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Abstract This paper investigates the application of particle swarm optimization (PSO) to
the multi-objective flexible job shop scheduling problem with sequence-dependent set-up
times, auxiliary resources and machine down time. To achieve this goal, alternative particle
representations and problem mapping mechanisms were implemented within the PSO para-
digm. This resulted in the development of four PSO-based heuristics. Benchmarking on real
customer data indicated that using the priority-based representation resulted in a significant
performance improvement over the existing rule-based algorithms commonly used to solve
this problem. Additional investigation into algorithm scalability led to the development of
a priority-based differential evolution algorithm. Apart from the academic significance of
the paper, the benefit of an improved production schedule can be generalized to include cost
reduction, customer satisfaction, improved profitability, and overall competitive advantage.

Keywords Particle swarm optimization · Differential evolution · Flexible job shop
scheduling · Production scheduling

1 Introduction

Production scheduling plays an important role in the business environment. Customers in-
creasingly expect to receive the right product, at the right price, at the right time. In or-
der to meet these requirements, manufacturing companies need to improve their production
scheduling performance.

Optimatix is a South African-based company which specializes in providing customized
software solutions. Recently, changing customer demands have led to an investigation into
the use of more sophisticated production scheduling strategies. In addition to being a ne-
cessity for increasing the competitive advantage of Optimatix, research into improved pro-
duction scheduling for complex job shop environments also have significant implications
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for production research in general. Hoitomt et al. (1993) justify the development of pro-
duction scheduling algorithms geared for the job shop environment by the positive impact
that improved production scheduling can have on production related problems, for example
low machine utilization and excessive work in process. Addressing these problems through
improved scheduling can have a significant impact on cost reduction, customer satisfaction,
profitability and overall competitive advantage.

Scheduling problems in the low-volume-high-variety manufacturing environment have
already received considerable attention in the Operations Research literature (Jain and
Meeran 1999). The deterministic job shop scheduling problem has developed a reputation
of being notoriously difficult to solve. However, the business requirements of Optimatix re-
quires addressing a much more complex variation of this problem, namely the flexible job
shop scheduling problem with additional constraints. Both the sequencing and allocation
of operations to resources, where each operation represents a production process through
which the parts to be manufactured have to be routed, are issues. The operations are cat-
egorized into jobs for which due dates are defined. Each operation can be performed on
any machine from a set of primary resources. Tools and labor may be required and can
be selected from a set of auxiliary resources. The processing time of an operation includes
sequence-dependent set-up times and is dependent on the resource on which it is produced.
The actual production time for each operation may also be affected by scheduled main-
tenance, machine breakdowns or production calendars. Finally, Optimatix is interested in
simultaneously minimizing makespan, earliness/tardiness and queue time.

Since the proposed problem can be considered a direct derivation from the classical job
shop scheduling problem, it is also classified as NP-hard and sufficient evidence exists to
suggest that it cannot be solved optimally within a reasonable amount of computation time
(Jain and Meeran 1999). Subsequently, particle swarm optimization (PSO) (Kennedy and
Eberhart 1995) has been identified as the solution strategy of choice for a number of reasons.
Firstly, placing emphasis on the concept of social versus individual learning, PSO is a robust
algorithm which compares favorably with genetic algorithms (Kennedy et al. 2001) and
tabu search, which are often utilized to solve the job shop scheduling problem (Jain and
Meeran 1999). Secondly, PSO is one of the simplest optimization algorithms to implement.
This inherent simplicity simplifies the structure and enhances the user-friendliness of the
algorithm (Lian et al. 2006b).

Metaheuristic-based scheduling algorithms have to operate effectively within two sepa-
rate search spaces. The purpose of this paper is to focus explicitly on alternative mapping
mechanisms between these two search spaces, namely the particle space, P , and the sched-
ule allocation space, S, as implemented within the PSO paradigm. Additionally, different
particle representations from scheduling literature are also investigated. It is well known
that these two elements have a significant impact on the performance of optimization algo-
rithms (Norman and Bean 1999), thus justifying research into alternatives for the Optimatix
problem.

As a direct result of this investigation, four PSO-based heuristics (the penalty-based
PSO (Pen-PSO), the priority-based PSO (P-PSO), the random keys PSO (RKPSO) and
the rule-based PSO (RBPSO)) were developed. When both computational time and accu-
racy were considered, the P-PSO algorithm was shown to outperform the other PSO-based
heuristics. Benchmarking against currently used algorithms (the basic scheduling and earli-
est due date rules) and Norman and Bean’s 1999 random keys genetic algorithm (RKGA)
on real customer data showed that the priority-based representation could outperform all
other tested algorithms over all three data sets. Scalability was also further investigated
and by implementing a priority-based differential evolution algorithm, the best-performing
priority-based algorithms were determined for different problem sizes.
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This paper is considered significant because the authors are not aware of any other at-
tempts in literature to solve the multi-objective FJSP with sequence-dependent set-up times,
auxiliary resources and machine down time. The complex nature of the search space also
results in the existence of a number of unique optimization challenges, the most critical
of which is handling the production-specific constraints and multi-objective nature of the
Optimatix environment.

The organization of the paper is as follows: Sect. 2 discusses previous scheduling work
on which this paper builds and Sect. 3 introduces the PSO paradigm. Section 4 delves deeper
into the use of PSO in scheduling before Sect. 5 introduces two alternative mapping mecha-
nisms. Sect. 6 describes alternative particle representations. Sect. 7 presents the experimen-
tal results of the comparison between the four PSO-based heuristics, while Sect. 8 describes
the benchmarking procedure in more detail. Finally, Sect. 9 concludes the paper.

2 An overview of applicable scheduling literature

Production scheduling has fascinated researchers since the 1950s and a large number of
scheduling problems exist to address almost every scheduling need (Brucker 2004). This
section sketches the context of the Optimatix problem with respect to existing literature
and comments on solution strategies already employed successfully for complex job shop
scheduling problems.

2.1 The problem context

Zandieh, Ghomi, and Husseini’s (2006) classification of scheduling systems based on the
associated resource environments is a good starting point to determine the context of the
proposed problem. The models that are indicated in Fig. 1 range from more generic for-
mulations, for example the job shop scheduling problem with duplicate machines, to more
specific formulations, for example the single machine shop problem.

Fig. 1 A classification of scheduling models based on their associated resource environments
(Zandieh et al. 2006)
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The job shop with duplicate machines problem, the parallel machine scheduling problem,
and the single machine scheduling problem were identified as suitable points of departure
for addressing the business requirements of Optimatix. By solving a problem belonging to
the class of job shop scheduling problems, all three of the identified problem instances can
be addressed by means of judicial selection of the input parameters.

The classical job shop scheduling problem (JSSP) is one of the most well-known pro-
duction scheduling problems. Due to its extreme intractability, it has been used extensively
to test the performance of a wide range of solution strategies, ranging from neural networks
to mixed integer linear programming. Extensive reviews have been performed by Blazewicz
et al. (1996) and Jain and Meeran (1999).

It is important, however, to note that a number of specific problem assumptions need to be
met before a production scheduling problem can be modeled as a classical JSSP. For exam-
ple only one operation may be processed on a single resource at a time. So even though the
Optimatix problem belongs to the general class of job shop scheduling problems, a number
of extensions need to be made to ensure that the problem-specific scheduling requirements
can be addressed effectively.

