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Abstract 

Aim: To compare the synthesis, heating capability, extent of cellular internalisation and thermoablation 

capacity of two types of anisotropic gold nanoparticles (AuNPs): gold nanorods (NRs) and nanoprisms 

(NPrs). Methods: Gold nanoprisms (NPrs) and nanorods (NRs) with surface plasmon resonance (SPR) 

absorption bands in the near-infra-red (NIR) range were synthesised and their heating efficiency upon 

irradiation with a NIR-laser (1064 nm) was evaluated. Their cellular internalisation, location and toxicity 

were then assessed in the Vero cell line by TEM and ICP analysis and their ability to induce cell death 

upon laser irradiation was then assessed and compared. Results: poly(ethylene) glycol (PEG)-stabilised 

NPrs and NRs produced no cytotoxic effects and TEM studies showed that both types of nanoparticles are 

accumulated inside lysosomes, where NPrs displayed a far greater cellular internalisation. Although NRs 

possessed a more efficient heating capability during 10 min irradiation with a NIR laser, in vitro 

thermoablation studies clearly demonstrated that NPrs were more effective at inducing cell death. 

Conclusion: While both NRs and NPrs are each highly efficient heat mediators with the potential to 

induce cell death, the combined heating and cell internalisation properties of NPrs make them more 

appropriate for photothermal cell ablation studies. 
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1. Introduction 

The ability of nanomaterials to convert light energy into heat, the photothermal effect, is a characteristic 

and versatile property applicable to many biomedical applications including photothermal therapy [1-3], 

drug delivery [4–6], optoacoustic imaging [7, 8] and biosensing [9], among others [10]. The photothermal 

treatment of solid tumours by thermoablation has reached the stage of clinical trials [11]. 

 

Nanoparticle (NP)-mediated photothermal therapy (PTT) is a promising cancer treatment consisting of the 

use of heat to kill tumour cells (thermoablation) or weaken them, thereby making them more susceptible to 

other treatment(s), where the latter translates into a synergistic therapeutic improvement [12] allowing for 

a reduction in the effective dose of other aggressive therapies currently applied such as radio and 

chemotherapies [13,14]. The local (cellular) destructive effect of increased temperature corresponds to 

damage of cellular structures, mainly lysosomes, releasing their content and inducing cell death [15]. The 

two major causes, or mechanisms, of the synergistic effect are that increased oxygenation prevents 

hypoxic resistance [12]; and also that increased heat promotes the expression of ligands on the surface of 

cancer cells that transmit ‘eat me’ signals. These ligands act as cytokines and stress ligands, inducing 

dendritic cells and macrophages to produce pro-inflammatory cytokines thereby making tumour cells more 

susceptible to lysis by natural killer cells [16]. 

 

Nevertheless, delivering and controlling heat in vivo represents a significant challenge, primarily because 

to the best of our knowledge, many of the currently available devices are able to selectively destroy a 

deeply situated cancer without destroying the surrounding healthy tissues [12]. Fortunately, 

nanotechnology can offer a wide variety of NPs that can function as nanoheaters [17], for example 

superparamagnetic NPs [18,19] as well as various types of plasmonic NPs [12,14,19] that act as 

nanotransducers that can be activated remotely by radiation which does not (or minimally) interact with 

physiological tissue and fluids. 

 

From the extensive range of inorganic plasmonic NPs for biomedical applications [20,21], the 

physicochemical properties of gold nanoparticles (AuNPs) have given them a singular ubiquity in the field 
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of nanomedicine [12,14,22]. Their unique optical properties [12], biocompatibility [23,24], and ease of 

surface modification [19,25] means that there has been intense and prolonged interest in AuNPs for 

bioapplications [26]. Furthermore, the size-dependent physicochemical properties can be modified with 

ease using simple synthetic protocols [27,28], meaning that AuNPs can be viewed as a highly accessible 

modular library of nanomaterials for use in nanomedicine. 

 

The optical properties of nanomaterials are mainly governed by the surface plasmon effect that relates to 

coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a 

metal–dielectric interface [28]. Further, the optical properties of metallic structures are shown to be 

influenced primarily by the surface plasmon resonance (SPR) of conduction electrons, the frequency of 

which is determined by the nature of the metal, but is also sensitive to refractive index changes around the 

metal in combination with various other parameters, including the surrounding medium. Localised surface 

plasmon resonances (LSPRs) are electromagnetic waves confined on metallic nanostructures [29]. The 

LSPR bands of pseudo-spherical AuNPs (with a diameter < 100 nm) lie in the visible region of the 

electromagnetic spectrum and the main contribution to the position of the LSPR band is the diameter of 

the NPs [30]. Thus, when high symmetry metal NPs are enlarged, their optical properties change only 

slightly, yet when anisotropy is added to the NP - such as growth of nanorods or nanoprisms -the optical 

properties of the nanoparticles change dramatically and are highly size-dependent [31]. As a result, for 

anisotropic NPs the major contribution to the UV−vis spectrum corresponds to the in-plane dipolar mode 

lying in the Near-Infrared (NIR) range [22]. Conveniently, the absorption profile of biological structures and 

living organisms is significantly lower in the so-called NIR ‘biological window’. Between ca. 750-1200 nm 

the absorption of biological systems is highly decreased, especially for cytochromes (e.g. hemoglobin) that 

lie in the visible region [31]. Consequently, across this wavelength range, radiation can penetrate deep 

into tissue without causing significant detrimental effect to biological structures [8,15]. The LSPR band of 

anisotropic AuNPs can be fine-tuned over a large wavelength in the NIR range, making them extremely 

relevant for applications in photothermal therapy [14,15]. 
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Nevertheless, many of the methods to produce NIR-absorbing AuNPs rely on challenging syntheses with 

several complex steps and/or seed-mediated approaches involving the cationic surfactant 

cetyltrimethylammonium bromide (CTAB) [27,30]. This compound is said to be the most widely used and 

