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In the mixing of fluids, a mixture may be viewed conceptually as
a hypothetical collection of fluid clusters. In this context a mix-
ture model is defined by prescriptions for (a) estimating fluid cluster
properties and (b) combining them to yield an overall mixture prop-
erty. A particular flexible form is obtained from using generalized
weighted-power-means with the weighting based on global mole frac-
tions z;,0 < x; <1, . x;, =1,i=1,2,...,¢q. Optimal designs for
estimating the parameters in Scheffé S- and K-polynomials are well
known. In this paper we present optimal designs for estimating the
parameters in the generalized weighted-power-mean mixture models,
which may be nonlinear in the pure and binary interaction param-
eters. We illustrate the practical value of applying optimal designs
for mixture variables through design efficiencies. The designs are
derived for modeling viscosity from three-component mixtures.

Key Words: Design efficiency. Mixture variables. Optimal designs.
Power-mean-mixture models.

1 Introduction

Research and development in the chemical and chemical engineering disciplines
rely heavily on the development of accurate empirical, semi-empirical, and the-
oretical equations that express mixture properties in terms of compositions and
pure components attributes. Mixture models or mixing rules are applied in
chemical technology to assist with the design of process plants and the opti-
mization of product formulations. Consider a macroscopically homogeneous
fluid composed of ¢ different molecular species, x, € Sy, where S, is the g-
dimensional simplex. The mixture composition is quantified by the vector



z € S, of normalized weights, e.g. mole fractions. The mixture components
are subject to the constraints:

0<z; <1, 1=1,2,....¢q (1)

Recently, Focke et al. (2007) proposed a generalized weighted double power
mean of orders r and s (Focke et al., 2007) as a mixture model, i.e. for r, s # 0,
it takes the form:

q q r/s 1/r
n=|>_ <Z xla21> (2)
k=1 1=1
Equation (2) is homogeneous of order 1 in the coefficients ay;, that is, for all A,
ml™* (2, Nap]) = ™)z, [an)

Special forms of model (2) are derived for specific values of r and s. For ex-
ample, for r = s = 1, (2) reduces to the second-order Scheffé K-polynomial
(Draper and Pukelsheim, 1998). Focke et al. (2007) discussed the estimation
of the power-mean-mixture model for predicting viscosity from knowledge of
binary behaviour. They recommended that r = —5/6 and s = 1/2 are the
optimal parameters for the prediction of viscosity. However, the collection of
appropriate data for the accurate estimation of the parameters in the power-
mean-mixture models have not been discussed in great detail previously in the
chemical engineering literature.

Specifically, optimal designs may be employed for specifying the design
points that are optimal according to some criterion for estimating the parame-
ters in the model. The design of physical experiments in mixture variables has
received text book length discussions for the estimation of models linear in the
parameters, such as the Scheffé polynomials (see Cornell (2002) and Atkinson
et al. (2007), Chapter 11). Snee (1975) recommended that the support points
of an optimal design for fitting a second-order model over a constrained region
is a subset of the extreme vertices, edge centroids, constraint plane centroids
and the overall centroid. Snee (1979) extended this methodology to multicom-
ponent constraints. Draper and Pukelsheim (1999) presented optimal designs
for estimating the parameters in the homogeneous K-polynomials in mixture
variables.

The special difficulty of model (2) is that, depending on the values of the
parameters 7, s, the model may be nonlinear in the parameters. Therefore, for
models nonlinear in the parameters, specifying an optimal design is dependent
on initial guesses for the parameters. Atkinson et al. (2007) discussed the deriva-
tion of optimal designs for nonlinear models. Atkinson and Bogacka (2002);
Atkinson et al. (1998) discussed the derivation of optimal designs for estimating



the order and the rate of reactions from kinetic models. This paper presents
methodology of optimal experimental designs, and the derivation thereof, for a
number of special forms for the weighted power-mean-mixture model for three
component mixtures. With the design methodology presented, experiments in
mixture variables can be specified that are optimal according to a design crite-
rion for estimating the parameters in the weighted power-mean-mixture model
most precisely.

