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Summary: A mathematical model of a biological population, taking into
account the effect of environmental in�uences both on the life-time distribution
and on the reproductive capacity of the individuals of the population, is
considered and analyzed. It is assumed that the environment stays in level 0
and in level 1 alternately for random lengths of time. The sojourn-times of the
environment in the levels 0 and 1 form an alternating renewal process and the
probability density function (p.d.f.) of the stay-in times of the environment
in level i is �ie��it; i = 0; 1: Further, assuming that the p.d.f. of the
life-time of an individual of the population when the population is in level
i; i = 0; 1; is �ie��it; an explicit expression for the time-dependent mean
size of the population is obtained. The particular case corresponding to
the environment independent population is deduced and two other particular
cases, corresponding to partial interaction of the environment, are analysed.
The coef�cient of variation of the population size is also obtained and a
numerical illustration is provided to highlight the impact of environment on
the population size.
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1. Introduction
Branching processes in random environment have been studied very

extensively in the past from the theoretical point of view by several researchers

(see Harris (1963), Athereya and Ney (1972) and Assmussen and Herin

(1983)). The in�uence of the environment on the life-cycle of the individuals

of the population from the point of view of their reproductive nature

and the consequent �uctuations in the size of the population have been

studied by taking up several experimental case studies with some species

(see Andrewartha and Birch (1954), Andrewartha (1961), Silvertown (1987)

and Krebs (2002)). Seasonality is quite often the dominant feature of

environmental variability experienced by several biological populations due

to which the population size and other demographic parameters �uctuate

randomly over time. All �eld studies on the effect of environmental

in�uences such as temperature and rainfall have resulted in the formulation of

mathematical models aimed to explain some of the pertinent attributes such as

the mean and coef�cient of variation of the population density (see Nicholson

(1954), Clark et al. (1967)). It has been observed by several researchers in their

�eld studies that a population progressively decreases during some �uctuating

conditions which are de�nitely unfavourable at times, but at the intermittent

favourable periods the population tends to adjust itself to the prevailing

conditions (see for example Nicholson (1954)). Recently, Saether et al. (2006)

have made elaborate comparative studies on the population dynamics of birds

and examined whether stochastic �uctuations in the environment (climate and

spatio-temporal variation in the wintering areas) can affect annual variation in

population change in two different ways (tap hypothesis and tube hypothesis)

by theta-logistic models. In particular, they have made extensive �eld studies
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on the dynamics of different European populations of white stork Ciconia

ciconia and analysed whether annual changes in population was related to

the climate during the breeding period or during the nonbreeding period.

Their study has not accounted for the stochastic variation in the life-time of

individuals of the population. Although the evidence of �uctuations in the

life pattern and in the reproductive capacity of a population has been observed

separately in various �eld studies, not much work has been directed towards

building comprehensive models which incorporate environmental in�uences,

not only on the reproductive capacity but also on the life-time distributions.

Accordingly, the object of the present paper is to propose and analyse a

mathematical model of a biological population taking into account the effect

of environmental in�uences, both on the life-time distribution and on the

reproductive capacity of the individuals of the population.

The organization of the paper is as follows: In section 2, a branching

process model is described. Section 3 provides the derivation of explicit

expressions for the time-dependent mean size of the population. The particular

case corresponding to an environment independent population, is deduced in

section 4. Two other particular cases corresponding to partial interaction of the

environment, are discussed in sections 5 and 6. In section 7, the coef�cient of

variation of the population size is obtained. A numerical illustration is provided

in section 8 to highlight the impact of environment on the population size.

2. The model description
We consider a stochastic population which evolves in a random environment.

We assume that the environment stays in level 0 and in level 1 alternately

for random lengths of time. Let X(t) be the number of individuals in the

population and let E(t) be the level of the environment at any time t: For
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simplicity, we let there be just a single new-born individual in the population at

time t = 0 so thatX(0) = 1:We assume that the environment has just entered

into level 0 at time t = 0 so that

1 = lim
�!0

E(��) 6= 0 = E(0) = lim
�!0

E(�):

The sojourn-times of the environment in the levels 0 and 1 form an alternating

renewal process and we assume that the probability density function (p.d.f.)

of the stay-in times of the environment in level i is �ie��it; i = 0; 1: Let

�ie��it be the p.d.f. of the life-time of an individual of the population when

the population in level i; i = 0; 1: Let fij(t)dt be the conditional probability

that a particle which was born at time t = 0 while the environment was in level

i has lived up to time t and branches in (t; t + dt) and the environment is in

level j at the time of branching. That is,

fij(t) = lim�!0 PrfX(u) = 1 for all u 2 [0; t];
X(t+�)) 6= 1; E(t) = jjX(0) = 1; E(0) = ig=�; i; j = 0; 1:

