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Abstract

Accounting numbers generally obey a mathematical law called Benford’s Law, and this outcome is 
so unexpected that manipulators of information generally fail to observe the law. Armed with this 
knowledge, it becomes possible to detect the occurrence of accounting data that are presented 
fraudulently. However, the law also allows for the possibility of detecting instances where data are 
presented containing errors. Given this backdrop, this paper uses data drawn from companies 
listed on the Johannesburg Stock Exchange to test the hypothesis that Benford’s Law can be used 
to identify false or fraudulent reporting of accounting data. The results support the argument that 
Benford’s Law can be used effectively to detect accounting error and fraud. Accordingly, the findings 
are of particular relevance to auditors, shareholders, financial analysts, investment managers, private 
investors and other users of publicly reported accounting data, such as the revenue services. 
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1 
Introduction

Albert Einstein was playing his violin in 
a duet with Werner Heisenberg, who was 
accompanying him on the piano. After a while 
Heisenberg slammed his hands down on the 
keys and said: ‘It’s one, two, one, two, Einstein! 
Can’t you count?’ 
(Arthur, 1993)

From the mid-1990s investment markets 
witnessed a surge in the incidence of exposed 
accounting frauds and irregularities which, in 
turn, prompted a significant tightening in the 
regulatory environment as part of a regulatory 
effort to stamp out the occurrence of accounting 
deceit.2 Although recent evidence suggests that 
this regulatory response has been effective in 
reducing the occurrence of dishonest accounting, 
the impact has not been comprehensive. 
Moreover, the experience of the past decade 
demonstrates that, whilst the country, industry 
and business detail behind the data distortions 

vary, the cases share a common harmful ailment: 
accounting frauds have resulted in considerable 
destruction of investor wealth.3 In addition, 
recent evidence shows that the number and 
size of companies that are disclosing accounting 
irregularities and frauds have grown with time. 
For example, the number of restatements due 
to accounting irregularities in the United States 
(US) increased by over 150 percent between 
1997 and 2001 (Floyd, 2003, 5). Moreover, the 
median size of companies making restatements 
in the US, measured by market capitalisation, 
increased from $500 million in 1997 to $2 billion 
in 2002 (Floyd, 2003, 7). In South Africa, the 
trends have been similar, with a growing number 
of firms reporting accounting irregularities and 
frauds over the past decade. 

Against this backdrop, and as noted, numerous 
efforts are being made to improve accounting 
standards and auditing practices. Regulators 
are also at pains to make firms’ managers and 
directors more sensitive to the consequences 
of financial malpractice. However, the pace 
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of progress is slow and the effects unfinished. 
Moreover, human behaviour is such that 
fraudulent practices will linger even in a world 
of perfect accounting systems and watertight 
auditing practices. Thus, those interested in the 
accuracy of publicly reported accounting data 
– including auditors, shareholders, financial 
analysts, investment managers, private investors 
and other users of publicly reported accounting 
data, such as the revenue services – must remain 
vigilant for fraudulent accounting practices. 

Helpfully, at this juncture, a little known but 
powerful mathematical law, called Benford’s 
Law (Benford, 1938), presents itself as a 
potentially potent tool for rooting out fraudulent 
practices from a wide array of information sets, 
include accounting data. Significantly, the law 
has been used in a range of international settings 
to detect data error and fraud, including the case 
of accounting data. Despite this potential, it is 
surprising to find that whilst Benford’s Law has 
been used by practitioners in the South African 
setting, no attempt has been made to publish 
evidence on the effectiveness of Benford’s 
Law in detecting accounting data error or 
fraud in a domestic setting. This paper aims to 
address this gap in research by exploring the 
relevance of Benford’s Law in the detection of 
anomalies in data presented by firms listed on 
the Johannesburg Stock Exchange (JSE).

The remainder of the paper is divided into 
five sections. Section 2 provides an overview 
of Benford’s Law, while Section 3 examines 
the mechanics of employing Benford’s Law to 
detect accounting data irregularities as well as 
the data set employed in this study. Section 4 is 
devoted to analysing the results, and provides 
comment on the reliability and relevance of the 
tool as a detector of fraudulent or erroneous 
accounting data. On this score, the findings of 
this study suggest that Benford’s Law has the 
capacity to play a helpful role in assisting users 
of accounting data detect error or fraud in 
financial information. These findings are in line 
with expectations and concur with the results of 
similar studies carried out in other countries. 
Some comment is also made in this section on 
areas for further research. Section 6 is devoted 
to concluding remarks. 

2 
An overview of Benford’s Law 

In 1881, the astronomer-mathematician 
Simon Newcomb published a short article 
in the ‘American Journal of Mathematics’ 
describing his observation that books of 
logarithms were more worn in the beginning and 
progressively unspoiled throughout (Newcomb, 
1881). From this, Newcomb inferred that 
researchers (including fellow astronomers and 
mathematicians, as well as biologists, sociologists 
and other scholars) using the logarithmic tables 
were looking up numbers starting with the digit 1 
more often than numbers starting with the digit 
2. Similarly, Newcomb inferred that researchers 
were looking up numbers starting with the digit 2 
more often than those beginning with the digit 3, 
and so on (Hill, 1998: 1). After a short heuristic 
argument, Newcomb (1881: 40) concluded 
that the probability (P) that a number (D1) has 
the first significant digit (that is, first non-zero 
digit) d1 is:

P (D1 = d1) = log10 ,
 

+ 
 

��
�

,

where d1 ∈ {1, 2, … , 9}.