Fortunately, a number of researchers have already made extensions to the classical JSSP
to allow for the more realistic modeling of complex scheduling environments. The purpose
of Fig. 2 is to provide the reader with a glimpse into some of the most common variations on
the classical JSSP. For each variation, just two or three of the solution strategies which have
already been effectively employed to solve the specific problem, are mentioned. The varia-
tions are further organized into four groups depending on the implications of the extension.

Variations which affect the length of the processing time of operations include the
preemptive JSSP, where operations may be interrupted and continued at a later stage
(Abdedda’im and Maler 2002; Le Pape and Baptiste 1999; and Yun 2002) and the JSSP
with sequence-dependent set-up times, where the set-up time of at least one operation is
dependent on the operation which was processed immediately before the operation in ques-
tion, on the same resource (Cheung and Zhou 2001; Gonzalez et al. 2006; and Zhou et
al. 2006). The JSSP with controllable processing times allow the assignment of different
processing times to operations, where a pre-determined cost is associated with each process
time-reduction alternative (Jansen et al. 2005). Processing times in the JSSP with batching
is determined by the number of similar products which are produced simultaneously as part
of the same operation (Petrovic et al. 2005; Potts et al. 1998; and Potts and Kovalyov 2000).
Minimizing a function of job due dates, as in the JSSP with due dates, indirectly places
restrictions on the processing times of jobs (Essafi et al. 2008 and Singer and Pinedo 1998).
Operation starting and completion times in an expanded JSSP are restricted by release dates,
due dates and technological enabling constraints (Yu and Liang 2001 and Zhao et al. 2005).

The second group of variations affect the flow of jobs on the shop floor. The no-wait
and blocking JSSP consists of a JSSP where at least two operations are constrained such
that the second operation has to start immediately upon completion of the first operation
(Brizuela et al. 2001; Mascis and Pacciarelli 2002; Meloni et al. 2004; and Schuster and
Framinan 2003). The reentrant JSSP allows the processing of two operations from the same
job on the same machine (Aldakhilallah and Ramesh 2001 and Chen and Pan 2006) while
the cyclic job shop consists of operations which are repeated in a cyclic fashion (Brucker
and Kampmeyer 2005; Cavory et al. 2005; and Nakamura et al. 2000). When two or more
jobs need to be completed before a third may be scheduled, the system can be considered as
an example of an assembly JSSP (Natarajan et al. 2007 and Weng et al. 2003).

In terms of changes made to the resource requirements of operations, the multiple-
capacitated JSSP (Nuijtne and Aarts 1996 and Verhoeven 1998) and JSSP with tempo-
ral relaxation of capacity constraints due to subcontracting (Chung et al. 2005), allow the
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processing of more than one operation at a time on a single resource. The multiple resource
constrained JSSP or multiple processor task JSSP, in turn, requires that an operation be
processed simultaneously on two or more resources (Brucker and Kramer 1996 and Freden-
dall et al. 1996). Finally, the flexible job shop scheduling problem (FJSP) incorporates the
allocation of operations to resources into the optimization process (Gao et al. 2006; Kacem
et al. 2002a; and Xia and Wu 2005).

The dynamic JSSP and stochastic JSSP belong to the final group since both of these
variations allow the scheduler to take into account a certain amount of uncertainty in the
scheduling process. The dynamic JSSP incorporates uncertainty with respect to the number
of jobs and the release dates associated with the jobs which are to be scheduled (Aydin and
Oztemel 2000 and Qi et al. 2000), while the stochastic JSSP focuses on incorporating un-
certainty into the process time estimates (Lei and Xiong 2007; Singer 2000; and Yoshitomi
and Yamaguchi 2003).

From the classification in Fig. 2, a combination of variations can be selected which may
be used as points of departure for addressing the Optimatix problem. Careful consideration
and discussion with Optimatix resulted in the JSSP with sequence-dependent set-up times,
the multiple resource constrained JSSP, the flexible JSSP, and the expanded JSSP being
selected. In addition, a more accurate portrayal of the Optimatix environment could be ob-
tained by including resumable nonavailability intervals. Although the authors are not aware
of any previous work where nonavailability intervals are considered in a job shop environ-
ment, Lee (2004) refers to a number of applications in the one machine, parallel machine
and flow shop environments.

Combining a number of JSSP variations to meet specific scheduling requirements is not,
however, new. In fact, as scheduling models have become more and more complex, this
practice is quite common. Hoitomt et al. (1993) solved a JSSP with a number of additional
constraints by means of an augmented Lagrangian formulation. Bertel and Billaut (2004)
developed both a greedy algorithm and a genetic algorithm for a hybrid flow shop schedul-
ing problem with re-entrance and release dates. Hwang and Sun (1997) used a dynamic
programming formulation for a re-entrant JSSP with sequence-dependent set-up times.

However, incorporation of auxiliary resources along with a relatively large number of
additional constraints and problem features, as is the case with the proposed problem, is
not commonly found in literature. One notable exception is the work done by Norman and
Bean (1999) in the application of a random keys genetic algorithm to a complex production
problem, which is in many respects similar to the problem faced by Optimatix. Multiple
machines, ready times, sequence-dependent set-up times, machine down time and scarce
tools are addressed. However, only one objective (total tardiness) is considered, where the
Optimatix problem requires the simultaneous minimization of three objective functions.

It is important to note that most of the existing algorithms mentioned in Fig. 2 specializes
in solving only the specific variation for which it was developed. This paper follows a similar
strategy and the algorithms developed should subsequently be considered as specialized
algorithms for the multi-objective FJSP with sequence-dependent set-up times, auxiliary
resources and machine down time.

3 Particle swarm optimization

PSO can be classified as a stochastic population-based optimization technique (Kennedy and
Eberhart 1995), which was developed as a model of the flocking behavior of birds. Since
its development, the algorithm has established itself as a competitive solution strategy for a
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wide range of real-world problems. This section briefly discusses the basics of the algorithm
and provides details regarding the specific variation on the standard gbest algorithm which
was implemented.

3.1 Introductory concepts

In the gbest PSO algorithm each potential problem solution is represented by the position
of a particle in multi-dimensional hyperspace. Throughout the optimization process velocity
and displacement updates are applied to each particle to move it to a different position and
therefore a different solution in the search space. The velocity of particle i in dimension j

at time t + 1 is given by

vij (t + 1) = wvij (t) + c1r1j (t)[yij (t) − xij (t)] + c2r2j (t)[Yj (t) − xij (t)] (1)

where vij (t) represents the velocity of particle i in dimension j at time t , c1 and c2 are the
cognitive and social acceleration constants, and yij (t) and xij (t) respectively denotes the
personal best position (pbest) and the position of particle i in dimension j during time t .
Yj (t) denotes the global best position (gbest) in dimension j , w refers to the inertia weight,
and r1j (t), r2j (t) are sampled from a uniform random distribution, U(0,1).

The displacement of particle i at time t is defined as

xi (t + 1) = xi (t) + vi (t + 1). (2)

This simultaneous movement of particles towards their own previous best solutions (pbest)
and the best solution found by the entire swarm (gbest), results in the particles converging
to one or more good solutions in the search space.