convenient surfactant for high-yielding syntheses of anisotropic particles such as gold nanorods (NRs) [30] 

and nanoprisms (NPrs) [22]. Both NRs and NPrs exhibit size-dependent optical properties and can be 

synthesised to exhibit strong absorption in the NIR range. Upon excitation by incident light, sharp local 

heating can be generated by the photothermal conversion of the absorbed light energy into local heating, 

rendering these particular anisotropic AuNPs as extremely efficient for NIR-induced heating [15,32]. One 

limiting factor is that the cationic surfactant CTAB is a well-known highly toxic component, and thus 

methods to exchange CTAB for other less cytotoxic surfactants or polymer coatings have been extensively 

reported [22,30,33]. The need for alternative methods to produce NIR-absorbing AuNPs without CTAB is 

of great importance, as recently highlighted by Murphy and co-workers, pioneering author of the seed-

mediated approach involving CTAB [34]. Our group reported a high-yielding synthesis of NPrs which 

avoids the use of this surfactant and is subsequently stabilised with poly(ethylene) glycol (PEG) [22]. 

These particles have since been used for optoacoustic imaging [7,8], photothermal therapy [8,35] and in 

thermometric biosensing [9]. 

Although many manuscripts concerning the biotechnological applications of nanomaterials are published 

each day the direct comparison of the physicochemical properties of materials types is almost unheard of 

in the literature, with in vitro and in vivo comparisons even more rare [3]. This means that when it comes to 

comparing two types of materials, researchers are more often than not forced to draw conclusions from 

separate studies where they encounter dramatic variations in the nanoparticle size, types, surface 

coatings, LSPR band, specific photothermal excitation conditions, cell culture environments, and so on. 

Herein we provide a direct comparison between PEG-stabilised NPrs and NRs with near identical LSPR 

bands; focussing specifically on quantifying their individual heating capability, cellular internalisation and 

ability to induce cell death in vitro upon NIR-laser irradiation. 

 

2. Materials & Methods 
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Hydrogen tetrachloroaurate (III) hydrate, sodium borohydride, sodium hydroxide, sodium thiosulfate 

(Na2S2O3) and hexadecyltrimethylammonium bromide (CTAB) were purchased from Sigma-Aldrich and 

used as received. Potassium iodide (KI) and Silver nitrate (AgNO3) were purchased from Panreac®. 

Hydroquinone was purchased from Alfa Aesar®. Complete Dulbeccos’s modified Eagle's medium 

(DMEMTM) and Phosphate Buffered Saline (PBS) and Dulbecco’s Phosphate Buffered Saline (DPBS) 

supplemented with Ca2+ and Mg2+ were purchased from Lonza® (Basel, Switzerland). DMEM was 

supplemented with 10 % foetal bovine serum (FBS), 5 % glutamine and 5 % penicillin/streptomycin prior 

usage on any cell culture. Sephadex® columns were purchased from GE Healthcare. Prior to use, all 

glassware was washed with aqua regia and rinsed thoroughly with Milli-Q water from Millipore Q-POD® 

system. All nanoparticles suspensions were sterilised with 0.22 μm MilliPore® filters prior addition to cell 

cultures. 

UV-Vis spectra were collected using a Cary 50 Probe® spectrophotometer from Varian. SEM images 

acquired using a field emission SEM Inspect F50 with an EDX system INCA PentaFETx3 (FEI Company, 

Eindhoven, The Netherlands) in an energy range between 0-30 keV. TEM images were collected using a 

FEI Tecnai T20 (FEI Europe, Eindhoven, Netherlands) working at 200 kV for nanoparticle characterization 

and at 80 kV for cell imaging. Nanoparticles were irradiated using a 3 W Laser Quantum Ventus laser 

(1064 nm) operating at a power output of 1100 mW, which illuminates the sample with a power per unit of 

area of ca. 3.3 W cm-2 at the sample position. Both bright-field, dark field and standard fluorescence 

images of the cells were obtained with a Nikon Eclipse Ti with FPS system equipped with a phase contrast 

system, dark field visualization system and 387±11/447±60 nm (DAPI) cube filter connected to NIS-

Elements Microscope Imaging Software. The heat produced by the NPs under NIR-radiation was 

monitored using software developed by The University of Zaragoza using a Fiber Optic Temperature 

Sensor TPT-62 (Fiso Technologies Inc.). For the cell viability assays, MTT (3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide) was purchased from InvitrogenTM and the optical density at 555 nm was 

recorded using a plate reader (ELx800TM, Biotek (Thermo Scientific Multiskan GO UV/Vis microplate 

spectrophotometer)). For ICP elemental analysis, samples were evaluated by ICP-AES and/or ICP-MS 

using Optima 8300 (Perkin Elmer®). 
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2.1 Synthesis of triangular gold nanoprisms (NPrs) 

NPrs with LSPR at ca. 1100 nm were prepared using a modification of a previously reported procedure 

[22] (Scheme 1a). Briefly, 60 μL 0.1 M KI solution was added to 220 mL 0.5 mM Na2S2O3 (aq). 110 mL of 

this dilution (KI + Na2S2O3) was added slowly to 200 mL 2 mM HAuCl4 (aq) over a period of ca. 30 sec and 

aged for 4 min undisturbed. A second addition of 110 mL of KI + Na2S2O3 was made and was once again 

allowed to stand for 4 min before one final addition of 70 mL Na2S2O3. The final solution was kept 

undisturbed for 60 min. UV-vis spectra revealed a strong absorbance peak at >1000 nm as well as a minor 

absorption band at ca. 550 nm. Subsequent electron microscopy analysis revealed these to correspond to 

triangular gold nanoprisms (NPrs) and pseudospherical (polyhedral) gold nanoparticles, respectively. The 

concentration of NPrs was calculated using their LSPR peak absorbance at ca. 1100 nm and applying a 

conversion factor (Ɛ) 29 mL mg-1 cm-1. Note: Ɛ was obtained from combined UV-vis spectroscopy/ICP 

analyses. 

