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Abstract

This is a computational study of gravity-driven fingering instabilities in unsaturated porous
media. The governing equations and corresponding numerical scheme are based on the work of
Nieber et al. (2003) in which non-monotonic saturation profiles are obtained by supplementing
the Richards equation with a non-equilibrium capillary pressure-saturation relationship, as well
as including hysteretic effects. The first part of the study takes an extensive look at the sen-
sitivity of the finger solutions to certain key parameters in the model such as capillary shape
parameter, initial saturation, and capillary relaxation coefficient. The second part is a compar-
ison to published experimental results that demonstrates the ability of the model to capture
realistic fingering behaviour.

1 Introduction

The transport of water and dissolved contaminants within the vadose zone is extremely important
in a wide range of natural and industrial applications including protection of groundwater aquifers,
irrigation, flood control, and bioremediation, to name just a few. Many of these applications exhibit
preferential flow in which gravitational, viscous or other forces initiate instabilities that propagate
as coherent finger-like structures. In fingered flow, water is able to bypass a significant portion of
the porous matrix and thus penetrate more rapidly than would otherwise be possible for a uniform
wetting front; as a result, fingering can have a major impact on the transport of contaminants carried
by an infiltrating fluid. A clear understanding of fingering phenomena can therefore be essential in
the study of certain applications such as groundwater contamination.

We focus in this work on preferential flow that is driven by gravitational forces arising from the
difference in density between invading water and displaced air. The structure of a typical finger
consists of a nearly saturated “tip” at the leading edge, behind which follows a “tail” region having
a uniform and relatively low saturation (see Fig. 1). As the finger penetrates into the soil, the region
immediately behind the tip drains somewhat causing pressure to decrease and preventing the finger
core from widening, thereby allowing the unstable finger to persist in time. Experimental studies
have provided additional insight into the detailed character of fingers and the physical mechanisms
driving their formation, beginning with the work of Hill and Parlange (1972) and continuing to the
present day with the work of authors such as Diment and Watson (1985), Glass et al. (1990), Selker
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et al. (1992a), Lu et al. (1994), Bauters et al. (2000), Yao and Hendrickx (2001), Wang et al. (2004)
and DiCarlo (2004).

Various mathematical models have been developed to capture fingering phenomena Philip (1975);
Parlange and Hill (1976); DiCarlo et al. (2008) with many based on applying the Richards equation
(RE) in combination with appropriate constitutive equations for soil properties. Techniques of linear
stability analysis were applied to two-dimensional models by Saffman and Taylor (1958), Chuoke
et al. (1959), and Parlange and Hill (1976), who derived stability criteria and analytical predictions
for quantities such as finger width and velocity. Raats (1973) postulated a criterion for stability
which stated that a wetting front is unstable if the velocity of the front increases with depth; this is
clearly satisfied for some layered media as well as for water-repellent soils. Many analytical results
have been compared to experiments by authors such as Glass et al. (1989b) and Wang et al. (1998),
who found that no single analytical formula is capable of capturing the behaviour of the majority
of soils. Other modifications and improvements to the theory have appeared more recently, such as
Wang et al. (1998) who modified the work of Parlange and Hill (1976) to include dependence on
the water- and air-entry pressures. A comprehensive review of stability results, including comparison
to experiments, can found in de Rooij (2000). There has also been a great deal of recent effort on
explaining gravity-driven fingering using models based on conservation laws Eliassi and Glass (2002);
Nieber et al. (2003, 2005); Cueto-Felgueroso and Juanes (2008, 2009a). A recent paper by Cueto-
Felgueroso and Juanes (2009b) presents the first exhaustive stability analysis of a conservation law
that leads to fingering in unsaturated flow, and a follow-up study by the same authors performs an
extensive comparison to experiments as well as providing an excellent review of the current literature
Cueto-Felgueroso and Juanes (2009a).

There has been a recent surge of interest in modelling fingering instabilities using extensions of
the RE model, such as the work of Cuesta et al. (2000) and Cuesta and Hulshof (2003) who analyze
non-monotonic travelling wave profiles that arise when dynamic capillary effects are incorporated.
Both Eliassi and Glass (2001) and Nieber et al. (2005) identified a number of mechanisms that could
give rise to gravity-driven fingering, including non-monotonicity in hydraulic properties, dynamic
capillary effects and hysteresis. Egorov et al. (2003) provide an overview of the mathematical for-
mulation showing that Richards equation is unconditionally stable even for heterogeneous media.
Furthermore, Nieber et al. (2003) claim that dynamic (or non-equilibrium) effects are sufficient to
cause formation of fingered flow, while persistence of fingers is dominated by hysteresis. In parallel
with these developments, several novel mathematical models have been developed which incorporate
these and other effects. A number of authors have investigated the use of non-equilibrium effects
Mitkov et al. (1998); Cuesta et al. (2000); Hassanizadeh et al. (2002); Helmig et al. (2007); Manthey
et al. (2008) while others DiCarlo et al. (2008) have been inspired by non-monotonicity to introduce
extra terms in the RE that capture the “hold-back-pile-up” effect examined by Eliassi and Glass
(2003). Non-equilibrium effects have also been studied in the context of two-phase flow by van Duijn
et al. (2007), who used an extension of the Buckley-Leverett model to obtain non-monotonic profiles
with both infiltration and drainage fronts. Sander et al. (2008) proposed a one-dimensional RE model
including hysteresis and non-equilibrium capillary terms, which is very closely-related to the model
studied in this paper. Adding to the controversy are experimental results such as DiCarlo (2007)
which failed to find significant dynamic effects in gravity-driven infiltration. Notwithstanding the
extensive literature on this subject, many open questions remain about which governing equations
and constitutive relations are most appropriate for capturing preferential flows.

We will focus on a specific model called the relaxation non-equilibrium Richards equation (or
RNERE) Nieber et al. (2003, 2005) which incorporates both dynamic and hysteretic effects. These
authors developed an iterative algorithm for integrating the governing equations numerically, and
showed that their method is capable of generating finger-like solutions. The main drawback of this
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work was that it contained no concrete comparisons to experimental results. In this paper, we
perform a more extensive suite of numerical simulations with the RNERE model and compare the
results to published experimental studies. We also carry out a careful numerical convergence study
and investigate the sensitivity of the model to changes in physical parameters and algorithmic aspects
such as the choice of inter-block averaging for hydraulic conductivity. The results demonstrate that
the RNERE model is capable of reproducing realistic fingering flows for a wide range of physically
relevant parameters.