Then, we have

f00(t) = e�(�0+�0)t�0 + �0
Z t

0

e�(�0+�0)uf10(t� u)du; (2:1)

f01(t) = �0

Z t

0

e�(�0+�0)uf11(t� u)du; (2:2)

f10(t) = �1

Z t

0

e�(�1+�1)uf00(t� u)du; (2:3)

f11(t) = e�(�1+�1)t�1 + �1
Z t

0

e�(�1+�1)uf01(t� u)du: (2:4)

Using the Laplace transform technique, the equations from (2.1) to (2.4) can

be solved and we obtain

f00(t) =
�0

(a� b)
�
(a+ �1 + �1)eat � (b+ �1 + �1)ebt

	
; (2:5)
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f01(t) =
�1�0
(a� b)

�
eat � ebt

	
; (2:6)

f10(t) =
�0�1
(a� b)

�
eat � ebt

	
; (2:7)

f11(t) =
�1

(a� b)
�
(a+ �0 + �0)eat � (b+ �0 + �0)ebt

	
; (2:8)

where a and b are the roots of the equation

(s+ �0 + �0)(s+ �1 + �1)� �0�1 = 0: (2:9)

The discriminant of the equation (2.9) is a positive quantity and hence a and b

are real and distinct and are given by

a =
�(�0 + �1 + �0 + �1) +

p
f(�0 + �0)� (�1 + �1)g2 + 4�0�1
2

;

b =
�(�0 + �1 + �0 + �1)�

p
f(�0 + �0)� (�1 + �1)g2 + 4�0�1
2

:

We assume that the offspring generating function of an individual, while

splitting when the environment is in level i; is hi(�); i = 0; 1: To describe

the branching process, we de�ne the following generating functions:

Gi(�; t) = Ef�X(t)jX(0) = 1; E(0) = ig; i = 0; 1:

Using the regeneration point technique, we obtain

G0(�; t) = �

�
1�

Z t

0

ff00(u) + f01(u)g du
�

+

Z t

0

f00(u)h0(G0(�; t� u))du+
Z t

0

f01(u)h1(G1(�; t� u))du; (2:10)

G1(�; t) = �

�
1�

Z t

0

ff10(u) + f11(u)g du
�

+

Z t

0

f10(u)h0(G0(�; t� u))du+
Z t

0

f11(u)h1(G1(�; t� u))du: (2.11)

The equations (2.10) and (2.11) are intractable even in the simple case of binary

splitting. However, from the equations (2.10) and (2.11), we can derive the
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mean number of individuals in the population at any time t:We achieve this in

the next section.

3. The population mean
Let �i; i = 0; 1 be the event that the environment has just entered into the level

i at time t = 0 and the population has just one newly born individual at time

t = 0:We de�ne the conditional means

Mi(t) = EfX(t)j�ig; i = 0; 1:

Differentiating the equations (2.22) and (2.23) with respect to � and putting

� = 1; we obtain

M0(t) =

�
1�

Z t

0

ff00(u) + f01(u)g du
�

+m0

Z t

0

f00(u)M0(t� u)du+m0

Z t

0

f01(u)M1(t� u)du; (3:1)

M1(t) =

�
1�

Z t

0

ff10(u) + f11(u)g du
�

+m0

Z t

0

f10(u)M0(t� u)du+m0

Z t

0

f11(u)M1(t� u)du; (3:2)

where mi = hi
0
(1); i = 0; 1: The equations (3.1) and (3.2) can be solved

explicitly by the Laplace transform technique and we obtain the population

means

M0(t) =
1

~a� ~b

h
(~a+ �0 + �1 + ~�1)e~at � (~b+ �0 + �1 + ~�1)e

~bt
i
; (3:3)

M1(t) =
1

~a� ~b

h
(~a+ �0 + �1 + ~�0)e~at � (~b+ �0 + �1 + ~�0)e

~bt
i
; (3:4)

where ~a and ~b are the roots of the equation

fs+ �0 + �0(1�m0)gfs+ �1 + �1(1�m1)g � �0�1 = 0: (3:5)
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Clearly ~a and ~b are real and distinct. In fact ~a > ~b: If we choose m0 and m1

such that
~b(~b+ �0 + �1 + ~�1)

