
A comparison of collinearity mitigation techniques used in predicting (BLUP)

breeding values and genetic gains over generations

Karen A. Eatwell1*, Stephen D. Verryn2, Carl Z. Roux1, and Peter J.M. Geerthsen3

1Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa.

2Creation Breeding Innovations cc, 75 Kafue Street, Lynnwood Glen Pretoria, 0081, South

Africa.

311 Poole Street, Florida, Johannesburg, 1709, South Africa

Corresponding author, email: keatwell@csir.co.za

Collinearity potentially has a negative impact on the prediction of genetic gains in tree

breeding programs.  The study investigated the reliability and impact of BLUP using

various collinearity mitigation techniques and of two computational numerical precisions on

the genetic gains in breeding populations. Multiple-trait, multiple-trial BLUP selection

scenarios were run on Eucalyptus grandis (F1,  F2 and F3) and Pinus patula (F1 and F2)

data, comparing predicted breeding values of parents (forward prediction) with those

realised in progeny (backward prediction of parents).

Numeric precision had an impact on inter-generational correlations of BLUPs of some

scenarios, indicating that it may not always be optimal to use higher precision when there

is collinearity in the data.  The relative difference in genetic gains between techniques

varied by up to 0.38 standard deviation units in the less stable pine population. This
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highlights the potentially large impact that instability can have on the efficiency of a

breeding programme. BLUP performed close to expected in the relatively stable (less

collinear) population (eucalypt F1), and performed poorly in the other two populations.  In

the unstable pine data, some of the techniques resulted in improved inter-generational

correlations coming in line with expected performance.

This study indicates that BLUP can perform as expected and also confirms the potential

problem of instability and consequences thereof. BLUP users should examine the nature

of the population of predicted values and should these be outside expectation, various

mitigation techniques should be explored.
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Introduction

In most tree breeding programmes, use is made of data from breeding field trials, to rank

the parents or progeny in order of breeding worth, and to select the best trees to breed

with or for production purposes. The breeding field trials are usually established over a

number of years and locations in order to sample a wide range of environmental conditions

(White and Hodge 1989). The data generated from such breeding trials are often

unbalanced (White and Hodge 1989), thereby requiring appropriate selection strategies.

Best Linear Unbiased Prediction (BLUP) is theoretically well-suited to predicting breeding

values from data that come from a wide range of sources, qualities, quantities and ages

and is particularly useful for unbalanced or messy data (White and Hodge 1989, Furlani et

al. 2005).  BLUP requires non-collinear data (Piepho et al. 2008) however, this is often not

the practical reality. Forward selection is important in forest tree breeding for advanced

generation breeding as the best individuals are used as the base material for the next



generation of breeding (Ruotsalainen and Lindgren 1998). The effectiveness of the

predictions thus influences the breeding progress.

In simulation research, where 60 randomly generated breeding populations of 1000 trees

were created and various predictive techniques used, Best Linear Prediction (BLP) did not

obtain the predicted gains in 80% of the cases studied (Verryn 1994). The

underperformance of BLP using the White and Hodge (1989) BLP models and

methodology, was attributed to instability caused by collinearity (lack of variable

independence).  This simulation study revealed the need to investigate the effects of

instability in experimental data, and possible mitigation methods, prompting the

investigation of these effects using BLUP in multi-generational eucalypt and pine field

data.

Collinearity has been described as an ‘approximate’ linear relationship or a shared

variance among the predictor variables in the data (Belsey et al. 1980). Collinearity, or ill

conditioning, has also been described as a problem that arises when there are correlated

‘independent’ variables. This phenomenon is not uncommon in tree breeding trials and

BLUP (regression) models.  It is however, generally accepted that such correlations are

permissible as long as there is a justifiable amount of new information from such variables.

Inclusion of correlated variables in BLUP models is one of the main attractions of the

technique for tree breeders.

When there is a perfect correlation between the ‘independent’ variables included in the

BLUP model, the phenotypic variance-covariance matrix becomes singular and its inverse

cannot be computed uniquely, resulting in the inability to calculate the estimates of β

(Mitchell-Olds and Shaw 1987). When inverting a matrix that is nearly singular, the solution



is computationally unstable, with different matrix inversion methods yielding different

results, and the instability is reflected in large sampling variances of the estimates of β

(Mitchell-Olds and Shaw 1987). This problem may be encountered in BLUP and could

adversely affect the predictions (Verryn 1994).

Regression models containing highly correlated variables may give unstable parameter

estimates because small changes in the observed values of the dependent variables could

lead to large changes in regression coefficient estimates (McGriffin et al. 1988).

Collinearity leads to regression coefficients with round off errors, unstable estimates,

incorrect signs and inflated variances (McGriffin et al. 1988).  Although collinear predictors

may adversely affect the variance of a specific coefficient, they do not operate in isolation

and the effects of sample size, overall fit of the regression models, and the interactions

between these factors and collinearity occur (Mason and Perreault 1991). Sample sizes

(family frequencies) vary between families and between trial sites in most tree breeding

populations, which can cause collinearity to ‘randomly’ occur in such datasets.