3.2 The guaranteed convergence PSO algorithm

Unfortunately, the gbest PSO developed by Kennedy and Eberhart (1995) has the potential
to stagnate on a solution which is not necessarily even a local optimum (Van den Bergh
and Engelbrecht 2002). The guaranteed convergence particle swarm optimization (GCPSO)
algorithm of Van den Bergh and Engelbrecht (2002) has been shown to address this problem
effectively and have thus been used in this paper. This algorithm requires that different
velocity and displacement updates, respectively indicated by (3) and (4), are applied to the
global best particle:

vτj (t + 1) = −xτj (t) + Yj (t) + wvτj (t) + ρ(t)(1 − 2rj (t)), (3)

xτj (t + 1) = Yj (t) + wvτj (t) + ρ(t)(1 − 2rj (t)). (4)

This forces the gbest particle into a random search around the global best position. The size
of the search space is adjusted on the basis of the number of consecutive successes or failures
of the particle, where success is defined as an improvement in the objective function value.
It should be noted that throughout the optimization run, only the gbest particle is treated
differently. All other particles utilize the velocity update defined in (1).

3.3 The Von Neumann PSO architecture

In recent years, the degree of social interaction between particles in the PSO algorithm
has received increasingly more attention. Engelbrecht (2005) provides a brief overview of
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this research. A number of alternative social network structures have been developed to
explore different information exchange mechanisms between the particles within a swarm.
A number of these social network structures, including the gbest, lbest, pyramid, star and
Von Neumann structures, have been tested empirically by Kennedy and Mendes (2002).

It is well known in PSO literature that the gbest PSO algorithm converges fairly
quickly (Kennedy et al. 2001). This is due to the fact that all particles are partially attracted
to the best position found by the entire swarm since the beginning of the optimization run.
Depending on the problem, this relatively fast loss of diversity can result in the algorithm
finding a suboptimal solution within relatively few iterations.

The Von Neumann PSO organizes the particles into a lattice according to the particle
indices. Each particle belongs to a neighborhood consisting of its nearest neighbors in the
cubic structure. Instead of being partially attracted to gbest, the velocity of a particle is in-
fluenced by the best solution found thus far by the other particles in the same neighborhood.
Since these neighborhoods overlap, information about good solutions is eventually propa-
gated throughout the swarm, but at a much slower rate. This results in more diversity being
maintained and subsequent slower convergence. This, in turn, is thought to significantly
improve the algorithm’s chances of finding a good solution.

During initial experimentation on Optimatix test data, it was verified that a significant
performance improvement was indeed observed upon implementation of the Von Neumann
social network structure. The resulting Von Neumann GCPSO algorithm was subsequently
used for all variations presented in this paper.

4 A brief analysis of existing PSO-based scheduling algorithms

The number of papers where PSO is applied to scheduling have dramatically increased over
the past few years. This section provides an overview of PSO machine scheduling literature
before making a number of interesting observations.

4.1 General observations

Effective production scheduling requires solving a complex combinatorial and discrete op-
timization problem. Subsequently, two main approaches for solving scheduling problems
by means of continuous optimization algorithms, such as PSO and DE, can be identified
from literature (Lei 2008). Firstly, the standard velocity and displacement operators of the
classical PSO algorithm may be redefined, allowing the algorithm to function in a discrete
domain. Secondly, the scheduling problem may be converted into a continuous problem
which can be solved easily by means of PSO.

According to Lei (2008), the redefinition of the standard PSO operators often lead to
poor performance in scheduling. Although the structure of the problem can be more easily
exploited, it is quite difficult to retain the trade-off between social and individual learning
which is largely responsible for the success of the continuous PSO. The inherent structure of
the information exchange between particles is, after all, changed. Nonetheless, discrete PSO
algorithms have already been applied successfully to single machine scheduling (Anghinolfi
and Paolucci 2009 and Pan et al. 2006), flow shop scheduling (Lian et al. 2006b; Pan et al.
2008; and Pan and Wang 2008) and job shop scheduling (Lian et al. 2006a).

In this paper, the second approach will be followed where the scheduling problem is
converted to a continuous problem which can be solved directly by the PSO algorithm.
Following this approach requires the PSO algorithm to be able to operate effectively within
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two separate search spaces: (1) The schedule allocation space, S, consists of all the feasible
schedules associated with the problem to be addressed. (2) The particle space, P , consists of
all the possible positions of the particles within the search space. To evaluate the fitness of a
particle, the solution x ∈ P must first be mapped to y ∈ S before the fitness function value
F ∈ � (where � denotes the objective space) can be calculated. This approach has already
been applied successfully to various flow shop (Liu et al. 2005, 2007a, 2008; and Tasgetiren
et al. 2007), job shop (Sha and Hsu 2006; Xia et al. 2004; and Xia and Wu 2006) and
multiprocessor task scheduling problems (Ercan and Fung 2007).

4.2 Addressing more complex scheduling problems

Although PSO is starting to establish itself as a solution strategy of note for simpler schedul-
ing problems, the applications of PSO to more complex production scheduling problems are
still considered to be relatively sparse. This is especially true for scheduling problems where
both the sequencing of operations and the allocation of these operations to resources need
to be addressed.

All the PSO scheduling applications discussed in Sect. 4.1 can be reduced effectively to
the problem of finding an “optimal” sequence of operations subject to a number of problem-
specific constraints. However, when the processing of operations on alternative resources
can lead to a reduction in the overall processing time, for example as in the case of a flexible
job shop scheduling problem, the allocation of operations to resources becomes an impor-
tant part of the optimization problem. This additional complexity understandably creates a
number of additional challenges for the scheduling algorithm.

The authors are only aware of five papers addressing flexible job shop scheduling prob-
lems by means of PSO:

– In Xia and Wu (2005), a simulated annealing-PSO-based hybrid solution strategy is de-
veloped. It is notable that only the allocation of operations to resources is done by means
of PSO. The actual sequencing of the assigned operations is performed by a simulated
annealing (SA) algorithm and the multiple objectives are addressed by combining all rel-
evant objectives into a single weighted sum objective.

– Liu et al. (2006, 2007b) have solved the muli-objective FJSP with minimum makespan
and flowtime by means of a variable neighborhood PSO algorithm, which employs a
variable neighborhood-based local search mechanism to enhance the exploitation ability
of the swarm. Dynamic weighted aggregation is used to simultaneously minimize the two
objective functions.

– Jia et al. (2007a) have minimized makespan, total workload and maximum workload by
means of a PSO algorithm employing a chaotic local search around the gbest particle. The
multiple objectives are addressed by further minimizing the objective with the smallest
fitness value at each function evaluation.

– Jia et al. (2007b) used a fully informed Pareto-based PSO algorithm to minimize the
makespan and maximum lateness in a FJSP environment. A problem-specific mutation
operator was also defined to improve the diversity of the swarm.

A number of interesting observations can be made from this brief analysis. Firstly, apart
from the PSO-SA hybrid of Xia and Wu (2005), all the algorithms make use of a two-part
particle representation and resource allocation is addressed by means of rounding off the
continuous PSO particle dimensions to the nearest integer value representing a resource in-
dex. Secondly, the largest problem attempted by any of these PSO-based algorithms only
consider the scheduling of 56 operations on at most 15 resources, which is currently con-
sidered to be a problem of “great size” in FJSP scheduling literature (Kacem et al. 2002a).
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This paper, on the other hand considers a multi-objective FJSP where the scheduling of
up to 256 operations on 216 resources need to be considered. Thirdly, and probably most
importantly, no additional constraints are considered in the listed examples. In addition,
some of the algorithms (Liu et al. 2006, 2007b; and Jia et al. 2007a) employ complex local
search mechanisms and extending these algorithms to include sequence-dependent set-up
times, auxiliary resources and production downtime, as is required in the proposed problem,
would require that major structural changes be made to the existing algorithms.

5 Investigating effective mapping strategies

An effective mapping mechanism between P and S is so critical to the success of a schedul-
ing algorithm that research into alternative mapping mechanisms can be easily justified. This
section investigates two alternative mapping mechanisms, each with their own advantages
and limitations.