 

PEGylation of NPrs 

NPrs were stabilised using heterobifunctional SH-PEG-COOH (5 kDa). The amount of PEG added to the 

nanoparticles was prepared in a 1:2 ratio (NPs:PEG) of the total weight of gold used in the synthesis. PEG 

was diluted in 1 mL Milli-Q and a determined volume of a 10 mg/mL stock solution of NaBH4 was then 

added to reach 1:1 molar ratio of PEG:NaBH4. The entire volume of the PEG-NaBH4 solution was 

completely added to NPrs, and adjusted to pH 12 with 2 M NaOH under mild mixing. Finally, the solution 

was sonicated for 1 h at 60 ºC, and then centrifuged at 4,400 G for 15 min at room temperature to 

precipitate the NPrs and separate them from excess PEG and unreacted starting materials. Pellets were 

resuspended in Milli-Q water and centrifuged three times at 4,400 G for 9 min at room temperature. These 

final samples were diluted to one quarter of their original volume and aliquoted in 50 mL centrifuge tubes 

and allowed to rest at room temperature for several weeks. After this time the larger, heavier NPrs 

sediment at the bottom of the centrifuge tubes and the upper layer of the solution (containing the smaller, 

lighter polyhedral gold particles) could be removed. 

 

2.2 Synthesis of gold nanorods (NRs) 
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A modified procedure, based on a previously reported seeded-mediated growth method [41], was used to 

prepare high aspect ratio gold nanorods, with LSPR bands higher than 1000 nm (Scheme 1b). 

Seed solution: To prepare the seed solution a stock of 1 M NaBH4 (aq) dissolved in 1 M NaOH (aq) was 

prepared and diluted 100 times in Milli-Q water, giving a final concentration of 0.01 M NaBH4 in 0.01 M 

NaOH. Then, 5 mL 1 mM HAuCl4 (aq) and 5 mL 0.2 M CTAB (aq) were mixed together. CTAB was 

dissolved to homogeneity in a water bath at 37 ºC. 460 μL of the previously prepared NaBH4/NaOH stock 

solution was then added, resulting in a light-brown mixture within seconds, evidence of the presence of 

Au0 seeds. This brownish mixture was allowed to stand for no more than a few minutes before use in the 

growth solution. 

Growth solution: The growth solution was prepared by mixing 50 mL 1 mM HAuCl4 and 50 mL 0.2 M 

CTAB solution, followed by the addition of 700 μL 0.1 M AgNO3. Then 1 mL 0.5 M hydroquinone was 

added and the resulting mixture was stirred until the solution became clear. Finally, 1.6 mL seed solution 

was added. The growth reaction mixture was aged for 5 hours at 26 ºC in a water bath. 

 

Washing and PEGylation of NRs 

Several centrifugation-washing steps were required after each reaction to clean NRs from excess 

surfactant. In order to maintain the colloidal stability while obtaining PEG-stabilised NRs, various 

PEGylation steps were performed in between washing steps. Firstly, 5 mg of heterobifunctional HS-PEG-

COOH (5 kDa) diluted in 1 mL Milli-Q water were added to 37 µL of a freshly made 1 mg/mL NaBH4 (aq.) 

and left undisturbed for several minutes at room temperature. Then, the growth solution was centrifuged at 

15,000 G, 15 min, 30 ºC, and pellets were resuspended in 100 mL Milli-Q water, followed by the addition 

of 1 mL of previously prepared PEG solution. Finally, the pH was raised by adding 100 µL of 1 M NaOH to 

the resultant solution (obtaining a pH value of 10.5 - 11) and the sample was aged overnight (20 h) at 

room temperature, trying to avoid that the temperature drops below 25 ºC to avoid CTAB crystallization. 

The next day, an identical PEGylation step was performed. The sample was centrifuged (15,000 G, 15 

min, 30 ºC) followed by the resuspension of the pellets in 100 mL Milli-Q water to remove PEG excess and 

remaining CTAB from nanoparticles, and 1 mL of previously prepared PEG solution was added. The pH 

was raised again (obtaining a pH value of 10.5 - 11). The resulting mixture was then sonicated for 15 min 
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at 60 ºC, followed by another centrifugation at the same conditions to remove excess PEG. Pellets were 

resuspended in 100 mL Milli-Q water and one last centrifugation was performed at the same conditions to 

concentrate the sample, which pellets were resuspended in a final volume of 15 mL in Milli-Q water. 

Samples were stored at room temperature and the concentration of nanorods was obtained applying a 

conversion factor of (Ɛ) 74 mL mg-1 cm-1 at their LSPR (1044 nm). Note: Ɛ was obtained from combined 

UV-vis spectroscopy/ICP analyses. 

 

2.3 Characterisation of nanoparticles 

All the nanostructures used in these studies were characterised by SEM and TEM imaging, UV-Vis 

spectroscopy and ICP. The heating power of the nanoparticles was measured, to obtain heating curves for 

each type of nanoparticle. 

 

Heating curves 

The heating capability was measured applying a homogeneous non-dispersed and fully collimated laser 

beam adjusted to the bottom area of one single well on each irradiation (96-well-plates). To avoid pre-

heating adjacent samples by both diffraction of the beam and/or by heat diffusion, one empty well was 

located in between samples. All samples were irradiated at 1100 mW for 10 min and reproduced in 

triplicates to obtain mean values and standard deviation errors. The temperature probe was washed and 

cooled down in Milli-Q water before collecting new data. Note that, prior to these measurements, the NPs 

were incubated in DMEM medium for 24 hours (37 ºC, 5 % CO2) in order to simulate cell culture 

conditions, and to provide additional information about possible changes in their size and/or shape that 

may affect their optical properties, stability and so forth. Conformational changes were monitored using 

UV-Vis and SEM imaging during the process. 