The study compared the predicted breeding values of parents (forward prediction) with

those realised in their progeny (backward prediction), using eucalypt and pine breeding

trials.  The impact on the realised genetic gains in the populations was also investigated.

Materials and methods

The approach

A series of forward BLUP breeding values, using a range of economic weightings of traits

applied to historic F1 and F2 data were made. The realised, backward (BLUP) breeding

values of the next generation (F2 and F3) data (of progeny from the F1 and F2 selections)

using the same range of economic weightings, were also made. These backward



predictions were regarded as the best available empirical measure of the realised breeding

performance (gains) of the open pollinated F1 and F2 parents.

Field trials

The Eucalyptus grandis breeding population used in this study consisted of six trials of F1

generation material, seven F2 generation trials and 13 trials of F3 material at two sites. The

F2 and F3 material were progeny from open pollinated selections in the F1 and  F2 trials

respectively (based on historical selection criteria and methodology such as the use of

family means and independent culling). The trials were established in plantations in the

Limpopo and KwaZulu-Natal provinces in South Africa.  The Pinus patula breeding

population trials included 14 trials of F1 material  and  six  of  F2 material, the latter being

progeny from open pollinated selections in the F1 trials.  The pine trials were established in

plantations in the Mpumalanga province in South Africa. Details of these trials are in Table

1.  In the eucalypt trials there were large differences in assessment ages between the

different generations.  Although not ideal, it was the only data available for the study and

still proved to be valuable for this study.

[Table 1]

Data analysis

The traits used for this study were diameter at breast height (DBH in centimetres), height

(metres) and stem form (subjective eight point scale). Data of all the traits were corrected

for fixed effects (trial, site) using the Generalised Least Squares Method (GLM), and

standardised in SAS (method of Blom 1958 as in SAS Institute Inc. 2004), giving the data

a mean of 0 and a standard deviation of 1, for each trial site. The statistical analyses used

SAS/STAT software, Version 9.1 of the SAS System for Windows (Copyright © 2002-2003

SAS Institute Inc.).



Predicting breeding values

The Mixed Model Least-Squares and Maximum Likelihood programme (LSMLMW and

MIXMDL PC-2 Version) of Harvey (1990) was used to estimate the genetic variance

components needed for the calculation of breeding values and narrow-sense heritabilities

for each trial. A coefficient of relationship of 0.25 was used for the P. patula data. In the

open pollinated half-sib E. grandis trials a coefficient of relationship of 0.3 was used due to

the expected natural inbreeding (as much as 20%) taking place in the trials (Griffin et al.

1987, Griffin and Cotterill 1988, Verryn 1993, Hodgson 1976a, 1976b).

Two versions of a software package (Matgen), which calculates the Best Linear Unbiased

Predictions for unbalanced data in tree breeding (Verryn and Geerthsen 2006), were used

for the prediction of breeding values for each generation and series of trials. One of the

programmes was created in Delphi (Borland Software Corporation 1983-2002) with 32-bit

numerical precision and the other in Clipper (Computer Associates 1993) with 16-bit

numerical precision. The analytical and mathematical procedures in both programmes

were identical, the key difference being the operational level of numerical precision.  The

Generalised Least Squares Means estimates for fixed effects were used in this study and

thus BLUE (Best Linear Unbiased Estimates) values were input into the programmes and

the solution for the predicted breeding values were considered to be the BLUP solutions

(White and Hodge 1989, Verryn et al. 1997).

The following equation (White and Hodge 1989) was used in predicting the breeding

values:

)-(- ayVaC' 1ĝ = [1]

where



ĝ = the predicted breeding value for the individual within a particular family

(forward prediction) or of the parent (backward prediction)

a = the vector (1xq) of q economic weights

C = the mxq matrix of genotypic variances and covariances between

observations on a single candidate and its siblings, of each selection trait

V = the mxm matrix of phenotypic variances and covariances among

observations for a single candidate and also of the means of its siblings at

each trial site, of each selection trait

y = the mx1 vector of phenotypic observations, relating to a candidate for

selection, which may include observations such as individual measurements

and family means at each trial site, of the selection traits

α = E(y) is the mx1 vector of expected values of observed data relating to each

candidate.

Different techniques for the mitigation of collinearity were included in the programmes for

calculating the BLUP values, for comparison purposes.  The mitigation techniques used in

the predicted breeding value (ĝ values) calculations were Gaussian elimination with partial

pivoting (Verryn 1994) in both programmes, Singular Value Decomposition (SVD) (Press

et al. 1989) only in the high precision programme and Gaussian elimination with full

pivoting (Press et al. 1989) in both programmes. An adapted ridge regression technique

(Hoerl and Kennard 1970, Verryn 1994) was also included in the high precision

programme. The partial pivoting technique serves as the control where no collinearity

mitigation technique is applied.

The variances and measures of normality were estimated for the predicted breeding

values in the forward prediction runs using the Univariate procedure in SAS.