2 Experimental Design Theory

2.1 Notation and theory

In this section we establish notation and provide an introduction to the theory of
optimal experimental design. A nomenclature of the symbols used on the paper
is listed in Appendix B. Let y be a random response variable with constant
variance o2, then at the setting of mixture variables z = (xl,xg,...,wq)T,
subject to constraints (1), y has expected value:

1/r

q q r/s
E(y) =nlz, ¢) = | > _ =k (Z ma@) (3)
k=1 =1

where ¢ is the p x 1 vector of parameters containing all the pure and binary in-
teractions ag;, k,l =1,2,...,q, and the orders r, s (Focke et. al., 2007). We con-

sider a continuous design on the simplex S; = Sz, k =1,2,...,¢|> zr =1,0 <
k

which allocates weights to n distinct sets of mixture variables and which can be
specified as:

e={o 2o o

where the z,, € S;,u = 1,2,...,n, are the values of the ¢ mixture variables,

n

wu,t = 1,2,...,n,0 <w, <1, > w, =1, are the design weights. Note that
u=1

if N total observations are to be taken, then the number allocated to the set

z,, is given by Nw,, which is not necessarily integer. The optimum exact design
may be approximated by a design with the number of points at z, the integer
closest to Nw,. Alternatively, and more pragmatically, an exact design can
be constructed by applying an exchange algorithm of the type discussed by
Atkinson et al. (2007), Chapter 12.

Criteria in optimal design are functions of the information matrix for the
set of parameters of interest. The information matrix has as entries the squared
and cross-products of the sensitivities of the model to the set of parameters of
interest at each experimental design point. For models linear in the parameters,
the inverse of this matrix is the variance-covariance matrix of the parameter
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estimates. In a model nonlinear in the parameters, this property holds asymp-
totically. Specifically, the information matrix of a design £ for the p parameters
¢ is given by:

M (& ¢) =F'WF (5)

where

17 (20:0)

is a m X p matrix and the u — th row has j — th element

o (2,
fj (&’uﬂ?) = %1;@7]: 172,,]7

called the parameter sensitivity, and
W = diag {wl, . ,wn}

The information matrix can be written as:

M (&,¢) =Y wuM (z,,9) (6)

where M (z,,9) = f (z,,9) iT (z,,,¢) the information matrix at the u — th
experiment. Therefore, for the general form of the model (3), the information
matrix depends on the unknown parameters ¢. In this paper, we adopt a best
guess @0 for the parameters and consider designs which maximize an appropriate
function of M (f,@) evaluated at ¢ = 90' Such designs are termed locally
optimum. Alternative strategies are to derive Bayesian designs which require a
prior distribution of the parameters (Atkinson and Bogacka, 2002).

2.2 D-optimal designs

In this paper our interest is in specifying the mixture variable settings for the
precise estimation of the parameters in the model (3). Therefore, D-optimality
is the appropriate criterion. D-optimal designs maximize the determinant of the
information matrix, | M (5 , @ |, or equivalently, minimize the asymptotic gener-
alized variance of the parameter estimates. Often, the natural logarithm of the
information matrix, log | M (f , Q) |, is maximized to ensure convexity. Due to the
potentially large number of parameters in model (3), obtaining analytical solu-
tions for the maximization of |M (5 , Q) | are cumbersome or mostly impossible.
Therefore, we apply a suitable nonlinear constrained optimization algorithm to
perform numerical maximization of |M (5, Q) |, evaluated at ¢ = 2%



For numerical optimization, the celebrated Equivalence Theorem from Kiefer
and Wolfowitz (1960) can be used to evaluate the global optimality or otherwise
of a candidate design (Atkinson and Haines, 1996). This theorem relates the
maximization of the determinant of the information matrix to the minimization
of the maximum variance of prediction over the simplex S,. Let the standardized
variance of prediction at the point z be defined as:

d(z,§0) = 7 (z.0) M7" (£, 9) f (z.9) (7)
The equivalence theorem states that a design, £*, is globally optimal if and
only if d(z,£*,¢) < p, the number of parameters in the model, and further
that the maximum value is attained at the support points z* of £*. It follows
from Caratheodory’s Theorem that a continuous D-optimal design is based on,
at most, p(p + 1)/2 design points (Federov (1972), Chapter 2). Often locally
D-optimal designs are based on exactly p number of design points, when the
weights associated with the support points are equal to 1/p (Federov (1972),
Chapter 2).