Each concentrated stock of NPs was mixed with DMEM to a final volume of 300 µL per well, giving a final 

concentration of ~20, 100, 120, and 150 µg/mL for NPrs, and of ~20 and 100 µg/mL for NRs. To be able 

to correlate the heating curves of these experiments to the conditions used for cell irradiation, the final 

volume contained no more than 10 % water. These 300 µL were loaded into each well. Blank was 

performed irradiating 300 µL of DMEM. Plates were incubated 24 h under culture conditions (37 ºC, 5 % 
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CO2). All measurements were performed under the working laser configuration described previously, 

keeping the plate at 37 ºC inside a plate heater. The solution temperature was registered every 5 seconds 

during the irradiation for a total of 10 min.  

These heating curves were also used to calculate the heating capacity and efficiency of both nanoparticles 

at the studied concentrations. For this purpose, a linear regression of the heating curves during the first 30 

seconds of irradiation was calculated in order to obtain the temperature increase per second. The specific 

heat and density values of the DMEM were approximated to those of water and the heat needed to 

produce this temperature increase in each well was determined. The heating efficiency was calculated 

using these heat values and the laser power of 1100 mW.  

 

2.4 Vero cell line internalisation studies 

Optical microscopy internalization studies 

Vero cell line (kidney epithelial cells from African green monkey) were acquired from the American Type 

Culture Collection (ATCC: CCL-81). Cells were cultured at 37 ºC in a 5 % CO2 atmosphere in Dulbecco's 

modified Eagle's medium (DMEM) supplemented with 10 % foetal bovine serum (FBS), 2 mM glutamine 

and 100U /mL penicillin/streptomycin. 

For the preparation of the samples of fixed cells for Dark Field microscopy visualization, 5x104 Vero 

cells/well were seeded on a glass coverslide placed in a 24-multiwell plate and grown overnight under 

standard cell culture conditions (37 ºC, 5 % CO2). The following day, nanoparticles in DMEM at the 

optimised concentrations (NR20, NR100 and NPr100, see results and discussion section) were added to 

each well and incubated for 24 hours (Vf H2O <10 %). Cells were washed four times with DPBS, fixed in 4 

% paraformaldehyde for 20 minutes at 4 ºC, washed twice with DPBS and incubated for 10 minutes with 

DAPI for nuclei labelling. The coverslips were mounted on glass microscope slides using 6 μL of Prolong® 

Diamond Antifade Mountant from Life Technologies®.  

 

ICP internalisation studies 

5x104 Vero cells were seeded in a 24-multiwell plate and grown overnight under standard cell culture 

conditions (37 ºC, 5 % CO2). Afterwards, the medium was removed and nanoparticles in DMEM at 
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selected concentrations were added: NR20, NR100 and NPr100 (see results and discussion section). The 

cells were left for 24 h incubating with nanoparticles to allow their internalization. In the case of the control 

cell samples (cells without nanoparticles for cell counting and for blank subtraction) the medium was 

replaced with fresh one. Following, cells were washed thoroughly with PBS and trypsinized. Afterwards 

cells were transferred to Eppendorf vials for acid digestion. Control cells were counted using Trypan Blue. 

To digest the samples, cell pellets (of blank cells, cells with NR20, NR100 and NPr100) together with 100 

% sample of NR20, NR100 and NPr100 were treated with 100 µL of Piranha solution (3:1 sulfuric acid, 96 

% : hydrogen peroxide, 33 %) for 15 min at room temperature followed by 300 µL aqua regia (1 : 3 nitric, 

65 % : hydrochloric acid, 37 %) for 2 h at room temperature. Subsequently the samples were incubated at 

60 ºC for 15 min and diluted with Milli-Q water to 20 mL. All samples were performed in duplicate and 

evaluated by ICP-AES and/or ICP-MS.  

 

Intracellular location of NPs 

To determine the intracellular localization of the AuNPs, cells were analysed via TEM. 2x104 Vero cells 

were seeded in an 8-well chamberslide (permanox, Nunc) and incubated 24 h under standard cell culture 

conditions. Thereafter, cells were incubated for 24 h with the optimised concentration of NRs and NPrs (in 

this case NR100 and NPr100, see results and discussion section). Then, cells were washed with PBS to 

remove free nanoparticles and fixed with 2.5 % glutaraldehyde in 0.1 M phosphate buffer (PB) for 1 h at 4 

ºC. Afterwards, the cells were washed four times with 0.1 M PB to remove glutaraldehyde. Samples were 

then post-fixed with 2 % osmium tetroxide, rinsed, dehydrated and embebed in Durcupan resin (Fluka, 

Sigma-Aldrich, St. Louis, USA). 1.5 µm semi-thin sections were cut with an Ultracut UC-6 (Leica, 

Heidelberg, Germany) and stained with 1 % toluidine blue. Finally, ultra-thin sections (0.08 μm) were cut 

with the microtome, stained with lead citrate (Reynolds solution) and examined under a 200 KeV FEI 

Tecnai T20 (FEI Europe, Eindhoven, Netherlands) operating at 80 KeV. 

 

2.5 Irradiation of Vero cells with NIR-laser 

Thermoablation 
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Vero cells were seeded at a density of 5x103 cells per well in a 96-multiwell plate and incubated under cell 

culture standard conditions. After 24 hours the medium was replaced for fresh DMEM with the desired 

concentrations of each nanoparticle (NR20, NR100 and NPr100, see results and discussion section) and 

incubated for another 24 hours under the same conditions (Vf H2O <10 %). Thereafter, the medium was 

removed, the cells were washed twice with DPBS to remove any excess of non-internalized particles or 

dead cells and a fresh phenol red-free DMEM was added. Plates were irradiated under working laser 

configuration for 10 min, with temperature control set up to 37 ºC. Samples were performed in triplicate. 

