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Build-up and depositional dynamics of an arc frontvolcaniclastic complex: the

Miocene Tepoztlan Formation (Transmexican Volcani®elt, Central Mexico)

ABSTRACT

Volcanic terrains such as magmatic arcs are thotegtiisplay the most complex surface
environments on Earth. Ancient volcaniclastics aogoriously difficult to interpret as
they describe the interplay between a single oers¢wolcanoes and the environment.
The early Miocene Tepoztlan Formation at the southedge of the Transmexican
Volcanic Belt (TMVB) belongs to the few remnantstbis ancestral magmatic arc, and
therefore is thought to represent an example ofiniteal phase of evolution of the
TMVB. Based on geological mapping, detailed logguwfglithostratigraphic sections,
paleocurrent data of sedimentary features and AkEgping of 2D-panels from outcrop
to field scale, and geochronological data in amarec. 1000 krf) three periods in the
evolution of the Tepoztlan Formation were distirstpgid, which lasted around 4 million
years and are representative of a volcanic cydigfi¢e growth phases followed by
collapse) in a magmatic arc setting. The volcastaasediments accumulated in
proximal to medial distances on partly coalescipgpas, similar to volcanic ring plains,
around at least three different stratovolcanoegs&hvolcanoes resulted from various
eruptions separated by repose periods. During itse ghase of the evolution of the
Tepoztlan Formation (22.8 — 22.2 Ma), depositiors waminated by fluvial sediments in
a braided river setting. Pyroclastic material framall, andesitic-dacitic composite
volcanoes in the near vicinity was mostly eroded aeworked by fluvial processes,
resulting in sediments ranging from cross-bedded $a an aggradational series of river
gravels. The second phase (22.2 — 21.3 Ma) wasadiesized by periods of strong
volcanic activity, resulting in voluminous accuntidas of lava and tuff, which
temporarily overloaded and buried the original #&lvsystem with its detritus.
Continuous build-up of at least three major volcaoenters further accentuated the
topography, and in the third phase (21.3 — 18.8 iMa3$s flow processes, represented by



an increase of debris-flow deposits, became dominaarking a period of edifice

destruction and flank failures.
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INTRODUCTION

The volcanic history of a magmatic arc is commobést preserved in its associated
sedimentary sequences, yielding essential infoomatin depositional processes and
often even the long-term evolution of volcanism {Bn& Landis, 1995; Orton, 1996;
Einsele, 2000). Volcaniclastic deposits and thewarked sediments within a magmatic
arc are inferred to represent the remains of ahciolcanic structures, i.e.
stratovolcanoes (their aprons and distal bass) filava domes, intermediate and rhyolitic
calderas, and monogenetic volcanoes. However, duewveathering, erosion and
reworking with time, volcaniclastic successions awonly provide the only record of
initial arc volcanism (Kuenzi et al., 1979; Vess®IDavies, 1981; Mathisen & Vondra,
1983; Ballance, 1988), particularly with respectstoatovolcanoes that are prone to
erosion and can completely disappear within a fewliom years (e.g. Fisher &
Schmincke, 1984; Riggs & Busby-Spera, 1991; Ori@96). The sedimentation, as well
as the erosion and re-deposition of the sedimeatg &ccording to the contemporary
climate and tectonic setting as well as the sedirsepply (Geil3ler et al., 2008; Zernack
et al., 2009). Stratovolcanoes, predominantly oflesitic-dacitic composition, are
complex accumulations of lava flows, hypabyssalusive rocks and various types of
tephra (e.g. Williams & McBirney, 1979). They builg over periods of tens or hundreds
of thousands of years by repeated, relatively sewlle eruptions and are typical of
convergent plate margins with thick continentalstr(Cas & Wright, 1987; Palmer &
Neall, 1991; Smith, 1991; Cronin et al., 1996; @Qrtt996; Davidson & De Silva, 2000;
Donoghue & Neall, 2001; Borgia & van Wyk de VrigX)03; Manville et al., 2009).
During growth they constantly shed debris into sherounding environment. This debris

is provided either directly by means of aerialdatl from eruption columns, pyroclastic



flows, debris flows or by rivers, wind and glagmbcesses during inter-eruption periods.
The sedimentary sequences associated with actleana@es can be characterized by syn-
, post- and inter-eruptive deposits resulting fribvd immediate or subsequent reworking
of primary material by surface processes such agheeng and erosion. Smith (1991)
sub-divided volcaniclastic sequences into syn-@rapand inter-eruptive units, stating
that syn-eruptive sequences result from primarycarukc processes and immediate
reworking of volcaniclastic material. Manville (229 however, redefined the syn-
eruptive period as being limited by the last receguh phase of a single eruption and
introduced the term post-eruptive period, compgdime period of landscape response to
volcanic eruptions. Inter-eruption periods describees where normal background
sedimentary processes occur without a direct vaddafluence (Smith, 1991) and, which
are mainly characterized by reworking and erosioeroption-related deposits (Vessel &
Davies, 1981; Scott, 1985; Smith, 1987).

Primary volcaniclastic rocks comprise the entinegeof fragmental products deposited
directly by explosive or effusive eruption, rega&as#i of whether their transport occurs
through air, water, granular debris, or a comborathereof (McPhie et al., 1993; White
& Houghton, 2006). This includes all sediments ocks of pyroclastic autoclastic
hyaloclastic or peperitic origin (White & Houghton, 2006)All reworked units are
considered as secondary volcaniclastic sedimermsveMer, there is still a substantial
grey area surrounding deposits of syn-eruptive ggees such as eruption-triggered
lahars and debris avalanches (Pierson, 1997; Cetpa., 2002), if they are to be
considered as primary or secondary volcaniclastoks. The term epiclastic sediments
may be restricted to fragments derived by weatlyeaimd erosion of pre-existing rocks,
and excludes reworking of particles from non-weldeduinconsolidated materials (e.qg.
Cas & Wright, 1987; Manville et al., 2009). Followi Fisher (1961), these deposits are
formed following weathering of volcanic (includimglcaniclastic) rocks to produce new
particles different in size and shape from the inabvolcaniclastic particles. Epiclastic
sediments thus receive a sedimentary name witHcamic modifier, such as tuffaceous
sandstone or andesitic sandstone.

Accumulation is thickest near the volcanic cone famel and deposits thin distally, giving

rise to proximal-distal facies patterns (VessellD&avies, 1981; Smith, 1988, 1991).



Subaerial radial ring-plains develop around isalatelcanoes (Palmer, 1991; Palmer &
Neall, 1991; Palmer et al., 1993). The ring-playstem is a volcaniclastic apron that
consists mostly of resedimented volcanoclasticslesis-flow, debris-avalanche and
occasionally fluvial deposits that form relatechdistratigraphic units (e.g. Cronin &
Neall, 1997). Near shorelines, ring-plain systems keach far into the sea (Karatson &
Nemeth, 2001; Schneider et al., 2001), where pgsdic flows and debris flows are
transformed into subaqueous volcaniclastic debiss and turbidity currents (Whitham,
1989; Cole & DeCelles, 1991). Ring-plain accumolati occurs during both
constructional and destructional phases (e.g. Ce#ight, 1987; Cronin & Neall, 1997).
However, more commonly, linear aprons of volcarstitasediment develop adjacent to
the volcanic arc (Mathisen & Vondra, 1983; White Bsby-Spera, 1987; Palmer &
Walton, 1990; Runkel, 1990). The composition arglefs associations of these volcanic
aprons or ring plains are governed by the interfdajween volcano-tectonic activity,
different transport and depositional processesd{;&000), and the climate, influencing
weathering and transportation processes, givinghis into the interaction between an
evolving volcaniclastic complex and its related en@ with existing drainage systems.
For this study, an up to 800 m thick, Early Mioceracaniclastic sequence in an arc
setting in Central Mexico was studied, using a wsée of different methods, including
sedimentology, paleomagnetics, geochemistry, raglioen dating, and palynology to
develop an evolutionary model. This volcaniclasicccession, called the Tepoztlan
Formation (Fries, 1960), is one of the few remnaotsthe initial stage of the
Transmexican Volcanic Belt (TMVB), forming spectéucliffs south of Mexico City,
that dominate the landscape around the villagédadinalco, Tepoztlan and Tlayacapan
in the States of México and Morelos. This formatisrof particular interest because of:
(i) ongoing discussion on the origin of the TMVB d¢bker, 1972; Demant, 1978;
Cantagrel and Robin, 1979; Negendank et al., 188&n et al., 1987; Lépez-Infanzon,
1991; Marquez et al., 1999; Verma, 1999, 2000, 2@b&zth et al., 2000; Gomez-Tuena
et al., 2003, 2007; Ferrari et al., 2005; Orozcqtieel et al., 2007); and (ii) because of
its excellent outcrops, which allow study of themgdex interaction of depositional

processes at various scales, from thin sectiol@tiscape panels.



In this paper, we focus on point (i) and presefith@facies analysis of sedimentological
logs of type sections, and of outcrop photomosaitsvarious scales to unravel

depositional processes and their control withiretim

GEOLOGICAL SETTING

The TMVB is a continental magmatic arc, which cors@s nearly 8000 volcanic
structures (e.g. GOmez-Tuena et al., 2007). Ieiated to the subduction of the Cocos
and Rivera plates under the North American plabeglithe Central American Trench,
which was established during the Middle-Late Mice€Rerrari et al., 2000). The TMVB
is about 1000 km long and ranges from 80 to 230ikrwidth. In contrast to other
subduction-related volcanic belts, running parditela deep-sea trench, the TMVB is
obliquely orientated with respect to the Middle Ama Trench, forming an angle of
about 16° (Gomez-Tuena et al., 2007). The beltistsef a large number of Tertiary and
Quaternary cinder cones, maars, domes, and stiesoves with predominantly calc-
alkaline chemical and mineralogical compositionsel§§ & Macias, 2004). Recent
studies have shown that the TMVB, as a distinatjgelogic province, dates back to the
Middle to Late Miocene, as a result of a countariolase rotation of the magmatic arc of
the Sierra Madre Occidental (SMO; Ferrari et 899). Little is known about the initial
activity of the early arc because the main focugpvious studies was on younger
volcanism (Méarquez el al., 1999; Siebe et al., 2@Bdrcia-Palomo et al., 2002; Verma,
2000; Riggs & Carrasco-Nunez, 2004). The remnahtheoancestral TMVB are found
close to the present volcanic front of the censedtor of the arc as stated by several
authors, such as in the Sierra de Mil Cumbres aiedreS de Angangueo volcanic
complexes in the State of Michoacan (Pasquare,et391; Capra et al., 1997) and in the
Malinalco area (State of México), where lavas waated at 19.5 Ma (Ferrari et al., 2003)
and 21 Ma (Garcia-Palomo et al., 2000) ); furtheenin the deepest part of the Mexico
City Basin (Ferrari et al., 2003). These rocksamesidered to be part of the initial Early
Miocene activity of the Transmexican Volcanic B@ibmez-Tuena et al., 2007). In later
time, volcanism migrated further away from the ttenforming stratovolcanoes and lava
cones, ranging in age from 15 to 10 Ma (Gémez-Tuetnal., 2007). These volcanic
rocks can be found along the border of the stdt€uerétaro and Guanajuato (Carrasco-
Nunez et al., 1989; Pérez-Venzor et al., 1996; &aldloreno et al., 1998; Verma &
Carrasco-Nunez, 2003) and in the state of Pueldarg€co-Nunez et al., 1997; Gomez-
Tuena & Carrasco-Nunez, 2000).