The D-efficiency of a design &; relative to a design &5 is defined as:

|M(§17?)| (1/17)
|M (&2, 9) |

where p is the number of parameters in the model. D-efficiencies are calculated
to specify the efficiency of experimental designs for estimating the parameters
in the model most precisely. The construction of D-optimal designs have been
widely communicated in the design literature for models linear in the parame-
ters in mixture variables. Draper and Pukelsheim (1999) presented D-optimal
designs for estimating the parameters in the homogeneous K-polynomials in
mixture variables. Cornell (2002) and Atkinson et al. (2007) (Chapter 11)
also discussed the derivation of D-optimal designs for linear models in mixture
variables. However, the derivation of optimal designs for weighted power-mean-
mixture models have not been communicated previously in the design literature.

Effp(&1,62,9) = 100( (8)

2.3 D,-optimal designs

If only a subset of v of the parameters, ¢, is of interest, let the parameters

be partitioned as ¢ = (QI,QQ) with Mas (5,@ the information matrix for the
p — v parameters not of interest, and fQT2 (ac ¢) the associated vector of sensi-

tivities. Then the Dj-optimal design for ¢ maximizes [M (&, 0) /| M2z (& ¢) |-
The equivalence theorem states that the deagn &* is Ds-optimal if and only if
ds(z, &%, ) < v where

ds(2,€,0) = [ (2,0) M~ (,0) [ (2:0) = [, (2. 0) M3s' (£,9) [, (2.9)

is the variance of prediction at a point x € S,. The D,-efficiency of a design &;
relative to a design & is defined as:



Effp,(&,82,¢) =100

(1/v)
(|M (61.0) |/|M22 (&1, ) |> (9)

|M (&2, ) |/|Maz (€2, ) |

Atkinson and Bogacka (2002) derived D,-optimal designs for estimating the
orders of reaction from a kinetic model.

3 Special Forms and their Optimal Designs

3.1 Continuous D-optimal designs

In this section we use the preceding theory to derive continuous D-optimum
designs for some special forms of the power-mean-mixture models (3). We con-
sider the data from Focke et al. (2007) for specifying the initial guesses of the
parameter estimates for the derivation of the optimal designs. Furthermore, we
will consider designs for ¢ = 3 mixture variables only. As a subset of the data
in Focke et al. (2007), n = 68 data points were used to study the prediction
of viscosity as a function of the three components acetone, methanol and wa-
ter. The data are depicted in Appendix A in the Appendix. Extending the
results to more than 3 components is only of mathematical interest and does
not contribute to a greater understanding of the importance of applying the
methodology of the optimal design of experiments.
For ¢ = 3, model (3) becomes

1/r

3 3 r/s
n(z, o) Zxk- (Z xlaiz)
k=1 =1

= [z1 (a§y21 + afawa + afyzs)”* +

w2 (03,21 + a3, + a3yws) " +
x5 (ayo1 + agprs + aggrs) )

If all the parameters in model (10) are of interest, with ag; # ajk, k,1 = 1,2,3,
then there are ¢ = 11 parameters to be estimated, including r and s. According
to the theory, the optimal design will have at least n = p = 11 distinct points
in the ¢ = 3 mixture variables. Therefore, in addition to the n = 11 optimal
weights required, the D-optimality criterion must be optimized for p(¢+1) = 44
values with a nonlinear constrained optimization algorithm. This can become
very tedious and time consuming. Therefore, to simplify the optimization and
interpretation of the results, we will consider special forms of model (10) for
given values of r and s.

The special forms considered in this paper are listed in Table 1, together
with the number of unknown parameters. Therefore, for deriving D-optimal
designs, the parameters ag;, k,l = 1,2,3 are of interest alone and we assume r
and s are fixed and without error. Furthermore, as a result of considering r



Table 1: Special forms of model (10) for given values of r and s.

T, s Model Number of Equation
parameters  number

514

r=s n(z»@ = (X X e 6 (11)
r=1ls=1% 0) = Cho o (X afi Ve ) 9 (12)
5/3

r=5s=1 [z LT Zl 1xla1/2) ]
r=0,s= n(z,¢) = exp (Z 23: 1n(akl)$k$l> 6 (15)

Ne)

(14)

k=11=1

r=0,s=1 n(z,d) = szl (Z?=1 aklﬂﬁl)

Tk

NeJ

(16)

and s as known, they are not included in the construction of the information
matrix (6), i.e. model sensitivities are not calculated with respect to r and
s. The power-mean-mixture models listed in Table 1 have been communicated
previously in the chemical engineering literature, and are discussed in detail in
the following paragraphs for deriving optimal designs.