Non-irradiated samples of cells with and without NPs, together with irradiated cells (without NPs) were 

used as controls. The heat produced by the NPs was registered after 10 min laser irradiation with a fibre 

optic thermometer. The morphological changes of the cells were carefully monitored using phase-contrast 

microscopy at several intervals post-irradiation on a Nikon Eclipse Ti microscope and representative 

images were collected five hours post-irradiation. 

 

MTT cell viability assays 

In a separate experiment, the conditions were reproduced in order to quantify the viability of the cells by 

MTT assay. The cells were irradiated with the NIR laser at the same conditions described previously and 

incubated for 5 hours under cell culture conditions. Then the medium was removed and the cells were 

incubated with 200 μL of DMEM containing 10 μL of 5 mg/mL MTT in the dark under culture conditions for 

105 minutes. During this time, a yellow tetrazole MTT dye is converted into violet formazan crystals by the 

NAD(P)H-dependent succinate dehydrogenase, a mitochondrial enzyme in living cells. Finally, the plate 

was centrifuged at 2,500 rpm for 30 minutes, the supernatant was removed and the formazan crystals 

were solubilised with 100 μL of dimethyl sulfoxide (DMSO). After a proper resuspension of the crystals, the 

optical density at 555 nm was recorded using a plate reader. 

 

3. Results & Discussion 

3.1 Synthesis of nanoparticles 

NPrs with an LSPR band at ca. 1100 nm (as close as possible to the wavelength of the NIR laser, 1064 

nm) were synthesised using an adaptation of a previously reported procedure [22]. Sodium thiosulfate 

Comentario [JdlF1]: Cuantas? 

Comentario [JdlF2]: Poner todo en 
g 

Comentario [JdlF3]: Poner la 
fórmula de como se caluula 
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Na2S2O3 (aq) was used as a mild reducing agent for gold salt chlorauric acid (HAuCl4). The principal 

modifications of this synthetic procedure were i) the addition of potassium iodide, KI (12.2 µM final 

concentration) and ii) that the Au3+ to Au0 reduction was performed in three time-lapsed steps, as opposed 

to two steps, allowing NPrs “seeds” to form and grow (Scheme 1a). The synthesis of NRs with high aspect 

ratio was performed following a seed-mediated growth process thoroughly described in the literature 

[31,41,43] (Scheme 1b). After several unsuccessful attempts to synthesise NRs in high yield with LSPR 

band >1000 nm, we identified a highly reproducible procedure and amended it to suit our requirements 

[41]. For our purposes, this protocol was adapted by some minor modifications and scaled-up (x10). 

Notably, the most significant of these alterations to the published synthetic procedure was that the reaction 

(the ‘growth solution’) was carried out at 26 ºC in a water bath to avoid CTAB crystallisation. The reaction 

was incubated in the water bath for five hours, until the LSPR wavelength reached a maximum [41,42] of 

ca. 1080 nm. 

 

Scheme 1 – Step-by-step representation of the synthesis of the nanoparticles; a) synthesis of gold 

nanoprisms (NPrs); b) synthesis of gold nanorods (NRs). 

 

To further increase the colloidal stability of the nanoparticles, all the reaction products were derivatised 

with heterobifunctional polyethylene glycol (HS-PEG-COOH, MW = 5000 g/mol (5 kDa)) [36]. An excess of 

the polymer was added to the NPs solution to saturate the nanoparticle surface and ensure fully stabilised 
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nanostructures [22]. To avoid the formation of S-S bonds between individual PEG molecules (PEG 

dimers) sodium borohydride, NaBH4, was required as a reducing agent at a molar ratio of 1:1 with PEG at 

pH 12.  

 

The PEG stabilisation of the NPrs was carried out under sonication of the mixture at 60 ºC for one hour to 

speed-up the process, and as an alternative to the reported over-night incubation under mild mixing [22]. A 

final centrifugation step was performed in order to discard excess of reagents; thereafter the samples were 

allowed to rest at room temperature for several weeks to sediment and separate the heavier NPrs from 

smaller pseudo-spheres and other pollutants remain in the upper phase. 

 

On the other hand, surfactants (CTAB) on the surface of NRs exist in a dynamic equilibrium with the 

media, attached by non-covalent mostly hydrophobic interactions [38,41]. By removing as much 

supernatant as possible at these steps it is possible to change that dynamic balance in our favour, 

decreasing the amount of CTAB on NR surface that helps PEG to successfully reach the gold surface and 

form a conjugated stronger bond thanks to its thiol groups, while at the same time keeping the NRs stable 

in a CTAB-depleted medium. Taking into account that increasing centrifugation velocity may lead samples 

to undergo non-desirable shift in their longitudinal plasmonic wavelengths and aggregation, the only way 

to carry out a well performed washing step was to increase the centrifugation times. An optimised 

washing-stabilisation protocol was performed by adding two partial PEG stabilisations between each of the 

last centrifugation steps, the last of which is thereafter sonicated in order to enhance the PEGylation 

process, giving a LSPR peak at 1044 nm at the end of the PEGylation process. 

 

3.2 Characterisation of nanoparticles 

Both types of nanoparticles were characterised by ICP, UV-Vis, TEM and SEM (Figures 1 and S1). The 

UV-Vis spectra of both types of NP showed their LSPR bands to be well inside the NIR range (1044 nm 

for NR@PEG and 1100 nm for NPr@PEG) and with sufficient overlap with the NIR laser (Figure 1). 

Correlating the LSPR absorbance obtained by UV-Vis spectroscopy with the Au concentration obtained 

from ICP analysis it was possible to obtain a conversion factor (Ɛ) of 29 mL mg-1 cm-1 for NPrs and 74 mL 
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mg-1 cm-1 for NRs for calculating weight concentration (mg/mL) of gold NPs in each sample. The 

respective yields for each synthesis were 71 % for the NPrs and 80 % in the case of NRs (Figure 1c). 