2 Mathematical Model

We begin by presenting the governing equations for the RNERE model as presented by Nieber et al.
(2003), while at the same time reviewing earlier work on fingered flow in porous media. The RE is
written in mixed form as

∂θ∗

∂t∗
= ∇∗ · (k∗(θ∗)∇∗ψ∗)− ∂k∗(θ∗)

∂z∗
, (1)

where t∗ represents time [s], θ∗ is the volumetric water content or saturation [m3/m3], and ψ∗ is the
water pressure head [m]. The asterisks are used here to indicate dimensional quantities, and will
be dropped shortly when the equations are non-dimensionalized. Hydraulic conductivity [m/s] is
denoted by k∗(θ∗), which is assumed to be a given function of water content in the case of unsaturated
flow. The spatial domain is two-dimensional with coordinates (x∗, z∗), where z∗ represents the vertical
direction and is measured positive downwards and x∗ is measured horizontally. This form of the RE
is called “mixed” because both saturation and pressure appear as dependent variables, and it is
preferred to both the θ–based form (which becomes singular when the flow is fully saturated) and
the ψ–based form (which leads to large mass conservation errors when discretized) Celia et al. (1990).

Many models of flow in porous media combine the RE with an equilibrium constitutive relation
of the form ψ∗ = p∗(θ∗), which assumes that transport properties relax instantaneously to their
equilibrium values as water content varies during a wetting or drying process. This is a reasonable
approximation under certain circumstances; however, there is now evidence from both laboratory
experiments DiCarlo (2004) and stability analyses Nieber et al. (2005) that suggests the RE by itself
is unable to capture the non-monotonic profiles observed in fingering instabilities and so it lacks
some critical physical mechanism. An illustration of a typical solution profile is shown in Fig. 1,
wherein a downward-propagating finger is led by a nearly-saturated “tip” region that leaves behind
it a “tail” region having a lower water content. An earlier attempt at simulating fingered flow
using the equilibrium RE was made by Nieber (1996) who incorporated hysteretic effects and found
that fingers only appeared when a downwind-weighted mean was used for hydraulic conductivity.
Eliassi and Glass (2001) concluded that the finger-like profiles obtained in these simulations did not
represent solutions of the actual model equations, but rather were numerical artifacts arising from
local truncation errors due to the particular choice of downwind mean.

Based on physical arguments, Hassanizadeh and Gray (1993) advocated that a non-equilibrium
version of the capillary pressure relationship should be employed in situations where the relaxation
time is comparable to other time scales in the flow. This work inspired Nieber et al. (2003) to propose
their RNERE model in which the RE was supplemented by a relaxation equation of the form

ψ∗ − p∗(θ∗) =
τ ∗

ρg

∂θ∗

∂t∗
, (2)

where p∗(θ∗) represents the equilibrium water pressure head [m], ρ is the density of water [kg/m3],
g is the gravitational acceleration [m/s2], and τ ∗ = τ ∗(ψ∗, θ∗) > 0 is a suitably-chosen capillary
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Figure 1: Left: A typical finger propagating into a porous medium having an initially uniform
saturation θr. At the leading edge of the finger is a well-defined “core” or “tip” region with water
content close to the saturated value θs. Behind the tip lies a “tail” region having a nearly constant
intermediate value of water content. Right: The corresponding saturation profile along the central
axis of the finger.

relaxation function [kg/ms]. They presented numerical simulations of finger-like instabilities and
concluded that a non-equilibrium effect is sufficient to initiative the instabilities and that hysteresis
is necessary to sustain the fingers once formed. In most cases, τ ∗ is assumed either to be a constant
Hassanizadeh et al. (2002); Manthey et al. (2008) or else a separable function of dynamic capillary
pressure and water content van Duijn et al. (2004); DiCarlo (2005); Nieber et al. (2005), although
the proper choice of functional form for the relaxation function remains an open question. We note
that Eq. (2) should be viewed as an equation for the dynamic capillary pressure ψ∗ rather than an
evolution equation for θ∗; indeed, when (2) is substituted into Eq. (1), the resulting PDE takes the
form of a third-order evolution equation for θ∗ which is of pseudo-parabolic type King and Cuesta
(2006).

Before proceeding further, we briefly mention several other attempts at incorporating non-equilibrium
effects into the RE in more general contexts not directly related to fingering. Mitkov et al. (1998)
took a phase-field model for solidification and adapted it to porous media flow; their model contains a
phenomenological term in which the constants have no direct relationship to the physics. Barenblatt
et al. (2003) suggested an alternate approach in which dynamic effects are incorporated into both
capillary pressure and hydraulic conductivity through an “effective saturation” variable. Three fur-
ther variants of the RE called the hypo-diffusive, hyperbolic and mixed forms were proposed with an
aim to reproducing the “hold-back-pile-up” effect observed in experiments Eliassi and Glass (2003);
DiCarlo et al. (2008). Analytical and numerical results suggest that many of these approaches show
promise, but the proper choice of model remains an open question.

To complete the mathematical description of the RNERE model equations (1) and (2), the equi-
librium pressure p∗ and hydraulic conductivity k∗ must be specified as functions of water content.
These quantities are customarily expressed in terms of the normalized water content

θ =
θ∗ − θr
θs − θr

, (3)

where θs and θr are the saturated and residual (or irreducible) water contents, respectively; θ is
commonly referred to as the effective saturation or simply saturation. In a partially saturated porous
medium, the saturation variable satisfies 0 6 θr 6 θ∗ 6 θs 6 φ, where φ represents the porosity, so
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that θ always lies between 0 and 1. We adopt the widely-used van Genuchten–Mualem relationships
for p∗(θ) and k∗(θ) van Genuchten (1980), which are monotonic functions containing several empirical
fitting parameters that are used to fit with experimental data for a variety of soil and rock types.
Saturation and pressure are related at equilibrium by

θ = (1 + α∗

ℓ |p∗|nℓ)−mℓ , (4)

where nℓ and mℓ = 1− 1/nℓ are parameters that govern the shape of the capillary curves.
In practice, θ is a hysteretic function wherein the inverse capillary length α∗

ℓ [m−1] and shape
parameter nℓ differ depending on whether the current state is evolving along the main wetting curve
(ℓ = w) or main drying curve (ℓ = d). The corresponding hydraulic conductivity is given by

k∗(θ) = ko
√
θ
[
1− (1− θ1/mℓ)mℓ

]2
, (5)

where ko represents the fully saturated value (at θ = 1). The degeneracy of the RE (1) arising at
k∗(0) = 0 ensures that saturation never actually reaches zero. Furthermore, the steep gradient in
pressure from Eq. (4) as θ → 1 prevents the saturation from exceeding 1, ensuring that the solution
remains within the physical limits 0 6 θ 6 1. Details of the precise form of the hysteresis model to
be used will be provided later in Section 3.