Another evidence of early volcanic activity of théVB is the Tepoztlan Formation,
which has been neglected in studies on the irpialse of the Transmexican Volcanic
Belt so far.

The study area (18°54’-19°01'N lat., 98°57°-99°321@hg.) covers approximately 1000
km? and is located along the southern edge of the TMWi. 1), where the Tertiary
volcaniclastic series of the Tepoztlan Formatioe eovered by Quaternary lavas and
scoria of monogenetic volcanoes of the Chichinauicanic field. Within this area, the
Tepoztlan Formation crops out in an area of 18¢ &nd has an overall maximum
thickness of 800 m. The volume of the depositedeneltremaining after erosion was
calculated at 130 kinwith the help of a geographic information systeBiS). The
formation is widespread around the villages of Malko and Chalma in Mexico State
and Tepoztlan and Tlayacapan in Morelos State;sspautcrops are located east of
Tlayacapan and southeast of Nevado de Toluca (Gapacias, 2000; Garcia-Palomo
et al., 2002).

A variety of Eocene-Oligocene (Balsas Group) andeolrocks, mostly Cretaceous
limestones, underlie the formation. It is covergdidva flows of Pliocene to Holocene
age. Close to Malinalco the Tepoztlan Formatiorpsrout between the San Nicolas
Basaltic Andesite and the overlying Basal Mafic 8atce (Garcia-Palomo et al., 2000).
The formation of the San Nicolas Basaltic Andesite?1.6 + 1.0 Ma (Garcia-Palomo,
1998) suggests deposition contemporaneous witi dp@ztlan Formation (Lenhardt et
al., 2010). However, closer field relationshipsweetn both formations have not been
studied yet. In Tepoztlan and the eastern viciitithe TepoztlAn Formation
unconformably overlies the Balsas Group and is @by the Chichinautzin Formation.
The Tepoztlan Formation has traditionally been dieed as consisting of massive lahars
rich in subrounded porphyritic andesite clastsrogkated with fluvial deposits (Fries,
1960; De Cserna & Fries, 1981a). The formationoisigosed of calc-alkaline volcanic
and sedimentary rocks. The volcanic rocks have gmeahantly andesitic to dacitic
compositions; however, rhyolites are also preseenltjardt, 2009). The entire succession
comprises pyroclastic deposits (fall, surge andvfldeposits), deposits from lahars
(debris-flow and hyperconcentrated-flow depositaij)}d coarse to fine fluvial and



lacustrine deposits (conglomerates, sandstonesnadtones). Only few lava flows and
dikes are present.

Bedding within the Tepoztlan Formation is generéiliy-lying or gently dipping at up to
10° to the N/ NNE. The succession is disrupted bymal faults and sub-volcanic
intrusions. Fault displacements are frequently abaif a meter and rarely exceed a few
meters.

Magnetostratigraphy combined with K/Ar and Ar/Arogéronology revealed an Early
Miocene age (22.75-18.78 Ma, Fig. 2). The formatoam further be subdivided into
three units, according to the dominant mode of dijom: (1) the lower fluvial-
dominated Malinalco Member (22.8 — 22.2 Ma); (& thiddle eruptive-dominated San
Andrés Member (22.2 — 21.3 Ma); and (3) the upprid-flow-dominated Tepozteco
Member (21.3 — 18.8 Ma; Lenhardt et al., 2010).

Within the study area, the Lower Miocene (Upper kapian — Lower Burdigalian) was
characterized by a period of cool temperate andidhwhmate, pointing to an already
highly elevated area that was probably strongleaéd by the monsoon (Lenhardt,
20009).
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Figure 1. The extension of the TMVB in Central Mmxiand the location of the study

area.
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2000 and Lenhardt et al., 2010)

METHODS AND DATABASE

This study is based on an integrated analysistlodlbgical and sedimentological data
from the Tepoztlan Formation. Ten stratigraphicuomhs, ranging in thickness from 25
to 448 m, were measured and recorded, spanningrb@léng strike, representing the
range of sedimentary environments characteristih®fTepoztlan Formation (Fig. 3-4).
In addition, 22 2D-outcrop panels were obtainedstiady the complex interaction of
fluvial, eruptive and gravitational processes a¢¢hdifferent scales and combined into a
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lithofacies model. At small-scale, optically corext photomosaics (Wizevich, 1991;
Arnot et al., 1997) were obtained from the outcngglls to be able to determine the size
of different architectural elements. At first, thetcrop wall is marked with regularly and
perpendicular to the wall placed stadia rods atesc@fterwards, the picture frame is
determined. Pictures of the outcrop wall were takgnmeans of several overlapping
photographs. The overlapping has to be at least 86%ach side to avoid optical
distortion. For photography, the camera has todsitipned on a line at right angles from
the picture center at the outcrop wall. By givilng ttamera the same inclination as the
outcrop wall (picture plane parallel to wall planeptical distortion is avoided. The
digital pictures are finally put together and dittdd in a panorama program. The
architectural elements and major sedimentary strestwere then mapped from the
corrected photomosaics.

For medium-scale (steep side of a hill or mountainlarge-scale (mountain range) this
precision was not possible and photomosaics wesen from a further distance without
scales. However, to improve the exactness of thié pemels and to collect detailed
information about the grain size, sedimentary $tme&s and lithologic parameters, a
vertical profiling along selected sections wasiedrout.

Vertical and lateral distribution of depositionatits together with stratigraphical data
(K/Ar and Ar/Ar geochronology combined with paleagnatic studies; Lenhardt et al.,
2010) were used to reconstruct the temporal evmiutif the depositional environment
and to identify volcanic centers. In addition, mdhan 200 paleocurrent indicators
(Anisotropy of Magnetic Susceptibility and sedinagt structures) were measured to
constrain dispersal patterns and locate sources.ardbng with sedimentological
paleocurrent analysis, mostly based on clast imban, channel-wall orientations and
cross-stratification (from three-dimensional expe$uthe paleomagnetic Anisotropy of
Magnetic Susceptibility (AMS) technique (see Lenta2009) for methodology) has
been used successfully. AMS is a relatively fadd arexpensive method that yields
three-dimensional flow markers (Cafidn-Tapia & QGastt004). The susceptibility
depends on the rock’s minerals and their relativeunts, and, in the case of primary
volcanic rocks, is mainly related to the magma dsagnand crystallization conditions

(Zanella et al., 1999). These crystals also deterntihe susceptibility in the resulting
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deposits after erosion and redeposition, i.e. fhelastic fluvial and mass-flow deposits
(Lenhardt, 2009). Application and results of thisthod will be addressed in more detail
in a separate paper. However, the results of teasdies are used here to locate the

provenance of fluvial deposits as well as the seuent locations of volcanic products.
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Figure 4. Stratigraphy of the Tepoztlan Formationducted over 56 km along strike,
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3.

VOLCANO-SEDIMENTARY LITHOFACIES

The Tepoztlan Formation comprises 12 volcanic aretlinsentary lithofacies
distinguished on the basis of rock type, sedimgraad volcanic structures or textures,
and grain size (Table 1). The subdivision into syaptive, post-eruptive and inter-
eruptive deposits is derived from Smith (1991) addnville (2002), and is further
subdivided into primary volcanic and volcaniclastieecondary volcaniclastic and

epiclastic accumulations.
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Table 1: Compilation of the lithofacies types, thaterpretation and depositional

processes.
Lithofacies Interpretation Processes
Andesitic-dacitic volcanic | LF Lava
lithofacies
Massive, parallel bedded | FA Pyroclastic fall
lapilli lithofacies deposit
Stratified and cross- SuU Pyroclastic surge
stratified tuff lithofacies deposit syn-eruptive primary volcanic
Massive lapilli-tuff AF Ash-flow deposit
lithofacies
Massive tuff breccia BA Block-and-ash flow
lithofacies deposit
Pumiceous diamicton DF Debris-flow deposit
lithofacies
Pumiceous diamicton with Hyperconcentrated post-eruptive | secondary volcanic¢
diffuse cross-stratification | HF flow deposit
lithofacies
Cross-bedded tuffaceous | GB Gravel bar
conglomerate lithofacies
Cross-stratified tuffaceous | CH Channel-fill
sandstone lithofacies
Erosional scour with SC Scour pool-fill inter-eruptive fluvial
intraclast lithofacies
Planar-bedded to low-angle
cross-bedded tuffaceous | SF Sheet flood deposit
sandstone lithofacies
Tuffaceous silt- and LC Lacustrine deposit lacustrine
claystone lithofacies

Syn-eruptive deposits

Primary volcanic/ volcaniclastic deposits

LF 1: Andesitic-dacitic volcanic lithofacies

The 15-25 m-thick flows within the Tepoztlan Forioat commonly have a blocky
carapace and a dense core, being exposed eithéneotop of mountain ridges or
intercalated between other depositional units, exlibit an irregular, unconformable
contact to the underlying deposits. Angular fragteesf the carapace range from 3-50
cm in size at the base or the top of massive floMm® dense core can show columnar
jointing. All flows have a porphyritic to glomeropahyritic texture. Plagioclase is the
most abundant phase with subordinate K-feldspanogyroxene and amphibole.

Accessory phases consist of mica, abundant titagoetde and other accessories
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(Lenhardt et al., 2010). The groundmass shows doplyglitic, sometimes trachytic
texture, comprised of plagioclase microlites andoae phase (titanomagnetite). The
whole rock SiQ content of the lavas ranges from 55.9 to 60.6 wid#ntifying them as
andesites or dacites (Lenhardt, 2009).

The volcanic facies, represented by andesites aoided are interpreted as viscous, slow
moving blocky lava flows (LF) (MacDonald, 1972; Miee, 1991) as they are associated
with lava domes and coulées, rarely exceeding Ir2irk flow length (Williams &
McBirney, 1979; Orton, 1996). The massive to brated units display the attributes of a
coherent flow in which autobrecciation processesewsevalent and produced breccia

during flow advance (Bonnichsen & Kauffmann, 1987).