For illustrative purposes, a small example problem, similar in complexity to the proposed
problem, was selected. This problem requires the scheduling of four operations on four re-
sources and can be illustrated by means of the network diagram in Fig. 3. This network
diagram can be converted to various different particle representations depending on the al-
gorithm utilized. The final solution (before the inclusion of production downtime) can be
converted into a feasible schedule indicated by means of the Gantt chart in Fig. 3. For each
of the algorithms described in this and the next section, an example particle representation
is provided which, when decoded, results in the schedule illustrated in Fig. 3.

5.1 The penalty-based PSO algorithm

The S space of the penalty-based PSO (Pen-PSO) algorithm consists of both feasible and
infeasible schedules. The algorithm determines the infeasibility of all scheduling solutions
by calculating penalty values corresponding to the extent of infeasibility of each of the
scheduling-specific constraints. These penalty values are summed and incorporated into a
penalty function which is minimized simultaneously with the other scheduling-specific ob-
jective functions.

Each scheduling solution is represented by 2n dimensions, where n denotes the number
of operations to be scheduled. Dimensions 1 to n is denoted by ti (the starting time of
operation i) and dimensions n + 1 to 2n are used to represent the allocation of operations to
resources. This is done by discretizing the search space as follows: For each operation i, the
ith dimension of the P space is divided into Mi intervals, where Mi denotes the number of
primary resources on which operation i can be processed. Since each interval is associated
with a unique integer number or resource index, dimensions n + 1 to 2n of the position
vector can easily be interpreted as resource allocation variables. In the example two-part
particle representation provided in Fig. 4, M1, M2 and M4 is equal to two, M3 equals one
and xi ∈ {−1500,1500}, where xi denotes the ith dimension of the particle representation
and i ∈ {n + 1, . . . ,2n}.

One notable complexity of calculating the fitness function values is the inclusion of pro-
duction down time. Comprising of scheduled maintenance, machine breakdowns and pro-
duction calendars, this is the single most complicating factor in the proposed problem since
not all resources are necessarily affected simultaneously. The production downtime intervals
are incorporated into the processing time of the operations by distinguishing between a pro-
posed finishing time and an actual finishing time for each operation. The proposed finishing
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Fig. 4 An example Pen-PSO particle representation and corresponding solution to the example problem

time ignores the time intervals where the required resources are not available. If gi is defined
as the proposed finishing time, si is the set-up time of operation i, and di is the index of the
primary resource on which operation i is to be scheduled, then

gi = ti + pidi
+ si, (5)

where

si =
{

uji if uji > 0,

hidi
otherwise.

(6)

Here pidi
denotes the processing time and hidi

the default set-up time of operation i on
resource di , and uji is the sequence-dependent set-up time of operation i if processed im-
mediately after operation j . Equation (5) allows the algorithm to make use of default set-up
times for the first operation processed on each resource or when no sequence-dependent
set-up time data is available.

Incorporating the down time intervals into the total processing time of each operation
requires an analysis of the relationship between the current starting time of each operation
to the down time intervals associated with the primary and auxiliary resources on which it is
to be scheduled. If the starting time, qj , and the finishing time, uj , is given for each of the j

production downtime intervals, the actual finishing time of operation i, denoted by fi , can
be determined by the procedure described in Algorithm 1.

In terms of the actual penalty function, there are four main types of constraints which
need to be taken into account. These include, precedence constraints, release dates, the en-
forcement of finite capacity resource constraints, and the inclusion of auxiliary resources.

– The precedence constraints between operations and jobs can be modeled as

fi ≤ tj ∀(i, j) ∈ A, (7)

where the set A contains all precedence relationships. For each violated precedence con-
straint a corresponding penalty can be calculated using

p1(i,j) = |min(0, (tj − fi))| ∀(i, j) ∈ A. (8)

Summing over all precedence relationships gives the total penalty value associated with
the violation of precedence relationships as

p1a =
∑

(i,j)∈A

p1(i,j). (9)
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Algorithm 1: Including production downtime into the schedule.

for All operations i do1

for All downtime intervals j do2

if fi ≤ qj or ti ≥ uj then3

Interval j is an intersected downtime interval of operation i4

end5

end6

for Intersected downtime intervals k of operation i to K do7

if qk ≤ fi and ti ≤ qk then8

fi = fi + uk − qk9

end10

if qk < ti and ti ≤ uk then11

fi = fi + uk − ti12

end13

end14

for All downtime intervals j from k to J do15

if fi > qj then16

fi = fi + uk − qk17

else18

Break to operation i + 119

end20

end21

end22

– Release dates can be modeled by

tk ≥ Rk ∀k ∈ K, (10)

where (10) ensures that the first operation of job k, defined in set K , is only released on
the production floor after the arrival of the job release date Rk . The associated penalties
are calculated by

p2k = |min(0, (tk − Rk))| ∀k ∈ K (11)

and

p2a =
∑
k∈K

p2k. (12)

– The third problem constraint ensures that no intersecting operations are allowed. If op-
eration i and operation j is performed on the same finite capacity primary resource, the
relationship between fi , fj , ti , and tj determines the value of the penalty assigned. The
four mutually exclusive scenarios which can occur can be directly incorporated into the
calculation of p3(i,j) using

p3(i,j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fi − ti if ti ≥ tj , fi < fj and wij = 0 ∀(i, j) ∈ J di
,

fj − ti if ti ≥ tj , fj ≤ fi and wij = 0 ∀(i, j) ∈ J di
,

fj − tj if tj > ti , fj < fi and wij = 0 ∀(i, j) ∈ J di
,

fi − tj if tj > ti , fi ≤ fj and wij = 0 ∀(i, j) ∈ J di
,

(13)
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where J di
consists of the set of all operations performed on resource di . The total penalty

value can thus be calculated as

p3a =
∑

(i,j)∈J di

p3(i,j). (14)

– The final aspect to be included in the penalty function relates to the assignment of op-
erations to auxiliary resources. The operation processing time, which to a certain ex-
tent drives the optimization process, is independent of the auxiliary resource allocation.
Therefore the auxiliary resources do not affect the objective function and can simply be
incorporated as constraints. However, before the penalty values can be calculated, the al-
gorithm attempts to obtain feasible auxiliary resource allocations for all operations. Each
operation is allocated to one auxiliary resource from each set of auxiliary resources re-
quired. A feasible allocation is found if all the specified auxiliary resources are available
throughout the required time period.

The allocation procedure in Algorithm 2, where nl and ml respectively denote the
start and end of scheduled interval l, provides as output a list of operations for which no
feasible auxiliary resource allocation can be obtained. Since this implies that insufficient
capacity exist to fulfill the processing requirements for these infeasible operations, the
penalties are calculated in (15) as the operation production times of infeasible operations,

Algorithm 2: Allocation of operations to auxiliary resources.

for All operations i do1

for All resource sets j do2

if A resource is required from resource set j then3

for All resources k in set j do4

for All scheduled intervals l do5

if fi ≤ ml or ti ≥ nl then6

Operation i will overlap interval l7

end8

end9

if Operation i overlaps any intervals then10

Operation i cannot be scheduled on resource k of set j11

if k = Kj then12

Operation i is infeasible13

Break to operation i + 114

else15

Break to resource k + 116

end17

else18

Schedule operation i on resource k of set j19

end20

end21

end22

end23

end24
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i.e.

p4a =
∑

i

ai(fi − ti ) (15)

where ai is 1 if operation i is infeasible and 0 otherwise.