2.1 Non-Dimensionalization and Choice of τ

In this section, the equations are reduced to dimensionless form using the transformations

x = α∗

wx
∗, z = α∗

wz
∗, αℓ = α∗

ℓ/α
∗

w,

ψ = α∗

wψ
∗, p = α∗

wp
∗, k = k∗/ko, (6)

t = α∗

wkot
∗/(θs − θr),

where (α∗

w)
−1 (the reciprocal of the van Genuchten parameter for the main wetting curve) has been

used as the natural length scale. The governing equations (1), (2), (4) and (5) then reduce to

∂θ

∂t
= ∇ · (k(θ)∇ψ)− ∂k(θ)

∂z
, (7)

ψ = p+ τ (ψ, θ)
∂θ

∂t
, (8)

θ = Sℓ(p) := (1 + αℓ|p|nℓ)−mℓ , (9)

k(θ) = Kℓ(θ) :=
√
θ
(
1− (1− θ1/mℓ)mℓ

)2
, (10)

where the dimensionless capillary relaxation function is

τ(ψ, θ) =
(α∗

w)
2ko

ρg
τ ∗(ψ∗, θ∗),

and Sℓ(p) and Kℓ(θ) represent the hysteretic constitutive relations (which depend on the wet-
ting/drying state ℓ = w, d). It will prove convenient when describing the numerical algorithm to
recast the time-derivative in Eq. (8) in terms of the equilibrium capillary pressure as

τ(ψ, θ)
∂p

∂t
= ψ − p, (11)
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where τ(ψ, θ) = τ (ψ, θ) (dθ/dp).
Following Nieber et al. (2005) (who was motivated by the experiments of Selker et al. (1992b))

we assume that τ is a function of ψ only

τ(ψ) = τo[ψ − ψo]
γ
+, (12)

where τo, ψo and γ are constants and [·]+ = max(·, 0). Nonetheless, the appropriate choice of
functional dependence for τ on the state variables remains an open question. Various other functional
forms have been proposed by DiCarlo (2005) and Sander et al. (2008), all of which we find leads to
similar fingering patterns provided that τ → 0 as ψ → ψo and that the magnitude of the relaxation
parameter is comparable. On the other hand, if τ is taken to be a constant then no fingers were
observed, hence suggesting that it is essential to have a solution-dependent τ .

2.2 Boundary and Initial Conditions

Inspire by the geometry most commonly employed in experimental studies, we consider a two-
dimensional rectangular domain as shown in Fig. 2 that has width L and height H (both dimensions
having been non-dimensionalized by scaling with α∗

w like the other lengths in Eq. (6)). The initial sat-

q1 = 0 q1 = 0

q2 = qi

q2 = qiq2 = qi q2 = qi + q̃(x)

infiltration zone (di)

x

z

Figure 2: The computational domain with width L and height H . Zero flux conditions are imposed
on side boundaries and a background flux of qi on the top and bottom boundaries. Finger formation
is driven by an additional infiltration flux q̃ applied along a portion of the top boundary having width
di.

uration is assumed constant throughout the domain, θ(x, z, 0) = θi. No-flux conditions are imposed
along side boundaries and specified inflow (outflow) conditions are given along the top (bottom)
boundaries, both of which we express in terms of the dimensionless flux variable

q = (q1, q2) = −k(θ)∇(ψ − z). (13)

This last equation is a statement of Darcy’s law for unsaturated flow and is rescaled according to
q = q

∗/ko, where the original physical flux q
∗ has units of m/s. The fluxes on the left, right, and
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bottom boundaries are given respectively by

q1(0, z, t) = 0, q1(L, z, t) = 0, q2(x,H, t) = qi, (14)

where qi represents a constant gravity-driven background flux that corresponds to the initial satu-
ration θi. The specification of such a background flux is essential when the porous medium is not
air-dried, such as is the case for most naturally occurring soils. In order to drive the formation of
fingers, the flux along the top boundary is specified by some constant background flux qi plus an
infiltration flux q̃ that is imposed along a strip of width 0 6 di 6 L,

q2(x, 0, t) =

{
qi + q̃(x), if |2x− L| 6 di,
qi, otherwise.

(15)

Following Nieber et al. (2003), this infiltration flux is written as the sum of an average value qs plus
a small sinusoidal perturbation

q̃(x) = qs + qsη cos

(
πf

di
(2x− L+ di)

)
, (16)

where η represents the amplitude of the perturbation and 2πf/di the frequency (for f a positive
integer). We note that the size and number of fingers actually observed in simulations is relatively
insensitive to the choice of perturbation parameters η and f .

We close with a brief mention of a common result on stability of gravity-driven vertical infiltration
flow, wherein viscous forces tend to stabilize the flow while gravitational forces are the destabilizing
influence. Extensive work on stability has been reported by many authors, including Philip (1975),
Parlange and Hill (1976), Wang et al. (1998) and de Rooij (2000). It is known that unstable flow
will occur if the hydraulic conductivity increases with depth, which translates into a requirement
that the inflow at the top boundary satisfies 0 < qi + qs < 1.

3 Solution Algorithm

We next describe the algorithm developed by Nieber et al. (2003) for solving the RNERE problem in
Eqs. (7) and (9)–(11), which is an iterative strategy that employs a finite volume spatial discretization
in space and a semi-implicit time-stepping scheme. The domain is divided into an Nx×Nz rectangular
grid, with cell dimensions ∆x = L/Nx and ∆z = H/Nz in the x– and z–directions respectively. The
discrete saturation θi,j approximates the solution at cell centers ((i− 1/2)∆x, (j − 1/2)∆z), and
similarly for the pressure head ψi,j . Employing an implicit backward Euler discretization for the time
derivative in Eqs. (7) and (11) and centered second-order differences in space, the discrete equations
become

θi,j − θ̂i,j
∆t

=

1

∆x

(
ki+1/2,j

ψi+1,j − ψi,j

∆x
− ki−1/2,j

ψi,j − ψi−1,j

∆x

)
+

1

∆z

(
ki,j+1/2

ψi,j+1 − ψi,j

∆z
− ki,j−1/2

ψi,j − ψi,j−1

∆z

)
−

ki,j+1/2 − ki,j−1/2

∆z
, (17)
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and

τ(ψi,j)
pi,j − p̂i,j

∆t
= ψi,j − pi,j, (18)

for i = 1, 2, . . . , Nx and j = 1, 2, . . . , Nz. The time step is denoted by ∆t and the “hat” notation θ̂
and p̂ refers to a solution value at the previous time step.

It is worth mentioning that although an upwind difference might normally be advocated for
the convective (gravitational) term in Eq. (17), we have chosen to use a centered difference for
consistency. In practical computations, we observe no difference between an upwind or centered
difference treatment of the ∂k/∂z term because capillary effects dominate in this problem.

In contrast with the cell-centered saturation and pressure head unknowns, the hydraulic con-
ductivity values ki±1/2,j and ki,j±1/2 are located at cell edges. Since the conductivity depends on
saturation which is not available at cell edges, it must be approximated using some weighted mean
of nearby values of saturation; the specific choice of averaging method will be considered in detail
in Section 4.1. The capillary relaxation function in Eq. (12) is replaced by the regularized function
τδ(ψ) = τo max ((ψ − ψo)

γ, δ), where the cut-off parameter 0 < δ ≪ 1 prevents τ from becoming zero
and hence avoids a singularity in Eq. (18).