Both types of NPs also showed a strong absorbance peak at ~530 nm corresponding to a combination of 

NPs transversal absorbance and pseudo-spherical polyhedral gold nanoparticles. Comprehensive TEM 

and SEM analyses were used to calculate the surface area of the particles. NPrs (considered as triangular 

prisms with 173 nm side and 9 nm constant thickness [22]) possess a surface area of 15.0 m2/g; while 

NRs (considered as perfect cylinders of 11 nm diameter and 76 nm length, Figure 1c) have a surface 

area of 23.2 m2/g. 

 

 

Figure 1 – UV-Vis spectroscopy, TEM images and characteristic size and surface area of the 

particles. a) NRs and b) NPrs. Red dotted lines represent the wavelength of the NIR laser (1064 nm). 

Both nanoparticles possessed a dominant LSPR band in the NIR range overlapping with the wavelength 

of the laser, 1064 nm. c) From left to right: reaction yield; length, width and surface area of each type of 

nanoparticle.  

TEM: Transmission Electron Microscopy; NRs: Gold Nanorods; NPrs: Gold Nanoprisms; NIR: Near Infra-

Red.  
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3.3 Optimisation of heating conditions 

Several heating trials were performed to evaluate the heating capacity of both types of AuNPs upon laser 

irradiation. The NRs were found to be far more effective light-to-heat transducers, presumably owing to 

their higher specific surface area. Thus, an increasing concentration of NPrs was tested (from ~20 to 150 

µg/mL) in order to identify the concentration of NPrs that showed the same heating capacity as NRs. For 

these studies, two standard concentrations of NRs were used (ca. 20 and 100 µg/mL, herein referred to 

as NR20 and NR100, respectively) (Figure 2). The results revealed a linear relation of initial heating 

power with concentration, for both the NRs and NPrs (Figure S2). In these initial studies, NPr100 (100 

µg/mL) heated at a rate of 0.30 ºC/s and gave a final temperature of 87.9±7.8 ºC after 10 min irradiation, 

which was similar to NR20 (0.25 ºC/s and 83.6±6.9 ºC) (Figure 2). These concentration values (NR20 and 

NPr100) for each nanoparticle type were selected for further analysis as both revealed similar heating 

capabilities, with only minor deviation.  

 

These optimum concentrations were then also compared with the heating of NR100 (ca. 100 mg/mL) in 

order to have a direct comparison of the effect with respect to the weight of gold for each nanoparticle 

type. NR100 displayed the greatest heating effect, characterised by an initial rate of 0.40 ºC/s and a final 

irradiation temperature of 93.3±6.3 ºC, as well as the highest heating efficiency, transforming 45.3 % of 

the laser light intensity (1100 mW) at the plate into heat to increase the temperature of the sample with a 

power of 498 mW. This higher heating capacity of the NRs correlates with the higher absorbance intensity 

of the LSPR peak observed by UV-Vis. At the other end of the scale, NPr20 showed an initial rise in 

temperature of 0.17 ºC/s and reached 68.3±4.5 ºC after 10 min. The intrinsic heating of the DMEM control 

should be noted (0.06 ºC/s and 42.2±3.3 ºC) and that such effects are often observed in photothermal 

therapy applications [39]. 
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Figure 2 – Characterisation of the heating capacity. The heating ramps (a) represent the rise in 

temperature registered by each type of nanoparticle during the 10 min irradiation period. The table (b) 

represents, from left to right: heating efficiency as the representation of the slope of the curve during the 

first 30 seconds of irradiation, the % of laser intensity that is effectively converted into heat, and the final 

temperature reached after 10 min laser irradiation. 

 

Thus, NR20 and NPr100 (concentrations 20 and 100 µg/mL, respectively) have been selected for further 

cellular studies as they displayed approximately the same overall heating capacities after 10 minutes 

irradiation. In addition to basing our observations on the heating effect of the particles we also wanted to 

have a direct comparison for the concentration of Au, therefore NR100 (100 µg/mL) was also included in 

the following study since they possess the same concentration of Au as NPr100.   

 

UV-Vis spectroscopy and SEM imaging before and after the 10-min period of irradiation period was used 

to examine the stability of the NPrs and NRs. Neither the NP morphology nor the LSPR bands were 

affected by the laser irradiation (Figure S3). The apparent increase in the intensity of the LSPR band after 

irradiation is caused by the evaporation of water which leads to a subsequent increase of the effective 

concentration of the particles in solution. Some studies suggest that laser irradiation can change and 

deform NP shape altering the physicochemical properties of the material [40,42]. Our results demonstrate 
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that for the conditions tested herein, this is not the case and the NPs retain their shape, LSPR properties 

and colloidal stability. 

 

At this point in our analysis, the higher yield, surface area and heating efficiency all greatly favour the NRs 

over the NPrs as photothermal agents; but to delve deeper into this comparison, in vitro analyses 

comparing these particles were necessary. 

 

3.4 Cellular internalisation studies 

Several cellular internalisation studies were performed (bright field, dark field, TEM microscopy and ICP 

analysis) using the selected concentrations of NPs (NR20, NR100 and NPr100). 

Since AuNPs produce insufficient contrast to be visualized by bright field microscopy alone, the precise 

location of the NPs within the cells was obtained using resin-bound cells that were cut with a microtome 

into ultra-thin slices and stained for electron microscopy investigations. Vero cells were incubated for 24 h 

with the two samples that contained the same concentration of Au, NR100 and NPr100, prior being fixed 

with glutaraldehyde, post-fixed with osmium tetroxide and embedded in Durcupan resin. Semi-thin 1.5 μm 

sections were cut into finely into ultra-thin sections of <0.08 μm. Samples were stained lightly with toluidine 

blue for TEM imaging. A reference Vero cell sample was left untreated as a control. Both NRs and NPrs 

accumulated inside vesicles and none appeared attached to the plasma membrane, free in the cytoplasm 

or in the nucleus (Figure 3). With this technique, the higher level of internalisation of NPrs than of NRs 

was clearly evident, but not quantifiable. 
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Figure 3 – Subcellular localisation of nanoparticles. TEM imaging of ultra-thin slices of fixed cells 

following 24 hours incubation with NRs or NPrs. AuNPs were distributed inside vesicles; no AuNPs were 

observed inside the nucleus or attached to the cytoplasmic membrane. 