Prediction scenarios

Multiple-trial and multiple-trait analyses using DBH, stem form and height in combined

data were run with forward and backward models.  The number of traits in the multiple-trait

scenarios was balanced for all scenarios. Tree stem volume is typically used as a

selection trait, however, in this study the components of stem volume were separated into

DBH and height, and stem form added in order to construct the multiple-trait test

scenarios.  The study potentially contained selection bias as it centred on the selections

that formed part of the next generation and their families. This may result in lower than

expected intergenerational correlations.

Single trait scenarios were also run to compare the occurrence of instability in simple

models with the multiple-trait scenarios.

In order to test the BLUP performance over generations under different economic weight

scenarios, a set of ten different economic weighting vectors (Table 2) were used to make

the forward and backward predictions in the trials.

Inter-generational correlations of the BLUP values (rfb)

Pearson correlation coefficients between the backward predicted breeding values (ĝb) and

the forward predicted breeding values (ĝf) for each economic weighting scenario and

mitigation technique were calculated and compared. These correlations (rfb) serve as an

indication of the reliability of the BLUP predictions and whether the relative predicted

performance of each generation materialized in the next generation.

A merged dataset of the two generations (F1F2 and F2F3 for E. grandis and  F1F2 for P.

patula), was created for the families which were represented in both generations. The



number of common families which were represented in both generations is given in Table

2.  The correlation between parent and offspring, in the absence of selection, is expected

to be equal to (½)h2 (Falconer 1989). Hence, excluding the bias due to historic selection,

2rfb is expected to be of the order of the heritability of the compound weighted trait ( 2
ch ) of

the F1 or F2, where:

)n/h(ah it s
2
tsit

2
ic å å= [2]

and

2
ich = heritability of the compound weighted trait of the F1 or F2 for scenario i

ita = the economic weight applied to trait t for scenario i, t=1 to 3

2
tsh = heritability of trait t at trial site s (s=1 to n) for scenario i

n = number of trial sites.

The compound heritability is calculated to serve as a benchmark value (Tables 2 and 3)

against which the correlations between the F1 and F2 breeding values and F2 and F3

breeding values in the eucalypt and pine populations can be evaluated. As a compound

heritability is calculated for the balanced case, and the data is unbalanced, it may possibly

be biased upwards.

Rank correlations

Spearman rank correlations were calculated in SAS between the BLUP forward

predictions of the various techniques, as a measure of the predictive ability and stability of

the rankings acquired by the techniques.



Realised genetic gains

Realised genetic gains, in standard deviation units, were calculated for each economic

weighting scenario and each mitigation technique, using the backward prediction breeding

values. The top and bottom five percent (E. grandis) or ten percent (P. patula) of the

forward prediction parents were used and hypothetical realised gain calculated as the

mean of the breeding values for the progeny respectively in the F2 or F3 trials. Ten percent

selection was used in the pine trials as there were fewer common families over

generations. The variance of realised genetic gains among (mitigation) techniques within

scenarios was calculated.

Results and discussion

The predicted breeding values

The single site heritability estimates for the F2 and  F3 eucalypt trials for all assessment

traits ranged from the lowest heritability of 0.125 to the highest values being 0.547.  In the

pine F2 trials the single site heritability estimates ranged from 0.107 to 0.436 over all the

assessment traits.  The mean heritability over the trials for DBH was 0.321 (F2 eucalypt),

0.278 (F3 eucalypt) and 0.336 (F2 pine).  Height had mean heritability estimates of 0.322

(F2 eucalypt), 0.283 (F3 eucalypt) and 0.332 (F2 pine) and stem form 0.229(F2 eucalypt),

0.251 (F3 eucalypt) and 0.282 (F2 pine) over the trials.

In the three population scenarios the variances of the predicted breeding values (ĝf) were

lowest (mean values among techniques ranged from 0.053 to 0.120 across economic

weighting scenarios) in the relatively stable eucalypt F1 population scenarios.  The

variances increased steadily as the populations became less stable.  Variances ranged

from 0.100 to 40.950 in the F2 eucalypt scenarios and values in the least stable pine F1



exceeded 100.  The measures of deviation from normality of ĝf (e.g. kurtosis and

skewness) followed a similar pattern of increase as the population became less stable.

Kurtosis and skewness values were much closer to the expected zero level of normally

distributed populations in the F1 eucalypt scenarios (values as low as 0.001 in some

techniques). In the other two less stable populations these values were much higher (F2

eucalypt kurtosis from 3.58 to 32.08 and in the pines kurtosis exceeded 150 and skewness

was as much as -1.67 in F2 eucalypt and 23.96 in the pines). The relatively more stable F1

eucalypt population also had fewer ĝf outliers than the other two populations’ scenarios.