The difference stencils in Eq. (17) involve values of pressure head ψi,j for i = 0, Nx + 1 and
j = 0, Ny +1, located at points lying one-half grid cell outside the physical domain. These “fictitious
values” are eliminated using the flux boundary conditions (14)–(16) as follows. First, the flux is
discretized along cell edges, with the q1-component (on side boundaries i = 0, Nx) being approximated
by

q1;i+1/2,j = −ki+1/2,j

(
ψi+1,j − ψi,j

∆x

)
, (19)

and the q2-component (along horizontal boundaries j = 0, Nz) by

q2;i,j+1/2 = −ki,j+1/2

(
ψi,j+1 − ψi,j

∆z
− 1

)
. (20)

Then the boundary conditions for q1 and q2 are used to express fictitious point values in terms of
known values of pressure head at interior points, which can then be used in Eq. (17).

We now describe the iterative scheme for solving the nonlinear system (17), which can be written
more succinctly in matrix-vector form as

AΠ+
Θ− Θ̂

∆t
= 0, (21)

where Θ and Π are vectors containing the discrete approximations of θi,j and (ψ−z)i,j respectively, and
A = A(Θ) is a symmetric pentadiagonal matrix whose entries are nonlinear functions of saturation.
Nieber et al. (2003) did not base their iterative solution strategy directly on Eq. (21) because the
matrix A is not positive definite; instead, they proposed the following modified iteration

(Aν+1 + D
ν+1)Πν+1 = D

ν+1Πν − Θν+1 − Θ̂

∆t
, (22)

where ν represents the iteration number and D is a diagonal matrix whose entries are given by

D =
1

∆t

∂Θ

∂Ψ
=
S ′(P )

∆t

d

dΨ

(
Ψ∆t + τ(Ψ)P̂

τ(Ψ) + ∆t

)
. (23)
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This approach has the advantage that the iteration matrix (A+ D) is both symmetric and positive
definite and thus has much better convergence properties. We now outline the iterative procedure
within each time step, assuming that each iteration begins with ν = 0, Θ0 = Θ̂, Ψ0 = Ψ̂ and P 0 = P̂ :

Step 1. Solve the relaxation equation

τ(Ψν)
P ν+1 − P̂

∆t
= Ψν − P ν+1

for P ν+1.

Step 2. Update the saturation using Θν+1 = S(P ν+1).

Step 3. Evaluate the matrices A and D at Θ = Θν+1, P = P ν+1 and Ψ = Ψν . Then solve the linear
system (22) for Πν+1 and let Ψν+1 = Πν+1 + z.

Step 4. If the current solution satisfies the convergence criterion ‖Πν+1 −Πν‖2/‖Πν‖2 < 10−6, then
stop. Otherwise, increment ν and return to Step 1.

Following Eliassi and Glass (2001), we employ a variable time step which is initialized to ∆t =
10−4 and then replaced at the end of each time step by min(1.05∆t, ∆tmax), where the maximum
allowable step is given by the CFL-like condition ∆tmax = 0.1 min(∆x,∆z)/qs. This approach
minimizes initial start-up errors by taking a relatively small time step initially, which then increases
gradually to ∆tmax. The algorithm just described is implemented in Matlab and uses the built-in
preconditioned conjugate gradient solver pcg to invert the linear system in Step 3.

We stress that this is only one possible choice of algorithm and that many other strategies have
been proposed for solving the coupled system of equations for saturation and capillary pressure. For
example, Cuesta (2003) and Cuesta and Pop (2009) have analyzed a number of algorithms (including
the one described above) in the context of the Burgers equation, supplemented by dynamic capillary
effects.

An important aspect of our RE model is the singularities that occur when θ = 0 (where the
iteration matrix (A+ D) fails to be positive definite) and θ = 1 (where the derivative of the hydraulic
conductivity k′(θ) becomes unbounded). A number of methods have been proposed in the literature
(e.g., Starke (2000); Pop (2002)) to regularize coefficients in the governing equations in order to
avoid these singularities. We have not made use of any such regularization here because in practice,
we find that the computed saturation never reaches the limiting values of 0 or 1. Nonetheless, it
may be worthwhile in future to consider implementing such a regularization approach to improve
the efficiency and robustness of the algorithm in cases where conditions approach the saturated and
unsaturated limits.

3.1 Implementation of Hysteresis

An integral component of the RNERE algorithm is the specification of the hysteretic state, which is
potentially different at every point in the domain and depends on the local saturation and wetting
history. We have chosen to implement a closed-loop hysteresis model described by Scott et al. (1983)
and implemented by Eliassi and Glass (2003) wherein all curves have the same values of residual and
saturated water content (0 and 1 respectively in our dimensionless variables). We have also taken
the shape parameters for the wetting and drying curves to be constant and equal (n := nw = nd), so
that the various curves differ only in their value of αℓ (although in general, the values of nℓ should
also depend on the current hysteretic state).
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Following Eliassi and Glass (2003), the main drying curve is written θ = Sd(p) while the scanning
drying curves are given by the scaled equation

θ =
θSd(p)

Sd(p)
, (24)

where θ and p denote respectively the saturation and pressure reversal points along the previous
wetting curve. Similarly, the main wetting curve is θ = Sw(p) while the scanning wetting curves are
written

θ = θrev + (1− θrev)Sw(p), (25)

where

θrev =
θ − Sw(p)

1− Sw(p)
, (26)

and θ and p are the reversal points along the previous drying curve.
The main drying and wetting curves are unique, while the scanning curves differ depending on

the reversal points which are determined as follows. At each point in space, we maintain the current
state (wet or dry) as well as the previous reversal point (θ, p). To avoid problems with convergence
in the iterative scheme, the hysteretic state is updated only at the end of each time step and not
within a ν-iteration. To detect a reversal point along a local drying or wetting curve, we test whether
the time rate of change of saturation has reversed sign between the current (k) and previous (k − 1)
time steps, which is equivalent to checking that ∆θki,j ·∆θk−1

i,j < 0 where ∆θki,j = θki,j − θk−1
i,j . To avoid

spurious wet/dry oscillations between successive time steps, we impose the additional constraint that∣∣∆θki,j
∣∣ > ε, where ε is a reversal threshold. If both of these criteria are met, then a flow reversal has

occurred and the current state is switched to either wetting (if ∆θki,j > 0) or drying (if ∆θki,j < 0), and

the current values for the reversal point (θ, p) are updated. The appropriate scanning curve – either
Eq. (24) or (25)–(26) – is then used to determine the capillary pressure as a function of saturation.

4 Numerical Simulations

To investigate the relevance of the proposed model and the accuracy and efficiency of the numerical
algorithm, we consider a “base case” corresponding to a 14/20 grade sand studied experimentally
Glass et al. (1989b). The parameters listed in Table 1 are taken directly from their paper, with the
exception of n, θi and αw, whose values are justified in Sections 4.4–4.6.

