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1 Introduction

A large variety of hypothesis tests in multivariate analysis make use of the likelihood ratio method to derive

appropriate test criteria. Several of the test statistics used are functions of the determinant or product of

determinants of matrix or bimatrix beta variates respectively ([1],[30]), the best known of these statistics is the

Wilks’ statistic [39] defined as Λ ≡
¯̄̄̄

S

S +B

¯̄̄̄
= |U | with S and B two independent (× ) Wishart matrices,

i.e. S ∼  ( I) and B ∼  ( I;Θ), where Θ is the noncentrality parameter and  ≥ . Note

that U = (S +B)
− 1
2 S (S +B)

− 1
2 has the noncentral matrix variate beta type I distribution (A

1
2 is the

unique positive definite square root of A). The distribution under the nonnull hypothesis is of importance when

calculating the power of the test and [3] gave an exact expression for the nonnull distribution of the Wilks’

statistic.

In this paper, the main focus is on deriving exact distributions of statistics that developed within the

noncentral bimatrix beta variates paradigm. Firstly, Bekker, Roux, Ehlers and Arashi [4] defined the product

of two dependent Wilks’ statistics, i.e.

Λ1 ≡
¯̄̄̄
S1

S1+B

¯̄̄̄ ¯̄̄̄
S2

S2+B

¯̄̄̄
= |X1X2|  (1)

where S ∼  ( I)   = 1 2 and B ∼  ( I) are independent, and derived an exact expression for

the density function of Λ1 Suppose the columns of a (×) matrix Z, a (× 1) matrix Y 1 , and a (× 2)

matrix Y 2 are distributed independently in a -variate normal distribution with a common positive definite

covariance matrix Σ Also, let (Z) =M , (Y 1) = 0 and (Y 2) = 0. Then, both Wilks’ statistics

Λ =
|Y 1Y

0
1|

|Y 1Y
0
1 +ZZ

0| and Λ =
|Y 2Y

0
2|

|Y 2Y
0
2 +ZZ

0| (2)
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can be used to test 0 :M = 0 vs  :M 6= 0. Now, in order to use the information available in matrices
Y 1 and Y 2, designate the matrix T = [Y 1 : Y 2]. Then one might use the product of two dependent Wilks’

statistics, i.e. Λ1 = ΛΛ as the likelihood criteria for testing 0 vs  For example, suppose the original

testing problem was based on Λ. But now, suppose we are interested in including the information, that were

neglected in the beginning phase of the analysis, of the  parameters (that are specific to the characteristics that

are examined) from the other source of 2 experimental units. Also consider also the following case: columns

of a (2×) matrix Z, a (2× ) matrix Y are distributed independently in a 2-variate normal distribution

with a common positive definite covariance matrix  (ΣΣ)  and let (Z) =M , (Y ) = 0. Also let the

trio matrices Z, Y andM be partitioned as:

Z =

"
Z1

Z2

#



 Y =

"
Y 1

Y 2

#



 M =

"
M1

M2

#





Consider the following hypotheses(
∗ :M = 0

∗ :M1 6= 0∗1 :M2 6= 0
equivalently

(
∗ :M = 0


 :M1 6= 0M2 6= 0

It is important to note that the alternative hypothesis 
 in the above is different from that ofM 6= 0. Take

M1 = (M11    M11)
0, and M2 = (M21    M22)

0. If M1 = 0, then M = 0, however 
 occurs if at

least for one  = 1     1 and  = 1     2 (M1 = 0M2 = 0). Thus the hypotheses above is different

from 0 : M = 0 vs  : M 6= 0. Then the test Wilks’ statistic for the hypotheses ∗ vs 

 may be

designated as the product of two dependent Wilks’ statistics, similarly as in (2). For X = (X1 :X2)
0
 where

X = (S +B)
− 1
2 S (S +B)

− 1
2   = 1 2 it is said to have the bimatrix variate beta type IV distribution. The

latter distribution has been studied independently by [4], [16] and [24]. ForB ∼ ( I;Θ)  X = (X1 :X2)
0

has the noncentral bimatrix variate beta type IV distribution, studied by [15]. In this paper, we derive the density

function and the cumulative distribution function (CDF) of Λ1 ≡ |X1X2| in terms of Meijer’s G-function for
this noncentral case.

Secondly, let S ∼ ( I),  = 1 2 and B ∼ ( I) independent, and let

U  = (S1 + S2 +B)
− 1
2 S (S1 + S2 +B)

− 1
2   = 1 2 then the distribution of U = (U1 : U2)

0
is known as

the bimatrix variate beta type I distribution. The statistic

Λ2 ≡
¯̄̄̄

S1

S1 + S2 +B

¯̄̄̄ 1
2
1
¯̄̄̄

S2

S1 + S2 +B

¯̄̄̄ 1
2
2

= |U1|
1
2
1 |U2|

1
2
2  (3)

arises when testing whether two normal populations are identical [1]. Testing that two normal distributions are

identical has an important place in multivariate analysis (see [36], pp. 1238 and [19]). In this paper, we derive

an exact expression for the density function and CDF of Λ2 when B ∼ ( I;Θ) (see [17]).