Instability was also measured by observing ‘wrong sign’ β-coefficients in the forward

prediction of the F1 and  F2 trial datasets (these ‘wrong sign’ coefficients would, for

instance, result in the negative of an observation/family mean being included in the

prediction of a breeding value where the value should intuitively be positively weighted),

the magnitude of the β-coefficients and the magnitude of the predicted breeding values

(large values indicating instability). Varying the economic weights had an effect on the

number of cases/families of such detected instability. The F1 eucalypt cases ranged from

0.23% to 86.5% and one case of 100% in low precision partial pivoting. Unstable cases in

the more unstable populations and their scenarios were generally higher (pine ranged from

8.8 % to 91.8 % and F2 eucalypt from 14.2 % to 57.9 %. The cases of instability were

generally associated with certain families, and it is thought that this is due to these families

having particular frequencies of individuals in the various trials, as all other parameters

remained constant in a population-scenario.

In the relatively stable situation (eucalypt F1F2 scenarios), the variance of the forward

predictions (ĝf) (using standardised values) was moderate, there were no extreme ĝf

outliers, and the kurtosis was approaching zero, indicating normality in the predictions. In



addition, the BLUP techniques are able to function as expected and the correlation

between the genetic rankings over the generations (rfb) compared favourably with the

heritability of the compound weighted trait ( 2
ch ). Therefore BLUP performed close to

expected here.

In contrast, the two other inter-generational suites of comparisons displayed high to very

high variances and many outliers of ĝf. These predictions displayed high kurtosis values

and deviated significantly from normality. The rfb - 2
ch  relationship was far removed from

the theoretically expected 1:2 ratio in these populations.

Comparison of the inter-generational correlations of BLUPs (rfb) to the heritabilities

The comparison in the F1 and F2 eucalypt population showed that the correlations between

the forward prediction and backward prediction breeding values (rfb) obtained were of an

acceptable (to high) magnitude, since 2rfb are broadly similar (or larger) in magnitude to

2
ch (Table 2).  The effect of potential bias due to historical selection in producing the F2

eucalypt population was therefore assumed to be negligible in this eucalypt population. In

the other population comparisons there was a much wider range of correlations of which

many were much smaller than (½) 2
ch (Tables 2 and 3). This may be due to the higher

incidence of instability in the matrix calculations and resulting large index (ĝf) values that

contributed to the lower correlations with the predicted performance.

[Table 2, 3]

Fisher’s Least Significant Difference (LSD) multiple range tests (α = 0.05) were run (Table

4) to determine whether significant differences existed between the mean rfb correlations

(from Table 2) of the different mitigation techniques and numerical precision programmes.

In the eucalypt F1F2 scenario and pine F1F2 scenario a significant difference between the

high and the low numerical precision programmes was observed. In the eucalypt F2F3 a



significant difference was found between partial pivoting (both precision levels) and the

rest of the techniques.

[Table 4]

A comparison was made between the mean correlations across the techniques and the

compound heritabilities for each economic weighting scenario for each population (Figures

1 to 3). In Figure 1 the F1F2 eucalypt population illustrates that the 2rfb against 2
ch is

approximately the expected relationship, further indicating stability here.  The F2F3

eucalypt data show a substantial under performance of the 2rfb relative to 2
ch  (Figure 2).

The pine population (Figure 3) also deviates from expected, with the relationship points

scattered from the linear regression line (the lower right-hand side scatter in Figure 3).

The range in 2
ch was small and it was difficult to obtain a good trend line.  There was,

however, a large range in the correlations in the pine data where some techniques and

scenarios achieved the theoretical correlation whereas many did not.  Plotting the rfb of the

best techniques (highest rfb) in each scenario with the compound heritabilities in the pines

resulted in a better fit, 2rfb being within the expected order of magnitude (the upper right-

hand side scatter of Figure 3).  The best techniques also had better kurtosis and variance

values for ĝf. The latter performance and that of the F1F2 eucalypt population serve as a

confirmation that the methodology and data used here can perform according to expected

genetic theory.

[Figure 1, 2, 3]

Rank correlation comparisons

In the F1 eucalypt trials only small rank changes and in some cases no rank changes were

observed within the economic weighting scenarios (Table 5) between the different

techniques.  More rank changes were observed in the F2 compared to those of the F1

eucalypt population (e.g. r = 0.896 in low precision for economic weight scenario 9 F2,

Table 5). In both the F1 and F2 eucalypt populations the single trait scenarios showed very



few or no rank changes between techniques (Table 5).  Much larger rank differences were

found in the pine population and more were observed in the higher precision programme

than the lower precision programme (Table 6). There was a large range in rank correlation

coefficients with values as low as 0.468.  The single trait scenarios in the pines showed

very few or no rank changes among techniques (r = 0.951 to r = 1.000), indicating that the

instability was occurring in the multiple-trait scenarios and that the pine data had the

potential to perform in a stable fashion.

[Table 5,6]

The higher rank correlations in the F1 eucalypt, compared to those of the other

populations, again highlighted the stability of this population. The pine population in

contrast is less stable (lower rank correlations between techniques) and the discrepancy

between the different techniques used in the two programmes was also more pronounced

than in the eucalypts.