From Newcomb’s rule, it can be calculated that 
the probability of 1 occurring as the first digit is 
0.301 (or 30.1 percent). Similarly, the probably 
of 2 being the first digit is 0.176 (17.6 percent). 
In this vein, Table 1 shows the probabilities of 
first digits based on the above equation. That 
the digits are not equally likely comes as a 
surprise to most observers. However, it is even 
more striking that Newcomb (1881) was able to 
claim the existence of an exact rule describing 
the distribution of first digits. 

Despite the profound insights offered, 
Newcomb’s article went unnoticed. However, 
more than half a century later, and independently 
of Newcomb’s findings, American physicist Frank 
Benford made exactly the same observation 
about logarithmic books and concluded the 
same first-digit law. But Benford went further 
than Newcomb by testing his conjecture with 
an ‘effort to collect data from as many fields as 
possible and to include a wide variety of types 
[of data]’ (Benford, 1938: 551). To be more 
specific, Benford’s published findings were 
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based on 20 229 observations from such diverse 
data sets as areas of rivers, atomic weights and 
street addresses (in all, 20 widely different data 
sets were sampled). Benford’s findings indicated 
that the data closely fitted the logarithmic law.4 
Moreover, apart from this empirical advantage, 

Benford’s paper benefited from a second factor: 
it was published adjacent to a soon-to-be famous 
physics paper. With Newcomb’s contribution 
having become completely forgotten, the 
logarithmic probability law came to be known 
as Benford’s Law.

Table 1 
Probabilities of first- and higher-order significant digits

Digit (= d) Probability of first 
significant digit = d

Probability of 
second significant 

digit = d

Probability of third 
significant digit = d

Probability of fourth 
significant digit = d

0 Not Applicable 0.11968 0.10178 0.10018

1 0.30103 0.11389 0.10138 0.10014

2 0.17609 0.10882 0.10097 0.10010

3 0.12494 0.10433 0.10057 0.10006

4 0.09691 0.10031 0.10018 0.10002

5 0.07918 0.09668 0.09979 0.09998

6 0.06695 0.09337 0.09940 0.09994

7 0.05799 0.09035 0.09902 0.09990

8 0.05115 0.08757 0.09864 0.09986

9 0.04576 0.08500 0.09827 0.09982

Source: Nigrini (1999: 2)

Before proceeding, it is useful to offer an 
intuitive explanation of Benford’s Law. Consider 
making a deposit of R100 in a bank account 
that pays interest at the rate of 10 percent per 
annum. The first digit will continue to be 1 
until the account balance rises to R200. This 
will take a 100 percent increase which, at an 
annual compound rate of 10 percent, would 
take about 7.3 years. When the account balance 
reaches R200, the first digit will be 2. However, 
growing at 10 percent per annum, the account 
balance will rise from R200 to R300 in about 
4.2 years. Moving from R300 to R400 will take 
about three years, and from R900 to R1 000 
will require roughly 1.1 years. However, moving 
from R1 000 (where the first digit is once again 
1) to R2 000, will take 7.3 years. Thus earlier 
digits have higher frequencies of occurrence, 
with the law holding with any phenomenon that 
has a constant or erratic growth rate (Nigrini, 
1999: 2-3).

Interestingly, there is also a general significant-
digit law which includes first digits but also 
higher order digits (which may be equal to 0) 
(Hill, 1996).5 For example, the general law holds 
that the probability that the second significant 
digit (D2) of a number is equal to d2 is:

P (D2 = d2) = 
=

 
+ + 

∑ ,

where d2 ∈ {0, 1, … , 9}.

From this general law it follows that the second 
significant digits, although monotonically 
decreasing in frequency through the digits (as in 
the case of first digits), are much more uniformly 
distributed than the first digits. As noted, the 
rule holds for higher order digits; to illustrate 
this point, Table 1 shows the unconditional 
probabilities of occurrence for the second, third 
and fourth significant digits. 

Furthermore, the general law also specifies 
the joint distribution of significant digits. For 
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instance, the general law allows for calculation 
of the probability that the first and second digits 
are 1 and 2, respectively. Importantly, the joint 
distribution is not purely the probability of 
the first digit multiplied by the probability of 
the second digit. Rather, the significant digits 
are dependent.6 To demonstrate this point, a 
simple calculation shows that the unconditional 
probability that the second digit is 2 is ≅ 0.109. 
But, the conditional probability that the second 
digit is 2 given that the first digit is 1 is ≅ 0.115 
(Hill, 1998: 2). As an aside, Benford’s Law is 
the only probability distribution on significant 
digits which is invariant under changes of scale 
(for example, converting from English to metric 
units or from Yen to Euros), or under changes 
of base (for example, replacing base 10 by base 
8 or base 2, in which case the logarithmic base 
10 is replaced by logarithm to the new base) 
(Hill, 1996).7 