In this paper we focus on the distributional aspect of the generalized statistic Λ3 where the covariance

matrices are not equal ; we consider the case of proportional covariance matrices. More specifically, S∗ ∼
 ( I),  = 1 2 and B

∗ ∼ ( I;Θ
∗) are independent (1 2   0)  with

Λ3 ≡
¯̄̄̄

S∗1
S∗1 + S

∗
2 +B

∗

¯̄̄̄ 1
2
1
¯̄̄̄

S∗2
S∗1 + S

∗
2 +B

∗

¯̄̄̄ 1
2
2

 (4)

The study of Λ3 is a theoretical development of Λ1 and Λ2 proposing a more general statistic, with different

covariances matrices. The application is still to be explored.
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Expression (4) can also be written as

Λ3 ≡
¯̄̄̄

1S1

1S1 + 2S2 + B

¯̄̄̄ 1
2
1
¯̄̄̄

2S2

1S1 + 2S2 + B

¯̄̄̄ 1
2
2

 (5)

with S ∼  ( I)   = 1 2 and B ∼  ( IΘ) independent. This leads to the definition of the

noncentral bimatrix variate beta type V distribution. In this paper, the density function for this proposed

distribution is derived as well as the density function and CDF of Λ3.

The rest of the paper is organized as follows: In section 2 and 3 the exact expressions for the density

functions and CDF’s of (1) and (3) if B ∼ ( I;Θ) are derived respectively. Subsequently, the noncentral

bimatrix variate beta type V distribution is proposed in section 4 and used to derive the density function and

CDF for (5). The expressions are given in terms of Meijer’s G-function, Fox’s H-function, zonal polynomials,

hypergeometric functions with matrix argument, or homogeneous invariant polynomials with two or more matrix

arguments. The reader is referred to the papers ([6],[7],[8],[9],[10],[11],[26],[27],[28]) on these functions; as well as

the reference books ([23],[32],[34]). These density functions of (1)  (3) and (5) are complemented with graphical

representations in the bivariate as well as the bimatrix case. Note there is no loss of generality in assuming

Σ = I in the derivation of the density function of Λ ( = 1 2 3) 

2 Density function of Λ1

For S ∼ ( I)   = 1 2 and B ∼ ( IΘ) independent, let

X = (S +B)
− 1
2 S (S +B)

− 1
2   = 1 2 (6)

then X = (X1 :X2)
0
has the noncentral bimatrix variate beta type IV distribution, denoted as

X ∼ 
 (1 2;Θ)  The density function is given by

 (X1X2)

=
©

¡
1
2
 2
2
; 
2

¢ª−1 2Q
=1

|X|
1
2
− 1

2
(+1) |I −X1|

1
2
(2+)− 1

2
(+1) |I −X2|

1
2
(1+)− 1

2
(+1)

· |I −X1X2|−
1
2
(1+2+) etr

¡−1
2
Θ
¢
11

Ã
1+2+

2
; 
2
; 1
2

∙
I +

2P
=1

X (I −X)
−1
¸−1
Θ

!
 (7)

0  X  I  = 1 2 where   (− 1)   = 1 2   (− 1)  11 (·) is the confluent hypergeometric
function of matrix argument,  ( ; ) =

Γ()Γ()Γ()

Γ(++)
denotes the multivariate beta function, Γ () repre-

sents the multivariate gamma function (Γ () =

Z
0

 (−A) |A|− 1
2
(+1)

dA = 
1
4
(−1)

Y
=1

Γ
¡
− 1

2
(− 1)¢ 

Re ()  1
2
(− 1)  see [14], Eq. 2.3). Firstly, we derive the (1 2) product moment, 

³
|X1|1 |X2|2

´


and use this in an inverse Mellin transform to obtain the density function for Λ1 (see (1)) in terms of Mei-

jer’s G-function. Note that to test equality of the dispersion matrices of two -variate normal populations ([1],

pp.405), the test statistic is based on the product of two dependent Wilks’ statistics but it differs from Λ1 Exact

expressions for the density function of two independent generalized Wilks’ statistics under the null hypothesis

was derived by [35].

3



Lemma 2.1

If (X1X2) ∼ 
 (1 2;Θ) then 

³
|X1|1 |X2|2

´
is given by

[Γ( +12 )]
2

Γ(
1
2 )Γ(

2
2 )
etr
¡−1

2
Θ
¢ P
;∗

1
!!!

¡



¢¡



¢





∗

·()
()

 ()

()

Γ(
1
2
+
+1
2

)
Γ(

1
2
+
+1
2

)

Γ(
1
2
+1)

Γ(
1
2
+1+

+1
2

)

Γ(
2
2
+
+1
2

)
Γ(

2
2
+
+1
2

)

Γ(
2
2
+2)

Γ(
2
2
+2+

+1
2

)

Γ(
1+2+

2
∗)

Γ(2 )


∗
¡
1
2
Θ−I

¢


(8)

where
P

;∗
=
∞P
=0

P


P
=0

P


∞P
=0

P


P
=0

P


P
∈·

∞P
=0

P


P
∗∈·

 (·) is the zonal polynomial corresponding

to  [27], 

∗ (·) denotes the invariant polynomial defined by [9],[9],[11] (see also [6]) and 


∗ and 


 as

defined in [7].

Furthermore, the generalized gamma function of weight  can be expressed as

Γ ( ) = 
1
4
(−1)

Q
=1

Γ
¡
+  − 1

2
(− 1)¢ = Γ () ()  ¡Re () ≥ −1

2
− 

¢
with the generalized hypergeo-

metric coefficient given by () =
Q
=1

¡
− 1

2
(− 1)¢


where () =  (− 1)    (+  − 1)  ()0 = 1

Proof:

The density of (S1S2B) is given by


2Q

=1

h

¡−1

2
S

¢ |S|
1
2
(−−1)

i h

¡−1

2
Θ
¢

¡−1

2
B
¢ |B| 12 (−−1) 01

¡

2
; 1
4
ΘB

¢i
(9)

where −1 = Γ
¡
1
2

¢
Γ
¡
2
2

¢
Γ
¡

2

¢
2
1
2
(1+2+) ([23], Eq.3.5.1) and 01 (·) is the hypergeometric function

of a matrix argument.

