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INTRODUCTION

To date, much criticism has been directed 

at the California Bearing Ratio (CBR) test, 

including its cost, the time required to per-

form the test and its reproducibility. While 

some authors feel the test should be replaced 

(e.g. Savage 2008), no effective alternative 

method has been developed or implemented 

in South Africa. In addition to the time 

required for the four-day soaked CBR test, the 

amount of testing required by ongoing engi-

neering projects places strain on the material 

testing industry, which is often overwhelmed 

by the sheer volume of testing to be done. 

Currently, an empirical prediction model 

developed by Kleyn (1955) is commonly used 

as a predictor of the CBR in South Africa. 

Models developed by Davel (1989), Netterberg 

(1994), Sood et al (1978), Stephens (1990, 1992) 

and others are also used to a lesser extent.

In search of a solution to limit the oner-

ous requirements of this material testing, 

the relationship between index testing and 

the CBR was investigated in an attempt to 

develop empirical prediction models from 

data related to index testing. The motivation 

behind this was the reduced cost and time 

that would be required to execute index 

testing, compared with CBR testing. The aim 

of the research was not to replace the CBR 

test, but to develop a preliminary method of 

identifying potentially suitable materials to 

limit the amount of CBR testing that has to 

be performed. It was also anticipated that by 

grouping like materials together, better pre-

diction models than are currently available 

could be developed.

DISCUSSION

CBR properties

A large disadvantage associated with the 

CBR is its poor reproducibility and repeat-

ability. This was also confirmed by discus-

sion with an experienced soils laboratory 

manager, Mr David Ventura (2008, personal 

communication, CSIR, Pretoria) and is 

shown by the precision limit determination 

in the current draft revision of the CBR test 

method by the SABS (SANS 3001-GR40 

– SABS 2008). Performing confirmatory 

testing would become non-viable due to the 

amount of material required in addition to 

the (already) substantial volume of material 

required to perform the standard CBR test. 

As such, finding an empirical relationship 

between the index test results and the CBR 

may be considered challenging due to the 

variability of the CBR itself. 

An example of the above was observed 

while collecting and entering data. A single 

The relationship between 
index testing and California 
Bearing Ratio values for 
natural road construction 
materials in South Africa
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Research was done to determine whether a relationship can be established between index 
testing and CBR (California Bearing Ratio) results. The process involved compiling a database of 
test results for a range of rock material types across moist and dry regions in southern Africa. 
The database was compiled in such a way that it represents natural gravels sampled (mostly) for 
construction or rehabilitation of road layer works. The database included a location description, 
material description, Weinert N-value, Atterberg Limits, grading analysis and CBR values. In 
addition, the linear shrinkage product, shrinkage product, grading coefficient, grading modulus 
and dust ratio were calculated and also used in the analyses. Data were grouped based on 
climate, rock material type and compaction, and analysed separately. The data were compared 
with existing prediction models, after which linear and Weibull regressions were performed 
to derive new models. Over 130 regressions were derived. The results proved poor and this is 
ascribed to data variability. The data variability, in turn, is the result of test methods with poor 
reproducibility and repeatability. In short, the test methods (the CBR in particular) resulted in 
inconsistent data and subsequently poor results, making accurate predictions nearly impossible.
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sample was compacted to the same compac-

tive effort on two occasions (with an identi-

cal test) and, although most of the other 

parameters (e.g. plasticity index) correlated 

closely, the first CBR value measured was ten 

times greater than that of the duplicate.