The computational domain is taken to be a rectangle of width L = 14 and height H = 35 in
dimensionless units, where L is chosen slightly larger than the actual infiltration width di = 10.5
used in experiments in order to minimize boundary effects. Unless otherwise noted, the domain is
discretized using a uniform grid having Nx = 201 and Nz = 401 points in the x and z directions
respectively. All simulations were performed on a Mac Pro with 2×3 GHz processor and 8GB RAM,
with a typical run requiring approximately 2 hours of computation time.

A sample computation with the base case parameters is shown in Fig. 3, which depicts the
progression of the wetting front at a sequence of equally-spaced times. In these plots (as well as the
other plots and tables that follow) all quantities are expressed in dimensionless form. The plotted
contours of saturation correspond to a value of θ equal to 25% of the finger tail saturation, which we
have found gives a good representation of the finger size and shape. The structure of the individual
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Table 1: “Base case” parameters given in SI units. With the exception of n, θi and αw, these values
are taken from Glass et al. (1989b).

Symbol Description Value Units
n Capillary shape parameter 12 –
αw Inverse capillary length 35 m−1

θi Initial water content 0.01 m3/m3

θs Saturated water content 0.42 m3/m3

θr Residual water content 0.075 m3/m3

ko Saturated conductivity 0.063 m/s
K Permeability 6.5× 10−10 m2

ψwe Water entry pressure −0.023 m
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Figure 3: Saturation contours for the base case, plotted at four equally-spaced time intervals between
t = 0 and tend = 77.

fingers is seen more clearly in the saturation map given in Fig. 4, where each concentrated finger
tip is clearly followed by a tail region of roughly constant saturation. The “capillary fringe” region,
depicted schematically in Fig. 1, is evident as a narrow zone of rapid saturation change surrounding
each finger. The finger tip and tail are clearly evident in this plot and the shape of each finger is in
qualitative agreement with the generic profile sketched in Fig. 1.

To illustrate the importance of dynamic and hysteretic effects in the RNERE model, we show
in Fig. 5 how the wetting front differs when either of these effects is left out. When the dynamic
term is omitted from the saturation equation (see Fig. 5(a)) fingering instabilities clearly fail to be
initiated. Conversely, when hysteretic effects are left out (see Fig. 5(c)) protrusions begin to form
at the wetting front but they never actually develop into full-blown fingers. These observations are
consistent with the claim of Nieber et al. (2003) that dynamic capillary effects are responsible for the
initiation of fingering instabilities, while hysteresis is required to sustain the fingers in time.

In the following sections, we present an extensive suite of numerical simulations that address the
following four issues:

• choosing an appropriate mean for the estimation of inter-block hydraulic conductivity values;

• determining the dependence of the numerical solution on grid resolution, and comparing to
previously published simulations;
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Table 2: Dimensionless parameter values: (a) “base case” and Glass et al. comparisons; (b)–(c)
modifications to base values for simulations indicated.

Symbol Description Value
(a) Parameters from Glass et al. (1989b) – “base case”:

n Capillary shape parameter 12.0
αw Inverse capillary length (wetting) 1.0
αd Inverse capillary length (drying) 0.5
θi Initial water content 0.01
τo Relaxation coefficient 0.1
γ Relaxation exponent 1
ψo Relaxation parameter 0
ε Hysteretic reversal criterion 10−10

δ Relaxation cut-off 0.04
qi Background flux 3.3× 10−6

qs Infiltration flux 0.14
η Perturbation amplitude 0.01
f Perturbation frequency 5
di Infiltration source width 10.5
tend End time 77
H Domain height 35
L Domain width 14

(b) Modifications for Nieber et al. (2003) (Figs. 8 & 9):
n Capillary shape parameter 7.0
θi Initial water content 0.1
τo Relaxation coefficient 5.0
qs Infiltration flux 0.2
tend End time 96
H Domain height 60
L Domain width 30

(c) Modifications for (DiCarlo, 2004, Tab. 1) for 20/30 and 30/40 sands (Fig. 14):
n Capillary shape parameter 6.23 / 10.0
θi Initial water content 0.001
H Domain height 7.08 / 6.92
L Domain width 01
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Figure 4: Saturation map for the base case at time tend = 77.
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Figure 5: The effect of hysteresis and dynamic effects on the wetting front, for the base case: (a)
with hysteresis only; (b) base case, with both hysteresis and dynamic effects; (c) with dynamic effects
only.
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• measuring the sensitivity of the solution to certain key parameters: shape parameter (nℓ),
dynamic relaxation coefficient (τ) and initial saturation (θi); and

• comparing simulated results to previously published experimental data.

In addition to providing plots of saturation plots, we will also report quantities such as finger width
(df), finger velocity (vf), number of fingers (Nf ), and average volume flow rate through each finger
(Qf ), all of which vary depending on the value of the infiltration flux qs. When multiple fingers
are present and a specific quantity varies from finger to finger, we report the average value over all
fully-developed fingers.

4.1 Choice of Mean for Inter-Block Conductivity

As mentioned in Section 3, the discrete equations require values of hydraulic conductivity at cell edges
(ki±1/2,j and ki,j±1/2) whereas the values of saturation on which k depends are defined at cell centers;
therefore, some form of averaging is usually necessary. It is well known that discrete approximations
of the RE can be very sensitive to the choice of inter-block averaging used for hydraulic conductivity
Belfort and Lehmann (2005). A number of different approaches have been advocated in the literature,
for instance using arithmetic van Dam and Feddes (2000), geometric Haverkamp and Vauclin (1979),
harmonic Das et al. (1994), and Darcian-weighted means Warrick (1991). Cardwell and Parsons
(1945) showed that the effective permeability for a heterogeneous porous medium must lie somewhere
between the harmonic and arithmetic mean values. Furthermore, Warren and Price (1961) used
Monte Carlo simulations of random media to show that the expected value of conductivity for a
heterogeneous system is given by the geometric mean.

Of particular interest in this paper is the case where the conductivity undergoes large variation
between grid cells owing to the presence of sharp wetting fronts at finger boundaries. Although a
straightforward analytical argument indicates that the harmonic mean is the appropriate mean to
use in such situations in 1D Gutjahr et al. (1978), this is not the case in higher dimensions for which
many studies indicate that the harmonic mean is inferior to other averaging methods Haverkamp
and Vauclin (1979); Belfort and Lehmann (2005); Pinales et al. (2005). Extensive comparisons have
been drawn using measures such as resolution and stability of the wetting fronts, sensitivity to grid
refinement, and robustness over a wide range of soil types and physical parameters. There remains
a significant degree of controversy over which averaging procedure is best in practice, and to date no
single mean has been found to be superior in all circumstances.

In this section, we compare results using the arithmetic and geometric means for hydraulic con-
ductivity, which we have found are the most common means utilized in computations. Values of
conductivity along vertical cell edges are determined as follows

Arithmetic mean: ki±1/2,j =
1

2
(ki±1,j + ki,j),

Geometric mean: ki±1/2,j =
√
ki±1,jki,j ,

with similar formulas for ki,j±1/2 along horizontal cell edges. Problem parameters are taken from
simulations presented by Nieber et al. (2003), which are identical to those for our base case described
earlier, except for a few differences indicated in Table 2(b). The same set of parameters will also be
considered in the following two sections. Our model is identical to Nieber et al.’s, except for a slight
difference in the implementation of capillary hysteresis.