On performing the transformations (6) with Jacobian  (S1S2 →X1X2) = |B|(+1)
2Q
=1

|I −X|−(+1)  it
follows from (9) that


³
|X1|1 |X2|2

´
= 

¡−1
2
Θ
¢ Z

0

|B| 12 (1+2+)− 1
2
(+1)


¡−1

2
B
¢
01

¡

2
; 1
4
ΘB

¢
·
Z
01

 (X1B)dX1

Z
02

 (X2B)dX2dB

(10)

where −1 is defined as before and

 (XB) = |X|
1
2
+− 1

2
(+1) |I −X|−

1
2
− 1

2
(+1)


h
−1
2
BX (I −X)

−1
i
  = 1 2

For any H ∈ () =
©
H ∈ ×|H 0H =HH 0 = I

ª
(dH denotes the normalised Haar measure on  ()

([34], pp.60), and using ([7], Eq.30), ([27], Eq.29), ([23], Eq.1.6.2) and ([34], pp.283, Eq.7) it follows thatZ
01

 (X1B)dX1

=

Z
01

Z
()


¡
X1HBH

0¢dHdX1

=

Z
01

|X1|
1
2
1+1− 1

2
(+1) |I −X1|−

1
2
1− 1

2
(+1)

∞P
=0

P


1
!

(− 1
2
)[1(−1)

−1]
()

dX1

=

Z
01

|X1|
1
2
1+1− 1

2
(+1) |I −X1|−

1
2
1− 1

2
(+1)

0
()
0

³
−1
2
BX1 (I −X1)

−1
´
dX1

=
∞P
=0

P


1
!


1
2
1



¡
1
2
B
¢ Z

01

|X1|
1
2
1+1− 1

2
(+1) (1)

()
dX1
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where  (·) is the Laguerre polynomial of a symmetric matrix [34]. Next, using ([9], Eq.3.2) and ([23], Eq.1.7.4)
we haveZ

01

 (X1B) dX1 =
∞P
=0

P


1
!


1
2
1



¡
1
2
B
¢ Γ(12 +1)Γ( +12 )
Γ(

1
2
+1+

+1
2

)

=
∞P
=0

P


P
=0

P


1
!

¡



¢()
()

Γ(
1
2
+
+1
2

)
Γ(

1
2
+
+1
2

)

Γ(
1
2
+1)Γ( +12 )

Γ(
1
2
+1+

+1
2

)
(−12B)

(11)

Similarly,Z
02

 (X2B) X2 =
∞P
=0

P


P
=0

P


1
!

¡



¢ ()
()

Γ(
2
2
+
+1
2

)
Γ(

2
2
+
+1
2

)

Γ(
2
2
+2)Γ( +12 )

Γ(
2
2
+2+

+1
2

)
(−12B) (12)

Substituting (11) and (12) in (10) yields


³
|X1|1 |X2|2

´
= 

¡−1
2
Θ
¢ £
Γ
¡
+1
2

¢¤2 ∞P
=0

P


P
=0

P


1
!

¡



¢()
()

Γ(
1
2
+
+1
2

)
Γ(

1
2
+ +1

2
)

Γ(
1
2
+1)

Γ(
1
2
+1+

+1
2

)

·
∞P
=0

P


P
=0

P


1
!

¡



¢ ()
()

Γ(
2
2
+ +1

2
)

Γ(
2
2
+ +1

2
)

Γ(
2
2
+2)

Γ(
2
2
+2+

+1
2

)

Z
0

 (B)dB (13)

Applying ([9], Eq.2.8 and Eq.2.10), ([7], Eq.25) and ([6], Eq.3.21) it follows thatZ
0

 (B)dB

=

Z
0

|B| 12 (1+2+)− 1
2
(+1)


¡− 1

2
B
¢
01

¡

2
; 1
4
ΘB

¢


¡−1
2
B
¢


¡−1
2
B
¢
dB

=
P

∈·




Z
0

|B| 12 (1+2+)− 1
2
(+1)


¡−1

2
B
¢
01

¡

2
; 1
4
ΘB

¢


¡−1
2
B
¢
dB

=
P

∈·




∞P
=0

P


1
!

1

(2 )

P
∗∈·



∗

Z
0

|B| 12 (1+2+)− 1
2
(+1)


¡−1

2
B
¢


∗
¡
1
4
ΘB−1

2
B
¢
dB

= 2
1
2
(1+2+)

P
∈·





∞P
=0

P


1
!

1

(2 )

P
∗∈·



∗ Γ

¡
1+2+

2
 ∗
¢


∗
¡
1
2
Θ−I

¢


(14)

Substituting (14) in (13) completes the proof. ¥

Now using this result (8)  we are in a position to derive the exact expression for the density function and the

CDF of Λ1.

Theorem 2.1

Let (X1X2) ∼ 
 (1 2;Θ) and Λ1 = |X1X2| 

Then the density of Λ1 is given by

[Γ( +12 )]
2

Γ(
1
2 )Γ(

2
2 )


¡−1

2
Θ
¢ P
;∗

1
!!!