Tuff facies

Within the study area abundant tuff layers are esggdoEach unit consists of a massive to
finely laminated or cross-bedded, varicolored, posorted mixture of medium to coarse
ash horizons, sometimes rich in lapilli. Unit thiglsses range from a few centimeters to
several meters. Based on texture and lithology fsubfacies were distinguished,
tentatively attributed to pyroclastic fall deposftsie subfacies) and pyroclastic density
current deposits (three subfacies). Pyroclasticsithencurrents are hot gas-particle
dispersions whose density generally exceeds thdteohtmosphere or hydrosphere into

which they are introduced (Branney & Kokelaar, 2002

LF 2: Massive, parallel bedded lapilli-tuff lithafees

This facies is characterized by massive or crugeiyne-bedded tuffs, with uniform
thicknesses between 5 and 10 cm that drape unaigrigregularities and can be traced
for several hundred meters throughout the outcrops.layers consist of coarse ash and
lapilli particles, showing either normal or invergeading. Constituent grains are very
angular and are composed of pumice particles anolxpge crystals of the same grain
size.

This facies is interpreted as a pyroclastic fapaigt (FA). Reverse and normal grading
can be attributed to a change in the dynamicsegthption system (e.g. column height,

vent radius, vent flaring; Carey & Sigurdsson, 1)9891ggesting waning or waxing
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eruption intensities. The localized preservationpgfoclastic fall deposits within the
study area depended on the rapid accumulationodéqtive cover, either as reworked or

additional primary volcaniclastic material.

LF 3: Stratified and cross-stratified tuff lithofies

The stratified tuff forms thin (5-10 cm in thickr@gliscontinuous layers, is moderately
sorted, mostly composed of a coarse ash matrix pathice fragments of ash to lapilli
size. Pumice lapilli show signs of abrasion. Thenohating grading pattern is fining-
upward, suggesting waning flow energies. The éiration varies from subparallel,
through pinch-and-swell stratification to crossasfred tuff. The lower surfaces can be
flat, although local erosional surfaces can begezed.

The deposits are interpreted as being depositedrusdge-like depositional conditions
from dilute gravity currents or during windy condits (Allen et al., 1999) and are
interpreted as pyroclastic surge deposits (SU). Sukparallel stratification, cross-
stratification, and moderate sorting indicate dépos from traction-dominated flow
boundaries (Branney & Kokelaar, 2002). The subjeratratification differs from ash-
fall lamination in that individual laminae are distinuous and the lithofacies exhibit
grain fabrics (Cagnoli & Tarling, 1997). Pyroclassiurge deposits usually attain a small
volume (< 1 k) and rarely reach more than 10 km from their seii@rton, 1996).

LF 4: Massive lapilli-tuff lithofacies

The massive pumice-rich tuffs exhibit a wide ramgegrain-sizes, covering everything
from fine ash to cobble-sized lithic and pumicestdgmax. 10 cm) and mainly consist of
accessory and minor accidental lithic fragments imatrix of bubble wall shards and
phenocrysts (feldspars, augite, rare quartz). Tarey generally non-welded, however,
moderate welding without signs of vapour-phasetalyzation was recognized locally.
Accessory lithic clasts are comprised of gray td porphyritic rocks of dacitic to
andesitic composition (58.5 - 66.5 vol.% iQenhardt, 2009). Pumice clasts range
from creamy white to pale yellow in color. They aedatively dense to finely vesicular
and usually porphyritic, containing predominantlygde and plagioclase as phenocrysts.

Within the matrix, pumice clasts usually do notesa diameters of 6 mm. However, in
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pumice concentration zones on top of single urilasts can reach up to 10 cm in
diameter. Due to transportation and abrasion tippear subrounded to rounded. The
deposits usually show a normal coarse-tail gradinthe lithic clasts while the pumice
clasts show a reverse grading. Thicknesses ofesungts can vary from 0.1 to 9.0 m with
an average of 1.5 m. The deposits partly drap@rderuption topography, thickening in
valleys and depressions. Their lower bounding sedaare flat or reflect the
paleosurface, their tops are mostly eroded. Thegiepoccur as single units or as a
series of stacked beds.

The massive lapilli-tuff lithofacies is interpreteas ash-flow deposit (AF) and is
described by many authors as the most common igitenlithofacies (e.g. Ross &
Smith, 1961; Sparks, 1976; Wilson & Walker, 1982amhey & Kokelaar, 2002). Very
large ash flows, from Plinian eruptions of dacitahyolitic magma, are reported to have
traveled over 100 km from their source (Orton, 1)9%60wever, smaller volumes and
traveled distances are reported from andesiticagaltic ash flows (e.g. Robin et al.,
1994; Freundt & Schmincke, 1995).

LF 5: Massive tuff breccia lithofacies

This lithofacies is characterized by massive, matpported, poorly sorted
monolithological tuff breccias. Thicknesses vagnfrl.1 to 2.7 m with an average of 1.8
m. The deposits pinch out laterally and exhibit ft& erosive bases and flat upper
surfaces. Grading patterns are absent. The tuffclareconsists of angular, oxidized,
nonvesiculated dacitic to andesitic clasts in &-finained ash and lapilli matrix of the
same chemical composition, pointing to a co-genetigin. Pumice clasts as well as
welding features are absent. Many lithic blockseexting 0.5 m in diameter exhibit
radial prismatic fractures, breadcrust structunesxgansion cracks indicative of situ
cooling from high temperatures (Lock, 1978; Caroalicinez, 1999). The matrix is made
up of glass shards, lava fragments and abundamophgsts resembling the crystal
content of the clasts.

The massive tuff breccia lithofacies is interpretedbe derived from block-and-ash
flows. Block-and-ash flow deposits (BA) result fraemall-volume pyroclastic flows,

generated by explosive disruption or the suddenwitgtgonal collapse of silicic lava
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flows or domes (Wright et al., 1980; Francis, 198reundt et al., 2000). Block-and-ash
flows from gravitational collapse or weak explosionsually produce thick, valley
confined, high-concentration, high-yield strendgitwis with well-defined deposit fronts
and margins (Orton, 1996). This lithofacies is rysbnfined to proximal to medial
exposures. Block-and-ash flows, resulting from $is@dle eruptions from Mt. Taranaki
in New Zealand were confined to within 15 km ddittparent summit dome (Platz et al.,
2007), BA’s from Soufriere Hills went about 7 km afrom their source (Calder et al.,
2002). The coarse grain-sizes and the lack of @dsdclava flows of this lithofacies
within the study area suggests proximal to medeglogition less than 10 km away from

the source (c.f. Valentine, 1987).

Post-eruptive deposits

Secondary volcaniclastic deposits

LF 6: Pumiceous diamicton lithofacies

This lithofacies is composed of angular to subaagulasts in a pinkish red matrix of
fine to medium sand. They occur in laterally extemgup to several 100 meters) sheets
with planar bases and eroded tops. Average thiskesesf single units are about 4 m;
however, vertical amalgamation surfaces betweecksth units are rarely visible,
resulting in deposits up to 14 m thick without atigible bounding surfaces. The deposits
show no signs of grading or sorting. The clast sizeally is in the range of pebbles and
cobbles, not exceeding diameters of 20 cm; howesiagle outsized clasts of 2 m in
diameter have been observed especially near Sasrtunigo (19.00°N, 99.03°W). The
clast characteristics and compositions within thdsposits are similar to that of the
massive tuff breccia (LF 5), suggesting that thikofacies represents remobilized
pyroclastic flows (c.f. Siebe et al., 199@arrasco-Nunez, 1999). The prevalence of
angular to subangular intermediate volcanic clastglies a local source, and thus
contemporaneous volcanism and sedimentation. Thexnod the deposits is commonly
composed of lithic and pumice fragments, crystald glass shards, showing significant

alteration to clay minerals. The fragments do howsany alignment within the matrix.
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The poor sorting and massive appearance are e@dentransport and deposition of this
lithofacies by and from debris flows (DF) (Hamptdr@75; Johnson & Rodine, 1984;

Smith & Lowe, 1991; Coussot & Meunier, 1996; Piersb al., 1996). The occurrence of
prismatically fractured clasts in debris-flow def®suggests that the debris flows were
generated by mixing of water with recently empladetbris from block-and-ash flows

(e.g. Smith, 1986, 1988).

LF 7: Pumiceous diamicton with diffuse cross-stredition lithofacies

This lithofacies is similar to the previous one,extent as well as in the appearance of
their bounding surfaces, showing lateral extensiveets up to several 100 m wide and
often planar surfaces. This lithofacies, howevéigws a weakly defined and widely
spaced low-angle cross-stratification, normal oremse grading and locally scoured
lower contacts. Thicknesses vary between 0.1 andathin the study area.

This lithofacies is interpreted on the basis offtiet stratification to have been deposited
from hyperconcentrated flows (HF) rather than delflows (Pierson & Scott, 1985;
Coussot & Meunier, 1996; Sohn et al.,, 1999). Thentdyperconcentrated flows
(Beverage & Culbertson, 1964; Smith, 1986) is usedescribe deposits from flows with
sediment concentration intermediate between débws and fluvial floods.

The lithofacies representing deposition by delddg/fand hyperconcentrated flow, best
characterize lahar processes that acted acros3dpeztlan Formation aprons (e.g.
Walton & Palmer, 1988). The term lahar describésaglidly flowing mixtures of rock
debris and water (other than normal streamflownfi@ volcano (Smith & Lowe, 1991).
Lahars can either be syn- or post-eruptive (Vaka2000), be a direct result of eruptive
activity or happen up to decades after an initialpgon, a link that is difficult or
impossible to establish in ancient successiono(Q11996). However, no hydrothermal
alteration, no cooling cracks, and no carbonizethipfragments were found within the
deposits, which is why no direct result of eruptaativity is assumed. Paleovegetation
patterns confirm humid continental climatic corwlis in the study area during
accumulation of the Tepoztlan Formation (Lenhardtak, 2008) with dry winters,
monsoonal type rainfall during the summer and edinfitensities of 20-220 mm/month

throughout the year (Lenhardt, 2009). Furthermdhne, paleovegetation points to an
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already highly elevated area. Given the paleomelegic setting and probable slope
characteristics of the volcano, the intense rdindad the resulting runoff on the
volcano’s slopes probably triggered rain-laharsdascribed by Rodolfo & Arguden
(1991). Lahars usually travel 10’s to 100’s of kmonh their source (Einsele, 2000), e.g. a
lahar from the 1877 eruption of Cotopaxi trave®&® km (Orton, 1996).

Inter-eruptive deposits

Fluvial deposits

LF 8: Cross-bedded tuffaceous conglomerate lithefac

This lithofacies is poorly sorted with a grain-siistribution from fine sand to cobbles.
Gravel particles, representing the main grain-gige subangular to subrounded. The
coarsest cobbles and boulders are usually up ten2@cross. Locally, lenses of cross-
stratified sandstone occur. The matrix dominantynsists of sand grains, resembling
small clasts of lava, pumice or ash particles. d¢tveglomerates form single beds or sets
of stacked beds. Individual beds can be separatedit sandy layers. Thicknesses vary
from 0.2 to 6 m with an average of 1 m. The conglmates show flat or concave lower
bounding surfaces, pinching out laterally. Lentrudtrata are bounded by scour surfaces.
Laterally, extensions range from few meters upeteegal tens of meters. Preferred clast
orientation occurs parallel to bedding in crossit#fied units.