The results for the geometric mean are shown in Fig. 6 for five different choices of grid resolution
(51× 61, 101× 121, 201× 241, 401× 481 and 801× 961), and the solution has clearly converged to a
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wetting profile with 5 well-defined fingers even on a 201× 241 grid. In contrast, Fig. 7 demonstrates
that simulations with the arithmetic mean converge more slowly, and the results on the finest grid
are still not fully converged. These simulations are consistent with those of Zaidel and Russo (1992),
who found that use of the arithmetic mean introduces excessive smearing in wetting fronts and
underestimates saturation values relative to the geometric mean. Based on these results, we conclude
that the geometric mean is superior for the problem under consideration, which is also consistent
with the a number of previous studies Haverkamp and Vauclin (1979); Hornung and Messing (1983);
Belfort and Lehmann (2005). Consequently, we have chosen to apply the geometric mean in all
remaining computations in this paper.
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Figure 6: Saturation maps corresponding to the geometric mean for five different grid resolutions,
using parameters from Nieber et al. (2003).
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Figure 7: Saturation maps corresponding to the arithmetic mean for five different grid resolutions,
using parameters from Nieber et al. (2003).
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4.2 Grid Refinement Study

To ensure that the numerical solution does converge with the expected second order accuracy, simu-
lations were performed on a sequence of successively refined grids of size 101×121 to 801×961 cells.
The latter represents the finest resolution possible owing to memory restrictions on the computing
equipment readily available to us. The grid resolution and physical parameters in this case were
chosen to correspond to the numerical simulations of Nieber et al. (2003).

The solution on the finest grid is treated as the “exact solution” and the error is estimated
using the ℓ2 norm of the difference between exact and computed values of saturation. The resulting
absolute errors are summarized in Table 3 from which it is clear that the solution converges as the
grid is refined; furthermore, the order of convergence is close to the expected value of 2. Fig. 8
depicts saturation contours corresponding to various grid refinement levels and clearly demonstrates
the convergence of the numerical solution.

Table 3: Grid refinement study, where the order of accuracy is estimated as the base-2 logarithm of
the ratio of successive errors. The “exact” solution corresponds to an 801× 961 grid computation.

No. of cells (Nx ×Nz) ℓ2− error Ratio Order
60× 51 10.59 3.52 1.82
121× 101 3.01 3.82 1.93
241× 201 0.79 4.31 2.11
481× 401 0.18 – –
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Figure 8: Saturation contours corresponding to the different grid resolutions used in the convergence
study.

4.3 Comparison with Nieber et al.’s Computations

We now investigate the effects of grid resolution in more detail by way of a direct comparison with
simulation results reported by Nieber et al. (2003). We focus on their second set of simulations (c.f.,
their Fig. 8), using different values of the infiltration width (di = 1, 5, 10.5, 15, 20, 25 and 30)
and grid resolutions of 101 × 121 and 201 × 241. The results are summarized in Fig. 9 from which
we observe a close match with (Nieber et al., 2003, Fig. 8) in terms of both number of fingers and
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Figure 9: Comparison of fingers for various values of the infiltration width di, based on parameters
from Nieber et al. (2003). The solid (red) saturation contours correspond to solutions on a 101× 121
grid, while the broken (black) contours are for a 201× 241 grid.

saturation levels. There are slight differences between finger widths and velocities, but we attribute
these to our alternative implementation of capillary hysteresis. The biggest discrepancy appears for
the L = 30 curves where Nieber et al. observed four well-developed fingers, while we observe only
three. In fact, the lower resolution results seem to indicate a transitional phase having somewhere
between three and four fingers while the higher resolution plot clearly exhibits three fingers. These
results suggest the possibility that Nieber et al.’s computations could be under-resolved and that
these simulations should be performed at a minimum resolution of 201 × 241 to ensure sufficient
accuracy. We also emphasize the importance of performing a careful convergence analysis as part of
any numerical study of fingering to ensure that the features being simulated are a true representation
of actual fingering instabilities of the governing equations.

4.4 Sensitivity to Capillary Shape Parameter, n

In the next three sections, we switch to the base case and investigate the sensitivity of the solution
to changes in a number of important parameters. No value is provided by Glass et al. (1989b)
for the capillary shape parameter n appearing in the van Genuchten–Mualem relationships (9) and
(10), and so we look for guidance in related experimental studies on sandy soils. The values for
n reported in the literature exhibit significant variability, lying anywhere between 3 and 20 even
for porous media having similar coarseness and wettability (e.g., Schroth et al. (1996); Nieber et al.
(2000)). The larger values of n typically correspond to water-repellent soils in which fingers are more
likely to form, while smaller values indicate a reduced tendency to generate fingering instabilities.
Consequently, it is important in any modelling study of fingering to understand the effect of changes
in n on the character of the solution.

In Fig. 10, we present simulations for several values of n lying between 4 and 15, while all other
parameters are set to the base case values. In all simulations except for n = 4, the solution exhibits
well-defined fingers having the characteristic non-monotonic saturation profile down the central axis
of each finger. Furthermore, increasing n leads to an increase in the tip/tail saturation ratio and
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a decrease in finger width and finger flux, as expected; in other words, fingers are more diffuse for
smaller n while finger boundaries become sharper when n is increased. The value of n = 12 used

(a) n = 4 (b) n = 8 (c) n = 12† (d) n = 15

0 3 6 9

5

10

15

20

25

30

D
ep
th
,
z

Width, x

Figure 10: Contour plots of saturation for different values of the capillary shape parameter n, with
contours shown at four equally-spaced times. The base case is indicated by a dagger (†).

in the base case is characteristic of highly water-repellent soils, which is corresponds to the other
experimental and numerical studies we are most interested in.

4.5 Sensitivity to Initial Saturation, θi

A study of the effect of the initial saturation θi on our numerical solution is warranted for two reasons.
First of all, the nature of fingering instabilities and the properties of individual fingers (such as finger
width and velocity) can be very sensitive to the choice of initial water content, as evidenced by several
experimental studies Diment and Watson (1985); Bauters et al. (2000); Wang et al. (2003). Finger
shape and size depends strongly on the initial wetting state; in particular, vertical infiltration into a
soil with larger initial saturation tends to generate fingers that are more diffuse than when the soil
is dry. Secondly, as with the capillary shape parameter n, the value of θi is frequently omitted in the
list of parameters reported in experimental studies (e.g., Glass et al. (1989b)).