Model (10) reduces to a quadratic Scheffé K-polynomial in n", that is for
r=s:

3 3 3 3
= ZZaklxkxl Za};kxiJrzz ag; + ap,)TEx) (11)
k=1

k=11=1 k=11>k

(Draper and Pukelsheim, 1998). The over-parameterization is circumvented by
setting ag; = a;x. D-optimal designs are well known for Scheffé S-polynomials
(Scheffé, 1958) and is discussed by Cornell (2002). Draper and Pukelsheim
(1999) utilized the Kiefer ordering for simplex designs and showed that the D-
optimal designs for S- and K-polynomials are the same since the models can
be interchanged due to the constraint ), x;, = 1. However, the K-polynomials
are homogeneous of order 1, which is a great advantage over the S-polynomials
which are not homogeneous (Draper and Pukelsheim, 1998).

For » = 1, the D-optimal design is the simplex-lattice with n = 6 design
points, i.e. three pure component blends and three 50:50 binary blends, with
equal weights w = 1/6 at each design point. For r = 2, model (11) becomes
nonlinear in the parameters and the information matrix is a function of the
unknown parameters. From Focke et al. (2007), the initial values were specified
as: aj;p — 0.301,0,22 = 0.542,&33 = 0.8927CL12 = 0.07747(113 = 0.76857(123 =
1.5716. The D-optimal design criterion, | M (€, ¢) |, was maximized by a suitable
nonlinear constrained optimizer. The D-optimal design consists of n = 6 design



points, i.e. three pure component blends and the three binary blends (0.6, 0,
0.4), (0.6, 0.4, 0), (0, 0.5, 0.5), with equal weights w = 1/6 at each design point.
Note that the three components are not equally represented in all three binary
experiments. This is due to nonlinearity of the model, and obviously, the result
is a function of the initial guesses.

For r = 3, the nonlinearity of model (11) increases. For the following initial
guesses for ajo = 0.00089, a13 = 0.6524, as3 = 1.4067, with the pure component
parameters remaining the same, the optimal design points, in addition to the
pure component blends, are (0.722, 0, 0.278), (0,67, 0.33, 0), (0, 0.557, 0.443)
for the binary mixtures, with equal weights w = 1/6 at each design point. Note
the binary mixtures involving x; assigns a higher proportion to ;. The specific
design structure cannot be known without deriving the D-optimal design.

For r =1,s =1/2, model (10) becomes:

3 3 2
(@ ¢) = i (Z aiV%) (12)
k=1 1=1
The D-optimal design is depicted in Table 2 for (12), with initial guesses for
aip2 = 0.7767,&13 = 0.0001,&21 = 0.0001,a23 = 6.0754,&31 = 2.3898,(132 =
0.0368, with the pure component parameters the same as above. The design

has n = 9 points with equal weight w = 1/9 assigned to each point.
However, Focke et al. (2007) showed that (12) simplifies to the cubic Scheffé
K-polynomial:

n(z,¢) = c1112} + ca20@3 + 33325 + 3c11207 T2 + 31220173 (13)

2 2 2 2
+3c11377%3 + 3¢1337175 + 3C223T5%3 + 3C233T275 + 6C12371 7273

where cgmy, = (\/aklakm + \/alkalm + \/amkaml) /3, k,l,m =1,2,3. The ciim
parameters in (13) as a function of the binary interaction parameters ay; in (12)
is a very important result. It illustrates that ternary and higher order Scheffé
K-polynomials can be estimated from binary data. Therefore, the D-optimal
design in Table 2 can be used for estimating the cubic model (13).

Alternatively, the D-optimal design for estimating the parameters in the
cubic model (13) is the simplex-centroid design with n = 10, which consists of,
in addition to the three pure component blends, binary blends (0, 0.276, 0.724),
(0.276, 0, 0.724), (0.276, 0.724, 0), (0.724, 0, 0.276), (0.724, 0.276, 0), (0, 0.724,
0.276), and the ternary blend (0.333, 0.333, 0.333). Equal weight w = 1/10 is
assigned to each design point. See Cornell (2002) (Chapter 2) for a discussion of
simplex-centroid designs. Figure 2 depicts the design points for the D-optimal
design in Table 2 for model (12), together with the D-optimal design (simplex-
centroid) for the cubic Scheffé K-polynomial (13). Clearly the two designs are
very similar on the simplex S,. This is because model (12) simplifies to the cubic
K-polynomial (13) with one additional point in the optimal design as depicted
in Figure 2.