In proceeding, it is worth noting that in the 
65 years since Benford’s article appeared there 
have been numerous attempts to ‘prove’ the 
law (Hill, 1998: 3). Indeed, by 1990 close on 
100 papers had been published focusing on 
explaining or deriving the law in theoretical 
terms.8 But there have been two main stumbling 
blocks to explaining the law. First, some data 
sets satisfy the law, whilst others do not. Until 
recently, there has not been a clear definition 
of a general statistical experiment that would 
predict which tables would comply with the 
law. Second, although there was some success 
in showing that Benford’s Law is the only set of 
digital frequencies which remain fixed under 
scale changes, none of the proofs were rigorous 
as far as probability theory is concerned. 
Recently, however, these stumbling blocks have 
been removed by the discovery of mathematical 
laws of probability which explain and predict 
the appearance of the logarithmic distribution 
(Hill, 1995a and 1996). In this vein, Hill (1996: 
2) shows that if probability distributions are 
selected at random, and random samples are 
then taken from each of these distributions so 
that the overall process is ‘unbiased’, then the 
leading significant digits of the combined sample 
will converge to Benford’s Law (Hill, 1996: 2). 
More specifically, using modern mathematical 
probability theory it has been shown that the 

frequencies of significant digits will conform to 
the law when data distributions are selected at 
random and random samples are taken from 
these distributions. As an aside, not all writers 
are in agreement with Hill’s (1996) conclusion. 
Brookes (2002), for instance, is critical of 
Benford’s Law. However, Brookes (2002: 4) 
acknowledges that in the case of data sets that 
consist of ‘quantisized items such as oranges, 
cows … trees [and money]’ these criticisms are 
not serious. 

Histrionics aside, the theorems alluded to 
above explain why many tables of numerical data 
follow the logarithmic distribution described by 
Benford’s Law and why others do not. The latter 
set includes items such as telephone numbers 
in a given region that usually begin with the 
same few digits, administered numbers such as 
personal identify numbers, hourly wage rates, 
bank account numbers, postal codes and tax 
payer numbers. As already noted, however, 
and significantly in the current argument, 
the theorem also explains why a surprisingly 
diverse collection of information tends to 
obey Benford’s Law. Examples of such data 
include large accounting tables, stock market 
figures, tables of physical constants, numbers 
appearing in newspaper articles, demographic 
data, numerical computations in computing and 
aspects of scientific calculations (Raimi, 1969; 
Ashcraft, 1992; Dehaene and Mehler, 1992; 
Hill, 1996 and 1998; Ley, 1996; Nigrini, 1999). 
The explanation for conformity with Benford’s 
Law now is well established: the data sets are 
composed of samples from many different 
distributions. 

Returning to the main focus of this paper, the 
prevalence of the logarithmic distribution in 
true accounting data sets has led to Benford’s 
Law being used in an international setting to 
detect fraud or fabrication of data in financial 
documents under the hypothesis that when 
people fabricate data they do not choose 
numbers which follow a logarithmic distribution 
(Hill, 1996). Moreover, it is well documented 
that people cannot behave truly randomly even 
when such behaviour is to their advantage 
(Chapanis, 1953; Bakan, 1960; Neuringer, 
1986; Hill, 1999). Further to this, recent studies 
support the hypothesis that concocted data do 
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not follow Benford’s Law closely. Nigrini (1996 
and 1999) has led the way in this respect, by 
amassing extensive empirical evidence of the 
occurrence of Benford’s Law in many areas of 
accounting data. 

On the back of the accumulated evidence, 
Nigrini has come to the conclusion that in a wide 
variety of accounting situations, the significant-
digit frequencies of true data confirm closely to 
Benford’s Law (see also Carslaw, 1988; Thomas 
1989). Conversely, then, Benford’s Law serves 
as an ideal tool for detecting variances between 
true accounting data and data that have been 
manipulated or that contains errors. However, 
apart from providing a tool that can alert users 
to possible errors or potential fraud, Benford’s 
Law holds a second advantage over other 
methods used to detect data corruption: the 
law is easily applied (Nigrini, 1999: 1). Such a 
tool for testing data conformity is described in 
Section 3 below. 

3 
Application of Benford’s Law

3.1 Test method

The aim of the current study is to test the 
potential effectiveness of Benford’s Law in 
detecting data error or fraud in accounting 
information produced by JSE-listed companies. 
As a point of departure, it should be recognised 
that testing need not be confined to the first-digit 
level. Nigrini and Mittermaier (1997) provide a 
review of the range of tests available. To start 
with, because of the general law, testing can 
be applied to higher-order digits as easily as to 
first digits (Nigrini, 1999: 4). The law can also 
be used to test joint frequencies, such as the 
first-two, first-three or, more generally, first-n 
digit combinations. Other tests are available. 
For instance, the analyst can test for rounding 
of numbers, which suggests estimation. Testing 
for duplication of numbers or combinations 
of numbers is also a potential investigative 
tool that hints at fraudulent or administrative 
manipulation. Thus, numbers can be binned 
to test for conformity in various ways. Most 
commonly, though, testing is done at the level 
of first- or first-two significant digits. This paper 

tests data conformity with Benford’s Law at 
the level of the first-significant digit. This basis 
for testing conforms to the broad-level testing 
criteria established by Nigrini (2000). 

Having identified the test level, the process 
turns to establishing whether the observed 
digit(s) deviate(s) significantly from the expected 
frequencies derived from Benford’s Law. In 
this regard, following Nigrini (2000) a simple 
regression analysis is employed to assess the 
significance of any observed deviations from the 
expected frequencies. 