¡



¢¡



¢





∗

()

()

 ()

()

·Γ(
1
2
++1

2
)

Γ(
1
2
+ +1

2
)

Γ(
2
2
+ +1

2
)

Γ(
2
2
+ +1

2
)

Γ(
1+2+

2
∗)

Γ(2 )


∗
¡
1
2
Θ−I

¢

20
22

³
1|1212

´


(15)
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0  1  1 where
P

;∗
=
∞P
=0

P


P
=0

P


∞P
=0

P


P
=0

P


P
∈·

∞P
=0

P


P
∗∈·

  (·) denotes Meijer’s G-function
([32], pp.60) and

 =

⎧⎪⎨⎪⎩
1
2
+ −1

2
+ (+1)2 − 1

4
(− 1) for  = 1 3 5     2− 1

2
2
+ −1

2
+ 2 − 1

4
(− 2) for  = 2 4 6     2

 =

⎧⎪⎨⎪⎩
1
2
− 1 + (+1)2 − 1

4
(− 1) for  = 1 3 5     2− 1

2
2
− 1 + 2 − 1

4
(− 2) for  = 2 6 10     2

Proof:

Using (8) the Mellin transform (see [32], Eq.1.8.1) of  (1) is

 () ≡ 
¡
Λ−11

¢
= 

h
(|X1X2|)−1

i
=

[Γ( +12 )]
2

Γ(
1
2 )Γ(

2
2 )


¡−1

2
Θ
¢ P
;∗

1
!!!

¡



¢¡



¢





∗

()

()

 ()

()

·Γ(
1
2
+ +1

2
)

Γ(
1
2
++1

2
)

Γ(
2
2
+ +1

2
)

Γ(
2
2
+ +1

2
)

Γ(
1+2+

2
∗)

Γ(2 )

Γ(
1
2
+−1)

Γ(
1
2
++ −1

2
)

Γ(
2
2
+−1)

Γ(
2
2
++ −1

2
)



∗
¡
1
2
Θ−I

¢


(16)

The generalized gamma functions of weights  and  respectively in (16) can be written as

Γ
¡
1
2
+ + −1

2
 
¢
Γ
¡
2
2
+ + −1

2
 
¢
= 

1
2
(−1) 2Q

=1

Γ ( + )  (17)

and

Γ
¡
1
2
+ − 1 ¢Γ ¡22 + − 1 ¢ = 

1
2
(−1) 2Q

=1

Γ ( + ) (18)

with  and  as defined above.

Now, substituting (17) and (18) in (16) gives

 () ≡ [Γ( +12 )]
2

Γ(
1
2 )Γ(

2
2 )


¡−1

2
Θ
¢ P
;∗

1
!!!

¡



¢¡



¢





∗

()

()

 ()

()

·Γ(
1
2
+
+1
2

)
Γ(

1
2
+
+1
2

)

Γ(
2
2
+
+1
2

)
Γ(

2
2
+
+1
2

)

Γ(
1+2+

2
∗)

Γ(2 )


∗
¡
1
2
Θ−I

¢ Q2

=1
Γ(+)Q

2

=1
Γ(+)

 (19)

Applying the inverse Mellin transform on (19) (see [32], Eq.1.8.2), the result (15) follows. ¥
Theorem 2.2

Let (X1X2) ∼ 
 (1 2;Θ) and Λ1 = |X1X2| with density function given by (15).

Then the CDF of Λ1 is given by

 (1) =  (Λ1 ≤ 1) =
[Γ( +12 )]

2

Γ(
1
2 )Γ(

2
2 )


¡−1

2
Θ
¢ P
;∗

1
!!!

¡



¢¡



¢




³


∗

´2
()

()

 ()

()

·Γ(
1
2
+ +1

2
)

Γ(
1
2
+ +1

2
)

Γ(
2
2
++1

2
)

Γ(
2
2
++1

2
)

Γ(
1+2+

2
∗)

Γ(2 )

 (
1
2
Θ)∗ (−)
()


21
2+12+1

³
1|11+12+11+12+10

´

6



0  1  1 where
P

;∗
=
∞P
=0

P


P
=0

P


∞P
=0

P


P
=0

P


P
∈·

∞P
=0

P


P
∗∈·

 and  and  as specified in

Theorem 2.1.

Proof:

Applying ([33], Eq 2.53) and ([32], Eq. 2.2.1) completes the proof. ¥

For the bivariate case,  = 1 Corollary 2.1 gives the density function and CDF of Λ1 = 12 where (12) ∼


1 (1 2; ).

Corollary 2.1

If (12) ∼ 
1 (1 2; ) then the

(a) density function of Λ1 = 12 is

 (1) = 1

Γ(12 )Γ(
2
2 )

−
1
2


1
2
2−1

1

∞P
=0

1
!
(1− 1)

1
2
+−1 Γ(2+2 +)Γ(1+2 +)Γ(1+2+2

+)
Γ(2 +)Γ(

1+2+2

2
+2)

¡

2

¢
· 21

¡
2+
2

+  2+
2

+ ; 1+2+2
2

+ 2; 1− 1
¢
 0  1  1

= 1

Γ(12 )Γ(
2
2 )

−
1
2

∞P
=0

∞P
=0

1
!!

¡

2

¢ Γ(2+2 +)Γ(1+2 +)Γ(1+2+2
++)

Γ(2 +)

·2022
µ
1|

1+2+

2
++−11+2+

2
++−1

1
2
+−12

2
+−1

¶
(20)

and

(b) CDF of Λ1 = 12 is

 (1) =  (Λ1 ≤ 1) = −
1
2

∞P
=0

∞P
=0

1
!!