We therefore perform a series of simulations using various choices of initial saturation between
0.001 and 0.075, holding the infiltration flux qs constant. The results are summarized in Fig. 11 from
which we observe that the number of fingers increases as θi is increased. In fact, the spacing between
fingers also decreases to the extent that when θi ' 0.05, the individual fingers merge together to
form a single finger. As θi and finger width increase, we notice from the saturation maps in
Fig. 12 that the maximum finger tip saturation decreases while the finger velocity remains relatively
unchanged; this behaviour can be justified using a simple mass conservation argument. Most of these
computed trends are consistent with experiments, the exception being the finger velocity for which
some experimental studies exhibit a stronger dependence on θi (e.g., Bauters et al. (2000)).

We mention in closing that in the absence of a given value of initial saturation in Glass et al.
(1989b), we have chosen θi = 0.01 for the base case. This value lies within with the typical range
of residual saturations seen in experiments for similar soils, and also generates fingers with a tip
saturation that is consistent with values reported by DiCarlo (2004).
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Figure 11: Contour plots of saturation for different values of the initial saturation θi, shown at four
equally-spaced times. The base case is indicated by a dagger (†).
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Figure 12: Saturation maps at the final time corresponding to the same values of θi depicted in
Fig. 11.
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4.6 Sensitivity to Capillary Relaxation Coefficient, τo

Although several recent models for gravity-driven fingering have used a capillary relaxation term to
incorporate dynamic effects, there remains a great deal of uncertainty in both the functional form
and overall magnitude of the relaxation coefficient τ Juanes (2008); Manthey et al. (2008). Stauffer
(1978) derived an empirical estimate based on the Brooks–Corey model for conductivity and capillary
pressure (in lieu of the van Genuchten–Mualem relationships used here) that takes the following form

τ ∗ =
γsµθsh

2
b

λko
, (27)

where γs = 0.1 is a fitting parameter, µ is the fluid viscosity, and λ and hb are the Brooks–Corey
parameters. Recent experimental results suggest that the values of τ for sandy media can range
between 0.006 and 20, so that τ ∗ lies between 2× 103 and 6× 106 kg/ms Manthey et al. (2008).

We have run a number of simulations using the functional form for τ given in (11) and with the
scaling constant τo varying between 0.01 and 1.0. The resulting saturation is depicted in Fig. 13,
from which it is evident that τo has a strong influence not only on the number of fingers but also

(a) τo = 0.01 (b) τo = 0.05 (c) τo = 0.1† (d) τo = 0.3
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Figure 13: Contours of saturation for different values of the capillary relaxation coefficient τo, at four
equally-spaced times. The base case is indicated by a dagger (†).

on finger width and velocity. If τo is taken very small (less than 0.001) then dynamic effects become
negligible and finger formation is suppressed. If, on the other hand, τo is taken larger then the finger
tip saturation tends to increase which in turn reduces the number of fingers.

For the purposes of the base case, we have chosen an intermediate value of τo = 0.1 which gives
a range of τ that is centered on the empirical estimate in Eq. (27), and which also corresponds well
to the range of experimental values reported in the literature.

4.7 Comparison with DiCarlo’s Experiments

In this section we consider the experimental results reported by DiCarlo (2004), who studied the
importance of non-equilibrium effects on finger formation in sandy porous media. These experiments
investigated the effect of changes in infiltration flux, initial saturation, and porous media properties
on the resulting saturation profiles. DiCarlo also proposed an RE-based model which neglected
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hysteretic effects, but did include a dynamic capillary term (as in our Eqs. (7)–(8)) with a number of
different forms for the dynamic relaxation coefficient τ(θ), including a constant and various power-law
forms similar to Eq. (12). The correspondence between his numerical simulations and experiments
(in terms of finger tip saturation) was less than satisfactory; in particular, although a reasonable fit
was obtained for the tip saturations when τ was a power law function, the wetting front ahead of the
finger tip was much too diffuse.
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Figure 14: Comparison of tip and tail saturations from the RNERE model and experiments. Results
are for two different soil types – (a) 20/30 sand (top), (b) 30/40 sand (bottom) – and the experi-
mental data points are extracted from (DiCarlo, 2004, Figs. 6 and 8). The “DiCarlo tip” curve in
(a) corresponds to a numerical simulation using a non-equilibrium model without hysteresis from
(DiCarlo, 2005, Fig. 2).

We focus primarily on DiCarlo’s experimental and numerical results for 20/30 sands which are
reproduced in Fig. 14(a). These results were essentially one-dimensional because the diameter of
the soil columns being studied was less than the characteristic finger width and hence was too small
for fingers to form; we have therefore performed a “quasi-1D” simulation in which the horizontal
extent of the domain is only two grid points wide. Here, we choose parameters the same as in the
base case except that the capillary shape parameter, initial saturation, and domain size are modified
according to Table 2(c). Simulations were performed for a range of values of infiltration flux qs, and
the resulting tip and tail saturations are plotted in Fig. 14(a).

We extracted values of all parameters from DiCarlo (2004) except for the initial saturation which
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he did not provide. The computed tip saturation is quite sensitive to θi, while the impact on tail
saturation is much less. As θi is increased, the tip profile in Fig. 14(a) shifts toward the right until it
eventually overlaps with the tail profile, which corresponds to a stable flow. On the other hand, as
θi is decreased the profile shifts to the left and steepens becoming similar in shape to the “DiCarlo
tip” curve. Consequently, we have used initial saturation as a fitting parameter and chose a value of
θi = 0.001 that yields the best match with experimental tip data.

The results in Fig. 14(a) demonstrate a significant improvement over DiCarlo’s model, especially
in terms of the tip saturation. There is also excellent agreement with the tail data, although un-
fortunately there is no corresponding tail simulation from DiCarlo for us to compare to. A second
comparison is made for a 30/40 sand from DiCarlo (2004) in Fig. 14(b). Except for some small
deviations at the lowest infiltration rates, these results also show a good fit between our model and
DiCarlo’s experiments. Similar comparisons are obtained for other soil types.

Finally, it is worth emphasizing that our computations exhibit fingers that sustain a sharp front
ahead of the finger tip, exhibiting none of the non-physical diffusive smoothing observed in the
model results of DiCarlo (2005). This discrepancy can be justified following Nieber et al. (2003)
who attributed the initial formation of fingers to dynamic capillary effects that are present in both
models; however, fingers persist in time only when hysteretic effects are also incorporated, which is
the case for our model but not DiCarlo’s.

4.8 Comparison with Glass et al.’s Experiments

We next make use of the dimensional analysis and experiments of Glass et al. (1989a,b) to assess the
response of finger width and tip velocity to changes in infiltration flux, qs. Their two-dimensional
experiments involved two layers of fine-over-coarse sand, with water fed in from the top and air
allowed to escape freely. Fingering was observed in the lower, coarse sand layer – a result that
can be predicted using the stability analysis of Raats (1973). We therefore restrict our attention to
the lower layer only which contains a coarse 14/20 silica sand having grain diameter in the range
0.00070–0.0012 m.

The parameter values used in this section are the same as those for the base case listed in
Table 2(a). The residual saturation θr = 0.078 is consistent with the tail water content reported in
Glass et al. (1989b); however, they did not provide values of the remaining porous medium parameters
and so we chose n = 12, θi = 0.01 and α∗

w = 35 m−1, which are consistent with other 14/20 sands in
the literature.