Specifically, to test for conformity with 
Benford’s Law, a regression line is estimated 
of the form: 

Yi = β0 + β1Xi + εi 

where Yi is the value of the frequency of the 
i-th significant digit(s) drawn from the sample 
data; β0 and β1 are parameters; Xi is a known 
constant, namely the value of the independent 
variable (frequency of the ith significant digit[s]) 
as per Benford’s Law; and εi is a random error 
term with mean E{εi} = 0 and variance σ2 = 
{εi} = σ2; and εi and εj are uncorrelated so that 
the covariance σij = 0 for all i, j where i ≠ j and 
i = 1,2, … , n. A perfect correlation between the 
sample data and Benford’s Law would yield:

β0 = 0; and

β1 = 1.

From this, a t-test is used to test the joint null 
hypotheses that β0 = 0 and β1 = 1, which are 
the necessary conditions for observed data to 
conform to Benford’s Law. 

Given the testing method, it becomes necessary 
to establish the data sampling technique 
adopted. Unfortunately, Benford (1938) offered 
no comment in this regard. Indeed, some writers 
have gone so far as to hint at Benford having 
mined the data analysed (Scott and Fasli, 2001: 
7).9 Elsewhere, little insight is offered into 
suitable data sampling techniques. For this 
reason, this paper adopts a more ‘classical’ 
sampling stance by observing principles that are 
widely recognised as the basis for generating 
adequate samples: the samples used are random 
and sufficiently large and variable to deliver 
test statistics that offer an appropriate level of 
precision. The data set is described below. 
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3.2 Data set

To test the potential of Benford’s Law to detect 
error or fraud in accounting data, two data sets 
are employed. The first consists of a sample of 
‘errant’ companies that were listed on the JSE 
during the five-year period 1 July 1998 to 30 June 
2003. These companies are commonly suspected 

or known to have committed accounting fraud 
or produced erroneous data, and their shares 
were either suspended or delisted during the 
reference period as a consequence.10 This 
sample of 17 so-called ‘errant’ companies is 
detailed in Table 2. One firm, Amalia Gold 
Mining and Exploration Company Limited, was 
dropped from the sample due to lack of data.

Table 2 
Errant companies (1 July 1998-30 June 2003) 

Company name Date of suspension or delisting

Amlac Limited 6 May 2002

Beige Holdings Limited 27 September 1999*

Essential Beverage Holdings Limited 1 July 2002

Internet Gaming Corporation Limited 4 November 2002

Leisurenet Limited 6 October 2000

Macmed Limited 2 July 2001

Noble Minerals Limited 1 July 2002

Oxbridge Online Limited 1 July 2002

REF Finance and Investment Corporation Limited 8 January 2002

Regal Treasury Bank Holdings Limited 27 June 2001

Shawcell Telecommunications Limited 18 January 2002

Taufin Holdings Limited 2 June 2003

Terrafin Limited 24 June 2002

Tigon Limited 18 January 2002

Tridelta Magnet Technology Holdings Limited 27 August 2001

Unifer Holdings Limited 19 June 2002

Whetstone Industrial Holdings Limited 19 April 2001

* Beige Holdings Limited’s suspension was subsequently lifted by the JSE.

Source: Alexander and Oldert (2003)

In order to verify the effectiveness of the above 
test of Benford’s Law, data drawn from a control 
group of an equal number (17) of companies 
was used to test for ‘false positives’. This second 
sample consists of a group of firms, as ranked 
by Ernst and Young (2002), as having the top 
reporting standards amongst listed companies 
on the JSE.11 The Ernest and Young survey is 
generated annually. For the sake of the tests 

conducted in this study, in-sample period data 
were drawn from the results of the 2002 survey. 
This was done to ensure that the data sets used 
are homogenous. It is also believed that using 
the 2002 data set allows for sufficient time to 
have elapsed from the date of the survey for any 
data anomalies to have been reported or to have 
emerged. This sample of so-called ‘compliant’ 
firms is detailed in Table 3.
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Table 3 
‘Compliant’ companies (2002) 

Company name Company name (continued)

ABSA Group Limited Illovo Sugar Limited

African Bank Investments Limited Kersaf Investments Limited

African Oxygen Limited Liberty Group Limited

Allan Gray Property Trust Nampak Limited

AngloGold Limited Nedcor Limited

Aveng Limited Pretoria Portland Cement Company Limited

Anglovaal Mining Limited Sanlam Limited

Firstrand Limited Sasol Limited

Gold Fields Limited

Source: Adapted from Ernst and Young (2002)

to explore statements that are more likely to 
include errant data. The most obvious place to 
search for data error is in the income statement. 
Thus, testing is done on first-digit data drawn 
from the income statement. The other principal 
statements produced by firms in their annual 
financial reports – namely the cash flow, change 
of equity and balance sheet statements – are less 
prone to manipulation. That said, data error 
or fraud that arises in the income statement 
is likely to percolate into derived statements 
that include statements of change in equity and 
balance sheets. So, to eliminate the potential for 
double-counting of errors, the data set is based 
on income statement data. 

Third, in the case of errant firms, only the 
last set of publicly reported information is 
used. For ‘compliant’ companies, the sample 
set is drawn from the 2002 financial year, as 
explained above. 