This lithofacies is very common in gravel-bedloaneam deposits (e.g. Steel &
Thompson, 1983; Smith, 1990; Siegenthaler & Huggeydr, 1993) as they appear in
sheets and lenses as manifested in gravel barsi{@Baided river systems (e.g. Miall,
1977). The movement of sediment in gravel-bed siveommonly occurs in pulses
(Whiting et al., 1988; Reid & Frostick, 1987). Aosk relationship between movement of
sand and initiation of entrainment of gravel isafdmed resulting in a wavelike transport
process (Kuhnle, 1996).

LF 9: Cross-stratified tuffaceous sandstone litlooda
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This lithofacies consists of gray tuffaceous samuiss, comprising glassy material, small
lava and pumice particles and minor rounded phgstgrdominated by feldspars and
pyroxenes. Trough cross-bedding is the dominantresdary structure. However, planar
cross-bedding or scour-fill bedding is also commiowlividual units are stacked, often
forming multilateral and single- or multistorey pages. The thicknesses of the units
range from 0.1 to 6 m with an average of 0.8 m. [Aleral extent cannot be determined
clearly in all cases; however, some outcrops shrignés of up to 150 m. They are
characterized by erosive, concave-up to flat badsaerally, individual elements pinch
out or are completely eroded away. Subangular bwosunded, pebble- to cobble-sized
clasts (up to 20 cm) are concentrated on erosiooracts. Fining-upward successions
are common, often with clayey ripple cross-lamiddssers on top.

Based on the composition, the presence of cryatalshe absence of basement material,
the original fragmentation process and componamepat an initial pyroclastic origin.
However, the sedimentary structures indicate sipmt reworking of either primary
pyroclastic material or material that had alreadgvpusly been reworked by lahars.
Cross-stratification with unimodal paleocurrentteat, fining-upward sequences, and
channel scours at the base are all consistentfluitial channel fill (CH) (Miall, 1978;
Walker & Cant, 1984). Trough cross-stratificatiordicates infilling of a channel by
bedload in the form of migrating bedforms (Mial§77; Harms et al., 1982; Siegenthaler
& Huggenberger, 1993; Kataoka, 2005). Planar-ctwsdded sediments are typically
interpreted as the deposits of migrating straighst®d dunes, generally formed within
the deeper portion of the active channel (Miall83) or by avalanching on the slipfaces
of simple bars (Miall, 1996). Such bars may havketibeen bank-attached (lateral bars)
or detached as transverse or medial bars (Todd)198us, the deposits of this facies
are interpreted as channel fill in a braided ri@ning-upward sequences resulted from
the lateral migration of streams or a deceleratioflow velocity due to a decrease in
channel activity. Multistoried fining-upward paclkesg with erosional bases suggest
frequent channel reactivation with development afsbin fluvial systems. Pebble- to
cobble-sized clasts on erosional surfaces weresitepgoas a lag deposit on a channel
floor. Clast abrasion in streams was rather iniffic as shown by the subangular to

subrounded shapes, which is why it is supposed dhatlasts were deposited at a
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proximal to median distance from the source arée. fine, clayey layers on top of this

lithofacies points to very low flow energies aftefocation of the main channel.

LF 10: Erosional scour with intraclast lithofacies

This lithofacies is characterized by an erosivecewe-up lower bounding surface. If the

upper surface is eroded, an interaction with otfaeies is observed. The internal

structure consists of trough cross-bedded gravedssand. Thicknesses can range from
0.1 to 6 m with an average of 0.8 m.

This lithofacies is interpreted to represent sqmuol fills (SC) formed within channels as

they are most common within braided rivers (Mi&By/7, 1978).

LF 11: Planar-bedded to low-angle cross-beddedandbus sandstone lithofacies

This lithofacies, generally consisting of medium doarse sand, is locally preserved
within gravel deposits. It always occurs in mutireéd sequences consisting of horizontal
beds, ranging from 0.1 to 0.8 m thick with an ageraf 0.2 m. The beds show a
generally sheet-like geometry, but locally bifuecat pinch out laterally. Individual beds
can extend more than 150 m before pinching outeimgoeroded laterally. Underlying
beds can be locally scoured. The lithofacies camwshormal grading, although an
inverse grading is dominant.

Low-angle cross-bedding, in association with plamedded sediments, is common in
fluvial sandstones (Segschneider et al., 2002)s@ liehofacies are interpreted as upper-
stage plane bed deposits as they are typical feetdtood deposits (SF) (Blair, 1987;
Blair & McPherson, 1994; Chamyal et al., 1997) amtonfined flash-flood deposits
(Miall, 1985) on alluvial fans. Their preservatipotential within a gravel-bed river is
relatively low (Kostic et al., 2007) for which reasPalmer & Walton (1990) propose an

emplacement in the distal part of an alluvial fan.

LF 12: Tuffaceous silt- and claystone lithofacies
Several thin strata of red to purple tuffaceoutstsihes and claystones are recognized
within the study area. They appear massive or latethand rarely exceed thicknesses of

more than one or two cm. However, at some locatsuth as near Malinalco, silt- and
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claystones reach thicknesses of several meterssddienents contain abundant pumice
and ash particles. Transitions from inversely gdad#ast-rich deposits to fine-grained

(ungraded or normally graded), matrix-supportedodép occur.

The thin sheet- or lens-shaped deposits are imtEgras waning flood sediments. The
purple color probably represents subaerial altenaflo et al., 1997). However, no real
paleosoils could be found throughout the whole saga. Near Malinalco and in the east
of the village of Santo Domingo in the State of Blos (19.00°N, 99.03°W), siltstones

several meters thick, coarsening-upward, are ireégd as lacustrine deposits (LC). The
coarsening-upward is interpreted as deposition e lake-shore with steady

accumulation of sediment in a progradational sgtti@utsized pumice clasts, locally

“floating” in matrix support in this lithofacies ra interpreted to have been formed by
suspension settling within lakes or ponds (Collmsi®96; Manville et al., 2002).
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Figure 5. Photographs showing examples of the fatties types/ architectural elements: a) LF 1: ldvd flow), b) LF 2: FA
(pyroclastic fall deposit), ¢) LF 3: SU (pyroclastiurge deposit), d) LF 4: AF (ash-flow deposi})LE 5: BA (block-and-ash flow
deposit), f) LF 6: DF (debris-flow deposit), g) IF HF (hyperconcentrated-flow deposit), h) LF 8: @GBavel bar), i) LF 9: CH
(channel-fill), j) LF 10: SC (scour-fill), k) LF X1SF (sheet-flood), I) LF 12: LC (lacustrine).



LITHOFACIES ASSOCIATIONS

The facies architecture of volcaniclastic aprons typically complex, reflecting
alternating periods of high-volume sedimentatiorrésponse to eruptive activity, and
low-volume sedimentation in inter-eruption intes/@V/essel & Davies, 1981; Palmer &
Neall, 1991). According to Smith & Landis (1995het sedimentary and volcanic
deposits associated with arc volcanism can gewgdralldivided into three general facies
associations, which can give information about pra-distal relationships to a possible
volcanic vent: central, apron, and distal facies:

Central facies association (0-10 km):

In general, proximal facies corresponding to a awoic edifice comprise lava flows,
autoclastic and pyroclastic breccias and intrusi@mith & Landis, 1995). Debris-flow
deposits are present but not abundant and somehef accumulations show
hydrothermally altered debris (Palmer & Walton, Qp9

Apart from dacitic lava domes and coulées, onlpire location direct evidence for a
larger-scale volcanic structure could be identifigithin the Tepoztlan Formation. In
Tlajotlan (18°52" N, 99°23" W; Fig. 3), a very caar volcanic breccia interpreted as a
vent breccia and intruded by various dikes spreaes an area of c. 6 KmThe thickest
lava flows within the study area can be found closéAhuatenco where they reach
thicknesses of up to 400 m, filling up a deep padley and smoothing the landscape on
top. Ahuatenco is situated c. 6 km away from thengeala complex whose eruptive
history is known since at least the late Miocene xerna & Fries, 1981b), and whose
proto-edifice is supposed to be one source forTiyeoztlan Formation (De Cserna &
Fries, 1981a). Furthermore, in San Andrés, at Ceefmzteco, Cerro EI Sombrerito and
San Agostin up to 25 m-thick lava domes or coulémsld be identified. However,
abundant dikes intruding the sequence in thesdidmsagave younger dates (15.83 +

1.31 Ma; Lenhardt et al., 2010) and can thus notlaged to a possible main vent area.

Apron facies association (5-35 km):
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Apron facies generally includes rapidly depositettanic and sedimentary materials that
encircle individual volcanoes or form prism-shagedumulations of debris flanking the
arc and contributed from many vents (Smith & Land@95). The sedimentary strata are
composed mostly of event deposits related diremtlyndirectly to the stripping of loose
volcaniclastic debris from steep volcanic slopesirdy or shortly following eruptive
episodes (Vessel & Davies, 1981; Smith, 1987; Pal&eWalton, 1990). Primary
volcanic components in the apron facies includes row-viscosity) lava flows,
ignimbrites, and fine- to coarse-grained fallouphti& (Smith & Landis, 1995). The
dominance of debris-flow and hyperconcentrated-flagies in continental volcaniclastic
aprons, or ring plains (Hackett & Houghton, 198&juits in deposition of sediment that
may resemble non-volcanic alluvial fans. Fluviahdstone fills the base of most
channels; others are filled by debris-flow or hyercentrated-flow deposits only (c.f.
Palmer & Walton, 1990). In connection with the aprfacies association, Siebe et al.
(1991, 1993) describe block-and-ash fans, compasitemulations of many pyroclastic
flows, flood deposits, and debris flows that arargtelled through valleys on the slope of
the volcano toward its base where they deposibeSet al. (1993) further describe these
block-and-ash fans as principally consisting ofuacession of breccia deposits with
many unconformities, very similar in appearancpdds of the Tepoztlan Formation.

The apron facies association characterizes thernpajd of the Tepoztlan Formation,
represented by the San Andrés and the Tepoztecdbbtenm the locations Malinalco,
San Andrés, Tepozteco, Sombrerito and San Agdstre, upper reaches are dominated
by debris-flow and hyperconcentrated-flow deposifs,to 40 m-thick pyroclastic flow

deposits, coarse-grained pyroclastic fall dep@sits coarse fluvial conglomerates.