The correlations between the ĝf ranks of the various BLUPs with collinearity mitigation

techniques were very high (in the order of 0.9 to 1) in the more stable population, and

decreased to as low as approximately 0.5 in the most unstable population. The simple

single trait scenarios tended to show high correlations between techniques in all

populations.

Realised genetic gains

The range in mean rfb of -0.094 to 0.182 and LSDs indicated that the different methods

could have a meaningful effect on realised genetic gains. Similarly, significant differences

in the realised genetic gains were found between techniques (Table 4). The variance of

the genetic gains among mitigation techniques within scenarios is shown in Table 7.



There was a trend of increasing variability in genetic gains among mitigation techniques in

the less stable populations.

[Table 7]

Small changes in gain could result in substantial improvement in the economic impact in

the long run (Weir 1973, Todd et al. 1995).  The range in realised genetic gains among

techniques within scenarios differed by up to 0.06 standard deviation units between

techniques in the relatively stable F1F2 eucalypts, was up to 0.21 standard deviation units

between techniques in the F2F3 eucalypts and was as much as 0.38 standard deviation

units in the pines.  The latter observed differences in genetic gains highlight the

importance of exploring alternative prediction techniques in the case of instability.

Comparing the realised genetic gains from the techniques, the more stable population had

a lower variability of genetic gains between mitigation techniques, than those of the

unstable populations. The mitigation techniques displayed greater differences in realised

genetic gains in the less stable populations (up to 0.38 standard deviation units’

difference).

Conclusion

The results of this study of the predicted and realised breeding value rankings over three

populations and 10 scenarios each provide the first empirical evidence of the potential

negative impact of collinearity in tree breeding, confirming the simulation studies of Verryn

(1994).

The occurrence of instability was sensitive to the economic weightings used to calculate

BLUP, and to the particular nature and structure of the data. Certain families displayed

instability more readily than others, and this is thought to be as a result of the different



frequencies of progeny in the various trial sites in the model (as the narrow-sense

heritability and economic weightings were constant for all families of a scenario). This

makes the occurrence of instability/collinearity potentially variable within datasets.

Collinearity mitigation techniques had a significant effect in all populations, however the

relative performance of technique varied from case to case, and no one technique

performed best over all scenarios. The effect of numerical precision showed that it can

cause significant differences in rfb. It may not always be optimal to use a higher numerical

precision programme for BLUP index calculations. Full pivoting can be recommended over

partial pivoting. If the performance of the best prediction technique in each scenario in the

most unstable population is considered, the rfb - 2
ch  ratio recovers to the expected range,

and there is an improvement in the variance and kurtosis measures.

This study indicates that BLUP can perform as expected, however, it also confirms the

potential problem of instability and the consequences thereof. It is suggested that users of

BLUP should take careful note of the nature of the population of predicted values (such as

kurtosis, variance, outliers and other measures of normality), and should these be outside

expectation, various mitigation techniques should be explored.
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Table 1: Trial information for F1, F2 and F3 Eucalyptus grandis and F1 and F2 Pinus patula trials in South Africa used in the study

Trial name and site Genetic material
(No. Families)

Experimental design Age Assessed

EA6206; EA6209; EA6210;
EA6215; EA6218; EA6221; JDM

99 F1 * RCB; 9 replicates; 2x2 tree
plots

48 to 72 months

EA62A1; EA62A2 (2 trials);
EA62A3; EA62A4; EA62A5;
EA62A6;
JDM Keet & Kwambonambi

A1-A2: 64 F2; A3 & A6: 72
F2;
A4-A5: 99 F2;
all thinned to 1 tree per plot

Alpha lattice; 9 replicates;
2x2 tree plots

62 to 91 months

EA62B4-B16 Dukuduku 50 F3; single tree plots Alpha lattice; 20 replicates 40 months;
51 months (B15 – 16)

EA62B4-B14 Silwerfontein
EA62B15-16 Westfalia

50 F3; single tree plots Alpha lattice; 20 replicates 38 & 25 months

PF4002 Belfast & Tweefontein 42 F1 6x7 Lattice; 3 replicates;4x4
tree plots

156 months

PF4003 Rietfontein 41 F1 Random complete block; 10
replicates; 4x4 tree plots

108 months

PF4004 Wilgeboom 72 F1 6x6 lattice; 2 sets; 4
replicates per set; 1x10 tree
row plots

102 months

PF4005 Wilgeboom & Tweefontein 49 F1 7x7 lattice; 4 replicates;
1x10 tree row plots

100 & 166 months

PF4006 Jessievale & Tweefontein 42 F1 6x7 lattice; 2 sets; 3
replicates per set; 1x10 tree
row plots

96 & 65 months

PF4007 Jessievale & Frankfort 42 F1 6x7 lattice; 6 replicates;
1x6 tree row plots

104 & 97 months

PF4008 Tweefontein & Jessievale 282 F1
49 F1

7x7 lattice; 6 sets
Tweefontein; 8 replicates
per set; 1x6 tree row plots

96 months

PF4009 Jessievale 182 F1 7x7 lattice; 4 sets; 8
replicates per set; 1x6 tree
row plots