The D-efficiency of the simplex-centroid design compared to the optimal
design in Table 2 is 96% for estimating the parameters in model (12). Therefore,



Table 2: D-optimal design for model (12) with r =1, =1/2

X1 X9 I3 w
0.0000 0.4008 0.5992 0.111
1.0000 0.0000 0.0000 0.111
0.0000 0.0000 1.0000 0.111
0.3378 0.3177 0.3444 0.111
0.2761 0.7239 0.0000 0.111
0.0000 1.0000 0.0000 0.111
0.2764 0.0000 0.7236 0.111
0.7236  0.2764 0.0000 0.111
0.7235 0.0000 0.2765 0.111

© 00 O U W

the simplex-centroid design is very efficient in estimating the parameters in
model (12), and optimal for estimating the parameters in the cubic Scheffé K-
polynomial (13). An additional advantage of the simplex-centroid design is that
it is not dependent on initial guesses for the parameter estimates.

From a practical perspective, we calculate the D-efficiency of the n = 68
data points used in Focke et al. (2007) for estimating the power-mean-mixture
models. The D-efficiency of the data in Focke et al. (2007) is equal to 71%
for estimating model (12), and equal to 76% for estimating the cubic Scheffé
polynomial (13). This indicates that almost 30% more replications are required
for the data in Focke et al. (2007) to be as efficient in estimating the above two
models. Therefore, although many more mixture data have been collected and
fitted, the data is not as efficient as those of the optimal designs. This has great
practical impact in terms of the design and analysis of mixture experiments in
the chemical and chemical engineering disciplines. It illustrates that the optimal
mixture experiments are more important than collecting huge amounts of data.

Focke et al. (2007) showed that r = —5/6 and s = 1/2 yield the optimal
mixing rule for predicting liquid viscosity. Model (10) becomes:

—5/37 ~6/5

3 3
n(z ¢) = |z (Z J?za}f) (14)
k=1 =1

The D-optimal design for model (14), with initial parameter guesses ai3 =
0.66804, a13 = 0.7222, a9 = 0.84593, ass = 1.2223,a3; = 3.88214, ags = 2.6656,
and the pure component parameters the same as above, is depicted in Table
3. The design has n = 10 design points with unequal weights assigned to the
design points. Note that the ternary mixture, i.e. (0.3632, 0.2931, 0.3436),
which is close to the midpoint, has an optimal weight which is almost half of
the other design points. The optimal weights are very similar for the other data
points. For practical application, this result indicates that the pure and binary
mixtures are assigned twice as many replications than the ternary mixture. The
D-optimal design is plotted in Figure 2, together with the n = 68 data points
from Focke et al. (2007). The figure shows that the historical data from Focke



Figure 1: D-optimal design points for r = 1,s = 1/2, model (12) (o), and for
the cubic Scheffé polynomial (x).

et al. (2007) are populated with mixtures which are scattered over the simplex
Sq, although there are fewer mixtures with high proportions of component x;
present.

The D-efficiency of the n = 68 historical data compared to the optimal design
with n = 10 distinct points is equal to 74%. Therefore, although a significant
amount of data have been used to derive the optimal mixing rule for viscosity,
it is only 74% as efficient as the optimal mixture design with n = 10 distinct
points for estimating the proposed model. However, for practical application at
least a total of N = 20 mixtures would be needed, with one measurement taken
at the ternary mixture and two replications taken at all the other mixtures. The
D-efficiency of the optimal design for the cubic polynomial (13), i.e. simplex-
centroid design, compared to the optimal design in Table 3 for estimating model
(14) is 87%. Since the simplex-centroid design is independent of the parameters’
estimates, with good efficiency, it may be used in sequential mixture design
studies for obtaining initial data for parameter estimation.

D-optimal designs can also be derived for other special forms of the power-
mean-mixture model. For r = 0,s = 0, we obtain the mixing law for viscosity
by Grunberg and Nissan (1949):

n(z, ¢) = exp (Z Z 1H(akz)$k$l> (15)

k=11=1

with ar; = ai, k,l = 1,2,3. Model (15) has six parameters to estimate. Let

10



Table 3: D-optimal design for model (14) with r = —5/6 and s = 1/2.