Distal facies association (20-70 km):

In general, the distal facies association reprasteniminal deposition at sites that receive
little direct volcanic impact from eruptive everf@&mith & Landis, 1995). In non-marine
sedimentary basins, deposition of this facies asgon is mostly concentrated on fluvial
system deposits and overbank alluvium (Smith, 18&8&kett & Houghton, 1989; Riggs
& Busby-Spera, 1990). Primary volcanic productsgeeerally restricted to fine-grained

fall deposits and far travelled ignimbrites comimgs minor contributions to the
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stratigraphy (Smith & Landis, 1995). The mostlyn-volcanic sequences can include tuff
layers deposited by atmospherically transportedhastdreds or thousands of km from the
source volcano. Typical volcaniclastic beds of th&al facies association can comprise cm-
to dm-thick primary pyroclastic fall deposits ownl by meter- to 10's of m-thick
resedimented volcaniclastic deposits, intercalatestdimentary successions of non-volcanic
provenance (c.fKataoka et al., 2009)

The distal facies association characterizes theslguart of the Tepoztldn Formation,
mostly represented by the Malinalco Member in Malio and San Andrés but also by
the San Andrés Member at the Cerro Tonantzin. Heeposition is dominated by
sandstones and conglomerates, resulting from dlomets and fluvial sediments in a
braided river system. Only relatively thin pumiceodiamicts are present in these
locations, resulting from hyperconcentrated flowgnimbrites and pyroclastic fall

deposits are very rare and only appear in thinrkaye

DEPOSITIONAL ARCHITECTURE

The eight analyzed locations display successiongsotifanic, primary and secondary
volcaniclastic, and fluvio-lacustrine deposits oaeeas several hundred meters in width
and height. Of the eight analyzed locations, tlkeelocations, which gave the names for
the three stratigraphic members (Malinalco, Sanrés@nd the Tepozteco) are described
in detail. For more elaborate descriptions of gm@aining sections read Lenhardt (2009).
Lithostratigraphic sections are discussed in cdntgth related medium-scale panels.
Where appropriate, descriptions of small-scale Iganare included to verify
interpretations by analyzing the spatial distribotof different lithofacies with a detail

that can not be described in medium-scale panels.

Volcaniclastic deposits in Malinalco
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To the east of Malinalco, the Tepoztlan Formatmatileast 330 m thick. Two 2D-panels
and a detailed stratigraphic section were congdubere (Fig. 3). The sedimentary strata
of the section and the two medium-scale panelseamgge from 22.8 to 22.1 Ma, and

belong to the Malinalco and San Andrés Members@®fTtepoztlan Formation.

Large-scale panel 1.1.

Fig. 6 showing large-scale panel 1.1 correspondkeaentire mountain range formed by
the Tepoztlan Formation east of Malinalco. Flu\gatliments dominate throughout the

entire panel, and are only interrupted by minocercélated ash-flow tuffs.

Medium-scale panel 1.2.

The base of panel 1.2 (Fig. 7) as well as sectigl NFig. 8) is characterized by the
deposition of at least two thick lapilli-tuff unit¥here are signs of fluvial reworking and
scouring between them. The scours are oriented MWIBe top of the stacked tuff
layers is marked by the deposition of fluvial seelimts. Furthermore, there is an
abundance of overlapping channels, laterally wisimgitions to gravel bars and scours.
These sediments are covered by sandy sheet-flquubidie c. 3 m thick before once again
predominant overlapping channel-fill elements ocauth minor gravel bars. Small,
clast-supported lag deposits occur along channgtsand scour surfaces. Channel-fill
elements are dominant for the lower half of thegbaim the upper half, the frequency of
channel-fill elements decreases and coarse gravetlbments increase. Throughout the
stratigraphy, the gravel bars become coarser am#teth showing a coarsening- and
thickening-upward trend, and are sometimes cutdoyis or minor channel elements.
Ignimbrites occur at regular intervals of 5 to 15 Especially in the lower half, thin
(about 5 cm thick) pyroclastic surge deposits canfdaund below these elements,
sometimes with pyroclastic fall layers on top, medhantly consisting of fine pumice
lapilli. The upper third of the panel one chanr@E\W-NNE orientation) is filled by an
ash-flow tuff, followed by 1 m thick lacustrine seents. The base of the lacustrine
sediments is characterized by clayey to silty lay&rto 5 cm in thickness) that grade into
sandy and gravelly layers with a high pumice phkaticoncentration. The lacustrine
sediments thin to about 20 cm to the left (NNW) @&odrsen. To the left, the stacked
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lacustrine sediments are covered by a massivdilagf] to the right by a sheet-like

debris-flow deposit that partly scours the lapiliff.

Stratigraphic section MAL
The Malinalco section (MAL) is located southeastMdlinalco (18.93°N, 99.48°W). It

attains a thickness of 93 m (Fig. 8) and can blevad through the medium-scale panel

1.2 (Fig. 7). The section is mainly composed ofattdous sandstones and tuffs with
minor amounts of clay- and siltstones. The domifiacies are channel-fill and gravel bar
elements. Gravel bars increase in abundance towlaedsp and show a coarsening- and
thickening-upward trend. Ash-flow tuffs are prevdleoccurring at regular intervals
while pyroclastic surge and fall and lacustrinea{s occur only occasionally.

AMS paleocurrent directions of ash-flow tuffs shawredominant flow direction from
SE; few exceptions in the middle of the sectionvslaoflow direction from NE. AMS
analysis on fluvial deposits show flow directiors the SE, which is consistent with

measurements of sedimentary features in this aheaying roughly W-E flow directions.

I Fluvially dominated | Pyroclastic rocks [l Lacustrine deposits
deposits

Figure 6. Large-scale panel 1.1. with N-S orientatand a length of c. 2 km. (a)
Photomosaic of the study outcrop. (b) Interpretatd the photomosaic. The location of

medium-scale panel 1.2. is indicated by the reahéra
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Figure 7. Medium-scale panel 1.2. with NNW-SSE magon and a length of c. 240 m.

(a) Photomosaic of the study outcrop. (b) Integdren of the photomosaic. The red line
indicates the course of the stratigraphic sectichLMAF, ash-flow deposit; SC, scour-

fill; GB, gravel bar; SF, sheet-flood deposit; Gthannel-fill; LC, lacustrine.
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Malinalco

:] Lava flow

[B# Block-and-ash flow
Il Pyroclastic fall
[ Pyroclastic surge
[ Pyroclastic flow
B Debris flow

[ Hyperconcentrated flow
B Scour-ill

I Gravel bar

[ sheet flood

[ Channel-fill

[ Lacustrine

[==] Horizontal bedding
Trough cross-bedding
Planar cross-bedding
[=_] Low angle cross-bedding
[ Ripple cross-bedding
[TP] pumice-rich

[2><] columnar jointing

@ Flow directions through
field observations

.\: Flow directions through
AMS

31



32

Interpretation
In Malinalco, deposition of the Tepoztlan Formatistarted with a phase of explosive

volcanism, represented by the emplacement of at te@ thick (about 5 m) ash-flows at
the base of the succession. Signs of scouring liwea and relatively thin fluvial
sediments between the flow units indicate that dejom of the ignimbrites took place
close to or within a fluvial system that tried tollbw its original course between
eruptions. The sheetflood deposits on top of tiseskments are interpreted to have been
formed at the front of a volcanic ring plain, aé tthansition to the river system and give
evidence for deposition in a medial to distal settrelative to a possible volcanic source.
The next 15 m of the succession are dominateduwall sediments, indicating a period
of relative inter-eruption quiescence. However, ¢xplosive volcanic activity had not
ceased completely during this time as indicatedhieyoccurrence of relatively thin (few
10’s of cm thick) ash-flow tuffs. Furthermore, tlobastic material of the fluvial
sandstones and conglomerates is exclusively ofwmatoorigin. Based on the abundance
of amalgamated channels and the continuous upwadthtjon this part is interpreted to
represent an initially high-energy braided streaystesm, which flowed roughly from
west to east. The thickening- and coarsening-upwardis may indicate progradation of
the volcaniclastic wedge as deposition from onemmre volcanic structures in the
vicinity raised depositional slopes (e.g. Smith88P The AMS measurements within the
ash-flow tuffs give evidence for two different vafdic sources in the SE and NE,
respectively. Previous publications have not idesttiany volcanoes in the SE. However,
in the course of the studies for this paper, aiptesyolcanic vent area was found in
Tlajotlan, c. 9.7 km SE of Malinalco (Fig. 3), cheterized by dacitic vent breccias and
radial dikes. A possible volcanic source in the ¢¢itld be the Zempoala area (c. 20 km
from Malinalco), which is supposed to be a majotcanic source of the Tepoztlan
Formation (De Cserna & Fries, 1981a) and respam$dsl 30-400 m thick andesitic lava
accumulations near Ahuatenco (Fig. 3).

What is particularly of interest in this locatios the development of a lake within the
volcaniclastic sediments. The lake is interpreteave been formed by the deposition of

an ash-flow within a fluvial channel that led t@ttlamming of the original river and thus
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to a backblock of the stream and the developmena ddke (c.f. Manville, 2001).
According to Kuenzi et al. (1979) shallow, rapidhjilled lakes of limited lateral extent
usually form on aprons due to drainage disruptionldwva flows, ignimbrites and
landslides, or rapid valley aggradation that impisitributaries.

The center of the lake is characterized by moskyey to silty sediments. Sandy
sediments, supplied from NNW direction are infertedepresent the shoreline with a
prograding river-delta, similar to a lake-floor féin et al., 2009) or a Gilbert-type delta
(Bestland, 1991; Németh, 2001). Lacustrine depmsivas stopped by the accumulation
from another ash-flow, which filled the lake basind was later partly entrained into a
subsequent lahar (characterized by debris-flow siég)o

Volcaniclastic deposits in San Andrés

North of the village of San Andrés de la Cal (18M599.11°W) the Tepoztlan

Formation attains a thickness of about 370 m. Twtaited stratigraphic sections and
four 2D-panels were constructed in this area (Big.The sedimentary strata of the
stratigraphic sections range in age from 22.8 t8 ®1a, and belong to the Malinalco and

San Andrés Members of the Tepoztlan Formation.

Large- scale panel 2.1

The large-scale panel 2.1 shows a part of the Saiiré8 Member of the Tepoztlan
Formation, dominated by tuffs (Fig. 9). The positocof the two stratigraphic sections
SA1 and SA2 and the two small-scale panels 2.22aBdre indicated by red lines and

frames.

Stratigraphic sections SAN1 and SAN2
San Andrés section 1 (SAN1), with a thickness & a8 is located north of the village of

San Andrés (Fig. 10). The lower part of the secisothominated by ash-flow tuffs, gravel
bars and minor debris-flow deposits. With incregdieight in the succession more and

more ash entered the system. Several lobes ofck-blad-ash flow deposit can be found
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on top of a stack of ash-flow deposits. The uppgel of lapilli-tuff contains gas escape
pipes. The top of the section is dominated by #®h-fuffs and minor amounts of fluvial
and debris-flow deposits. The San Andrés 2 se¢B#N2), 100 m east of SAN1 attains
a thickness of 92 m. The lower and middle partcarmaposed almost entirely of ash-flow
tuffs, which can be correlated quite well with sran SAN1. The top of SAN2 shows an
increase in the abundance of fluvial deposits.

Except for four layers, all ash-flow tuffs show AMf@leocurrent directions from the N/

NE. Analyses on fluvial deposits show roughly Wrkgntding flow directions.