Data compilation

Research was focused on materials occurring 

in the South African geological environ-

ment. Data were collected from a number of 

sources, including the following: 

A collective database of results obtained  ■

during ongoing research at the CSIR

The Transvaal Roads Department’s  ■

Report on investigation of existing road 

pavements in the Transvaal, Report L1/75 

and field data volumes 1–12, compiled by 

Burrows (1975)

Data from the defunct National Databank  ■

for Roads (CSIR)

Laboratory results obtained from work  ■

done during routine consulting

Data courteously provided by the  ■

Namibian Roads Department

The data collected were required to have 

index test results and CBR test results for 

the same sample in order to attempt to cor-

relate the properties. Test results considered 

in the research included the following test 

parameters:

Rock material type ■

Weinert N-value or location from which  ■

to derive the Weinert N-value

Atterberg Limits (including bar linear  ■

shrinkage)

Grading analysis (percentages passing  ■

37,5; 26,5; 19,0; 13,2; 4,75; 2,0; 0,425 and 

0,75 mm screens)

CBR values at 100, 98 and/or 95% Mod.  ■

AASHTO density

From the available data, the following addi-

tional parameters were calculated:

Linear shrinkage product ■

Shrinkage product ■

Grading modulus ■

Grading coefficient (Paige-Green 1999) ■

Dust ratio ■

Although most of the testing was known to 

have been conducted according to TMH1 

(NITRR 1979, 1986) methods, the possibility 

of some of the testing deviating from these test 

methods cannot be excluded. It should also be 

noted that many of these properties can have 

considerable variability depending on the sam-

pling, test preparation and operator, and this 

could not be controlled in the data set. All data 

collected were entered into Microsoft® Excel as 

a spreadsheet to facilitate data handling.

METHODOLOGY

Data grouping

Data were divided into classes, based on three 

main functions, producing nearly 60 different 

data groups. All data were initially assigned 

to a climatic group (i.e. moist or dry climate), 

based on the N-value system proposed by 

Weinert (1980). Regions with an N-value of 

less than 5 were considered to be a moist cli-

mate, while regions with an N-value of 5 and 

more were considered to have a dry climate.

The second division of data was a function 

of the relative compaction used for the CBR 

test. Only three densities were considered (i.e. 

95, 98 and 100% Mod. AASHTO densities). 

The final data division was based on the rock 

material groups described by Weinert (1980), 

as illustrated in Table 1. Although every 

attempt was made to include a representative 

range of materials, not all of the rock material 

groups were represented by the data. This is 

ascribed to the fact that not all materials are 

ideal for layer work construction (e.g. metallif-

erous rock, due to high haulage costs) or that 

some materials are simply not common (or 

suitable for use) in a given climatic zone (e.g. 

calcrete in a moist climate). 

In addition to the rock groups described, a 

group consisting only of non-plastic samples 

was created for each climatic zone and com-

paction. The group therefore has no reference 

to rock material type. Groups for colluvial and 

alluvial materials were also compiled.

Existing methods

After the dataset had been divided into 

the subgroups described above, each of the 

groups was compared with existing models. 

Numerous different research outcomes – 

largely identified by Netterberg (1994) – were 

identified and the methods and results 

produced compared with the newly created 

database. The models ranged from locally 

used systems (e.g. Kleyn 1955) to numerous 

systems applied abroad (e.g. Sood et al 1978, 

Dhir et al 1987, etc). The work considered 

utilises a range of input variables for the 

prediction of CBR values. As the number 

and length of individual models proposed are 

substantial, only a summary of the variables 

used by different authors is given:

Linear shrinkage product (Netterberg &  ■

Paige-Green 1988)

Linear shrinkage and grading (Lawrance  ■

& Toole 1984)

Grading modulus and plasticity index  ■

(Kleyn 1955 & Stephens 1988)

Linear shrinkage and grading (Gawith &  ■

Perrin 1962)

Atterberg Limits, grading and a group  ■

index number (Wermers 1963)

Grading, plastic limit and liquid limit  ■

(Stephenson et al 1967)

Grading, liquid limit and plasticity index  ■

(De Graft-Johnson et al 1969)

Grading modulus, linear shrinkage and  ■

grading (Haupt 1980)

Grading modulus (Davel 1989) ■

The (full) existing models were entered 

into the spreadsheets in the empirical 

format provided and predicted CBR values 

calculated using the database. In total, 28 

equations were considered for each (of the 

nearly 60) data sets to derive the final CBR 

values predicted by each model. A mean CBR 

of the tested dataset was then compared with 

the mean CBR values calculated for each of 

the existing models to identify which models 

showed potential for accurate prediction. 