96 months

PF4010 Jessievale 64 F1 8x8 lattice; 9 replicates;
1x6 tree row plots

72 months

PF4011 Tweefontein, Mac-Mac,
Frankfort & Wilgeboom

64 - 89 F2; single tree plots RCB; 20 replicates 84 months

PF4015 Tweefontein & Wilgeboom 59 F2; single tree plots RCB; 20 replicates 96 months
* Trials thinned to 1 tree per plot and rogued to between 59 and 61 families; site EA6218 thinned to 2 trees per plot
   RCB = Randomized Complete Block; Trials with EA = Eucalyptus grandis and PF = Pinus patula



Table 2: A comparison of twice the mean Pearson Correlations (rfb) between the backward prediction (ĝb) and the forward prediction (ĝf ) with
the heritability of the compound weighted trait in the eucalypt and pine populations

Economic weighting scenario Twice the mean of mitigation technique rfb correlations Heritability of compound weighted trait hc
2

No. DBH Height Stem F1F2 eucalypt F2F3 eucalypt F1F2 pine F1 eucalypt  F2 eucalypt  F1 pine

1 0.2 0.4 0.4 0.3507 0.0927 -0.0071 0.310 0.285 0.269

2 0.4 0.4 0.2 0.4163 0.1068 0.1214 0.327 0.303 0.279

3 0.15 0.6 0.25 0.4841 0.1485 0.0669 0.349 0.299 0.285

4 0.1 0.7 0.2 0.5336 0.1581 0.1003 0.367 0.303 0.292

5 0.7 0.2 0.1 0.3740 0.0783 0.2051 0.309 0.312 0.275

6 0.2 0.1 0.7 0.1931 0.0313 0.1581 0.245 0.257 0.242

7 0.3 0.2 0.5 0.2443 0.0506 0.0276 0.275 0.275 0.256

8 0.5 0.3 0.2 0.3777 0.0849 0.1300 0.314 0.303 0.274

9 0.8 0.1 0.1 0.3410 0.0545 0.2107 0.296 0.312 0.270

10 0.1 0.1 0.8 0.2017 0.0296 0.1599 0.237 0.248 0.237

F1F2 eucalypt: 451 common families

F2F3 eucalypt: 318 common families

F1F2 pine: 71 common families (only two trial series data of F2 population available for study)



Table 3: Mean (over economic weight scenarios) and single trait Pearson Correlation Coefficients (2rfb) between the backward prediction (ĝb)
and the forward prediction (ĝf) comparing collinearity mitigation techniques together with the mean compound heritability in the different
populations

Scenarios Species Collinearity Mitigation Method used with BLUP Mean heritability of

compound

weighted trait( hc
2)

PP FP SVD3 RR Low PP Low FP SVD1 SVD2

Mean over 10

multiple-trait

scenarios:

F1F2 eucalypt 0.36128 0.36128 0.36128 0.36296 0.30566 0.35154 0.36318 0.35564 0.303

F2F3 eucalypt -0.00488 0.14346 0.12826 0.11332 -0.00726 0.12822 0.290

F1F2 pine -0.18887 0.21503 0.05388 0.00527 0.32666 0.32346 0.268

Single traits:

DBH F1F2 eucalypt 0.36682*** 0.36654*** 0.36654*** 0.35026** 0.35026** 0.292

Height 0.54974*** 0.54974*** 0.54974*** 0.55398*** 0.55398*** 0.423

Stem form 0.38396*** 0.38814*** 0.38814*** 0.38744*** 0.38744*** 0.207

DBH F2F3 eucalypt 0.13034ns 0.13284ns 0.13034ns 0.13046ns 0.13284ns 0.321

Height 0.39522** 0.39850** 0.39522** 0.39526** 0.39850** 0.322

Stem form 0.28846* 0.28846* 0.28846* 0.28850* 0.28846* 0.229

DBH F1F2 pine -0.02686ns -0.03358ns -0.03358ns 0.02672ns 0.01994ns 0.270

Height 0.21848ns 0.25648ns 0.25648ns 0.32190ns 0.33758ns 0.315

Stem form 0.52930* 0.52930* 0.52930* 0.50366* 0.53894* 0.223

Correlation coefficient significant effect: *** p<0.0001 ** p<0.01 * p<0.05 ns non significant

Significance not calculated for twice the mean correlation coefficients among techniques over economic weighting scenarios

SVD = Singular value decomposition

SVD1 = SVD with threshold of 1x10-2 ; SVD2 = SVD with threshold of 1x10-1; SVD3 = SVD with threshold of 1x10-6 (standard threshold);

PP = partial pivoting control; FP = full pivoting; RR = ridge regression; Low = lower precision



Table 4: Least significant difference (LSD) multiple range test of the forward-backward

correlations for BLUP predictions and the mean realised genetic gains in standard deviation units

of the different economic weight scenarios using different mitigation techniques in the eucalypt and

pine populations (means with the same letter are not significantly different from each other at α =

0.05)