Small-scale panel 2.2

Small-scale panel 2.2 shows a gravel bar domindegbsitional system (see Trauth,
2007; Fig. 11) representative of the fluvial seditsan the lower part of the succession.
The gravel bar elements at the base of the paaealaracterized by planar cross-bedding
and thicknesses between 30 cm and 1.3 m. Follothiege elements, a 20 to 30 cm thick
ash-flow tuff can be traced over the entire pacelered and partly scoured by another
stack of gravel bars. A normal fault cuts throupgb tuff and the gravel bar on top, but
does not affect higher gravel bar elements. That part of the panel is downthrown by

about 50 cm. Furthermore, a well rounded dacitltdbia block of 2.5 m in diameter can

be found next to the fault. The layers below thecklshow bomb sag structures.

Small scale panel 2.3

Representative of the ash-flow tuff-dominated jpéthe Tepoztldn Formation, panel 2.3
shows a succession of several ash-flow, surge ahdédposits (see Trauth, 2007; Fig.
12). A basal thick ash-flow deposit is followed &ysuccession of stacked pyroclastic
surge accumulations, showing signs of erosion e léft and right part of the panel.
Especially in the right part, this erosion was eau®y the development of a fluvial
channel as indicated by remnants of sandy chailhetéments. Rip-ups of the
pyroclastic flow deposit occur within the fluviaédiments. The fluvial channel is filled
by a stack of three ash-flow tuffs. Simultaneouslyfall layer can be traced throughout

large parts of the panel but was partly erodedutpgsquent pyroclastic flows. On top of
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this stack, a very pumice-rich ash-flow tuff cantkeced over the entire panel, followed
by at least two more thick, lithic-rich ignimbrisheets.

Large scale panel 2.4

Panel 2.4 (Fig. 13) has a S-N orientation, showlegTepoztlan Formation at the eastern
side of the mountain range north of San Andrés.|&veandy channel elements and
gravel bars dominate in the south, sheet-flood siegpintervene from the north and are
followed by debris-flow deposits, which rarely reabe southern edge of the panel. Ash-

flow tuffs are abundant throughouit.

I Fluvial deposits [ Debris-flow deposits | Ash-flow deposits

Figure 9. Large scale panel 2.1. with WNW-ESE ddgan and a length of c. 4 km. (a)
Photomosaic of the study outcrop. (b) Interpretatod the photomosaic. The red lines
indicate the courses of the sections SAN1 and SANR2. location of small-scale panel

2.3. is indicated by the red frame.
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frame.
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2 meters

2 meters

[ Ash-flow deposit

| Lavabomb [l Gravel bars
Figure 11. Small scale panel 2.2. with SSW-NNEm#&a#&on and a length of c. 25 m. (a)

Photomosaic of the study outcrop. (b) Interpretatd the photomosaic (from Trauth,

2007).
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Figure 12. Small scale panel 2.3. with SW-NE oaéoh and a length of c. 39 m. (a)
Photomosaic of the study outcrop. (b) Interpretatid the photomosaic. FA, pyroclastic
fall deposit; SU, pyroclastic surge deposit; AR-sw deposit; CH, channel-fill (from
Trauth, 2007).
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Figure 13. Large scale panel 2.4. with SSW-NNEntaton and a length of c. 2 km. (a)

Photomosaic of the study outcrop. (b) Interpretatibthe photomosaic.

Interpretation
The lower part of the succession at the base dfose&ANL1, i.e. the oldest exposed

deposits of the Tepoztlan Formation within the gtadea is characterized by sandy
channel-fills and gravel bars with single intertathmass-flow deposits, ranging from
accumulations of hyperconcentrated flows to deflos/s. Orientations of imbricated
gravels, scour walls and mapped paleochannelsatelibat a fluvial transport direction
from west to east was dominant with a vaguely tadlspersal pattern. The
predominance of low-angle erosional surfaces, sipallldery gravel bars, and flat-
bedded to cross-bedded, tuffaceous sand suppaptssitien in a system of shallow
migrating channels with longitudinal bars, diffugeavel sheets, and unstable banks.
Based on the abundance of overlapping channelghendontinuous upward gradation
this part is interpreted to represent a braidedastr system (c.f. Smith, 1987). Small,
clast-supported lag deposits occur along channelsmour bases. The coarse-grained
volcanic debris was probably transported to the dre debris flows, but only scoured

remnants can be noticed in the lower part of se@AN1.
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The outcrops of bedded, reworked tuff along wite #tcumulation of debris-flow and
stream deposits in broad, shallow channels sugdegbsition in a moderately
aggradational setting of low relief. In the midglart of section SAN1 stacked layers of
orange to pink, lithic-rich lapilli-tuff as thicksall m belong to the oldest primary
volcaniclastic material and give direct evidence é&xplosive activity. Vertical gas-
escape structures are common in these deposity.arbecovered by several successive
layers of tuff breccia, which are interpreted t@rate from block-and-ash flows. Their
emplacement was followed by immediate or subseqdeminstream dilution by the
stream water, ending up as hot or cold “laharictents, depositing debris flow units.
Locally, interstratified lava flows give evidencerfeffusive eruptions and were the
dominant source for the volcanic detritus preseimdtie sections.

On top of the lava flows, another 40 m-thick packaf amalgamated and stacked gravel
deposits is exposed with minor intercalated pystatdlow deposits.

The vertical transition from sandy deposits to keicconglomerates reflects a change in
the fluvial architecture. The fluvial patterns arkaracterized by a coarsening- and
thickening-upward trend and thus an increase afrpparated primary volcanic material,
pointing to progradation or increasing volcaniemgity in the volcanic source area. This
hypothesis is supported by the occurrence of neatflock-and-ash-flows and abundant
ash-flow tuffs that are increasingly abundant talsathe upper part of the succession,
suggesting a progressive progradation of the vadcsystem. The tops of section SAN1
and section SAN2 are clearly dominated by massapdlittuffs originating from ash
flows and recording a major explosive eruption ghdsarly ash-flow deposits are still
strongly confined to paleovalleys with a N-S to NNSBE orientation, suggesting a
supply of material from point sources in the noffme example for these paleovalleys
can be seen in panel 2.3 where a fluvial valley rfb@idth) was filled by several tuff
layers, originating from ash-flows and pyroclassierges. The succeeding tuff layers
however, have sheet-like appearances, indicatsgaothing of the depositional surface
after the filling of the channel, which allowed selquent flows to produce sheet-like
deposits. N-S to NNW-SSE flow directions are alsdidated by AMS analyses on ash-
flow tuffs, showing that AMS trends tend to mirrtocal stream valleys or slope

directions (Fisher et al., 1993) and thus the pafgmgraphy of the ancient ring plain.
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Divergent data from the N-S/ NNW-SSE directionswhweer, show a W-E or E-W
direction, i.e. parallel to the suspected braidedrrvalley that drained the volcano. This
suggests that much of the material flowed radiaffythe outer slopes of the ring plain
irrespective of the direction from the original soeiarea (e.g. Fisher et al., 1993). Well
preserved organic matter (plant debris and palymph®) within the pyroclastic material
points to relatively low depositional temperatubegow 350°C (Stach et al., 1982). The
top of the sequence again shows an increase irafflonaterial. Furthermore, debris-flow
deposits in the form of pumiceous diamicts, intweih from the north are another
indication for increasing influence by a possibdeirge in that area. This is documented
by panel 2.4 (Fig. 13), showing the interfingeriagd successive progradation of the
volcanic ring plain into the underlying braidedensystem.

An indication of synsedimentary tectonic activisythe normal fault in 2.2, which may
have formed during an earthquake due to volcartigigc The block next to the fault is
interpreted to present a volcanic bomb. The digtidm of very large particles is
generally restricted to a few kilometres from thentv(Orton, 1996). By means of the
bomb sag structures a flight direction from NNESSW can be proposed, giving more

evidence for a possible volcanic source in themort

Volcaniclastic deposits in Tepoztlan

North of Tepoztlan (18.99°N, 99.10°W) the thicknedsthe Tepoztldn Formation is

about 380 m. One detailed stratigraphic section @mal 2D-panel were constructed in
this area (Fig. 3). The volcanic and sedimentargtatof the stratigraphic sections range
in age from 21.8 to 18.8 Ma, belonging to the Sawli&s and Tepozteco Member of the

Tepoztlan Formation.

Large scale panel 3.1

Panel 3.1 (Fig. 14) shows a change from a pregaitionglomerate and cross-bedded
sandstone facies in the lower half of the panal toainly diamict lithofacies in the upper

half, documenting the change from fluvial-dominateml a mass flow-dominated
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sedimentation within the Tepoztlan Formation seditagy succession. The course of the

stratigraphic section TEP is indicated by the red.|

Stratigraphic section TEP

The Tepozteco section (TEP) is located north ofokdan (Fig. 15). The thickness of
this section is 378 m. The lower part is dominat®d tuffaceous sandstones and
conglomerates resulting from gravel bars and sam@ynel fillings. Minor amounts of
the massive tuff breccia lithofacies, depositstdeast two block-and-ash flows, can be
recognized. The upper two-thirds of the sectiondar@inated by the deposition of coarse
tuffaceous diamicts, i.e. debris-flow deposits hasg from lahars (e.g. Rodolfo &
Arguden, 1991). It was not possible to ascertagnnihmber of debris-flow deposits in the
vertical sequence because distinct changes in satlogy or erosional contacts were
not apparent. Lapilli-tuff facies is only a minarstituent in this part of the section. The
sedimentary succession is locally capped by a 2Bick-dacitic lava flow. The top of the
stratigraphic section is represented by more ddlaig deposits with minor amounts of
cross-stratified tuffaceous sandstone.

AMS analyses on lava as well as fluvial depositspto a roughly N-S-trending flow
direction. AMS directions from fluvial deposits aepported by analysis of sedimentary

paleocurrent structures, showing the same direcdidransport.
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I Debris-flow dominated deposition [l Fluvial dominated deposition

Figure 14. Large scale panel 3.1. with W-E orieatatand a length of c. 4 km. (a)
Photomosaic of the study outcrop. (b) Interpretatd the photomosaic. The red line
indicates the course of the stratigraphic sectiBR.T
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Interpretation
The characteristics of the sedimentary facies awdeometry in the lower part of the

sedimentary succession of the Tepoztlan Formadiooumented in this location, indicate
that the system was dominated by streamfloodsgif Bhough competence to transport
even boulder-size clasts. The predominance of loglea erosional surfaces, small
bouldery bars, and relatively thin sandy chanrid-8upports deposition in a system of
shallow migrating channels with longitudinal barglainstable banks, characteristic of a
braided river system. Bouldery conglomerates atbéhee of channels are interpreted to
be lag deposits. All clasts within the fluvial defie are of volcanic origin. The sandy
matrix is probably due to reworking of unlithifiesgh. This shows that volcanic activity
was still ongoing within the study area and redulantroduced fresh, unlithified
volcanic material into the stream. The relativédintpyroclastic-flow deposits are direct
evidence for volcanic activity. Up-section, thevilal sediments are suddenly replaced by
a massive stack of laharic debris-flow deposits,ctvhdominate the sedimentary
succession to the top. The debris flows are infetoehave been produced by relatively
near-source reworking of vent-facies pyroclasti¢enal. The abundance of channelized
to unchannelized debris-flow deposits is commomigidative of small coalescing
alluvial-fans with high angles of repose and ret#d catchments (Nemec & Postma,
1993). According to Ferruci et al. (2005) a minimbopography is necessary for the
formation of debris-flows, which is distinguishedthree sectors: 1) a water supply zone
(slope > 32°) where rain water is enriched in mnd eoncentrated in the initiation zone;
2) an initiation zone (or source arsansu strictaslope with ~30°) where debris flows
form and; 3) a transport and deposition zone witsleris flows deposit levees and
terminal lobes (slope ~30°).