Table 1 Summary of Weinert’s rock classification scheme (adapted from Weinert 1980)

Class Group Rock types

Decomposing

Basic crystalline

■  Diorite, gabbro, norite, peridotite, serpentinite, anorthosite, 
diabase, dolerite, andesite, basalt, phonolite

■  Metamorphic: Amphibolite and greenschist

Acid crystalline
■  Granite, pegmatite, syenite, felsite, rhyolite
■  Metamorphic: Gneiss

Disintegrating

High silica

■  Igneous: Vein quartz, quartz porphyry
■  Sedimentary: Chert
■  Metamorphic: Hornfels, quartzite

Arenaceous 
■  Sedimentary: Arkose, conglomerate, gritstone, sandstone
■  Metamorphic: Mica schist

Argillaceous
■  Sedimentary: Shale, mudstone, siltstone
■  Metamorphic: Phyllite, sericite schist, slate

Carbonate
■  Sedimentary: Dolomite, limestone
■  Metamorphic: Marble

Special

Diamictites ■  Tillite, breccia

Metalliferous ■  Ironstone, magnetite, magnesite, haematite

Soils

Pedogenic ■  Calcrete, ferricrete, silcrete, phoscrete, gypcrete

Soil ■  Transported soils
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However, results using the existing models 

on the dataset developed were poor, at best.

After the predictions of existing models 

had been assessed, it was decided to abandon 

further attempts to refine them, but instead 

to develop new models based on a sensible, 

statistical approach. However, the model of 

Kleyn (1955) was retained in the analysis, as 

the model is generally used in South Africa. 

The original method proposed by Kleyn 

(1955) is in a graphical format, though, and 

as such the empirical equation of Kleyn’s 

model, as given by Stephens (1988), was con-

sidered for further analyses.

DATA ANALYSIS

The statistical analysis of each data set for 

the different groups described was done 

using Microsoft® Excel, SAS® 9.1 and SPSS® 

15.0 for Windows®. Initially, general descrip-

tive statistics were derived, followed by a 

principal component analysis for each group. 

These analyses were done to identify vari-

ables showing peculiar characteristics (e.g. 

strong correlation with the CBR) or trends 

prevalent in the data.

Model derivation

Linear regression models

Three linear models were used for empiri-

cal prediction. The first was derived by 

performing a simple linear regression. The 

second linear model was that developed 

by Kleyn (1955) and derived empirically by 

Stephens (1988). Finally, a modified version 

of Kleyn’s model was developed by deriving 

a new linear model using only the grading 

modulus, the plasticity index and a constant. 

The linear and modified Kleyn models were 

developed for each group individually.

Weibull regression model

Concern was raised about the (common) 

use of linear models to predict CBR values 

from other variables, as it was argued that 

the relationship is not necessarily a linear 

one and, as such, the basic assumption of a 

linear relationship is fundamentally flawed. 

Consequently, the Weibull regression was 

selected on the recommendation of Dr S 

Das (2008, personal communication, CSIR, 

Pretoria), as it is used in so-called survival 

analysis and reliability engineering. Weibull 

(1951) emphasised the flexibility of the model 

in application to natural and biological fields. 

The method proposed by Weibull (1951) is 

ideal for analysis of the project data for a 

number of reasons:

It was clear from data verification that the  ■

data (and hence any predicting model) is 

not necessarily linear.

Little else is known concerning the mod- ■

els to be derived, particularly with regard 

to their nature (e.g. logarithmic distribu-

tion). This was proven by the variability 

in the general statistics. Hence a method 

is required that is flexible enough to 

“adjust” to the data.

All parameters have positive values  ■

ranging between zero and 100, with the 

exception of the shrinkage product and 

linear shrinkage product, both of which 

have maximum values exceeding 100.