Species Mitigation Method Pearson Realised Genetic
LSD  Mean LSD Mean

E
uc

al
yp

t F
1F

2

SVD(1x10-2 threshold)  A 0.18159 A 0.11795
Ridge A 0.18148 A 0.12107
Full pivoting high A 0.18065 A 0.11768
Partial pivoting high A 0.18064 A 0.11710
SVD(1x10-1 threshold) AB 0.17782 A 0.11316
Full pivoting low B 0.17577 A 0.11756
Partial pivoting low C 0.15301 B 0.10066

E
uc

al
yp

t F
2F

3

Full pivoting high A 0.07173 A 0.08849
SVD A 0.06413 A 0.08543
Full pivoting low A 0.06411 A 0.08514
Ridge A 0.05666 A 0.06474
Partial pivoting high B -0.00244 B 0.01892
Partial pivoting low B -0.00363 B 0.00765

P
in

e 
F 1

F 2

Partial pivoting low A 0.16333 A 0.13523
Full pivoting low A 0.16173 A 0.15918
Full pivoting high B 0.10752 AB 0.09291
SVD C 0.02694 B 0.04874
Ridge C 0.00264 C -0.04276
Partial pivoting high D -0.09443 C -0.03546

N=10 for mean correlations; N=20 for mean realised genetic gains;
low = low precision; high= high precision
SVD = Singular value decomposition; RIDGE = Adapted ridge regression



Table 5: Spearman rank correlation coefficients for the eucalypt population forward predictions