The lack of fluvial sediments suggests that pogied@ional fan incision was limited.
The volcaniclastic sequence is capped by a thidktiddava flow, suggesting a brief
decrease in eruption intensity and a transitiomfrexplosive to effusive activity. The
succession is completed by the deposition of furthebris-flow deposits. This could
point to renewed explosive volcanic activity andmediate reworking of fresh

pyroclastic material by mass flow processes, legavio trace of primary deposits.
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Another, probably more accurate explanation for thee packages of mass-flow
deposits could be deposition during a phase oficeddestruction (c.f. Zernack et al.,
2009) and thus the final stage within the evolutbthe Tepoztlan Formation.

Similar to location SAN, analysis on AMS and seditagy features imply N-S to NNW-

SSE flow directions, following the paleotopograpbfy the ancient ring plain with a

supposed source in the north. Although there areisible signs for a volcanic vent area
because of a thick cover of Pliocene to historvaldlows, the Sierra Chichinautzin
volcanic field (c. 5 km away) is the most probatémdidate location for a proto-edifice

supplying material for the Tepoztlan Formation.

DISCUSSION AND EVOLUTIONARY MODEL

The vertical and lateral analysis of individuahdfacies types and their distribution
within the study area, as well as information gdimeiring mapping in the field and
outside the stratigraphic sections, can be intedrat three depositional models, forming
a concise evolutionary model of the Tepoztlan Faoiona(Fig. 16), and illustrating their
importance for the interpretation of the successidhe facies patterns within the
stratigraphic sections record temporal changegdingentation, showing syn- and inter-
eruptive sedimentation as indicated by primary secbndary volcaniclastic and fluvio-
lacustrine depositional processes. The interpoetadf these facies patterns also reveals
post-eruptive volcaniclastic resedimentation inuviél environment, intertwining with
sedimentation from at least three partly coalesewiganic ring plains during and in the
aftermath of explosive eruptions. Volcanic actiyitpmbined with minor syndepositional
tectonics, were the main controlling factors iruaidl sedimentation. During episodes of
increasing sediment supply by volcanic activitypgradation of the ring plains was
recorded and coarsening-upward trends developeervils of quiescence separating
eruptive periods are characterised by landscapadjiestment, accompanied by
deposition of fluvial and lacustrine sediments.(Zdrnack et al., 2009).

The locations of volcanic edifices were deducelegithrough direct observations in the

field or indirectly, based on lithofacies assocat and by means of sedimentary
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paleocurrent and AMS measurements. Furthermore,cthese of the braided-river
system outside the documented and measured sagatigrsections is considered to be
more or less schematic. Inflows from the northsrpposed to have been present at that
time, considering that the Valley of Mexico wasided to the south (Ochoterena, 1978),
but could not be identified in the field.

Once the lithofacies and their distribution hadrba&kentified, analyzed and interpreted,
and the paleocurrent directions had been investigahree distinct paleoenvironmental
settings could be deduced, characterized by theethmembers of the Tepoztlan
Formation during the Lower Miocene: (1) the Malo@mMember, a setting dominated by
the deposition from a braided river system, (2) 8an Andrés Member, a setting
dominated by volcanic edifice development, andt(® Tepozteco Member, a setting

dominated by volcanic edifice destruction.
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Tlajotlan volcano ——

b) San Andrés Member (22.2-21.3 Ma)

i 55“’

c) Tepozteco Member (21.3-18.8 Ma)
Figure 16. Paleoenvironmental reconstruction ofttiree distinct depositional settings:

a) braided river setting (Malinalco Member, 22.822Vla), b) volcanic edifice
construction (San Andrés Member, 22.2-21.3 Ma), endolcanic edifice destruction
(Tepozteco Member, 21.3-18.8 Ma). MAL — MalinalcbL,A — Tlajotlan; AHU —

Ahuatenco; SAN — San Andrés; TEP — Tepozteco; SOMerro Sombrerito; TON —

20 Kilometers

Cerro Tonantzin; SAG — San Agustin.
Braided river setting (Malinalco Member, 22.8 - 22 Ma)
The studies on sedimentary features and paleodudieections show that a W-E

trending braided river system dominated the stuew &etween 22.8 and 22.2 Ma. The

fluvial sediments, mostly gravel bars and sandynok&fills, were predominantly



49

deposited near Malinalco, Ahuatenco and San Andreéstical stacking of sand and
gravel bodies are interpreted to be due to aggmadatith shifting of channel bars
associated with channel switching (e.g. Bridge,3)99he complete lack of paleosols
and non-volcanic clasts gives evidence for an direactive system with frequent
eruptive activity and immediate subsequent rewarkand resedimentation. Small-scale
pyroclastic eruptions, mainly depositing close lte vent, supplied relatively small to
moderate rock volumes (c.f. Platz et al., 2007} Ware entrained into the axial fluvial
system. SE of Malinalco a volcanic center of thieet could be identified by vent
breccias and radial dikes (18.52°N, 99.23°W). THdSAmeasurements on pyroclastic
rocks in Malinalco are consistent with this souregion. According to paleocurrent data
taken from the San Andrés sections (SAN1+2) anotbkanic center must have existed
in the area of the present day Sierra Chichinautwrth of Tepoztlan.

Following the eruptions, volcaniclastic debris wasvorked from proximal areas and
discharged into the basin. This resulted in theettgpment of a low-sinuosity channel
system with high-sediment-laden hyperconcentratedisf after heavy rains. Debris-
flows produced during this period were probabltrieted to proximal areas due to the
lower elevation of the source area (c.f. Zernackl.e2009). However, the relatively thin,
tabular, hyperconcentrated-flow deposits are imézegl as dilute end-members of debris
flows (Pierson, 2005) and to mark the transitiamnfrthe ring plain to the braided river
system. The prevalence of clasts of intermediatmposition and of large size is
consistent with a limited distance from the souwrgea high-energy transport system and
thus suggests contemporaneous volcanism and sddimen The overall coarsening-
and thickening-upward trend, together with an iaseein average grain size, can be
attributed to growth of the stratovolcanoes andpitugradation of large fan lobes of the
ring plain systems into the river basin (e.g. Clatae& Perez-Arlucea, 1993; Horton &
DeCelles, 2001; Uba et al., 2005).

Volcanic edifice construction (San Andrés Member, 22 - 21.3 Ma)
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During the deposition of the San Andrés Memberréhér progradation of the volcanic
system is recognized, combined with a sudden iser@a volcanic activity, which is
associated with the deposition of massive ignimbriand the most voluminous lava
flows of the Tepoztlan Formation. The lower partttd San Andrés Member, especially
in Malinalco, is still dominated by the depositioh thick horizons of gravel bars and
sandy channel-fills, indicating the on-going seditagion of the axial braided river
system. Subsequently, medial accumulation of thg plain is characterized by massive
sequences of lapilli-tuff beds with intercalateddeflow and hyperconcentrated-flow
deposits. These are sheet-like or confined to adlanwhere the landscape has been
incised by rivers and streams (c.f. Procter et 2009). In the beginning, pyroclastic
material filled up the existing fluvial channelspéaining their lens-shaped appearance.
Lacustrine sediments found in Malinalco and near thillage of Santo Domingo
(19.00°N, 99.03°W) point to the development of lattammed lakes after partial
covering of the former river bed by volcanic adivand a ponding of the water in the
newly formed sedimentary basin (c.f. Kuenzi et 4B79; Manville, 2001). In San
Andrés, the pre-existing fluvial system was partiyvered or diverted by volcanic
deposits and could only follow its original couiseimes of quiescence, as indicated by
thin fluvial sediments within the thick sheets ghimbrites. Explosive eruptions from
small, andesitic-dacitic composite volcanoes, capgiie deposition of pyroclastic flows
and subordinate pyroclastic surges, were accomgdmnyefew effusive episodes. The
eruptive events generated only few ash falls atatively small-volume or small-runout
pyroclastic density currents, probably extending more than 20-30 kilometers from
their vents. Although initial plinian eruption cldsi may have developed, they would
have been short-lived and collapsed early into €im and debris fountain, which fed
pyroclastic flows onto the outer slopes. This magl&n the existence of only few fall
deposits (e.g. White & Robinson, 1992). Anotherlaxation could be that the eruptions
were dominated by dome-forming effusive activitpgucing block-and-ash flows and
lava flows, but only a few large plinian eruptiosiumns and thus little distal tephra. One
example of this eruptive style is Mount Unzen, Japehich is characterized by effusions
of thick lava flows and/or lava domes associateth gravitationally driven block-and-

ash-flow deposits (Hoshizumi et al., 1999; Ui et, d1999). Explosive eruptions of
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vesiculated pumiceous materials are very rare (losti et al., 1999). The block-and-
ash flows within the Tepoztlan Formation were reépély generated upon collapse of
gravitationally unstable outflows from the growilaga domes either in the summit crater
itself or from peripheral domes. Dome building egemommonly occur at many
stratovolcanoes between combined stages of condiriguiseparated by cratering and
collapse events (Carrasco-Nunez, 1999). Few laligeap eruptions then produced ash
flows that moved down the slopes of the volcanocdh be assumed that at least
intermittent fallout must have occurred, especialiyhe beginning of the eruptions. This
loose material must have been continuously strippgedubsequent rain, lahars, and
pyroclastic flows (c.f. Siebe et al., 1993). Rowkdyal. (1981) report ash fall deposits,
several cm thick, adjacent and on top of the Juhel@80 pyroclastic-flow deposits at
Mount St. Helens. These fine beds were completalgiezl and did not last for more than
a few weeks. The same is reported by Rose et @08f2about the October 14, 1974,
tephra deposit from Volcan de Fuego, Guatemala.fifleegrained, generally thin tephra
deposits, commonly produced by dry subplinian eomstof many composite volcanoes,
are described as short-lived and seem to havepisagd due to erosion after few weeks.
Interbedded fluvial sediments represent local taldishment of the paleostream and
fluvial reworking in the course of landscape adpesit. However, no paleosoils have
been recorded, indicating relatively short intarpgion periods. Later, primary deposits
have a sheet-like appearance, covering and modityia paleotopography and leading to
further steepening of the relief in the contexttloé growing ring plain system in the
north. Regionally, the thickest ignimbrites canfbend near San Andrés (up to 30 m)
while thick lava flows are prevalent in the vicinof Tlayacapan and Ahuatenco (up to
400 m). Similar to the Malinalco Member, AMS mea&suents on the ignimbrites in San
Andrés suggest a point source in the present-daryaSChichinautzin, where the proto-
edifice is supposed to be buried below modern |8eavs. In Malinalco, AMS
measurements on relatively thin ignimbrites pointa volcanic source in the NE,
deviating from the formerly described source in 8t near present-day Tlajotlan and
thus suggesting the coalescing of the ring plaihgwm different volcanoes in this
location. The most probable volcanic source inNte of Malinalco is the present-day

Zempoala complex (Fries, 1960), which was suggdsyelde Cserna & Fries (1981a) to
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be one of the major source areas of the Tepoztbém&tion in Malinalco. The Zempoala
volcanic region is furthermore supposed to be therce of the massive lava flows,
which can be found near Ahuatenco (K/Ar ages o225 Ma, 21.9+ 0.5 Ma; Lenhardt
et al., 2010). Here, the lava, normally reachingkimesses of 30 m, flowed southward
into a pre-existing depression, reaching a maxintuckness of 400 m. The top of the
San Andrés Member is characterized by further @aaion of the ring plain, indicated

by an increase in sheet-like lahars.