Thus, two sets of data are produced by 
the sampling method, namely: (a) income 
statement first-digit data drawn from ‘errant’ 
companies on a per company basis and (b) 
income statement first-digit data drawn from 
‘compliant’ companies on a per company basis, 
with the income statement data consisting of 
30 line items as reported by the companies. 
Accordingly, the full data set consists of 1 020 
income statement observations as reported 

Data drawn from the financial statements of 
the two sets of companies are confined by 
three additional parameters. First, the tests 
run are confined to raw data whose significant 
number frequencies are expected to follow a 
geometric sequence when ordered and counted. 
Raw accounting data read as line items are 
appropriate for testing. Numbers that are a 
function of more than one set of other numbers 
(such as earnings per share, which is a function 
of earnings and the number of share in issue) 
are not expected to follow Benford’s Law.12 To 
ensure data homogeneity, the same line items 
are used for all companies, as published by 
data vendor I-Net Bridge’s Financial Analysis 
System (FAS). Moreover, the data that are 
sampled are ‘as reported’, which thus excludes 
all possible influences of adjustments that are 
typically made by data vendors in their efforts 
to standardise accounting data. In proceeding, 
it should be noted that the raw data identified 
satisfy the main criteria for having expected 
digit frequencies that are Benford-like, namely: 
the numbers describe the sizes of similar 
phenomena; the numbers have no built-in 
maximums or minimums; and the numbers are 
not assigned numbers (such as bank account 
numbers) (Nigrini and Mittermaier, 1997). 

Second, because the aim of the tests is to 
identify data manipulation, it makes sense 
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by the companies. The sampling method then 
binned data on a per company basis, with testing 
at the company level justified by the argument 
that knowing that a group of companies employ 
errant or questionable reporting practices is of 
marginal use when compared to the knowledge 
that a single company adopts such reporting 
practices. 

Thus, for each company the reported income 
statement data are binned. The binned data 
frequencies are then regressed on theoretical 
frequencies to test for significant deviations from 
Benford’s Law. It is expected that the testing 
process would reveal significant deviations from 
Benford’s Law in the case of ‘errant’ companies, 
whilst the frequencies generated by ‘compliant’ 
company data are expected to observe Benford’s 
Law. In proceeding, it ought to be noted that in 
a priori testing, rejection of the null hypothesis 
does not prove data error, bias or fraud 
– legitimate explanations for deviations are 
sometimes found. Rather, a positive test result 
signals potential data problems, which the data 
user should then employ as grounds for a more 
detailed examination of the information. This 
argument, however, does not necessarily apply 
in the case of backward-looking tests. Related 
to this point, it must be recognised that the 
unit of analysis is the firm, although clearly it 
is not firms that falsify data, but rather agents 
of the firm. However, detection of data error 
at the firm level is arguably a first, necessary 
step required in any search for the existence of 
fraudulent company data (this point is returned 
to below). 

4 
Test outputs 

4.1 Test results

Tables 4 and 5 set out the test results on a per 
company basis. Table 4 deals with the results 
of tests conducted on ‘errant’ companies, and 
shows the estimated values of β0 and β1; the 
standard deviation of the estimated values; and 
the t-statistic on the estimated values. 

The acceptance of the independent null 
hypotheses that β0 = 0 and β1 = 1 at the 
five percent level of significance is indicated by 
an asterisk on cell entries in Table 4. However, 
to satisfy the test requirements, it is necessary 
that β0 = 0 and β1 = 1 lie within two standard 
deviations of the estimated values of β0 and β1. 
Accordingly, the test results lead to acceptance of 
the null hypothesis that β0 = 0 in 13 of 17 cases. 
However, as can be inferred from the estimates 
of β1, in all 13 cases the test results reject the null 
hypothesis that β1 = 1 at the five percent level. 
Hence, the joint requirement that β0 = 0 and β1 
= 1 is rejected in all of these cases. As an aside, 
there are three instances of significant estimates 
of β1. But all three results fail to meet the criteria 
of β1 = 1 lying within two standard deviations 
of the estimated value of β1. Moreover, none of 
these three cases coincide with acceptance of 
the null hypothesis that β0 = 0. Further to this, 
it is interesting to note that four estimates of β1 
carry the wrong sign. These cases hint at ‘extreme’ 
violation of Benford’s Law: as first-digits increase 
from one through to nine, the frequency of first-

Table 4 
Test results on errant company data sets

Company Estimate 
of β0

σ t Estimate 
of β1

σ t

Amlac –0.11 0.03 –3.75 2.01* 0.22 9.11

Beige 0.17 0.06 3.10 –0.54 0.41 –1.32

Essential 0.13* 0.15 0.89 –0.19 1.10 –0.17

Igaming 0.08* 0.21 0.40 0.25 1.53 0.17

Leisurenet –0.12 0.05 –2.35 2.07* 0.37 5.55

Macmed 0.09* 0.06 1.42 0.19 0.47 0.40
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Noble –0.28 0.10 –2.66 3.50* 0.77 4.54