Mitigation
Methods

Trials Single traits Economic weighting* Multiple-trait
DBH Height Stem

form
1 2 3 4 5 6 7 8 9 10

PP–FP F1
F2

1.000
1.000

1.000
1.000

0.999
1.000

1.000
0.936

1.000
0.962

1.000
0.944

1.000
0.944

1.000
0.946

1.000
0.950

1.000
0.946

1.000
0.938

1.000
0.941

1.000
0.949

PP–SVD F1
F2

1.000
1.000

1.000
1.000

0.999
1.000

1.000
0.937

1.000
0.962

1.000
0.944

1.000
0.945

1.000
0.946

1.000
0.950

1.000
0.946

1.000
0.939

1.000
0.942

1.000
0.949

PP–RIDGE F1
F2

0.997
0.913

0.998
0.938

0.998
0.906

0.998
0.897

0.998
0.933

0.995
0.914

0.996
0.920

0.998
0.922

0.997
0.929

0.994
0.908

PP– low PP F1
F2

0.935
0.908

0.943
0.897

0.937
0.944

0.944
0.922

0.937
0.943

0.940
0.919

0.938
0.915

0.933
0.940

0.935
0.914

0.938
0.918

0.937
0.932

0.933
0.816

0.934
0.912

PP– low FP F1
F2

0.935
0.908

0.943
0.897

0.937
0.944

0.952
0.936

0.944
0.961

0.945
0.944

0.943
0.944

0.942
0.946

0.933
0.949

0.951
0.946

0.945
0.939

0.942
0.942

0.943
0.949

FP–SVD F1
F2

1.000
1.000

1.000
1.000

1.000
1.000

1.000
0.999

1.000
0.999

1.000
0.999

1.000
0.999

1.000
0.999

1.000
1.000

1.000
0.999

1.000
0.999

1.000
0.999

1.000
1.000

FP–RIDGE F1
F2

0.997
0.976

0.998
0.977

0.998
0.966

0.998
0.959

0.998
0.985

0.995
0.974

0.996
0.980

0.998
0.981

0.997
0.987

0.994
0.971

FP– low PP F1
F2

0.935
0.908

0.943
0.897

0.937
0.944

0.944
0.922

0.937
0.961

0.940
0.933

0.938
0.923

0.933
0.945

0.935
0.915

0.938
0.916

0.937
0.935

0.932
0.895

0.934
0.914

FP– low FP F1
F2

0.935
0.908

0.943
0.897

0.937
0.944

0.952
0.998

0.945
0.999

0.945
0.999

0.943
0.999

0.942
0.998

0.933
0.999

0.951
0.998

0.945
0.999

0.942
0.999

0.943
0.999

SVD–RIDGE F1
F2

0.997
0.977

0.998
0.977

0.998
0.966

0.998
0.959

0.998
0.985

0.995
0.975

0.996
0.981

0.998
0.982

0.997
0.988

0.994
0.971

SVD– low PP F1
F2

0.935
0.908

0.943
0.897

0.937
0.944

0.944
0.923

0.937
0.962

0.940
0.934

0.938
0.923

0.933
0.946

0.936
0.915

0.938
0.917

0.937
0.936

0.932
0.895

0.934
0.914

SVD– low FP F1
F2

0.935
0.908

0.943
0.897

0.937
0.944

0.952
0.999

0.945
0.999

0.945
0.999

0.943
0.999

0.942
0.999

0.933
0.999

0.951
0.999

0.945
0.999

0.942
0.999

0.943
0.999

RIDGE– low PP F1
F2

0.938
0.900

0.933
0.939

0.934
0.898

0.933
0.880

0.929
0.932

0.925
0.881

0.929
0.892

0.932
0.919

0.928
0.892

0.923
0.876

RIDGE– low FP F1
F2

0.948
0.976

0.942
0.977

0.942
0.966

0.940
0.958

0.938
0.985

0.928
0.974

0.946
0.980

0.942
0.981

0.938
0.987

0.935
0.971

Low PP– low FP F1
F2

1.000
0.908

1.000
0.897

1.000
0.944

0.991
0.923

0.991
0.963

0.993
0.934

0.994
0.924

0.990
0.946

0.974
0.916

0.985
0.917

0.991
0.937

0.990
0.896

0.990
0.914

Correlation coefficient significant effect: all rank correlations significant p < 0.0001.
PP = Partial pivoting high precision control; FP =  Full pivoting high precision; SVD = Singular value decomposition; RIDGE = Adapted ridge regression;
low PP = Partial pivoting low precision control; low FP = Full pivoting low precision
*Economic weighting scenarios as detailed in Table 2



Table 6: Spearman rank correlation coefficients for the pine population forward predictions

Mitigation
Methods

Single traits Economic weighting* multiple-trait
DBH Stem

form
Height 1 2 3 4 5 6 7 8 9 10

PP–FP 1.000 1.000 0.997 0.621 0.640 0.614 0.604 0.650 0.658 0.633 0.643 0.660 0.668
PP–SVD 1 .000 1.000 0.997 0.551 0.543 0.537 0.522 0.542 0.572 0.562 0.546 0.552 0.572
PP–RIDGE 0.587 0.575 0.582 0.569 0.585 0.591 0.584 0.582 0.593 0.595
PP–low PP 0.963 0.963 0.951 0.479 0.483 0.490 0.468 0.480 0.540 0.507 0.491 0.497 0.551
PP–low FP 0.967 0.970 0.953 0.572 0.599 0.565 0.554 0.608 0.602 0.583 0.603 0.618 0.607
FP–SVD 1.000 1.000 1.000 0.871 0.831 0.835 0.824 0.814 0.807 0.866 0.828 0.815 0.783
FP–RIDGE 0.863 0.853 0.844 0.837 0.848 0.837 0.862 0.851 0.848 0.820
FP–low PP 0.963 0.964 0.949 0.714 0.699 0.711 0.699 0.706 0.738 0.736 0.708 0.716 0.741
FP–low FP 0.967 0.971 0.955 0.906 0.907 0.901 0.898 0.903 0.891 0.905 0.908 0.902 0.886
SVD–RIDGE 0.885 0.856 0.858 0.854 0.846 0.859 0.876 0.850 0.846 0.855
SVD–low PP 0.963 0.964 0.949 0.649 0.607 0.618 0.600 0.603 0.623 0.658 0.617 0.614 0.604
SVD–low FP 0.968 0.971 0.955 0.814 0.772 0.781 0.773 0.754 0.775 0.808 0.767 0.755 0.770
RIDGE–low PP 0.615 0.614 0.607 0.598 0.618 0.641 0.631 0.621 0.627 0.637
RIDGE–low FP 0.800 0.788 0.785 0.782 0.778 0.767 0.794 0.784 0.778 0.760
Low PP–low FP 0.998 0.994 0.992 0.707 0.704 0.714 0.704 0.709 0.710 0.728 0.712 0.720 0.705
Correlation coefficient significant effect:  All rank correlations significant  p<0.0001
PP = Partial pivoting high precision control; FP =  Full pivoting high precision; SVD = Singular value decomposition; RIDGE = adapted ridge regression
low PP = Partial pivoting low precision control; low FP = Full pivoting low precision
*Economic weighting scenarios as detailed in Table 2



Table 7:  The variance of realised genetic gains (in standard deviation units) between techniques
within scenarios in the eucalypt and pine populations

Species Selection

Population

Performance

measured in

Variance of genetic gains*

Top % Bottom %

E. grandis F1 F2 0.0016 0.0014

E. grandis F2 F3 0.0028 0.0032

P. patula F1 F2 0.0125 0.0269

* Eucalypts top and bottom percentage is 5% and pines top and bottom

percentage is 10 %
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Figure 1: Twice the mean correlations across the economic weighting scenarios relative to the

heritability of the compound weighted trait across the same economic weighting scenarios for the

F1F2 eucalypt population.  The diagonal line represents the expected linear relationship between

the correlations and the heritability of the compound weighted trait
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Figure 2: Twice the mean correlations across the economic weighting scenarios relative to the

heritability of the compound weighted trait across the same economic weighting scenarios for the

F2F3 eucalypt populations.  The diagonal line represents the expected linear relationship between

the correlations and the heritability of the compound weighted trait
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Figure 3: Twice the mean correlations across the economic weighting scenarios and the best

correlation within each economic weighting scenario relative to the heritability of the compound

weighted trait across the same economic weighting scenarios for the F1F2 pine population.  The

lines represent the linear relationships between the correlations and the heritability of the

compound weighted trait