The total penalty function value, ℘, for each schedule can then be calculated using

℘ = λ1p1a + λ2p2a + λ3p3a + λ4p4a, (16)

where λ2 was taken to be 1000 and λ1, λ3 and λ4 were each assigned a value of 1. It should
be noted that due to the total per-schedule penalty function value being calculated as the
sum of the penalty values associated with each set of constraints, the penalization of the
objective function is directly proportional to the extent of infeasibility.

Using a penalty function as mapping mechanism is simple and computationally inex-
pensive. However, the scheduling allocation space, S, is massive and a large part of the
optimization process is actually spent working towards a feasible solution, instead of im-
proving an already feasible solution. However, due to the computational complexity of ex-
isting scheduling methods and the success obtained by penalty-based methods in the PSO
community, investigating a penalty-based approach was deemed meaningful. Some of the
computational load associated with minimizing the penalty function was reduced by ini-
tializing all particles to semi-feasible schedules. Judicial use of a local search mechanism
towards the end of the optimization process was also found to be useful (Grobler et al. 2007).

5.2 The priority-based PSO algorithm

The priority-based PSO (P-PSO) algorithm utilizes a popular scheduling heuristic to decode
the continuous problem representation into a feasible schedule. Priority values, which are
evolved over time by the PSO algorithm, are assigned to each operation and these determine
the sequence in which operations are scheduled. Although, the priority-based algorithm is
computationally more complex than the Pen-PSO, the size of the search space is signifi-
cantly reduced since the scheduling space consists of only feasible solutions.

The particle representation of the P-PSO consists of a (2n−τ )-dimensional vector, where
τ is the number of operations which may be processed on only one primary resource. The
sequencing variables of dimensions 1 to n denote the priority values of each of the opera-
tions. These priorities are used as input to a schedule-building heuristic which attempts to
schedule each operation at the earliest available time on its associated resource. The resource
allocation variables are also addressed according to the procedure described in the previous
section with reference to the Pen-PSO.

In this paper, Giffler and Thompson’s (1960) heuristic (initially developed in 1960 and
since then successfully used by Sha and Hsu (2006) and Gao et al. (2006)) was extended
to include the unique problem characteristics of the Optimatix environment (Algorithm 3).
Figure 5 provides an example of the procedure followed to obtain Qi , the set of possible
starting times of operation i on resource di .

In the example indicated in Fig. 6, the priorities can be converted into the job permuta-
tion: {1,4,3,2}. However, Giffler and Thompson’s (1960) heuristic ensures that the prece-
dence constraints between operations are satisfied and subsequently, the schedule in Fig. 6
is obtained.
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Algorithm 3: The Priority-based PSO mapping mechanism.

Let S be the partial schedule which contains scheduled operations1

Let Ω be the set of schedulable operations2

Initialize S = ∅3

Initialize Ω to contain all operations without any predecessors4

while Ω �= ∅ do5

Select i from Ω as operation with the highest priority6

Determine Qi (the set of possible starting times for operation i on resource di )7

while i ∈ Ω do8

Set ti = min(Qi)9

Calculate fi by applying Algorithms 1 and 210

if ti = min(Qi) results in a feasible schedule then11

Delete i from Ω12

else13

Delete min(Qi) from Qi14

end15

end16

Insert i into S17

for All successors j of i do18

if All other predecessors of operation j ∈ S then19

Insert j into Ω20

end21

end22

end23

Fig. 5 When operations i − 3,
i − 2 and i − 1 are already
scheduled on resource di , the
possible starting times of
operation i, Qi , are A, B and C

Fig. 6 An example PPSO particle representation and corresponding solution to the example problem

The P-PSO algorithm is considered useful since the continuous nature of the PSO algo-
rithm can be exploited to solve a very complex, discrete combinatorial optimization prob-
lem (Sha and Hsu 2006). However, Sha and Hsu (2006) also mentions a concerning char-
acteristic of scheduling algorithms which utilize a priority-based fitness function evaluation
mechanism. A very small change in the position of the particle within the P space, may



Ann Oper Res

result in a very large change in the S space. The algorithm, additionally, has the property
that many different solutions within P map to the same solution in S.

The last problematic aspect of a priority-based mapping mechanism is the effect which
the schedule-building heuristic has on the simultaneous optimization of the specific set of
multiple objectives required by Optimatix. Because the schedule-building mechanism at-
tempts to position each operation at the earliest possible time, the algorithm is, in fact biased
towards the minimization of makespan. However, this statement is also heavily dependent
on the characteristics of the problem being solved.

As an example consider the scheduling of a single operation on a single resource while
simultaneously minimizing earliness/tardiness and makespan. If the earliest starting time is
larger than the due date of the job to which the operation belongs, minimizing makespan
also minimizes the earliness/tardiness objective. However, if the earliest starting time is
smaller than the due date of the associated job, the two objectives become conflicting, and
the solution and subsequent fitness calculation is distorted.

6 Investigating alternative particle representations

One of the most important considerations in the application of PSO (or any other metaheuris-
tic algorithm) is the selection of an appropriate solution representation. Affecting both the
overall structure and performance of the algorithm, time spent in the evaluation of alterna-
tive representations may hold significant improvement opportunities. This section presents
two alternative representations to the priority-based PSO algorithm of the previous section.

6.1 The random keys PSO algorithm

The random keys PSO (RKPSO) is a direct application of Norman and Bean’s (1999) ran-
dom keys genetic algorithm (RKGA) in the PSO paradigm. The gene representation of the
RKGA consists of an n-dimensional vector in contrast with the 2n and (2n − τ ) dimen-
sions required for the two variations discussed in the previous section. A sorting mechanism
(which is given in Algorithm 4) is used to decode the real-valued n-dimensional vector into
its corresponding resource indices and priorities. Giffler and Thompson’s (1960) schedule-
building heuristic (Algorithm 3) can then be applied directly. From the example in Fig. 7, it
can be seen that the resource allocation decision is again addressed through discretization of
the search space. However, now xi ∈ {0 . . .1}, where xi is the ith dimension of the particle
representation.

The RKPSO has the important advantage that the dimensionality of the P space is halved.
However, the limitations of Giffler and Thompson’s (1960) heuristic, as identified in the
previous section, are still applicable.

Algorithm 4: The Random Keys PSO sorting mechanism.

Let x be the position vector to be sorted1

for All dimensions i do2

R ← rem(|�xi	|,Xi ) +13

Set di as the Rth resource on which operation i can be processed4

ti ← xi − |�xi	|5

end6
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Fig. 7 An example RKPSO particle representation and corresponding solution to the example problem

Fig. 8 An example RBPSO particle representation and corresponding solution to the example problem

Furthermore, in most traditional optimization applications one dimension is used to de-
note one unique and separate concept. The idea of representing two distinctly different con-
cepts or decisions, namely the resource a specific operation should be allocated to and the
priority of that operation with respect to the other operations, by one dimension cannot nec-
essarily be applied with equal success in the context of particle swarm optimization.

6.2 The rule-based PSO algorithm

The rule-based PSO (RBPSO) algorithm is another attempt at reducing the P space. This
strategy was inspired by both the rule-based algorithms currently used by Optimatix, as well
as elements of Kacem, Hammadi, and Borne’s (2002b) genetic algorithm-based approach to
flexible job shop scheduling. Similar to the RKPSO, the particle representation consists of
one n-dimensional vector which represents the sequencing variables. The resource alloca-
tion is performed within the schedule-building mechanism as described in Algorithm 5.