TEM: Transmission Electron Microscopy 

 

From these images we postulated that there was a greater internalisation of NPr than NRs as there were 

more vesicles containing NPr, but to gain a better understanding of this we used ICP analysis to quantify 

the internalisation of Au inside the cells. In a separate experiment, after 24 h incubation of Vero cells with 

NR20, NR100 and NPr100 concentrations, the amount of internalised gold in the samples was measured 

by ICP analysis. The data showed that while the concentration of NR100 internalized in Vero cells was 

equal to 0.077 pg of Au/cell, the concentration of internalised NPr100 reached 28.73 pg Au/cell, i.e. >370 

times higher than for NR100. The extremely low concentration of NR20 inside cells equalled 0.021 pg of 

Au/cell, which was commensurate with particle-free controls, i.e. the internalisation was considered to be 

essentially non-existent. 
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Finally, the AuNP internalisation was analysed by dark field microscopy/fluorescence (DAPI) (Figure S4). 

As ICP failed to show any significant NR20 internalisation we opted to assess only the highest NP 

concentrations (100 mg/mL), just as for the TEM analysis.  NR100 showed no observable internalisation, 

but NPr100 was clearly visible using dark field microscopy. This is probably caused by a combination of 

the higher contrast capability of NPrs coupled with the larger internalisation, thereby making dark field 

microscopy a practical and straightforward technique to assess the cellular internalization of NPrs, without 

being obliged to resort to other more complex and costly analytical techniques, such as TEM imaging of 

ultrathin sections or ICP analysis. 

 

3.5 Irradiation of Vero cells with NIR-laser 

Following determination and quantification of the intracellular location of the NRs and NPrs their heating 

effect in vitro was characterised. Vero cells were incubated with the previously studied concentrations of 

NR100 and NPr100 in 96-well plates for 24 hours and, only after removing the non-internalised NPs, the 

cells were irradiated for 10 minutes under the established working laser configuration. The thermoablation 

capacity of the concentration of NR20 was not analysed since ICP analyses were unable to detect a 

sufficient amount of gold to distinguish NR20 from the blank background, thus resorting to testing NR100. 

The laser intensity (3.3 W/cm2) was kept intentionally low during both the heating characterisation and 

throughout the cell irradiation process in order to stay in the range where cell death is mainly governed by 

an apoptotic process, according to recent studies [15]. A fibre optic thermometer was used to measure the 

temperature rise upon laser irradiation and cell death was monitored by phase-contrast microscopy post-

irradiation to determine the optimal point for cell viability assays (Figure 4b). Consequently, at five hours 

post-irradiation, MTT cell viability assays were performed (Figure 4a).  The results derived from the MTT 

assays shown that, although NR100 and NPr100 concentrations were essentially non-toxic to the Vero cell 

line before irradiation, applying the laser to cells with NR100 reduced viability to 86±3 %; while in the case 

of NPr100 viability was reduced to 44±1 %. Importantly, the irradiated particle-free control cell viability 

stood at 92±5 %, revealing that the laser itself is not able of inducing significant cell death under the 

studied conditions. Phase-contrast microscopy of the cells at five-hours post-irradiation aptly illustrate how 

the cells incubated with NPr100 are apoptotic/necrotic; whereas cells treated with NR100 show 
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morphology commensurate with the control cells (Figure 4b). Analysis of final cell culture temperatures 

following 10 minutes irradiation showed that the net temperature rises for the same NP concentrations 

(NPr100 and NR100), one can observe how NPr100 reached 47 ºC while NR100 reached 45 ºC. It is 

important to note that the global temperature of the Vero cells without particles reached 43 ºC indicating 

that cultured cells do display some interaction with the 1064 nm laser beam. 

 

The in vitro studies show that only NPr100 was capable of inducing cell death upon irradiation, and at the 

same time raises the global temperature of the medium higher than NR100. These results are consistent 

with the higher internalisation levels of the NPrs inside the cells observed in the ICP analyses. Although 

NRs provide a more efficient light-to-heat conversion, we have observes poor cellular internalisation, 

making them incapable of inducing cell death under the conditions employed in this study. It should be 

noted that many studies on AuNRs for photothermal therapy applications often employ higher 

concentrations of AuNRs and long irradiation times [39], whereas we routinely aim to employ the minimum 

required concentration to induce cell death [15,43]. Furthermore, AuNRs are frequently used as platforms 

for multi-therapeutic modalities so have vastly more complex surface functionalities than our simple PEG-

stabilised NRs, for example mesoporous silica shell around the NR [44]. Thus the combination of low 

particle concentrations with a simple passivized polymer surface may account for the poor cellular 

internalisation and subsequent low cytotoxicity of the NRs under laser irradiation. 
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Figure 4 – Cell viability and morphology following thermoablation studies. (a) MTT assays for cell 

toxicity and viability of NR100 and NPr100 (100 µg/mL) of irradiated and non-irradiated cell samples. (b) 

Cell morphology changes post-irradiation: cells incubated with NR100 and NPr100 were observed by 

phase-contrast microscopy for five hours post-irradiation; all scale bars correspond to a distance of 100 

µm; neither irradiation of nanoparticle-free control nor NR20 (~20 µg/mL) revealed changes in cell 
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morphology; however, cells incubated with NPr100 (~100 µg/mL) began showing significant morphological 

changes from two hours post-irradiation and peaked at five hours. 