Oxbridge 0.11* 0.11 0.96 0.01 0.84 0.02

Refcorp 0.08* 0.09 0.90 0.28 0.65 0.43

Regal 0.13* 0.09 1.46 –0.18 0.66 –0.27

Shawcell 0.16* 0.13 1.18 –0.41 0.98 –0.42

Taufin 0.03* 0.06 0.56 0.70 0.44 1.59

Terrafin 0.02* 0.14 0.17 0.79 1.02 0.78

Tigon 0.08* 0.13 0.59 0.31 0.97 0.32

Tridelta 0.10* 0.16 0.63 0.08 1.20 0.07

Unifer 0.00* 0.07 0.04 0.98 0.49 2.00

Whetstone –0.02* 0.09 –0.23 1.18 0.66 2.00

Sample 0.04 0.10 0.19 0.65 0.75 1.46

‘early’ data manipulation has a cascading effect. To 
put the argument differently, misstatement of line 
items that occur low down in the income statement 
would mean that a random sample of first digits 
may comply with Benford’s Law due to the possible 
compliance of earlier numbers which, in the case 
of ‘late’ manipulation would make up the majority 
of first digits. Thus, from the findings presented 
in Table 4 it is inferred that it is more likely that 
data manipulation in the current sample occurred 
early in the income statement rather than late in the 
statement. This, then, sharpens the fraud detection 
tool as it is not the company that perpetrates a 
fraud, but rather agents of the company and, given 
the above arguments, most likely agents that are 
able to influence ‘early’ line items. However, as 
noted, the unit of analysis in the current study is 
the firm, and so a more detailed study is left for 
investigation elsewhere. 

These comments aside, continuing with the 
argument, whilst it may be useful to know that 
‘errant’ companies fail to comply with Benford’s 
Law, the test only becomes a useful screening 
tool if it can be shown that ‘compliant’ companies 
generate first-digit frequencies that conform to 
Benford’s Law. Consequently, the second set of 
tests ensures against Type II error. Given this 
backdrop, the test results for the 17 ‘compliant’ 
companies are reported in Table 5, which sets 

digits increases. Accordingly, first-digit 
distributions in these data sets are highly suspect. 
That aside, and in short, none of the data sets 
tested passes the test conditions established for 
conformation to Benford’s Law.

Thus, the preliminary finding, based on the 
above sample set, is that Benford’s Law is a 
useful indicator of the existence of fraudulent 
or erroneous data. All 17 companies that are 
believed or found to have generated fraudulent 
data over the sample period fail the test of 
conformity of the distribution of first significant-
digits with Benford’s Law. It is unsurprising to 
note that the estimated values based on pooled 
data for the 17 ‘errant’ companies indicates that, 
if measured as a group, the first significant digit 
frequencies fail to conform to Benford’s Law. 

As an aside, in the case of ‘errant’ companies it 
is evident that the non-compliance of the data with 
Benford’s Law can occur due to manipulation of 
line items at any level of the income statement. 
However, that all companies fail to satisfy the 
intercept and slope aspects of the test implies that 
data manipulation in the sample occurs in line 
items that appear close to the top of the income 
statement (the overstatement of revenue is the most 
obvious culprit). More to the point, the higher up 
the statement that manipulation occurs, the greater 
the deviance of the balance of the statement as the 
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out the estimated values of β0 and β1; the standard 
deviation of the estimated values; and the t-statistics 
on the estimated values.

is not found to be significantly different from 
zero at the five percent level (although the 
estimate is significant at the 10 percent level). 
Importantly, of the 16 estimates of β1 that are 
found to be significantly different from 0, only 
three estimates fail to meet the further condition 
that β1 = 1 lies within two standard deviations 
of the estimated value of β1. Thus, of the set of 
‘compliant’ companies, 13 of the 17 firms pass 
the joint test of β0 = 0 and β1 = 1, indicating 
conformity with Benford’s Law. It is interesting 
to note that the estimated values based on 

Table 5 
Test results on ‘compliant’ company data sets

Company Estimate 
of β0

σ t Estimate 
of β1

σ t

ABSA –0.01* 0.03 –0.31 0.96* 0.21 4.50

ABIL –0.01* 0.05 –0.22 1.09* 0.35 3.11

Afrox –0.01* 0.03 –0.40 1.12* 0.25 4.42

Allan Gray –0.07* 0.04 –1.83 1.64* 0.29 5.71

Anglogold 0.04* 0.03 1.12 0.65* 0.25 2.57

Aveng –0.03* 0.06 0.06 1.31* 0.45 2.93

Avmin –0.01* 0.05 –0.16 1.07* 0.39 2.77

Firstrand 0.01* 0.05 0.32 0.87* 0.35 2.51

Goldfield 0.04* 0.04 0.91 0.64 0.32 1.96

Illovo 0.02* 0.04 0.40 0.85* 0.31 2.71

Kersaf 0.01* 0.05 0.12 0.94* 0.39 2.41

Liberty –0.07* 0.04 –1.85 1.59* 0.26 6.09

Nampak –0.05* 0.03 –1.44 1.43* 0.24 5.87

Nedcor –0.04* 0.02 –2.13 1.36* 0.14 9.91

PPC 0.05* 0.03 1.64 0.55* 0.23 2.41

Sanlam –0.04* 0.03 –1.22 1.35* 0.24 5.71

Sasol 0.03* 0.04 0.62 0.77* 0.31 2.48

Sample –0.01 0.04 –0.26 0.65 0.75 1.46

The results set out in Table 5 for the sample of 
‘compliant’ companies indicate that the null 
hypothesis that β0 = 0 cannot be rejected at 
the five percent level for any of the companies. 
Moreover, in all 17 cases, β0 = 0 lies within two 
standard deviations of the estimated values of β0. 
Thus, all 17 of the ‘compliant’ companies have 
significant first-digit frequencies that indicate 
conformity with Benford’s Law in the case of 
β0 = 0. In considering the estimates of β1, the 
coefficient is significant in 16 of the 17 cases. 
The estimate of β1 on Goldfields (β1 = 0.64) 
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pooled data for the 17 ‘compliant’ companies 
indicates that the group’s first significant-digit 
frequencies conform to Benford’s Law, with  
β0 = 0 and β1 = 1 for the group.