In Fig. 16, we present saturation contours from a series of simulations in which the infiltration
flux qs is varied between 0.038 and 0.32 cm/min. Decreasing the qs causes an increase in the number
of fingers, in addition to decreasing both finger velocity and tip saturation (as indicated in Fig. 15).
The corresponding numerical values for various quantities are summarized in Table 4.

Following Glass et al. (1989a), we relate the average finger velocity (vf) and width (df) to the
average volume flow rate in a finger using Qf = df vf . Since infiltration flux is related to finger
velocity via qs = Nfdfvf/di, the finger volume flow rate can be written as

Qf =
di qs
Nf

. (28)

We then take our simulations for different values of qs and redisplay the results in Fig. 17 as a plot of
finger velocity versus finger flow rate, including data from Glass et al.’s experiments. There is very
close agreement between the simulated and experimental results. In particular, as the infiltration
flux qs increases (or equivalently, vf increases) the slope of the velocity–flux curve decreases.
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Figure 15: Computed tip and tail saturations for the Glass et al. (1989b) comparisons.
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Figure 16: Saturation contours for various values of infiltration flux fluxs, corresponding to param-
eters listed in Table 2(a) for Glass et al. (1989b). A further comparison of specific quantities is
provided in Table 4. The base case is indicated by a dagger (†) and the end time for each simulation
is indicated on the plot.
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Table 4: Comparison of the finger number, width and velocity corresponding to the simulations in
Fig. 16. The experimental data are taken from Glass et al. (1989b) (no data were available for the
highest flux value, qs = 0.52).

Experimental data Numerical simulations

qs Nf Qf df vf Nf Qf df vf

0.012 4 0.03 0.45 0.12 7 0.02 0.28 0.08
0.038 4 0.10 0.52 0.21 6 0.07 0.34 0.18
0.088 5 0.18 0.60 0.29 6 0.15 0.49 0.29
0.11 6 0.19 0.61 0.30 6 0.19 0.54 0.32
0.14† 4 0.38 0.79 0.41 5 0.29 0.70 0.38
0.28 6 0.50 0.91 0.46 4 0.74 1.34 0.53
0.32 5 0.66 1.08 0.52 3 1.12 1.79 0.59
0.52 – – – – 2 2.73 3.88 0.69
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Figure 17: Plot of finger flow rate versus velocity with experimental data (square points) taken from
Glass et al. (1989b).
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In Fig. 18, we present a plot of finger width versus flow rate in which the dependence is approx-
imately linear. This behavior is consistent with Glass et al.’s experiments where they used a linear
least squares fit to predict the finger width. However, the correlation here is not as strong and our
computations significantly over-predict the finger width at higher values of finger flux. In an effort
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Figure 18: Plot of flow rate versus finger width with experimental data (square points) taken from
1Glass et al. (1989b).

to explain this discrepancy, we plot finger velocity against finger width in Fig. 19, which includes the
experimental data of Glass et al. (1989b). The experimental points are classified as corresponding to
“side” and “inner” fingers (where side fingers lie immediately adjacent to the side boundaries) and
significant differences are apparent between the two sets of fingers which Glass et al. attribute to
boundary effects. If we focus only on the interior fingers, then our model does a very good job of
capturing the observed behaviour. Indeed, it is the contribution of the side fingers to the average
finger width that leads to the deviations in slope at higher flux in Fig. 18.
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Figure 19: Plot of finger width versus finger velocity, with experimental data taken from Glass
et al. (1989b). Square data points denote fully developed interior fingers while crosses denote fingers
adjacent to side boundaries.
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5 Discussion

In this study we investigated the ability of the RNERE model to capture gravity-driven fingering in
unsaturated soils. Our results expand on previous studies of the RNERE model in two ways: first, by
performing an extensive sensitivity analysis for various important physical parameters; and second,
by drawing a systematic comparison between simulations and previously published experimental
results. We showed that with a careful choice of initial saturation and capillary relaxation coefficient,
the model is capable of accurately reproducing the fingering behaviour observed in experiments.
Comparisons with several independent experimental studies attest to the accuracy and robustness of
the RNERE approach.

In contrast to the work of DiCarlo (2005), who concluded that the RNERE does not contain all
the required physics to describe gravity-driven fingering instabilities, we have shown that by coupling
both non-equilibrium and hysteretic effects it is possible to capture fingering phenomena with the
RNERE. Our numerical simulations demonstrate the importance of performing a detailed numerical
convergence study in order to ensure that fingers have been sufficiently well resolved. The model
sensitivity analysis showed that dynamic capillary terms must be properly handled if the fingered
flow is to be captured accurately, and in particular that an accurate estimate of the τo parameter is
essential. As more research is undertaken in the study of non-equilibrium capillary effects, we expect
that more accurate and reliable experimentally-validated correlations for the capillary relaxation
parameter will become available.

There are a number of possible avenues for future work that will be explored:

• We will investigate the use of alternate iterative strategies that improve on the robustness
and efficiency of the RNERE algorithm. We hope to draw inspiration in this respect from
other well-known work on RE-based methods such as Celia et al. (1990) and Miller et al.
(1998). Current advances in ODE solvers for dealing with event detection and non-smooth or
discontinuous coefficients may also yield improvements in the treatment of hysteretic switching
criteria, which has a big impact on convergence of the iterative scheme. Furthermore, there
has been an explosion of recent work on alternate models for handling dynamic capillary effects
which could be applied here Beliaev and Schotting (2001); Sander et al. (2008); Peszyńska and
Yi (2008); Helmig et al. (2007); Manthey et al. (2008).

• Analytical results for fingered flow, derived using asymptotic or other approximate methods,
will be studied to gain a better understanding of the impact of hysteresis and dynamic effects
on the mechanics of finger formation. We will initially be guided by other previous work on
traveling wave approximations for wetting fronts in the RNERE model with dynamic capillary
effects DiCarlo et al. (2008); Nieber et al. (2005) and hysteresis Egorov et al. (2002); Sander
et al. (2008).

• Two alternate mathematical models have recently been proposed that are relevant to captur-
ing gravity-driven fingering phenomena. The model of Cueto-Felgueroso and Juanes (2008)
accounts for effective surface tension phenomena due to saturation gradients through the ad-
dition of a new fourth order derivative term in the equations. Their numerical results capture
the main qualitative features of fingered flow without the need for hysteresis, although they
state that hysteretic effects are still important and that hysteresis can be easily incorporated
into their model Cueto-Felgueroso and Juanes (2009a). Another approach proposed by Pop
et al. (2009) introduces an additional PDE for the interfacial area that obviates the need for an
explicit treatment of hysteresis. We intend to perform an extensive computational comparison
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of these two models using a generalization of our RNERE approach, initially in 1D, that should
help to elucidate the relative advantages and disadvantages of the various approaches.
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