¡

2

¢ Γ(2+2 +)Γ(1+2 +)Γ(1+2+2
++)

Γ(12 )Γ(
2
2 )Γ(


2
+)

· 2133
µ
1|1

1+2+

2
++

1+2+

2
++

1
2
+

2
2
+0

¶
 0  1  1

where 21 (·) is the Gauss hypergeometric function with scalar argument (see [20]).
Expression (20), in terms of the Gauss hypergeometric function, was studied and used by [25] to calculate

percentage points. The effect of the noncentrality parameter on the form of the pdf of Λ1 will be illustrated

Figure 1 shows the effect of the noncentrality parameter  on  (1)  given by (20)  where (12) ∼


1 (8 8 8; ). As  increases the density  (1) shifts towards smaller values of Λ1.

Secondly, in Figure 2 we consider the bimatrix case,  = 2 to illustrate the effect of the noncentrality parameter

Θ on the density function of Λ1 (see (15)) where (X1X2) ∼ 
2 (8 8 8;Θ), Θ = I2 We note that as 

increases the density function shifts towards smaller values of Λ1
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IV8, 8,8;Θ, Θ  I2
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3 Density function of Λ2

If U = (U1 : U2)
0
has the noncentral bimatrix variate beta type I distribution, denoted asU ∼ 

 (1 2;Θ) 

the density function is given by

 (U1U2) =
©

¡
1
2
 2
2
; 
2

¢ª−1 2Q
=1

|U |
1
2
− 1

2
(+1)

¯̄̄̄
I −

2P
=1

U 

¯̄̄̄ 1
2
− 1

2
(+1)

· ¡−1
2
Θ
¢
11

µ
1+2+

2
; 
2
; 1
2

µ
I −

2P
=1

U 

¶
Θ

¶
 (21)

0  U   I,  = 1 2 0 
2P

=1

U   I where   (− 1)   = 1 2   (− 1) and with product moment
[see [12]]


³
|U1|1 |U2|2

´
=

Γ(
1+2+

2 )
Γ(

1
2 )Γ(

2
2 )

Γ(
1
2
+1)Γ(

2
2
+2)

Γ(
1+2+

2
+1+2)

· ¡−1
2
Θ
¢
11

¡
1+2+

2
; 1+2+

2
+ 1 + 2;

1
2
Θ
¢


(22)

where Re
¡

2
+ 

¢
 1

2
(− 1)   = 1 2. Subsequently, we now derive an exact expression for the density

function and CDF of Λ2 For asymptotic distribution of a suitable function of Λ2 the reader is referred to [12]

and [22].

Theorem 3.1

Let (U1U2) ∼ 
 (1 2;Θ) and Λ2 = |U1|

1
2
1 |U2|

1
2
2 

Then the density function of Λ2 is given by


1
4
(−1)

Γ(
1
2 )Γ(

2
2 )


¡−1

2
Θ
¢ ∞P
=0

P


1
!
Γ
¡
1+2+

2
 
¢


¡
1
2
Θ
¢

20
2

µ
2|(11)()

(11)(22)

¶
 (23)

0  2  1 where  (·) denotes Fox’s H-function ([30], pp.140 and [33]) and
 =


2
+  − 1

2
( − 1) for  = 1 2       =

1+2
2

for  = 1 2     

 =

⎧⎨⎩ −
1
4
( − 1) for  = 1 3 5     2− 1

−1
4
( − 2) for  = 2 4 6     2

 =

⎧⎨⎩
1
2

for  = 1 3 5     2− 1
2
2

for  = 2 4 6     2

Proof:

Using (22)  ([7], Eq.25), the inverse Mellin transform and definition of the H-function, the result (23) follows.¥

Theorem 3.2

Let (U1U2) ∼ 
 (1 2;Θ) and Λ2 = |U1|

1
2
1 |U2|

1
2
2 

Then the CDF of Λ2 is given by

 (2) =  (Λ2 ≤ 2) =

1
4
(−1)

Γ(
1
2 )Γ(

2
2 )


¡−1

2
Θ
¢ ∞P
=0

P


1
!
Γ
¡
1+2+

2
 
¢


¡
1
2
Θ
¢

·21
+12+1

µ
2|(11)(1+11)(+)

(1+11)(2+22)(01)

¶ (24)

0  2  1 with      as specified in Theorem 3.1.
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Proof:

Applying ([33], Eq.2.53) and ([33], Eq.1.60) completes the proof. ¥

For the bivariate case,  = 1 Corollary 3.1 gives the density function and CDF of Λ2 = 
1
2
1

1 
1
2
2

2 where

(1 2) ∼ 
1 (1 2; ).

Corollary 3.1

If (1 2) ∼ 
1 (1 2; ) then the

(a) density function of Λ2 = 
1
2
1

1 
1
2
2

2 is

 (2) =
1

Γ(12 )Γ(
2
2 )

−
1
2

∞P
=0

1
!

¡

2

¢
Γ
¡
1+2+

2
+ 

¢
·20

12

µ
2|(


2
+

1+2
2 )

(012 )(0
2
2 )

¶
 0  2  1 (25)

and

(b) CDF of Λ2 = 
1
2
1

1 
1
2
2

2 is

 (2) =  (Λ2 ≤ 2) =
1

Γ(12 )Γ(
2
2 )

−
1
2

∞P
=0

1
!