Data manipulation

The first step in data manipulation was to 

normalise the grading to 100% passing the 

37,5 mm screen, keeping in mind the average 

size of an indicator or foundation indicator 

sample. This normalisation is also neces-

sary for calculating the grading coefficient. 

In addition, CBR values were restricted to 

a maximum of 100% (i.e. any CBR value 

exceeding 100% was considered as a CBR 

of 100%). The reason for this was that the 

predicted range of the Weibull regressions 

was limited to 100% considering that CBR 

values exceeding 100% have no significance 

in classification schemes such as the 

COLTO system.

The largest difficulty, however, lay with 

the cumulative percentages of particle 

constituents passing the sieve screens. The 

consistently decreasing percentage impeded 

regression and introduced some multi-col-

linearity. The problem was overcome by cal-

culating the individual percentages retained 

on each screen, rather than the cumulative 

percentages passing them, as the percentage 

retained was not increasing or decreasing 

relative to smaller or larger screen sizes.

Figure 1 Schematic model of model derivation and selection

All data

Separation into climatic zone
(moist or dry)

Separation into compaction groups 
(95%, 98%, 100% Mod. AASHTO)

Separation into material groups 
(e.g. acid, crystalline,  etc)

Regression (where applicable) and empirical formula derivation

Weibull regression Linear regression Kleyn's model
Kleyn's model 

modified

Comparison of estimate CBR and proven CBR

Calculation of residual values (CBR – CBRe)

Calculation of mean square prediction error and 
best model selection

Model verification
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From a practical point of view, the data 

assessed were also limited. Different CBR 

ranges were considered for moist and dry 

regions, as available CBR values did not 

allow similar ranges to be assessed (i.e. dry 

areas were characterised by significantly 

higher mean CBR values than moist areas). 

The CBR ranges considered were as follows:

Moist regions: 7 to 25% ■

Dry regions: 7 to 50%  ■

Finally, the parameters for the plasticity of 

non-plastic or semi-plastic materials were 

entered into the regression processes as 

values of zero.

Model comparison

After four prediction models for each group 

analysed had been derived (i.e. Kleyn’s model, 

modified Kleyn’s model, linear model and 

Weibull model), some form of direct com-

parison was required in order to identify the 

most suitable model unambiguously. This 

was, however, not a simple task as a single 

parameter would not necessarily indicate the 

most suitable model. To address the problem, 

the following was done for each group:

The mean square prediction error (MSPE)  ■

was calculated for each model, as derived 

from residual CBR values.

The predicted range was compared with  ■

the true range of CBR values in the data 

set.

The model producing the best combination of 

accuracy and range was selected as the most 

suitable model. In most instances, the selected 

model was the one with the lowest MSPE. The 

entire process is illustrated in Figure 1.

RESULTS

Table 2 illustrates the results produced and 

the ultimate selection of the most suitable 

model. This table applies to colluvial materials 

compacted to 95% Mod. AASHTO density in 

a moist region. Of the four models derived, 

the modified Kleyn model had the lowest 

MSPE (a value of zero) and a mean estimated 

CBR of 13%. This mean value corresponds 

to the value calculated from the tested CBR 

values (i.e. the calculated mean is the same as 

the predicted mean). The fact that the linear 

model had an MSPE of less than one empha-

sises that model selection was not simple, par-

ticularly as the linear model also had a mean 

predicted CBR value of 13%. The final result 

produced for each material group (in respec-

tive compaction classes and climatic areas) 

mirrors that illustrated in Table 3, although 

this table applies only to colluvial materials, as 

discussed above.

Despite the apparent good correlation 

between the actual and predicted values 

(based on the MSPE values), the comparison 

between actual and predicted values was 

found to be poor. Figure 2 illustrates that 

even though the selected model is the best 

of the models tested, it still predicts only a 

very limited range of values (i.e. CBR values 

between 9 and 15% for actual values between 

7 and 25%) and is not representative of tested 

CBR values. Therefore, despite predicting a 

similar mean CBR value as calculated for the 

data set and producing the lowest MSPE, the 

model is not a good one.