I T2 I3 w
0.0000 0.2516 0.7484 0.1111
1.0000 0.0000 0.0000 0.1012
0.0000 0.0000 1.0000 0.1111
0.6638 0.3362 0.0000 0.0875
0.0000 0.5975 0.4025 0.1085
0.0000 1.0000 0.0000 0.1093
0.1891 0.0000 0.8109 0.1111
0.2620 0.7380 0.0000 0.1100
0.3632 0.2931 0.3436 0.0462
0.5036 0.0000 0.4964 0.1039
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Figure 2: D-optimal design points for r = —5/6,s = 1/2, model (14) (o), and
for the n = 68 data points from Focke et al. (2007) (A).

11



Table 4: D-optimal design for model (15) with » = 0,s = 0.
X1 X9 I3 w

0.3055 0.4516 0.2430 0.1667

0.0000 0.4498 0.5502 0.1667

0.0000 0.0000 1.0000 0.1667

0.0000 0.9463 0.0537 0.1667

0.3996 0.0000 0.6004 0.1667

0.9524 0.0000 0.0476 0.1667

ST W N

a1 = 0.301,a12 = 0.66804, a13 = 0.7222, aze = 0.542, as3 = 1.2223, ag3 = 0.892,
the D-Optimal design is depicted in Table 4. The design has six optimal distinct
points with equal weight w = 1/6 assigned to each point. Note that the optimal
design includes only one pure component blend for z3, i.e. (0, 0, 1). The
simplex-lattice design in three components has also 6 design points (Cornell,
2002). The D-efficiency of the simplex-lattice design compared to the D-optimal
design in Table 4 for estimating model (15) is 88%. Therefore, due to the high
efficiency, and the fact that the simplex-lattice is independent of the parameter
estimates, it may be used to obtain initial parameter estimates.
For r = 0,s = 1, we obtain the model from Wilson (1964):

3 3 Tk
n(z, ¢) = H < szﬂcl) (16)
k=1 \i=1

Model (16) has nine parameters to estimate. Let a;; = 0.204, a12 = 0.0197, a15 =
0.0181, as1 = 1.295,&22 = 0.5482761,23 = 0.3149, asy = 9.5214, asg = 7.1334, ass =
0.9309, the D-Optimal design is depicted in Table 5. The design has nine op-
timal distinct points with equal weight w = 1/9 assigned to each point. The
designs in Tables 4 and 5 both assign equal weight to each design point confirm-
ing the theory discussed in Section 2.1, i.e. w = 1/p for p parameters. However,
the designs are non-symmetrical due to the non-linearity of the models. In com-
parison, the simplex-centroid design in three components, which is optimal for
the cubic Scheffé K-polynomial, has 10 distinct design points. The D-efficiency
of the simplex-centroid design compared to the D-optimal design in Table 5 for
estimating model (16) is only 47%. Therefore, care should be taken in using
the general simplex-centroid design for estimating model (16), even for obtain-
ing initial parameter estimates. This result is not known without applying the
D-optimality criterion.

3.2 Continuous Ds-optimal designs

Model (14), with r = —5/6 and s = 1/2, was illustrated by Focke et al. (2007) to
be the optimal mixing rule for predicting liquid viscosity. Therefore, for illustrat-
ing Ds-optimal designs, we consider model (14) and specifically we assume that
the parameters agg, k = 1,2,3 are not of interest for estimation. This assump-
tion is sensible in analytical chemistry because the behavior of multicomponent

12



Table 5: D-optimal design for model (16) with r = 0,s = 1.

X1 X9 I3 w
0.0000 0.0000 1.0000 O0.1111
0.0806 0.2353 0.6841 0.1111
0.1688 0.0000 0.8312 0.1111
0.0832 0.8390 0.0778 0.1111
0.0000 0.1443 0.8557 0.1111
0.3632 0.4446 0.1923 0.1111
0.0000 1.0000 0.0000 0.1111
0.0000 0.4732 0.5268 0.1111
0.6201 0.0000 0.3799 0.1111

© 00 O U W

mixtures is naturally affected by the interactions of unlike molecules (Hamad,
1998; Prausnitz et al., 1999; Walas, 1985). Focke et al. (2007) also assumed the
pure component properties to be known and only estimated the binary inter-
action parameters. However, although the pure component properties can be
estimated or specified very precisely they remain subject to uncertainty. The
objective is to derive the continuous Ds-optimal design for estimating the pa-
rameters ag;, k # | = 1,2,3 in model (14), with agx, k = 1,2,3 subject to
uncertainty.