Even though the dimensionality of the P space is reduced, this is done at the cost of a
more computationally complex algorithm since an explicit search of all possible resource
allocations are performed for each particle during the schedule construction phase as can
be seen from the example schedule obtained in Fig. 5. Due to the inclusion of sequence-
dependent set-up times and production down times, actual finishing time was used as the
determining factor for resource selection.

7 Comparison of the alternative PSO-based heuristics

For an investigation of algorithm performance to be most effective, it is important to con-
duct the experimental analysis under the same conditions under which the algorithms will
eventually be used. It should be noted that this study is not only focused on improving the
existing scheduling algorithms of Optimatix, but rather in identifying those requirements
that if addressed will best meet the needs of Optimatix’ clients and then to develop an ef-
fective solution which addresses all of these requirements. To achieve these objectives three
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Algorithm 5: The Rule-based PSO mapping mechanism.

Let S be the partial schedule which contains scheduled operations1

Let Ω be the set of schedulable operations2

Let tid be the starting time of operation i on resource d3

Let fid be the finishing time of operation i on resource d4

Initialize S = ∅5

Initialize Ω to contain all operations without any predecessors6

while Ω �= ∅ do7

Select i from Ω as operation with the highest priority8

for All resources d ∈ Di on which operation i may be scheduled do9

Determine Qi (the set of possible starting times for operation i on resource di )10

while i ∈ Ω do11

Set tid = min(Qi)12

Calculate fid by applying Algorithms 1 and 213

if tid = min(Qi) results in a feasible schedule then14

Delete i from Ω15

else16

Delete min(Qi) from Qi17

end18

end19

Insert i into Ω20

end21

dmin,i ← mind∈Di
(fid)22

Set tid = tidmin,i
23

Delete i from Ω24

Insert i into S25

for All successors j of i do26

if All other predecessors of operation j ∈ S then27

Insert j into Ω28

end29

end30

end31

test problems corresponding to actual problem size and complexity were derived from actual
customer data and were adapted, as described in the rest of this section, to incorporate the
changing customer requirement of Optimatix. All performance analyses were subsequently
conducted on these data sets.

The effectiveness of a scheduling solution is highly dependent on the realism of the
solution. In other words, it is important that the actual solution obtained corresponds to
the requirements of the production environment which is to be scheduled. By effectively
modeling the actual production environment the number of times rescheduling is required
and the associated disruptions associated with frequent rescheduling can be drastically re-
duced. Furthermore, the time required to customize scheduling algorithms for each client’s
unique production environment can be reduced when the level of generality of a consult-
ing firm’s scheduling algorithms can be increased. To achieve these objectives, the exist-
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Table 1 There are a number of
parameters which have a
significant effect on the
performance of metaheuristics

Parameter Value used

℘ 100

a 500

b 1500

ns 27

D 3

Imax 200

c1 2.0 −→ 1.0

c2 2.8 − c1

w 0.8 −→ 0.4

ing customer data sets were extended to include resource-dependent processing times and
sequence-dependent set-up times.

The variation, σ 2
B , of all operation process times processed on different resources was cal-

culated from the Kacem et al. (2002a) benchmark data set for flexible job shop scheduling
problems, which address both the allocation of operations to resources and the sequencing
of these operations on their associated resources. Subsequently the processing times and
set-up times of the data sets used in this paper was randomly generated within the inter-
val [μB − σB,μB + σB ], where μB denotes the operation-dependent data point as obtained
from the original customer data set and half of the sequence-dependent set-up time data was
initialized to zero. The data sets range in size from 56 to 256 operations which are to be
scheduled on 216 resources and are available for comparison purposes from the correspond-
ing author.

The results of the performance evaluation recorded in Tables 2 and 3 for the four PSO-
based heuristics’ results were recorded over 30 independent simulation runs. However, only
27 runs of the 256-operation problem (when solved by means of the Pen-PSO) resulted in
feasible answers and subsequently only these feasible solutions were recorded.

Both accuracy and computational complexity were considered to be important per-
formance measurements. In Tables 2 through 6, F1 denotes makespan, F2 the earli-
ness/tardiness criteria, and F3 the queue time. Goal programming, which minimizes the
weighted deviation between each fitness function value and a target value set for it, was
used to address the multiple objectives. The aggregated fitness function, F4, is given as

F4 =
3∑

i=1

|(Fi − Gi)| + γFi (17)

where Gi denotes the target value of the ith fitness function (Fi ) and γ is selected as suf-
ficiently small. The results in Tables 2 through 6 were obtained by selecting G1 and G2 as
250, and G3 as 0. Throughout the rest of this section, μ and σ respectively denote the mean
and standard deviation associated with the corresponding performance measurement.

Analysis of the behavior of the priority-based PSO on the 56-operation problem resulted
in the parameter values listed in Table 1 being defined as suitable for comparison purposes.
The number of particles in the swarm is denoted by ns , ℘ is the weighting of the penalty
function with respect to the other fitness functions, and a and b denote the interval sizes
within which the decision variables are initialized. The size of the discretization intervals,
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Table 2 Experimental results of alternative mapping strategies and particle representations with respect to
makespan and earliness/tardiness

Problem Algorithm F1 F2

μ σ μ σ

56-op Pen-PSO 3972.26 234.86 11142.22 1242.85

P-PSO 1582.37 7.76 3563.24 316.19

RKPSO 2086.04 109.26 4060.96 353.53

RBPSO 1567.71 0.00 3546.47 331.85

100-op Pen-PSO 18671.19 2360.99 97363.16 19284.32

P-PSO 1862.46 13.90 7045.34 378.46

RKPSO 2271.42 128.58 8024.63 809.16

RBPSO 1799.55 50.99 6431.98 369.90

256-op Pen-PSO 24816.16 1537.58 465671.63 73818.10

P-PSO 5059.85 153.17 39007.07 2789.33

RKPSO 6191.17 731.57 38382.25 4102.06

RBPSO 4922.67 62.13 30892.79 3508.45

Table 3 Experimental results of alternative mapping strategies and particle representations with respect to
queue time and the aggregated objective function

Problem Algorithm F3 F4

μ σ μ σ

56-op Pen-PSO 3815.58 1459.38 18448.99 2548.62

P-PSO 137.56 157.39 4788.46 390.82

RKPSO 389.39 302.35 6042.93 609.69

RBPSO 107.76 158.77 4727.16 429.11

100-op Pen-PSO 52237.51 16511.37 167940.13 36632.48

P-PSO 685.03 254.60 9102.42 574.98

RKPSO 1376.47 452.24 11184.20 1248.05

RBPSO 629.22 388.59 8369.60 775.02

256-op Pen-PSO 303276.65 46100.14 794058.21 115527.70

P-PSO 12760.31 2704.64 56384.06 5223.65

RKPSO 10539.85 3118.69 54668.49 7143.55

RBPSO 7504.28 2782.99 42863.06 5982.83

δi , of operation i is dependent on D, where

δi = 2a

XiD
. (18)

Xi is the number of resources on which operation i may be scheduled, D is the number of
discretization intervals which are allocated to a single operation-resource pair, and m −→ n

indicates that the associated parameter is decreased linearly from m to n over 95% of the
total number of iterations, Imax .

The results of the investigation into alternative problem mapping mechanisms and parti-
cle representations are recorded in Tables 2 and 3. In all cases it is clear that the Pen-PSO
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algorithm performs very poorly. Penalty-based approaches have been successfully utilized
to solve continuous, constrained problems, but the dual search spaces, and combinatorial
and discrete nature of complex scheduling problems make this approach unsuitable for ad-
dressing the Optimatix scheduling problem. Although the function evaluations are relatively
inexpensive in comparison to those of the P-PSO, the local search and initialization mech-
anisms did not aid the algorithm in finding those areas of the S space where good feasible
solutions exist.