~a(~a+ �0 + �1 + ~�1)
> 1;

thenM0(t) has a unique turning point at time t0� given by

t0� =
1

~a� ~b
log

(
~b(~b+ �0 + �1 + ~�1)

~a(~a+ �0 + �1 + ~�1)

)
: (3:6)

On the other hand, if we choosem0 andm1 such that
~b(~b+ �0 + �1 + ~�0)

~a(~a+ �0 + �1 + ~�0)
> 1;

thenM1(t) has a unique turning point at time t1� given by

t1� =
1

~a� ~b
log

(
~b(~b+ �0 + �1 + ~�0)

~a(~a+ �0 + �1 + ~�0)

)
: (3:7)

The expressions (3.3) and (3.4) are quite new and in the following sections we

recover the classical results pertaining to the simple Markov branching process.

4. The particular case �0 = �1 = � and
m0 = m1 = m

This corresponds to the situation where the environment has no in�uence on

the life-time and reproductive capacity of the individuals of the population.

In other words, we have the situation that the individuals never change their

life-time and their reproductive capacity irrespective of the changes in the

environmental surroundings. In this case, the equation (3.5) becomes

fs+ �0 + �(1�m)gfs+ �1 + �(1�m)g � �0�1 = 0:

Consequently, we have

a = ��; b = �(�0 + �1 + �);

~a = ��(1�m);
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~b = �f�0 + �1 + �(1�m)g;
~�0 = ~�1 = �(1�m):

Consequently, from the equations (3.3) and (3.4), we deduce the classical result

M0(t) = e�(m�1)t;

M1(t) = e�(m�1)t:

5. The particular case �0 = 0
This corresponds to the situation where the environment, once enters into level

0, remains in level 0 for ever and never changes its level from 0 thereafter. In

this case, we obtain

~a = ��1 � ~�1;~b = � ~�0:
Consequently, from the equations (3.3) and (3.4), we deduce the classical

results

M0(t) = e�
~�0t;

M1(t) =
( ~�0 � ~�1)e(�

~�1��1)t � �1e� ~�0t

~�0 � ~�1 � �1
:

6. The particular case �1 = 0
This corresponds to the situation where the environment, once enters into level

1, remains in level 1 for ever and never changes its level from 1 thereafter. In

this case, we obtain

~a = � ~�1;~b = ��0 � ~�0:

Consequently, from the equations (3.3) and (3.4), we deduce the classical

results

M0(t) =
�0e�

~�1t � ( ~�1 � ~�0)e(�
~�0��0)t

~�0 � ~�1 + �0
; M1(t) = e�

~�1t:

In addition to the population mean, we require the variance of the population

to give a complete picture of how the stochastic changes are dispersed in the



ENVIRONMENT-DEPENDENT BRANCHING PROCESS 153

dynamics of the population. Accordingly, we proceed to obtain the coef�cient

of variation in the next section.

7. The coef�cient of variation
We de�ne the second factorial moment

Di(t) = E[X(t)fX(t)� 1gjX(0) = 1; E(0) = i]; i = 0; 1:

From the equations (2.10) and (2.11), we obtain

D0(t) =

Z t

0

f00(u)
n
h
0

0(1)D0(t� u) + h
00

0 (1)M
2
0 (t� u)

o
du

+

Z t

0

f01(u)
n
h
0

1(1)D1(t� u) + h
00

1 (1)M
2
1 (t� u)

o
du; (7:1)

D1(t) =

Z t

0

f10(u)
n
h
0

0(1)D0(t� u) + h
00

0 (1)M
2
0 (t� u)

o
du

+

Z t

0

f11(u)
n
h
0

1(1)D1(t� u) + h
00

1 (1)M
2
1 (t� u)

o
du: (7:2)

Substituting forM0(t� u) andM1(t� u) from (3.3) and (3.4), the equations
(7.1) and (7.2) become

D0(t)=

Z t

0

f00(u)

�
h
0

0(1)D0(t�u) + h
00

0 (1)
�
�0e

~a(t�u)�
0e
~b(t�u)

�2�
du

+

Z t

0

f01(u)

�
h
0

1(1)D1(t� u) + h
00

1 (1)
�
�1e

~a(t�u) � 
1e
~b(t�u)

�2�
du;

(7:3)

D1(t)=

Z t

0

f10(u)

�
h
0

0(1)D0(t�u)+h
00

0 (1)
�
�0e

~a(t�u)�
0e
~b(t�u)

�2�
du

+

Z t

0

f11(u)