¡

2

¢
Γ
¡
1+2+

2
+ 

¢
· 21

23

µ
2|(11)(


2
+
1+2

2
+

1+2
2 )

(12 
1
2 )(

2
2

2
2 )(01)

¶
 0  2  1

The effect of the noncentrality parameter on the density function of Λ2  (2)  is shown in Figures 3 and

4 where (1 2) ∼ 
1 (2 2 2; ) and (U1U2) ∼ 

2 (2 2 2;Θ) (Θ = I2) respectively. In Figure 3, at

smaller values of Λ2 the density function increases as  increases, whilst for  = 2 i.e. Figure 4, the density

function shifts towards smaller values of Λ2 for increasing .
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Remark 3.1

(a) As pointed out by [37], the computation for hypergeometric functions of matrix arguments, or zonal

polynomials are in a state of development. Therefore the sequential saddlepoint approximation is used to

calculate tail probabilities of lnΛ2. In this method the cumulant generating function () = lnlnΛ2 ()

is used, wherelnΛ2 () is the moment generating function of lnΛ2. From (22) and ([34], pp.265, Eq.(6)):

9



lnΛ2 () =  (Λ2)

= 
³
|U1|

1
2
1 |U2|

1
2
2
´

=
Γ(

1+2+

2 )
Γ(

1
2 )Γ(

2
2 )

Γ(
1
2
+
1

2 )Γ(
2
2
+
2

2 )
Γ(

1+2+

2
+
1+2

2 )

· ¡−1
2
Θ
¢
11

¡
1+2+

2
; 1+2+

2
+ 1+2

2
; 1
2
Θ
¢

=

Y

=1

Γ(1+2+2
− 1
2
(−1))Y

=1

Γ(12 − 1
2
(−1))

Y

=1

Γ(22 − 1
2
(−1))

Y

=1

Γ(12 +
1

2
− 1
2
(−1))

Y

=1

Γ(22 +
2

2
− 1
2
(−1))Y

=1

Γ(1+2+2
+
1+2

2
− 1
2
(−1))

· 11
¡
1+2

2
; 1+2+

2
+ 1+2

2
;−1

2
Θ
¢

(26)

The method involves two stages:

(1) replacing the relevant hypergeometric function of matrix argument in (26) by the calibrated Laplace

approximation 1̂1;

(2) using the Lugananni and Rice tail probability approximation.

For more detail the reader is referred to [5] and [31]. Table 1 gives values of the tail probabilities,

̂ (lnΛ2  ) for  = 2 1 = 2 3 = 2 = 2Θ = I2 for different values of 

 0 1 8

Approximated values 0056 0045 0001

Simulated empirical values 0055 0032 0001

Table 1: ̂ (lnΛ2  −45)

(b) Consider Θ = I, using ([23], Eq.1.5.5) and ([33], Eq.A.69) to write  (·) in a computational form, (24)
could be evaluated. However, careful consideration should be given to the gamma function for negative

integer values (see also [2]). In commercial software like MATHEMATICA or MAPLE Meijer’s G-function

is available, but the Fox H-function is still in a developing stage (see also [40]).

4 Density function of Λ3 - noncentral bimatrix variate beta type V

Firstly, in this section the noncentral bimatrix variate beta type V distribution is introduced, followed by the

expression for the product moment. Lastly, we obtain an exact expression for the density function, as well as

the CDF of Λ3 (see (5)). The bimatrix variate beta type V distribution allows for constant factors to be built

into the covariance matrices of Wishart matrix variates from which this distribution is generated, and as such

may be useful in test statistics requiring this.

Lemma 4.1

Let S1 ∼ (1 I)  S2 ∼ (2 I) and B ∼ ( I;Θ) be independently distributed. Consider the

ratios

Q = (1S1 + 2S2 + B)
− 1
2 (S) (1S1 + 2S2 + B)

− 1
2   = 1 2 (27)

Then density function of Q =(Q1 : Q2)
0
 denoted as Q ∼

 (1 2 1 2 ;Θ)  is given by

10



 (Q1Q2)

=
©

¡
1
2
 2
2
; 
2

¢ª−1 2Q
=1

|Q|
1
2
− 1

2
(+1)

¯̄̄̄
I −

2P
=1

Q

¯̄̄̄ 1
2
− 1

2
(+1) 2Q

=1

³



´ 1
2

¯̄̄̄
I +

2P
=1

−

Q

¯̄̄̄− 1
2
(1+2+)

· ¡−1
2
Θ
¢
11

Ã
1+2+

2
; 
2
; 1
2

µ
I −

2P
=1

Q

¶ 1
2
µ
I +

2P
=1

−

Q

¶−1µ
I −

2P
=1

Q

¶ 1
2

Θ

!


(28)

0  Q  I  = 1 2 0 
2P

=1

Q  I where   (− 1)   = 1 2 and   (− 1) 
Proof:

On performing the transformations (27) where Q = S
− 1
2 (S)S

− 1
2   = 1 2 with S = 1S1 + 2S2 + B

the Jacobian is  (S1S2B → Q1Q2S) =

µ

2Q
=1



¶− 1
2
(+1)

|S|(+1)  From (9) follows that

 (Q1Q2S)

= 
¡−1

2
Θ
¢ 2Q
=1


− 1
2


 −
1
2


2Q
=1

|Q|
1
2
− 1

2
(+1)

¯̄̄̄
I −

2P
=1

Q

¯̄̄̄ 1
2
− 1

2
(+1)

· |S| 12 (1+2+)− 1
2
(+1)



∙
− 1
2
S

µ
I +

2P
=1

−

Q

¶¸
01

µ

2
; 1
4
ΘS

1
2

µ
I −

2P
=1

Q

¶
S

1
2

¶
 (29)

where −1 = Γ
¡
1
2

¢
Γ
¡
2
2

¢
Γ
¡

2

¢
2
1
2
(1+2+).