The Dg-optimal design is depicted in Table 6, with n = 10 distinct design
points, and unequal weights assigned to each point. The Ds-optimal design is
plotted in Figure 3 together with the D-optimal design for estimating model
(14). Clearly, the two optimal design are very similar. Specifically, although
the optimal weights are very similar for the different design points that lie
close to each other, the D,-optimal design has a smaller weight assigned to the
approximate center point compared to the D-optimal design. The D,-efficiency
for the D-optimal design in Table 3 compared to the Ds-optimal design in Table
6 for estimating model (14), with agg, k = 1,2, 3 subject to uncertainty, is 96%.
Therefore, the very high efficiency confirms the similarity of the two designs.
The Dg-efficiency for the historical n = 68 data points from Focke et al. (2007)
(Appendix A) compared to the Ds-optimal design in Table 6 for estimating
model (14), with ag, k = 1,2, 3 subject to uncertainty, is only 71%. Again, this
illustrates the practical value of determining the optimal mixture experiments
rather than engaging in ad-hoc experimentation.

3.3 Exact designs

For a design &, with n,, observations at each z,,, and N = > n,,u=1,2,...,t,
the information matrix is:

M (&, ¢) = FTW, F
where W, = diag {1/n1,1/n2,...,1/n}.
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Table 6: Dg-optimal design for model (14) with » = —5/6 and s = 1/2.

I X9 I3 w
0.649 0.351 0.000 0.093
0.279 0.721 0.000 0.129
0.000 0.572 0.428 0.110
0.000 1.000 0.000 0.080
0.000 0.270 0.730 0.124
0.000 0.000 1.000 0.080
0.478 0.000 0.522 0.100
0.202 0.000 0.798 0.126
1.000 0.000 0.000 0.076
0.319 0.305 0.376 0.082

O © 00O ULk WN

—_

Figure 3: D,-optimal design points (o) and the D-optimal design points (x) for
r=—5/6,s =1/2, model (14).
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Figure 4: Dg-optimal exact design points (o) and the Dg-optimal continuous
design points (x) for r = —5/6,s = 1/2, model (14).

Cornell (2002), Chapter 4, and Atkinson et al. (2007), Chapter 16, dis-
cuss the construction of exact designs for mixture experiments. In this section
we illustrate the exact design for the Dj-optimality criterion, i.e. maximize
| M (fn,@ |/| Maso (fn,@ |, for estimating the parameters ap,k # | = 1,2,3
in model (14) under the assumption that axg, k = 1,2,3 are subject to uncer-
tainty. For constructing exact designs, an exchange algorithm is deployed which
require a candidate set of mixture design points. Therefore, a grid of 10 000
random mixture design points were created for the candidate set. We applied
the Federov coordinate-exchange algorithm (Miller and Nguyen, 1994) to select
15 design points from the 10 000 candidate set. 15 Points were specified to eval-
uate whether some points are replicated because the optimal continuous design
yielded 10 points. The exchange algorithm was iterated 3 000 times, and the
computer time was 250 minutes in total. There are other exchange algorithms
available for generating exact optimal designs, such as the DETMAX algorithm
(Galil and Kiefer, 1980; Mitchell, 1974a,b; Welch, 1984).

The Dg-optimal exact design points are plotted in Figure 4. The solid dot
indicates the replicated replicated point. Therefore, there are 14 distinct de-
sign points with two replications. Also plotted in Figure 4 is the Dgs-optimal
continuous design in Table 6. Clearly, the two optimal designs are very similar.
The Dgs-efficiency of the exact design compared to the optimal design in Table
6 is equal to 95%. This example illustrates that exact optimal designs can be
generated and may be as efficient as the continuous optimal designs.
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4 Discussion and Conclusions

In this paper we presented optimal designs for estimating the parameters in the
generalized weighted-power-mean mixture models, which may be nonlinear in
the pure and binary interaction parameters. We illustrated the construction of
D- and Dg-optimal designs and discussed the designs both from a theoretical
and practical perspective. Specifically, design efficiencies were calculated for
all the optimal designs. We highlighted the difference between continuous and
exact optimal designs, and the construction thereof.

In this paper we derived locally optimal designs, i.e. those designs which
depend on an initial guess for the parameters. Therefore, if the values of one or
more of the parameters are changed, the optimal design might change due to a
change in the parameter sensitivities and consequently the information matrix
(6). Uncertainties in the parameter values can be addressed by specifying a
prior distribution on the parameters and deriving Bayesian D- and D-optimal
designs (Atkinson and Bogacka, 2002). Alternatively, mixture experiments may
be performed in order to obtain initial parameter estimates.