�
h
0

1(1)D1(t� u) + h
00

1 (1)
�
�1e

~a(t�u) � 
1e
~b(t�u)

�2�
du;

(7:4)

where

�0 =
~a+ �0 + �1 + ~�1

~a� ~b
; 
0 =

~b+ �0 + �1 + ~�1

~a� ~b
;
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�1 =
~a+ �0 + �1 + ~�0

~a� ~b
; 
1 =

~b+ �0 + �1 + ~�0

~a� ~b
:

Using the Laplace transform technique, the equations (7.3) and (7.4) can be

solved explicitly and we obtain

D0(t) = d01e~at + d02e
~bt + d03e2~at + d04e2

~bt + d05e(~a+
~b)t;

D1(t) = d11e~at + d12e
~bt + d13e2~at + d14e2

~bt + d15e(~a+
~b)t;

where

d01 =
�0h

00

0 (1)(~a+�1+
~�1)f2�1(~a+�1)+~a~bg+�1h

00

1 (1)�0f2�0(~a+�0)+~a~bg
~a~b(~a� ~b)(~a� 2~b)

;

d02 =
�0h

00

0 (1)(
~b+�1+ ~�1)f2�1(~b+�1)+~a~bg+�1h

00

1 (1)�0f2�0(~b+ �0)+~a~bg
~a~b(~a� ~b)(2~a� ~b)

;

d03 =
�0h

00

0 (1)(2~a+ �1 +
~�1) + �1h

00

1 (1)�0

2(~a� ~b)2

+
�0h

00

0 (1)(2~a+�1+
~�1)f2�1(2~a+�1)+~a~bg+�1h

00

1 (1)�0f2�0(2~a+�0)+~a~bg
2~a(2~a� ~b)(~a� ~b)2

;

d04 =
�0h

00

0 (1)(2
~b+ �1 + ~�1) + �1h

00

1 (1)�0

2(~a� ~b)2

��0h
00

0 (1)(2
~b+�1+ ~�1)f2�1(2~b+�1)+~a~bg+�1h

00

1 (1)�0f2�0(2~b+ �0)+~a~bg
2~b(~a� 2~b)(~a� ~b)2

;

d05 = �
�0h

00

0 (1)(~a+
~b+ �1 + ~�1) + �1h

00

1 (1)�0

(~a� ~b)2

��0h
00

0 (1)(~a+
~b+�1+ ~�1)f2�1(~a+~b+�1)+~a~bg+�1h

00

1(1)�0f2�0(~a+~b+�0)+~a~bg
~a~b(~a� ~b)2

;

d11=
�0�1h

00

0 (1)f2�1(~a+�1)+~a~bg+�1h
00

1 (1)(~a+�0+
~�0)f2�0(~a+�0)+~a~bg

~a~b(~a� ~b)(~a� 2~b)
;

d12=
�0�1h

00

0 (1)f2�1(~b+�1)+~a~bg+�1h
00

1 (1)(
~b+�0+ ~�0)f2�0(~b+�0)+~a~bg

~a~b(~a� ~b)(2~a� ~b)
;

d13 =
�0�1h

00

0 (1) + �1h
00

1 (1)(2~a+ �0 +
~�0)

2(~a� ~b)2

+
�0�1h

00

0 (1)f2�1(2~a+�1)+~a~bg+�1h
00

1 (1)(2~a+�0+
~�0)f2�0(2~a+�0)+~a~bg

2~a(2~a� ~b)(~a� ~b)2
;
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d14 =
�0�1h

00

0 (1) + �1h
00

1 (1)(2
~b+ �0 + ~�0)

2(~a� ~b)2

��0�1h
00

0 (1)f2�1(2~b+�1)+~a~bg+�1h
00

1 (1)(2
~b+�0+ ~�0)f2�0(2~b+�0)+~a~bg

2~b(~a� 2~b)(~a� ~b)2
;

d15 = �
�0�1h

00

0 (1) + �1h
00

1 (1)(~a+
~b+ �0 + ~�0)

(~a� ~b)2

��0�1h
00

0 (1)f2�1(~a+~b+�1)+~a~bg+�1h
00

1 (1)(~a+~b+�0+ ~�0)f2�0(~a+~b+�0)+~a~bg
~a~b(~a� ~b)2

:

Now, the variance of Xi(t) is given by

Vi(t) = Di(t) +Mi(t)� fMi(t)g2; i = 0; 1:

Then,

V0(t) = (d01+�0)e
~at+(d02�
0)e

~bt+(d03��02)e2~at+(d04�
02)e2
~bt

+(d05 + 2�0
0)e
(~a+~b)t;