The example of a colluvial material was 

chosen to illustrate the typical model fit. 

Similar models were developed for each 

material group, climate and compaction 

class, giving a total of about 190 different 

models, of which the best was selected for 

each group. This resulted in about 50 specific 

models, with ten groups having insufficient 

data. Details regarding these models and the 

correlations in terms of the MSPE (only five 

models had MSPE values greater than 1) are 

provided by Breytenbach (2009).

Ultimately, though, the selected models 

were not ideal and mostly produced very 

limited prediction ranges, regardless of the 

regression model used. The model described 

above, for example, had a restricted 

Table 3 Selected model for colluvium (moist areas, 95% Mod. AASHTO)

Material
% Mod. 

AASHTO
n

CBR 
range (%)

Estimated 
CBR range (%)

Model Equation Range of parameters

Colluvium 95 52 7–25 10–16

Model CBR = 13,984 – (0,254 × PI) + (1,963 × GM) PI 0–21

Upper confidence CBR = 18,113 – (0,019 × PI) + (5,284 × GM)
GM 0,21–1,97

Lower confidence CBR = 9,854 – (0,490 × PI) - (1,359 × GM)

Table 2 Prediction model summary for colluvium (moist areas, 95% Mod. AASHTO)

Material n
Mean 
CBR 
(%)

Model Equation
Estimated 

mean 
CBR (%)

MSPE

Colluvium 52 13

Weibull CBR = Exp[log(-log(0,5)) × 0,3223 + (2,6954 + (0,0243 × PL) – (0,0573 × LS) – (0,1436 × DR))] 12 26

Kleyn CBR = Exp[(((12×GM) - PI) ÷ 18,5) + ln(16,7)] 18 1503

Adapted Kleyn CBR = 13,984 – (0,254 × PI) + (1,963 × GM) 13 0

Linear CBR = 17,181 – (7,394 × DR) 13 <1

Figure 2 Actual vs predicted CBR values
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predicted range of CBRs compared with the 

measured range of CBRs. This occurrence 

was prevalent throughout all of the predic-

tive models derived.

CONCLUSION

A large database, which included CBR values 

as well as the indicator tests results for the 

same samples, was developed from existing 

test results. The use of the database to evalu-

ate the many existing prediction models 

indicated very poor ability to predict the 

CBR values accurately. Although problems 

with the high variability for both the CBR 

and the indicator tests were recognised, 

attempts were made to develop new predic-

tion models for the CBR.

Despite the application of numerous steps 

of refinement and the grouping of materials 

according to rock groups and climatic char-

acter, no relationship between the CBR and 

typical indicator tests could be proven with 

a high degree of confidence. None of the 

four models developed for any of the groups 

showed reliable or particularly accurate pre-

dictive ability, even when the most suitable 

model was selected by means of elimination. 

The study has shown that the prediction 

of CBR from empirical models is not very 

good and even when a range of available 

prediction models is used, little confidence 

should be placed in the predicted CBR val-

ues. A possible reason for the poor predict-

ability is the high variability in both the CBR 

and indicator test results.

RECOMMENDATIONS

After consideration of all data and each 

respective model derived, the new empiri-

cal equations cannot be recommended for 

general use, although they could be of benefit 

as preliminary indicators of testing require-

ments. It is also recommended, after assess-

ment of a number of existing models, that 

they too should be used only as preliminary 

indicators and not as substitutes for labora-

tory CBR testing for South African soils.

Although the grouping of material test 

results into rock groups did not prove effec-

tive, it is recommended that similar research 

be done using different material classifica-

tions which focus on the material type (e.g. 

clay or silty sand, possibly using the Unified 

Soil Classification System as the divisions) 

rather than the material origin, and bear-

ing the test variability problems in mind. 

The use of the limited input ranges of CBR 

results is also recommended.
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