Specifically, it was illustrated that the common mixture designs, such as the
simplex-lattice and simplex-centroid designs, have high efficiency for estimating
most of the special forms of the weighted power-mean-mixture models that
are nonlinear in the parameters. Therefore, if desired, these designs may be
employed for determining initial parameter estimates for employing a sequential
design strategy. Atkinson et al. (2007), Chapter 17, illustrates the efficiency
of sequential designs for nonlinear models, whereby a preliminary (arbitrary)
experimental design is employed for obtaining initial parameter estimates, and
then one experiment at a time is added sequentially according to the optimality
criterion of interest.

To conclude, it is recommended that the methodology of optimal experimen-
tal design should be employed for specifying experiments in mixture variables
that are optimal for estimating the parameters in weighted power-mean-mixture
models most precisely.
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Appendix A
Mixture data

Exp. Acetone Methanol Water Viscosity | Exp. Acetone Methanol Water Viscosity
1 0.146 0.211 0.643 1.250 35 0.702 0.298 0.000 0.329
2 0.494 0.073 0.433 0.635 36 0.692 0.308 0.000 0.331
3 0.280 0.076 0.644 1.049 37 0.645 0.355 0.000 0.340
4 0.243 0.090 0.666 1.129 38 0.537 0.463 0.000 0.347
5 0.073 0.128 0.798 1.448 39 0.359 0.641 0.000 0.377
6 0.250 0.155 0.595 1.037 40 0.297 0.703 0.000 0.394
7 0.433 0.158 0.409 0.658 41 0.210 0.790 0.000 0.423
8 0.244 0.164 0.591 1.037 42 0.122 0.878 0.000 0.465
9 0.098 0.169 0.734 1.409 43 0.000 1.000 0.000 0.542
10 0.300 0.171 0.529 0.899 44 0.000 0.000 1.000 0.892
11 0.270 0.192 0.539 0.948 45 0.000 0.051 0.949 1.107
12 0.354 0.297 0.349 0.663 46 0.000 0.113 0.888 1.339
13 0.057 0.283 0.660 1.422 47 0.000 0.141 0.859 1.421
14 0.416 0.332 0.252 0.543 48 0.000 0.228 0.772 1.559
15 0.288 0.339 0.374 0.745 49 0.000 0.293 0.707 1.558
16 0.184 0.359 0.458 0.957 50 0.000 0.420 0.580 1.431
17 0.450 0.353 0.197 0.488 51 0.000 0.486 0.514 1.331
18 0.094 0.412 0.494 1.139 52 0.000 0.554 0.446 1.214
19 0.307 0.484 0.209 0.570 53 0.000 0.713 0.287 0.963
20 0.244 0.448 0.308 0.713 54 0.000 0.804 0.196 0.814
21 0.326 0.497 0.178 0.532 55 0.000 0.835 0.166 0.777
22 0.106 0.556 0.338 0.893 56 0.000 0.914 0.086 0.660
23 0.106 0.593 0.301 0.841 57 0.000 1.000 0.000 0.542
24 0.220 0.648 0.132 0.541 58 0.000 0.000 1.000 0.892
25 0.183 0.674 0.143 0.573 59 0.058 0.000 0.942 1.207
26 0.271 0.098 0.631 1.048 60 0.146 0.000 0.854 1.372
27 0.345 0.172 0.483 0.799 61 0.206 0.000 0.794 1.289
28 0.170 0.162 0.668 1.234 62 0.302 0.000 0.698 1.087
29 1.000 0.000 0.000 0.301 63 0.460 0.000 0.540 0.749
30 0.878 0.122 0.000 0.326 64 0.527 0.000 0.473 0.648
31 0.790 0.210 0.000 0.325 65 0.618 0.000 0.382 0.510
32 0.771 0.229 0.000 0.329 66 0.770 0.000 0.230 0.396
33 0.722 0.278 0.000 0.330 67 0.820 0.000 0.181 0.381
34 0.706 0.294 0.000 0.332 68 1.000 0.000 0.000 0.301
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Appendix B
Nomenclature

q number of components
P number of parameters
T mixture components
n(z, ) model
Q vector of parameters
ag; parameters
T, s parameters
& experimental design
w design weights
n number of observations
M (§ , @ information matrix
(g ) vector of sensitivities
F matrix of parameter sensitivities
w matrix of design weights
d(z,€,¢) | standardized variance of prediction
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