We consider the symmetrised density function of (Q1Q2) defined by [21], that is

 (Q1Q2) ≡
Z
0

Z
()


¡
HQ1H

0HQ2H
0HSH 0¢dHdS where H ∈  ()  Note that dS = dHSH 0

[13]. From (29)  ([7], Eq.25) and ([17], Eq.2.3.6)

 (Q1Q2)

= 
2Q
=1


− 1
2


 −
1
2


2Q
=1

|Q|
1
2
− 1

2
(+1)

¯̄̄̄
I −

2P
=1

Q

¯̄̄̄ 1
2
− 1

2
(+1) Z

0

|S| 12 (1+2+)− 1
2
(+1)

·
∙
− 1
2
S

µ
I +

2P
=1

−

Q

¶¸Z
()

01

Ã

2
; 1
4

µ
I −

2P
=1

Q

¶ 1
2

H 0ΘH
µ
I −

2P
=1

Q

¶ 1
2

S

!
dHdS

(30)

Integrating (30) with respect to S by using ([23], Eq.1.6.4) and since  (Q1Q2) =

Z
()


¡
HQ1H

0HQ2H
0¢dH

the result (28) follows from applying the result of Greenacre [21] in an inverse way (see [13]). ¥

Remark 4.1

Ehlers, Bekker and Roux [18] derived the result in (28) for the bivariate case, that is where  = 1 and also

studied some properties of the noncentral bivariate beta type V distribution.

Lemma 4.2

If (Q1Q2) ∼ 
 (1 21 2 ;Θ) as given by (28) then for 1 = 2 = , 

³
|Q1|1 |Q2|2

´
is

given by

Γ(
1
2
+1)Γ(

2
2
+2)

Γ(
1
2 )Γ(

2
2 )

¡



¢− 1
2



¡−1

2
Θ
¢ P
 ;





1
!!

Γ(2 )Γ(
1+2+

2
)

Γ(2 )Γ(
1+2+

2
+1+2)



 ( 

2
Θ −


I) (31)
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where
P
 ;

=
∞P
=0

P


∞P
=0

P




Proof:

From (29) with 1 = 2 =  and using ([23], pp.22) yields


³
|Q1|1 |Q2|2

´
= −

1
2
(1+2)−

1
2


¡−1
2
Θ
¢ Z

0

|S| 12 (1+2+)− 1
2
(+1)

·
Z Z
01+2

0

2Q
=1

|Q|
1
2
+− 1

2
(+1)



µ
2P

=1

Q

¶
dQ1dQ2dS

= −
1
2
(1+2)−

1
2


¡−1
2
Θ
¢

¡
1
2
+ 1

2
2
+ 2

¢ Z
0

|S| 12 (1+2+)− 1
2
(+1)

Z
0

 (Z)dZdS

(32)

where

 (Z) = |Z| 12 (1+2)+1+2− 1
2
(+1) |I −Z|

1
2
− 1

2
(+1)


£− 1

2
S
¡
I +

−

Z
¢¤

01

³

2
; 1
4
S

1
2ΘS

1
2 (I −Z)

´


Let X = I −Z; using ([7], Eq.25 and Eq.30), ([8], Eq.2.8) and ([6], Eq.3.28) we obtainZ
0

 (Z)dZ

= 
¡− 1

2
S
¢ ∞P
=0

P


∞P
=0

P


P
∈·





1
!!

1

(2 )

·
Z
0

|X| 12− 1
2
(+1) |I −X|

1
2
(1+2)+1+2− 1

2
(+1)



 ( 1

4
S

1
2ΘS

1
2X −

2
SX)dX

= 
¡− 1

2
S
¢ P
 ;





1
!!

Γ(2 )
Γ(2 )

Γ(2 )Γ(
1+2

2
+1+2)

Γ(
1+2+

2
+1+2)



 ( 1

4
ΘS −

2
S)

(33)

Substituting (33) in (32) and applying ([6], Eq.3.21) completes the proof. ¥

Armed with the results in Lemma 4.1 and 4.2, we can derive the key result, namely the density function of Λ3

(see (5)).

Theorem 4.1

Let (Q1Q2) ∼ 
 (1 2   ;Θ) with density function given by (28) and let Λ3 = |Q1|

1
2
1 |Q2|

1
2
2 

Then the density function of Λ3 is given by


1
4
(−1)

Γ(
1
2 )Γ(

2
2 )

¡



¢− 1
2



¡−1

2
Θ
¢ P
 ;





1
!!

