (31), we obtain

∂

∂E
ỹλ(E, r) =

µr1−λ

~2k

[

(kr)λyλ−1(kr)− h(k)(kr)λjλ−1(kr)− (kr)λjλ(kr)
2

πkr

]

=
µr

~2

[

kλ−1yλ−1(kr)− kλ−1h(k)jλ−1(kr)−
2

πr
kλ−2jλ(kr)

]

=
µr

~2
ỹλ−1(E, r)−

2µ

π~2
kλ−2jλ(kr)

=
µr

~2
ỹλ−1(E, r)−

2µ

π~2
fλ1(kr) , (130)

where we introduced an auxiliary function

fλn(k, r) = kλ−2njλ(kr) = kℓ−2n

√

πr

2
Jℓ(kr) , (131)

whose derivatives can be found using the following recurrence relation

∂

∂E

[

kλ−2njλ(kr)
]

=
µ

~2k
r2n−λ+1 ∂

∂(kr)

[

1

(kr)2n
(kr)λjλ(kr)

]

=
µ

~2k
r2n−λ+1

[

− 2n

(kr)2n+1
(kr)λjλ(kr) +

1

(kr)2n
(kr)λjλ−1(kr)

]

= −2nµ

~2
kλ−2(n+1)jλ(kr) +

µr

~2
kλ−1−2njλ−1(kr) ,

i.e.
∂

∂E
fλn = −2nµ

~2
fλ,n+1 +

µr

~2
fλ−1,n . (132)

Repeatedly using the relations (130) and (132), we can calculate any number of the derivatives
∂nE ỹλ(E, r) needed for finding the expansion coefficients (122).
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Figure 1: Deformed contour for integrating differential equations (14,15) and (22,23).
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Er Γ

−32.4850428093 0

−16.2643650096 0

−6.2711504590 0

0.5036180960 2 × 10−15

4.9422440057 0.0000588188

7.1050168573 0.5710776714

7.9987409699 3.6684977768

8.5025637363 7.7605743107

8.5937554145 12.3052581635

8.3193121385 17.0922638769

7.6952969586 21.9663916836

6.7436612278 26.9367555304

5.5244040747 31.8688591621

4.0100103640 36.8118853195

2.2603614329 41.6490284540

Table 1: Spectral points E = Er − iΓ/2 (in the units 10.96meV) generated by the
potential (84). Their distribution on the complex energy surface is shown in Fig. 3.
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Figure 2: Domains D for the potential (84), defined by Eq. (51) (within the solid curve) and
by Eq. (53) for the rotation angle θ = 0.05π (within the dashed curve). The energy is given
in the donor Hartree units (see Sec. 9).
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Figure 3: Spectral points generated by the potential (84). Their numerical values are given
in Table 1.
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Figure 4: Model potential (84) measured in the donor Hartree units 10.96meV as a function
of the distance measured in the units of donor Bohr radius 101.89 Å. The dashed curve is a
typical potential for an empty two-dimensional quantum dot.
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Figure 5: S-wave scattering phase-shift for the potential (84). In the curve ”A” the sharp
jumps in π (corresponding to the first two extremely narrow resonances) are missing and as a
result it does not obey the Levinson’s theorem.
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Figure 6: Comparison of the exact (thick curve) and approximate (thin curve) S-wave cross
section for the potential (84). The approximate curves are obtained using the expansion (69)
with N = 4 (five terms) near the points E0 = 1 × 10.96meV, E0 = 5 × 10.96meV, and
E0 = 7 × 10.96meV. The insert shows a magnified fragment of the curves near the second
resonance.
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Figure 7: The domains within which the Jost function for the potential (84) is reproduced,
using the first five terms (N = 4) of the expansion (69), with the accuracy better than 1%,
5% and 10%. The expansion is done around the point E0 = 7 × [10.96meV] on the real axis.
The star shows the third resonance given in Table 1.
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Figure 8: Spectral points corresponding to the third and fourth resonances of the potential
(84). Stars show their exact locations. Open and filled circles are obtained using the expansion
(69) with N = 2 (three terms) and N = 4 (five terms), respectively. The expansion is done
around the point E0 = (7.55− i1.06)× 10.96meV, which is in the middle between these two
resonances.
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Figure 9: Two possible directions of the angular momentum for a particle moving on a plane.
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