With reference to the other algorithms tested, the RBPSO outperforms the RKPSO and
P-PSO in terms of accuracy for all three test instances. However, when the computational
complexity and solution time of the algorithms are also considered, P-PSO is considered
more suited to the Optimatix requirements. The solution time of the RBPSO is unfavorably
large when compared to the other algorithms, whereas P-PSO is computationally much less
complex while producing satisfactory results for most of the problems tested.

8 Comparison of the P-PSO algorithm against alternative solution strategies

To evaluate the significance of the PSO-based results, this section compares the best algo-
rithm from the previous section to a number of selected benchmark algorithms. The P-PSO
is, therefore, benchmarked against four other algorithms of which the first two algorithms are
existing Optimatix algorithms currently in use. For the third algorithm Norman and Bean’s
(1999) RKGA was identified as the most promising algorithm identified from existing lit-
erature. Finally, the use of alternative metaheuristics within the priority-based algorithm
framework was investigated through the implementation of a priority-based differential evo-
lution (DE) algorithm (Grobler and Engelbrecht 2007). The rest of this section describes
each of the benchmark algorithms in more detail before the results of the comparison are
stated and discussed.

8.1 The existing Optimatix algorithms

Two of these currently used algorithms were selected as benchmark algorithms: the idea be-
ing to evaluate the improvements resulting from the use of the PSO-based heuristics instead
of the existing algorithms. Both of these rule-based algorithms function on a very similar
premise to the RBPSO discussed in the previous section, the only differences being the as-
signment of priorities to operations and the allocation of operations to the first available
resource. While the operation priorities are evolved over time by a PSO-based algorithm in
the RBPSO, the basic scheduling rule assigns priority values randomly to operations. The
earliest due date (EDD) rule assigns operation priorities according to the earliest due date of
the jobs corresponding to the operations under consideration. For the sake of completeness,
the pseudocode for these algorithms is provided in Algorithm 6.

It should be noted that the inclusion of the more complex customer requirements defined
and discussed in Sect. 7 required that the calculation of the actual processing time of op-
eration i on resource di (before the inclusion of production down time) had to be updated
from

gi = ti + pi + si (19)

as used within the existing Optimatix algorithms, to

gi = ti + pidi
+ si (20)
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Algorithm 6: The rule-based benchmarking algorithms.

Let S be the partial schedule which contains scheduled operations1

Let Ω be the set of schedulable operations2

Let tid be the starting time of operation i on resource d3

Let fid be the finishing time of operation i on resource d4

Initialize S = ∅5

Initialize Ω to contain all operations without any predecessors6

while Ω �= ∅ do7

Select I from Ω as set of operations with the highest priority8

for All operations i ∈ I do9

for All resources d ∈ Di on which operation i may be scheduled do10

Determine Qi (the set of possible starting times for operation i on11

resource di )
while i ∈ Ω do12

Set tid = min(Qi)13

Calculate fid by applying Algorithms 1 and 214

if tid = min(Qi) results in a feasible schedule then15

Delete i from Ω16

else17

Delete min(Qi) from Qi18

end19

end20

Insert i into Ω21

end22

dmin,i ← mind∈Di
(tid )23

end24

i ← mini∈I (dmin,i)25

Set tid = tidmin,i
26

Delete i from Ω27

Insert i into S28

for All successors j of i do29

if All other predecessors of operation j ∈ S then30

Insert j into Ω31

end32

end33

end34

where

si =
{

uji if uji > 0

hidi
otherwise,

(21)

as can be seen in Algorithm 6. This results in the existing algorithms being suitable almost
“as-is” for benchmarking purposes and that no additional structural changes had to be made
to enable these Optimatix algorithms to be able to solve the proposed problem.
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8.2 An existing algorithm selected from literature

When selecting a benchmark algorithm from literature it is important to select an algorithm
that addresses both the sequencing of operations and their allocation to resources. By con-
sidering the classical FJSP literature a number of potential benchmark algorithms can be
identified. These include the work of Kacem et al. (2002a, 2002b), Gao et al. (2006), and
Xia and Wu (2005). However, these algorithms specialize in solving classical FJSPs and it is
the authors’ opinion that they cannot be extended easily to address more constrained prob-
lems without significantly changing the structure of the algorithms, even when sequence-
dependent set-up times and resource-dependent processing times are excluded from the
problem. Furthermore, most of these algorithms are hybridizations of two or more solu-
tion strategies (Kacem et al. 2002a) or employ complex local search mechanisms (Gao et
al. 2006) specific to the problem being solved. This greatly increases the time to solution,
while a fast solution time is considered to be an important requirement in the South African
manufacturing industry. For these reasons, the random keys genetic algorithm (RKGA) of
Norman and Bean (1999) was identified as a more suitable alternative for benchmarking
purposes. This algorithm was developed for a more highly constrained problem and does
not make use of a local search mechanism.

As the name implies, the RKGA of Norman and Bean (1999) applies a genetic algorithm
to the random keys representation used for the RKPSO in the previous section. Elitism is
incorporated by automatically including the α best individuals from the parent population
into the new population. The exploration ability of the algorithm is improved by the use of
immigration i.e. β solutions of the new population are randomly re-initialized. After the first
α + β individuals of the new population have been obtained by means of elitism and immi-
gration, each of the remaining individuals are obtained by the application of crossover and
selection operators. For each individual i, where i ∈ {1, . . . , (ns − α − β)} random selec-
tion is used to select two individuals from the current population, namely xr1(t) and xr2(t),
where xrkj (t) denotes the j th dimension of the kth vector of individual rk of generation t .
Then, Bernoulli crossover (Norman and Bean 1999) is applied such that for all dimensions,
j , if r ∼ U(0,1) ≤ pc ,

ci1j (t) = xr1j (t), (22)

ci2j (t) = xr2j (t). (23)

Otherwise ci1j (t) = xr2j (t) and ci2j (t) = xr1j (t), where pc is the crossover probability. The
better of the two candidate solutions, ci1j (t) and ci2j (t), is subsequently incorporated into
the new population.

8.3 Using an alternative metaheuristic

The priority-based DE algorithm (P-DE) is a direct application of the P-PSO to the differ-
ential evolution (DE) paradigm (Storn and Price 1997) to evaluate the performance of the
particle representation and decoding mechanism when applied within the context of another
metaheuristic. Similar to PSO, DE is a continuous optimization algorithm. The standard DE
operators can thus be applied directly to the priority-based representation of the Optimatix
problem.

For each individual, i, in the population three different vectors are selected from the cur-
rent population, namely xr1(t), xr2(t) and xr3(t), where xrkj (t) denotes the j th dimension of
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the kth vector of individual i of generation t and i �= r1 �= r2 �= r3. Then, for all dimensions,
j , if r ∼ U(0,1) ≤ pc or j = i ∼ U(1, . . . , J )

cij (t) = xr1j (t) + F(xr2j (t) − xr3j (t)). (24)

Otherwise cij (t) = xij (t), where pc is the probability of reproduction, J is the number of
dimensions and F is the scaling factor. If the fitness of ci (t) is better than the fitness of the
ith individual of the original population, this individual is replaced by ci (t) (Storn and Price
1997 and Engelbrecht 2005).