As a final comment on the estimated values 
of β0 and β1, it is noteworthy that the standard 
errors on the estimates in the case of ‘errant’ 
companies (0.10 and 0.75, respectively) are 
more than twice the size of standard errors on 
the estimates β0 and β1 in the case of ‘compliant’ 
companies. This result offers further anecdotal 
evidence of the superior ‘quality’ of ‘compliant’ 
company data over ‘errant’ company data.

4.2 Implications and limitations

In short, the results of the testing procedure 
indicate that conformity to Benford’s Law may 
serve as a robust tool forewarning users of 
accounting data of the potential existence of 
data error or fraud. The results are particularly 
encouraging in this regard in that the test 
procedure yielded a false-positive result in 
four of 34 cases (11.8 percent of the sample). 
Put differently, when applied at the time of 
annual financial reporting to the above sample 
of ‘errant’ and ‘compliant’ companies, the test of 
Benford’s Law correctly identified 88.20 per cent 
of the cases (30 of 34 companies), and correctly 
identified 100.0 per cent of ‘errant’ cases.13 The 
reason for this appears to be elegantly simple: 
like supernovae, fraudulent companies give 
themselves away by shining more brightly than 
their peers as they zealously thrash away their 
final moments. 

Nevertheless, whilst these early results of the 
application of Benford’s Law yield encouraging 
findings, the test procedure and data set have 
limitations that suggest further research is 
required. Some of the more obvious limitations 
are identified below. 

First, the data collection method may include 
an obvious source of sample bias in that with 
the benefit of hindsight, the status of ‘errant’ 
and ‘compliant’ companies was known before 
testing was conducted. This begs the question 
of whether the test method would be as reliable 
in the case of live data, that is, as a prediction 
tool (where the value of the instrument is 
unambiguously greatest). There is no cause to 

doubt that this is the case. Nevertheless, testing 
of live data would go some way in confirming 
the tool’s validity. 

Second, and related to this point, the results 
reveal that the test functions in a highly 
effective fashion in the tails of the distribution 
– correctly failing ‘errant’ companies and 
passing ‘compliant’ companies. However, the 
data set used in this study offers no insight as 
to ‘what goes on in between’. Over most of the 
sample period there were in excess of 500 listed 
companies on the JSE. Thus, this study covers  
less than 10 per cent of the population. A broader 
study is required to establish the effectiveness 
of the tool across all firms. Until such time, 
then, the instrument is arguably best used as an 
indicator of potential data error or fraud rather 
than a corroborator of data problems. 

Third, the results offer no guide as to whether 
all companies that fail the test ultimately fail 
and, if so, what the extent of the lag in time is 
between detection and failure. 

Fourth, in the international setting, Benford’s 
Law has been applied more widely than 
accounting data as the basis for detecting 
data error or fraud. Indeed, the potential 
applications of the law are wide. For instance, 
the law has been identified as relevant to the 
interrogation of design efficiency (Hamming, 
1970 and Knuth, 1981 in Scott and Fasli, 2001), 
the examination of authenticity of mathematical 
models (Varian, 1972 in Scott and Fasli; Nigrini, 
1996), assessment of the validity of research 
results (Matthews, 1999: 26) and the examination 
of data storage and data management efficiency 
(Nigrini, 1999). Moreover, as noted in Section 
2, the tool also is applicable as an instrument 
for detecting fraud in claims (such as insurance 
claims and expense account claims), payments 
(bank payments and payroll disbursements) 
and tax fraud (income declarations and expense 
claims). However, constraints of time confine 
the extant study to a consideration of accounting 
data problems amongst listed firms. Broader, 
and more detailed, studies of Benford’s Law 
should address these limitations.
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5 
Conclusion

Over the past decade, the frequency of 
accounting data error and fraud has increased 
in the international and domestic settings. 
The adverse economic effects of these data 
problems are considered to be material. For 
this reason, broad-based efforts are being made 
by the accounting and auditing professions and 
regulatory authorities to reduce the incidence 
of data error and fraud. However, even in a 
world where recording and reporting of data 
is potentially error free, elements of human 
behaviour (such as greed and deceit) will linger 
on, causing data error and fraud to persist. 
Moreover, the pace at which progress in 
accounting, auditing and regulatory advances 
are being made is slow. For these reasons, error 
and fraud detection instruments are likely to 
remain important instruments in the toolkits 
of auditors, shareholders, financial analysts, 
investment managers, private investors and other 
users of publicly reported accounting data, such 
as the revenue services. One such potential tool 
is Benford’s Law. However, whilst the potential 
effectiveness of the law has been established 
in the international literature, the domestic 
research environment is silent on the topic. 