V1(t) = (d11+�1)e
~at+(d12�
1)e

~bt+(d13��12)e2~at+(d14�
12)e2
~bt

+(d15 + 2�1
1)e
(~a+~b)t

and the coef�cient of variation of Xi(t) is given by

CVi(t) =

p
Vi(t)

Mi(t)
; i = 0; 1:

Let us consider the particular case,

�0 = �1 = �; h0
0
(1) = h1

0
(1) = m;h0

00
(1) = h1

00
(1) = K:

Then , we obtain

D0(t) = D1(t) =
K

1�m

�
e�~�t � e�2~�t

�
:

and consequently, we recover the classical result for the variance of X(t)

V0(t) = V1(t) =

 
1� h0(1) + h00(1)

h0(1)� 1

!�
e2�(m�1)t � e�(m�1)t

�
:
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8. A numerical illustration
We provide below a numerical illustration to highlight the environmental

impact on the population size. For the purpose of illustration, we �x the values

of the parameters as follows:

�0 = 1:0; �1 = 2:0; �0 = 0:1; �1 = 0:4:

We consider two illustrations. First, we consider the case of binary splitting in

both the levels of the environment. Speci�cally, we assume

h0(s) = 0:55 + 0:45s
2; h1(s) = 0:4 + 0:6s

2:

By varying the time t;we have computed the conditional meansMi(t); i = 0; 1

and the conditional coef�cient of variation CVi(t); i = 0; 1: The results are

tabulated in table 3.1.
Table 1

h0
0
(1) = h0

00
(1) = 0:9; h1

0
(1) = h1

00
(1) = 1:2

t M0(t) M1(t) CV0(t) CV1(t)

0.131 0.99937284 1.00916564 0.12410917 1.41242194
0.132 0.99937266 1.00922668 0.12464499 1.41216385
0.133 0.99937260 1.00928760 0.12517934 1.41190660
0.134 0.99937254 1.00934851 0.12571226 1.41165030
0.135 0.99937254 1.00940919 0.12624376 1.41139495
0.136 0.99937260 1.00946987 0.12677385 1.41114044
0.137 0.99937272 1.00953043 0.12730254 1.41088688
0.138 0.99937296 1.00959074 0.12782985 1.41063440
0.139 0.99937320 1.00965106 0.12835582 1.41038275
0.140 0.99937350 1.00971115 0.12888043 1.41013217

From the above table, we �nd thatM0(t) decreases initially and then increases

exhibiting a concave shape having a turning point at t�t0 = 0:135: The mean

M1(t) exhibits a strictly increasing behaviour having no stationary point on the



ENVIRONMENT-DEPENDENT BRANCHING PROCESS 157

time axis. We also �nd that the coef�cient of variationCV0(t) strictly increases

and the coef�cient variation CV1(t) strictly decreases.

Next, we consider another illustration where we assume

h0(s) = 0:4 + 0:6s
4; h1(s) = 0:75 + 0:25s

2:

By varying the time t;we have computed the conditional meansMi(t); i = 0; 1

and the conditional coef�cient of variations CVi(t); i = 0; 1: The results are

tabulated in table 3.2.
Table 2

h0
0
(1) = 2:4; h0

00
(1) = 7:2; h1

0
(1) = h1

00
(1) = 0:5

t M0(t) M1(t) CV0(t) CV1(t)

0.57 1.04859245 0.95639008 0.55577224 3.11609507
0.58 1.04913568 0.95632750 0.56045681 3.11550903
0.59 1.04967391 0.95627695 0.56509966 3.11495233
0.60 1.05020690 0.95623815 0.56970197 3.11442399
0.61 1.05073512 0.95621061 0.57426476 3.11392355
0.62 1.05125856 0.95619416 0.57878900 3.11344957
0.63 1.05177736 0.95618832 0.58327562 3.11300206
0.64 1.05229175 0.95619285 0.58772558 3.11258006
0.65 1.05280185 0.95620739 0.59213978 3.11218262
0.66 1.05330777 0.95623171 0.59651893 3.11180902
0.67 1.05380964 0.95626545 0.60086399 3.11145902

From table 2, we �nd thatM0(t) strictly increases for the whole time while the

mean M1(t) decreases initially and then increases thus exhibiting a concave

shape having a turning point at t�1 = 0:63: As in illustration 1, we also

�nd here that the coef�cient of variation CV0(t) strictly increases and the

coef�cient of variation CV1(t) strictly decreases.
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