The utilization of different strategies in the selection of xr1(t) results in different vari-
ations on the standard DE which differ with respect to the exploitation and exploration
ability of the population (Storn and Price 1997). The three most common variations are
DE/rand/bin, where xr1(t) is selected randomly from the population, DE/best/bin, where
xr1(t) is taken as the best individual in the population and DE/rand-to-best/bin, which is a
combination of the two. In all three cases, binary crossover (/bin) is applied as explained
in (24). An empirical investigation into the effectiveness of these three strategies for solving
the Optimatix problem have resulted in DE/rand-to-best/bin identified as the most suitable.
Thus, in this paper,

xr1j (t) = xrj (t) + K(t)(xbj (t) − xrj (t)), (25)

where xbj (t) is the best individual, xrj (t) is selected randomly from the population and K(t)

decreases linearly from 1 to 0 throughout the optimization run.

8.4 Comparative analysis

The selection of suitable parameters becomes even more important when algorithms with
different characteristics and structures are compared. To address this issue, a great deal of
emphasis was placed on the derivation of suitable algorithm parameters. For each of the
algorithms, 144 uniformly distributed parameter combinations were selected and the means
and standard deviations were recorded over 30 simulation runs for each unique parameter
combination. The best parameter combination for each algorithm-data set pair could subse-
quently be selected, as indicated in Table 4.

In terms of the results recorded in Tables 5 and 6, the RKGA and P-DE results were
recorded over 30 independent simulation runs. Due to the deterministic nature of the EDD-
rule, only one simulation run was needed. Finally, in order to comply with current Optimatix
scheduling practice, the basic scheduling rule was used to construct 100 schedules of which
the best was selected as the result of the simulation. To ensure consistency between all
stochastic algorithms this process was, again, repeated 30 times.

As can be seen from the results, the P-PSO performs significantly better than all the
rule-based heuristics on every problem instance indicating that a definite performance im-
provement can be attributed to the PSO-based heuristics over the existing algorithms. Fur-
thermore, the best performing algorithm for each problem is a priority-based algorithm. The
P-PSO outperforms all other algorithms for the first two problems. Here the RKGA obtains
a lower fitness value, which is improved upon by the P-DE.

Due to the poor performance of the P-PSO on the 256-operation problem, a closer in-
vestigation into the scalability of the RKGA, P-DE and P-PSO was performed. Algorithm
performance was investigated on two additional problems, namely a 146 operation and a 200
operation problem. The results obtained in Figs. 9 through 12 indicate that P-PSO perform
the best for problems containing approximately 125 operations or less. Since the average
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Table 4 Algorithm parameters
as selected for benchmarking
purposes

PSO w c1 c2

P-PSO 56-op 1.1 −→ 0.72 1.8 −→ 0.2 0.2 −→ 1.8

100-op 0.9 −→ 0.3 2.6 −→ 0.2 0.2 −→ 2.6

256-op 1.1 −→ 0.3 1.4 −→ 0.2 0.2 −→ 1.4

GA α β pc

RKGA 56-op 14 1 0.5 −→ 0.1

100-op 10 5 0.5 −→ 0.3

256-op 10 1 0.5 −→ 0.5

DE pc F

P-DE 56-op 0.5 −→ 0.3 0.7 −→ 0.1 –

100-op 0.5 −→ 0.3 0.7 −→ 0.5 –

256-op 0.7 −→ 0.1 0.5 −→ 0.5 –

Table 5 Experimental comparison of alternative solution strategies with respect to makespan and earli-
ness/tardiness

Problem Algorithm F1 F2

μ σ μ σ

56-op Basic rule 2124.62 43.48 3362.32 142.64

EDD 2071.1 − 4242.8 −
RKGA 1652.57 59.80 3578.04 331.49

P-PSO 1653.71 44.20 3579.17 231.81

P-DE 1594.19 24.71 3861.50 231.19

100-op Basic rule 2266.31 51.20 6969.04 188.56

EDD 2381.34 − 8168.33 −
RKGA 2317.02 160.65 9770.28 372.64

P-PSO 1858.57 11.29 7151.72 235.12

P-DE 2276.37 66.72 9754.20 227.96

256-op Basic rule 6446.67 304.80 49446 1329.76

EDD 6360 − 62380 −
RKGA 5514.86 189.35 31444.15 1240.96

P-PSO 5010.93 45.57 38169.64 3065.49

P-DE 5343.74 143.92 30931.67 1018.09

number of operations which need to be scheduled by Optimatix is 100, the P-PSO will be
the most suitable alternative most of the time. For larger problems the P-DE is the best
performing algorithm of the three algorithms tested.

The poor scalability of the P-PSO algorithm is mostly due to poor performance with re-
spect to queue time and earliness/tardiness. With respect to the makespan objective function,
the P-PSO is always superior.

Finally, although the performance of the RKGA is very similar, though worse, than the
P-DE algorithm over all problem sizes, the fact that it does not ever outperform the priority-
based algorithms highlight the contribution made by the development of the priority-based
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Table 6 Experimental comparison of alternative solution strategies with respect to queue time and the ag-
gregated objective function

Problem Algorithm F3 F4

μ σ μ σ

56-op Basic rule 328.47 136.77 5321.22 80.04

EDD 753.8 − 6574.8 −
RKGA 300.84 190.52 5036.98 495.28

P-PSO 90.64 129.21 4828.84 202.77

P-DE 497.38 122.14 5459.02 328.29

100-op Basic rule 323.13 155.44 9522.51 378.58

EDD 1330.92 − 11392.47 −
RKGA 1379.68 321.07 12980.46 724.83

P-PSO 675.70 214.73 9195.67 367.53

P-DE 1408.47 214.59 12952.48 418.30

256-op Basic rule 24589.83 1304.41 80062.98 1870.93

EDD 33090 − 101430 −
RKGA 5475.59 873.54 41977.04 1889.94

P-PSO 12893.70 1788.01 55630.34 4088.77

P-DE 5143.53 811.32 40960.35 1392.98

Fig. 9 Investigating algorithm scalability with respect to makespan

representation for the multi-objective FJSP with sequence-dependent set-up times, auxiliary
resources, and machine downtime.

9 Conclusions and future work

This paper investigated the application of PSO to a real-world complex scheduling prob-
lem. Four PSO-based heuristics, differing in terms of particle representation and problem
mapping mechanism were developed and the priority-based PSO (P-PSO) algorithm was
found to be the best performing PSO algorithm when quality of solution and computational
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Fig. 10 Investigating algorithm scalability with respect to earliness/tardiness

Fig. 11 Investigating algorithm scalability with respect to queue time

Fig. 12 Investigating algorithm scalability with respect to the aggregated objective function, F4
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complexity was considered. Further benchmarks against existing rule-based algorithms and
Norman and Bean’s (1999) RKGA indicated that the P-PSO algorithm outperforms all of
the other benchmark algorithms when 125 operations or less are to be scheduled. The P-DE
algorithm was the best performing algorithm for larger problems.

Significant future research opportunities exist in the evaluation of alternative multi-
objective optimization methods and scheduling-specific updates for PSO and DE in order
that the complex problem requirements can be addressed effectively. Additionally, research
into improving the scalability of the P-PSO algorithm could also prove to be useful.

As technology is evolving and more advanced optimization techniques are becoming
the norm, both the academic and business worlds are starting to realize the importance of
addressing increasingly complex scheduling scenarios. As much as this paper attempts to
make a contribution towards the application of PSO to complex scheduling scenarios, it also
highlights the large number of opportunities for future research in this field.
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