Accordingly, this paper examines the potential 
effectiveness of Benford’s Law in the detection 
of data error and fraud in a South African 
setting. To examine the case, a simple regression 
tool is applied to data generated by a set of 34 
companies listed on the JSE. For the sake of 
the study, the test sample consists of data drawn 
from an equal number of so-called ‘errant’ and 
‘compliant’ companies. The results of the study 
are convincing, with the tool correctly failing 
all 17 of the ‘errant’ companies; three of the 
17 ‘compliant’ companies fail the test. Despite 
the incidence of false–positive results, the 
number is considered to be sufficiently small 
(11.2 percent of the full sample) to conclude 
that Benford’s Law has the capacity to serve 
as an effective indicator of data problems in 
accounting information. Moreover, under test 
conditions that are broader than the a priori 
conditions that were set, the success rate of 

the test climbs to 97.1 percent. Further, whilst 
the study has some limitations, none of these is 
considered to be sufficient to challenge the basic 
result: Benford’s Law has the potential to act as 
a highly effective detector of data error or fraud 
in accounting information. 

Endnotes

1 The author would like to thank Kerry Hadfield, 
Jim Harris, Warwick Lucas, Zane Spindler, Hunter 
Thyne and John Verster for useful contributions 
made to this paper; the author also acknowledges 
the helpful comments provided by two anonymous 
editors. However, the usual caveats apply. 

2 International examples embrace a diverse set 
of high-profile companies that includes Enron, 
WorldCom, Lucent, Adelphia, Ahold, Tyco, Intel, 
AOL-Time Warner and Global Crossing. As with 
the international environment, the South African 
business environment is scattered with examples 
of accounting frauds and irregularities. Some 
companies that have engaged such practices are 
listed in Section 3 of this paper.

3 D’Agostino and Williams (2002) identify 919 
cases of accounting restatements made by listed 
companies in the United States (US) between 
1 January 1997 and 30 June 2002. The study 
finds that losses in market capitalisation of 
US$100 billion occurred over the reference period. 
See also Floyd (2003), where comment is made on 
the growing incidence of accounting irregularities 
amongst listed firms.

4 It ought to be noted that the validity of Benford’s 
(1938) findings has been drawn into question by 
some researchers. For example, Scott and Fasli 
(2001: 5) note that Benford’s claim that the tested 
data sets conformed to his law rested entirely 
on the apparent similarity of the numbers. To 
be sure, Benford made no attempt to test the 
goodness of fit of the data. However, this has not 
led to the rejection of Benford’s Law. Rather, 
this shortcoming in Benford’s work has led to the 
refinement of our understanding of the types of 
data to which the law applies (Scott and Fasli, 
2001: 2). 

5 In his paper, Newcomb (1881) also determined the 
probability of the ten second digits, independent of 
the first digits (Brookes, 2002: 1). 

6 Hill (1995a) provides the exact formulas of the 
joint probability calculations. 

7 Pinkham (1961) provided a key development in the 
understanding of Benford’s Law by arguing that 



SAJEMS NS 9 (2006) No 3 353 

for any digit-distribution law to hold consistently, it 
would have to be scale invariant. Pinkham’s (1961) 
proof was later extended by Hill (1995b).

8 See Raimi (1976) for an early review of the 
literature and Scott and Fasli (2002) for a more 
recent literature survey. Three main groups of 
explanations emerge from these literature surveys. 
The first set argues that Benford’s Law is due to 
the numbering system that we use to count upward 
through the natural numbers. The second group of 
mathematical explanations is based on the notion 
of ‘randomness’ and the central limit theorem. 
The third approach to deriving Benford’s Law is 
termed ‘ontological’ because it asks: ‘What form 
would a digit law take if such a law existed?’ Scott 
and Fasli (2001: 3-5) and Brookes (2002) offer 
comment in this regard. That aside, of these three 
approaches, the second remains the most widely 
accepted plausible explanation for conformity of 
a data set to Benford’s Law (Scott and Fasli, 2001: 
15). 

9 It is noteworthy that the test statistics generated by 
Scott and Fasli (2001: 6) to interrogate Benford’s 
(1938) results conform to Benford’s Law. 

10 The companies identified by the author that are 
commonly suspected or believed to have published 
false or fraudulent data were supplied by a 
group of ten investment brokers and managers 
representing five different financial services firms 
who dealt in listed companies over the reference 
period. 

11 It is acknowledged that Ernst and Young’s 
‘Excellence in Financial Reporting’ is not intended 
by the authors to test or validate the authenticity 
(correctness) of the numbers reported in financial 
statements. Rather, in the absence of such a tool, 
the report is used here as a proxy for indicating the 
authenticity of reported accounting data. 

12 To illustrate this point, all ending digits in earnings 
per share figures are expected to be distributed 
with equal probability. Further, first digit counts on 
financial ratios, such as return on equity or return 
on assets are, in many instances, likely to conform 
more closely to a binary distribution than to the 
distribution implied by Benford’s Law. 

13 It is interesting to note that at the 10.0 per cent 
level of significance and allowing for true values 
of βi to lie within three standard deviations of the 
estimated βi values all of the 17 ‘errant’ companies 
continue to fail the test, whilst the number of false-
positive results declines to one. Thus, under this 
set of broader test criteria, the overall success rate 
of the test climbs to 97.1 per cent.
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