Volcanic edifice destruction (Tepozteco Member, 23.- 18.8 Ma)

The deposition of the Tepozteco Member is charaetgby sedimentation in the eastern
part of the study area (Tepoztlan and Tlayacapgiomg In contrast, deposition in the
west (Malinalco and Ahuatenco region) is missing aeems to have ceased during that
time. This is either due to a shifting of the iaitbraided river system during that time,
combined with a cessation of volcanic activity bé tTlajotlan and Zempoala volcanic
center, or a later erosion of younger sedimentswvéver, in the other parts of the
Tepoztlan Formation, deposition was still prevaldpaleocurrent data on sediments
indicate that basin sedimentation underwent a gt change from a predominant W-
E trending fluvial to a N-S trending mass-flow dstional system. The influence of the
ring-plain, which could already be observed witltie Malinalco and San Andrés
Members, increased and overcame the formerly dorhandal fluvial system during this
period. This can be well seen within the TEP sectwhich is interpreted as the active
part of the volcanic ring-plain, presumably devahbgp at the southern edge of a
prominent volcanic edifice with an estimated attéuexceeding 3000 m above sea level
(Lenhardt, 2009). Similar to the two members déscdibefore, paleocurrent analysis and
lithofacies associations suggest a volcanic soarea in the north, buried below the
modern lava flows of the present-day Sierra Chabinin, about 5 km away from
Tepozteco. Clast compositions and lithologies iaticthat all material was locally
derived. Deposits originating from debris flows améerred to have been produced by

relatively near-source reworking of pyroclastic ematl. The association of thick lavas
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(up to 20 m), pyroclastic breccias, and bouldehatadeposits as can be seen in section
TEP is common on the flanks of stratovolcanoes amaracterize many proximal to
median apron settings (e.g. Vessel & Davies, 1884ck & Rasmussen, 1984; Hackett
& Houghton, 1989). Throughout the section TEP, dheount of primary volcaniclastic
products is decreasing and is absent in the uppet while debris flow deposits are
increasing in number and thickness, suggestingowvigg height and volume of the
edifice (c.f. Zernack et al., 2009). The end of isexhtation within the Tepoztlan
Formation is characterized by edifice destructibthe prevalent volcano complex in the
north, which generated various types of debris-fld@posits. This destructional phase
can be due to the volcanic edifice reaching itscali point at which its structure becomes
sufficiently unstable (c.f. Zernack et al., 2008prmally, a volcanic cycle is closed with
a major sector or cone collapse, represented bn@ease in debris avalanches and
debris flows in medial areas (c.f. Zernack et &02 Procter et al., 2009). Direct
evidence for a major collapse of the volcanic edifsuch as debris avalanche deposits is
absent in the studied sedimentary succession, pnokably due to the distance from the
source and possibly erosion. However, it can berased that debris flows developed
from proximal avalanche areas and possible scatplahris avalanche deposits (Procter
et al., 2009). The increase in sediment supplyyaated with high rates of lahar activity,
resulted in an aggradation in stream valleys andagmmons surrounding the volcanic
edifice (c.f. Vessel & Davies, 1981; Scott, 1985nith, 1987). The lahars flowed
southward from their source area and spreadedtbedrraided stream valley, leading to
a partial covering or southward shift of the iditsmaided river system. Initially confined
lahars that are recorded in lower parts of secliBR are due to incised topography, as it
is the case at most volcanoes in the Cascadedyle.Rainier (Vallance & Scott, 1997)
and Mt. St. Helens (Voight et al., 1981; Jandal.etl@81). Existing drainages within the
ring-plain, a network of separate and overlappiaterally migrating paleo-channels
provided flow paths for channelised lahars but wieequently infilled and covered by
coarse, voluminous sheet-like flows (c.f. Procteale 2009). The tabular debris flow-
deposits indicate that they were too large to beained by the channels. The frequency,
nature and volume of the lahars depended on theaitirey local climate, i.e. rainfall

intensity and duration in the source region, vetimigpatterns and related slope-stability
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or sediment supply (e.g. Waitt et al., 1983; Motkeésl., 1998; Hodgson & Manville,
1999; Lavigne et al., 2000; Vallance, 2000; VanWest Daag, 2005). Palynological
data from the Tepoztlan Formation point to a teragerto humid climate that was
strongly affected by the monsoon during the time of deposition (Lenhardt, 2009).

Periods of quiescence or reduced volcanic actirg characterized by reworking and
erosion of eruption-related deposits (e.g. PalmeM#&lton, 1990), resulting in the
deposition of sandy to gravely fluvial deposits.a@l bars, deposited during these
periods, indicate the existence of high-magnitudeds. The development of soils could
not be observed. Instead pollen findings in thermaf the lahars indicate the existence
of forest vegetation outside the main active afeashardt et al., 2008).

Deposition near San Agustin was influenced by aarmt center relatively close to
section SAG itself but now covered by lavas of t@&ichinautzin Formation.
Paleocurrent data on ignimbrites and dome lavagesighe volcanic edifice to have lain
N to NE of the studied section. The volcanic prdduare interpreted to come from a
lateral parasitic vent at the southeastern flankhef Chichinautzin proto-edifice, which
had reached a critical height at this time in teaislope stability and magma ascent.

In contrast to the central part of the study anemrad Tepoztlan, the parts to the east
(SOM1, SOM2, TON) were not or only partially affedtby deposition from the ring-
plain system, and show a marginal setting. In paldr, the deposition of abundant
sheetflood sediments is a sign for floodplain sethitation in marginal areas of the ring-
plain (c.f. Luzdén, 2005) or its front, i.e. at thensition to the river system. The
dominance of channel-fills and gravel bars indicateontinuation of the braided-river
system in these areas, whose fluvial transport dsasionally disrupted by nearby
explosive eruptions and abundant pyroclastic melteri

Finally, the intrusion of dikes within the Tepoztl&ormation (15.83+1.31 Ma; Lenhardt
et al., 2010) is related to a period of plutonicstdovolcanic magma body emplacement
and large fissure eruptions that emplaced widespliea plateaus between the states of
Nayarit and Veracruz (Ferrari & Rosas-Elguera, 2@@0rari, 2004; Ferrari et al., 2005).
The E-W trending axial braided-river system andoalke assumed E-W trending
alignment of stratovolcanoes and lava domes withan Tepoztlan Formation can be

explained by the existence of the La Pera faultesysexisting since pre-Miocene times
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(Johnson & Harrison, 1990; Garduno et al., 1998)digs throughout the TMVB suggest
that emplacement of magmatism always occurred énntlaximum extensional strain
zones (Alaniz-Alvarez et al., 1998; Garcia-Palorhale 2000). These zones acted as
weakness zones through which the melts could asteridrm the early volcanic arc
(Mooser, 1972). In this way, the development of BV trending fault system could
have significantly influenced the shifting from aS\to an E-W trending volcanism at the
end of the SMO and the initial phase of the TMVBy(d~errari et al., 1999) through a
docking of the magmatic arc volcanism to the neddyeloped fault system (Lenhardt,
2009).

CONCLUSIONS

Due to excellent outcrops and a set of methodwudnaty lithofacies analysis, panel
mapping, paleocurrent data and a chronostratigtafriaimework it was possible to
reconstruct the evolution of an early Miocene voickstic succession at the southern
edge of the Transmexican Volcanic Belt (TMVB). Thepoztlan Formation accumulated
mainly in medial to distal settings relative toith@urce area in flank and apron settings
of a volcanic ring plain, which interfingered witin axial W-E trending braided river
system. Although a strong interaction of fluviatugtive, and gravitational processes,
with all kind of transitions, has been observedystematic evolution is evident, which is
closely related to a complete volcanic cycle oféady TMVB lasting around c. 4 Ma.

In the first phase (Malinalco member, 22.8 - 22.2) Mrolcanic activity started with a
moderate supply of volcanic material erupted frdmeé small stratovolcanoes. Most
pyroclastic material could be reworked by sheebdk and fluvial processes along the
W-E trending valley. Phase two (San Andres meni#@ - 21.3 Ma) records increasing
volcanic activity with thick and voluminous pyrostec flows and lava flows, which
temporarily overloaded and buried the fluvial sgstevith debris. Synsedimentary
tectonics and pronounced paleorelief show the ssoce growth of volcanic edifices and
possible volcanotectonic events related to majouptesns. During phase three

(Tepozteco Member, 21.3 - 18.8 Ma) a large ringnplaostly composed of mass-flow
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deposits, developed at the northeastern edge ofépeztlan Formation and prograded
over the axial river system. This implies that iarlg Miocene time a voluminous
stratovolcano existed in the area of the preseatr&iChichinautzin, which is now
covered by Quaternary lava flows. At this timeseems that it reached a critical height
and steepness, resulting in slope failures andsp&raent formation. Its altitude must
have been at minimum similar to the present daypdaphic level (c. 3500 m a.s.l.).
Marginal settings in the NE show that fluvial preses continued and smaller volcanic
centers at lower levels, possibly flank eruptidres;ame dominant.

Altogether, the Tepoztlan Formation shows a volcaimg-plain succession with distinct
evolutionary steps: initiation with several smadlaanic centers (c. 0.6 Ma), build-up of
volcanic edifices and paroxysmal eruptions (c. &), and a destructive period (c. 2.5
Ma) when few big stratovolcanoes were eroded maayymass flow processes. This
evolution corresponds well to observations from eradvolcanic apron settings (e.qg.
Hacket & Houghton, 1989, Vessel & Davies, 1981, M&dRasmussen, 1984, Procter et
al., 2009; Zernack et al., 2009) and demonstrdtesctose connection of ring-plain

successions to volcanic cycles.
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