 

4. Conclusions 

In summary, our group is interested in biomedical applications of AuNPs involving the exploitation of their 

efficient light-to-heat transduction upon excitation of their LSPR band.  Here we have demonstrated how 

two types of anisotropic AuNPs can be synthesised and adapted to our needs. The LSPR bands of gold 

nanoprisms (NPrs) and nanorods (NRs) were adjusted to absorb close to the wavelength of the NIR laser 

(1064 nm) so that these particles could be evaluated and compared as photothermal agents. From the 

evaluation of the nanoparticles to serve as light-to-heat transducers, both types of nanoparticles revealed 

excellent light-to-heat conversion. Cellular internalisation studies with Vero cell line revealed that the NPs 

were essentially non-toxic at the tested concentrations and were located inside cytoplasmic vesicles. 

 

Although both NPrs and NRs showed a high heating efficiency, NRs stand out as being more efficient, 

largely due to their higher specific surface area. However, ICP and TEM studies led us to conclude that 

NPrs internalise more efficiently than NRs. The effect of the increased internalisation means that for NIR-

irradiation of cells incubated with these nanoparticles at the same weight concentration, only the NPrs 

possessed capability to induce cell death, under the conditions tested herein. These observations, in 

conjunction with the less practical and time-consuming multi-step synthetic method required to obtain a 

sufficient amount of NRs for reliable cell studies, lead us to conclude that NPrs are more appropriate 

candidates for in vitro cellular thermoablation. 

 

Future perspective 

In the first instance, the size and shape of photothermal materials are the primary drivers of their unique 

properties. Nevertheless, the individual light-to-heat conversion efficiencies and cellular internalization 

capabilities of each type of particle significantly broadens potential downstream application, since these 

processes ultimately govern the biological application of nanoparticles. Our research has led us to begin to 
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focus with more intent on understanding the subcellular processes at play during the use of nanoparticles 

as photothermal agents [15,43,44].  

 

A wide variety of methodologies are published describing various types of anisotropic AuNPs that would 

be applied in optical hyperthermia therapies for the fight against cancer, above many other potential 

applications. As a result of the vast range of shapes, sizes, physicochemical properties, surface 

functionalities and other characteristics of these NPs, it is important to carry out comprehensive 

comparative studies of to determine which type of particle best meets a specific purpose. 

 

Future studies include gaining a deeper understanding of the mechanisms by which each type of NP is 

internalised by the cells (caveolae, clathrin-mediated…) [45]. The kinetics of cellular internalisation using a 

combination of ICP, confocal and dark field microscopies will provide additional information on the cellular 

internalisation mechanisms. In this way, we might understand the cause by which NPrs are being 

internalised in higher amounts than NRs. We are currently investigating gene expression as a result of the 

photothermal therapy treatment (hsp70, apoptosis-related genes…) to provide guidelines for which 

particles are more lethal to specific types of cancer and are performing in vivo cytotoxicity screening and 

nanoparticle fate in mice. 

 

Summary points  

Synthesis and characterisation of nanoparticles 

- Non-toxic PEG-covered rod-shaped and prism-shaped gold nanoparticles were synthesised to 

possess LSPR bands in the NIR range, ca.1064 nm. 

- Neither NRs nor NPrs suffered from morphological changes under the working laser 

configuration, these particles are entirely stable under our experimental conditions. 

- Although both nanoparticles acted as efficient light-to-heat transducers, a lower concentration of 

NRs (by weight, µg/mL) is required to produce the same amount of heat as NPrs. 

Cellular internalisation 
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- It was not possible to detect any type of particle by phase contrast microscopy. However, NPrs 

can easily be detected by dark field microscopy, which makes this method a quick and practical 

means of detecting NPrs in cells or tissues. 

- TEM images of ultra-thin slices of NPs internalised within cells showed that both types of NP 

were located inside cytoplasmic vesicles, and there were no traces of particles attached to either 

the cell membrane or the nucleus. 

- ICP analysis was used to quantify the cellular internalisation these nanoparticles, revealing how 

NPrs internalised more effectively (>370 times more) than NRs in the Vero cell-line. 

Cell death by thermoablation 

- The laser irradiation conditions had no detrimental effect on cells in the absence of NPs. 

- The dose of NPs applied was harmless to the cells before irradiation. 

- Thermoablation studies proved that NPrs were more effective in intracellular heat production at a 

given concentration of both nanoparticles (~100 µg/mL). 

- Only NPrs were able to induce cell death under the studied conditions. 

- The cellular internalisation capacity of the NPs is therefore a key factor for any subsequent 

photothermal application. 
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Figure S1 – Nanoparticle morphology. a) Transmission Electron Microscopy (TEM) and b) Scanning 

Electron Microscopy (SEM) of gold nanorods (NRs) and nanoprisms (NPrs). 
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Figure S2 – Characterization of the heating capability of the nanoparticles. a) temperature rise of 

DMEM + different NN or NR concentrations during the 10 min laser irradiation period; b) the final 

temperature of the cell culture medium recorded after 10 min irradiation c) plot of the nanoparticle heating 

efficiency during the most linear rise in temperature (first 30 seconds); d) tabulated heating property data. 
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Figure S3 – Nanoparticle stability studies. SEM imaging and UV-Vis spectroscopy of the nanoparticles 

before and after irradiation of the laser for 10 min operating at 1.1 W. The conditions of irradiation affected 

neither the morphology nor the UV-vis spectra. The increase in the absorbance showed in the UV-Vis is 

caused by a decrease of the volume of the sample due to evaporation through the process.  

SEM: Scanning Electron Microscopy. 

 

Figure S4 – Optical imaging of the cellular internalisation of AuNPs. (a) Bright-field phase contrast 

images and (b) Dark-field images showing the nucleus stained with DAPI (blue), where white contrast 

areas correspond to AuNPs. This figure illustrates how NPrs were homogeneously distributed inside the 

cytoplasm, were not attached to the cell membrane and did not form extended aggregated structures, 

while NRs were unable to be detected by dark field. 