Γ(2 )Γ(
1+2+

2
)

Γ(2 )


 ( 

2
Θ −


I)

20
2

µ
3|(11)()

(11)(22)

¶


(34)

0  3  1 where
P
 ;

=
∞P
=0

P


∞P
=0

P


P
∈·

and

 =

2
+ ( + )− 1

2
( − 1) for  = 1 2 3       =

1+2
2

for  = 1 2 3     

 =

⎧⎪⎨⎪⎩
−1
4
( − 1) for  = 1 3 5     2− 1

−1
4
( − 2) for  = 2 4 6     2

 =

⎧⎪⎨⎪⎩
1
2

for  = 1 3 5     2− 1
2
2

for  = 2 4 6     2
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Proof:

Similar to the proof of Theorem 2.1. ¥

Theorem 4.2

Let (Q1Q2) ∼ 
 (1 2   ;Θ) with density function given by (28) and let Λ3 = |Q1|

1
2
1 |Q2|

1
2
2 

Then the CDF of Λ3 is given by

 (3) =  (Λ3 ≤ 3) =

1
4
(−1)

Γ(
1
2 )Γ(

2
2 )

¡



¢− 1
2



¡−1

2
Θ
¢ P
 ;

³




´2 ¡

2

¢ ¡ −


¢ Γ(2 )Γ(1+2+2
)

Γ(2 )

·()(Θ)
!!()


21
+12+1

µ
3|(11)(1+11)(+)

(1+11)(2+22)(01)

¶

0  3  1 where
P
 ;

=
∞P
=0

P


∞P
=0

P


P
∈·

and with        as specified in Theorem 4.1.

Proof:

Applying ([33], Eq.2.53), ([33], Eq.1.60) and ([9], Eq.2.2, Eq.2.7) completes the proof. ¥

For the bivariate case,  = 1 that is where (12) ∼ 
1 (1 2 1 2 ; )  the product moment


³
1
1 2

2

´
is given for this special case in Corollary 4.1 The density function and the CDF of Λ3 = 

1
2
1

1 
1
2
2

2

is given in Corollary 4.2 as an immediate result.

Corollary 4.1

If (12) ∼ 
1 (1 2 1 2 ; ) then from [18],


³
1
1 2

2

´
=

Γ(12 +1)Γ(
2
2
+2)

Γ(12 )Γ(
2
2 )

³

1

´ 1
2
1 ³


2

´ 1
2
2

−
1
2

∞P
=0

1
!

Γ(1+2+2
+)

Γ(1+2+2
++1+2)

¡

2

¢
·1

³
1+2+

2
+  1

2
+ 1

2
2
+ 2

1+2+
2

+  + 1 + 2;
1−
1

 2−
2

´
 (35)

where 1 (·) is the Appell function of the first kind.

Corollary 4.2

If (1 2) ∼ 
1 (1 2 1 2 ; ) then the

(a) density function of 3 = 
1
2
1

1 
1
2
2

2 (see [18])

 (3) =
1

Γ(12 )Γ(
2
2 )

³

1

´ 1
2
1 ³


2

´ 1
2
2

−
1
2

∞P
=0

∞P
=0

∞P
=0

1
!!!
Γ
¡
1+2+

2
+  + + 

¢
· ¡ 
2

¢ ³1−
1

´ ³
2−
2

´

20
12

µ
3|(


2
+++

1+2
2 )

(12 )(
2
2 )

¶
 0  3  1 (36)

and

(b) CDF of 3 is

 (3) =  (Λ3 ≤ 3) =
1

Γ(12 )Γ(
2
2 )

³

1

´ 1
2
1 ³


2

´ 1
2
2

−
1
2

∞P
=0

∞P
=0

∞P
=0

1
!!!
Γ
¡
1+2+

2
+  + + 

¢
· ¡ 
2

¢ ³1−
1

´ ³
2−
2

´

21
23

µ
3|(11)(


2
+
1+2

2
+++

1+2
2 )

(+1
2

1
2 )(+

2
2

2
2 )(01)

¶
 0  3  1
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Subsequently, graphical representations will show the effect of the parameters 1 2 and  on the form of the den-

sity function of Λ3 Figure 5 shows the effect of 1 on  (3) (see (36)) where (1 2) ∼ 
1 (2 2 2 1 1 1).

At smaller values of Λ3 the density function,  (3)  increases as 1 decreases. Figure 6 illustrates the shape

of  (3) (see (34)) for increasing values of  where (Q1Q2) ∼ 
2 (2 2 2   1)  We note that as 

increases the density function shifts towards larger values of Λ3
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In Figure 7 the effect of the additional parameter  on  (3) (see (36)) was studied where (1 2) ∼


1 (2 2 2 1 1 )  At smaller values of Λ3 the density function,  (3)  increases as  increases. Figure 8

illustrates the shape of  (3) (see (34)) for increasing values of  where (Q1Q2) ∼ 
2 (2 2 2 1 1 ) 
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5 Conclusions

Bekker, Roux, Ehlers and Arashi [4] defined Λ1 ≡
¯̄̄

1
1+

¯̄̄ ¯̄̄
2

2+

¯̄̄
, the product of two dependentWilks’statistics,

and in this paper we focussed on the case if the common "denominator" of the "ratios" has the noncentral

Wishart distribution. An exact expression for the density function, as well as the CDF of

Λ2 ≡
¯̄̄

1
1+2+

¯̄̄ 1
2
1
¯̄̄

2
1+2+

¯̄̄ 1
2
2
= |U1|

1
2
1 |U2|

1
2
2 was given for B having a noncentral Wishart distribu-

tion. The noncentral bimatrix variate beta type V distribution, that allows for different covariance structure,

was introduced with the corresponding generalized statistic Λ3 and its density function expression. The effect

of specific parameters on the density functions of Λ  = 1 2 3 were shown. This paper makes a substantial

contribution to the field of multivariate statistical analysis with the potential to be applied to hypothesis testing

where two samples are present. A reason for the lack of exact expressions for the distributions of the test statis-

tics under the nonnull hypothesis in the past is because of the limitation of software packages to handle the final

expressions which are quite complicated. These functions are becoming more computable due to the availability

14



of packages and algorithms, see [29]. Since exact expressions for the density functions of these statistics are now

available exact confidence intervals can also be determined.
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