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Impulse-induced optimum signal amplification in scale-free networks
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Optimizing information transmission across a network is an essential task for controlling and manipulating
generic information-processing systems. Here, we show how topological amplification effects in scale-free
networks of signaling devices are optimally enhanced when the impulse transmitted by periodic external signals
(time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a
star-like network of overdamped bistable systems subjected to generic zero-mean periodic signals and confirmed
numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of
increasing values of the signal’s impulse is due to a correlative increase of the energy transmitted by the periodic
signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism.
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I. INTRODUCTION

Today, there is an emerging “network perspective” ap-
proach to studying complex systems reflecting the ubiquitous
presence of networks in nature and in human societies. In
particular, there has been considerable interest in a class of
networks known as scale-free networks due to their lack
of a characteristic size [1–4]. They have the property that
the degrees κ of the node follow a scale-free power-law
distribution (P (κ) ∼ κ−γ ,γ ∈ [2,3]). Examples are diverse
metabolic and cellular networks, computer networks such as
the World Wide Web, and some social examples such as col-
laboration networks. Besides topological investigations [5,6],
current interest in these (and other) networks has extended
to their controllability [7,8], i.e., to the characterization and
control of the dynamical properties of processes occurring
in them, such as transport [9], synchronization of individual
dynamical behavior occurring at a network’s vertices [10,11],
the role of quenched spatial disorder in the optimal path
problem in weighted networks [12], and dynamic pattern
evolution [13]. One particular issue that has attracted much
interest because of its importance in both biological and
man-made information-processing systems is the propagation
and enhancement of resonant collective behavior across a
network due to the application of weak external signals.
In this regard, the amplification of the response to weak
harmonic signals in networks of bistable signaling devices
[14–17] has been recently studied. In these works, however,
the robustness of the signal amplification against diversity in
the uniform distributions of periodic external signals was not
studied. Clearly, the assumption of harmonic external signals
means that all driving systems, whatever they might be, are
effectively taken as linear. This mathematically convenient
choice is untenable for most natural and artificial information-
processing systems due to their irreducible nonlinear nature.
Thus, to approach signal amplification phenomena in real-
world networks, it seems appropriate to consider distributions
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of periodic external signals which are the output of nonlinear
systems, therefore being appropriately represented by generic
Fourier series.

In this work, we study the interplay between heterogeneous
connectivity, quenched spatial disorder, and generic zero-mean
periodic signals in random scale-free networks of signaling
devices through the instance of a simple deterministic over-
damped bistable system. The system is given by

.
xi = xi − x3

i + τf (t) − λLijxj, i = 1, . . . ,N,

f (t) ≡
∞∑

n=1

an sin(2nπt/T + ϕn), (1)

where f (t) is a unit-amplitude, zero-mean, T -periodic signal,
τ is the signal amplitude, λ is the coupling, Lij = κiδij − Aij is
the Laplacian matrix of the network, κi = ∑

j Aij is the degree
of node i, and Aij is the adjacency matrix with entries of 1 if i is
connected to j and 0 otherwise. Since there are infinitely many
a priori independent parameters an, ϕn and hence infinitely
many different waveforms of f (t), the relevant problem is
how to characterize quantitatively the effect of the signal’s
waveform on the topology-induced amplification scenario
[14]. Here, we shall show that a relevant quantity properly
characterizing the effectiveness of generic periodic signals (1)
in the amplification scenario is the impulse transmitted by
the signal over a half period [hereafter referred to simply
as the impulse, I ≡ τ

∫ T/2
0 f (t)dt], a quantity integrating

the conjoint effects of the signal’s amplitude, period, and
waveform (see Fig. 1 for an example). Remarkably, we found
that the enhancer effect of increasing values of the impulse
is due to a correlative increase of the energy transmitted by
the periodic signals. Extensive numerical simulations of the
system (1) were conducted for different network topologies
to characterize the effect of the impulse on the amplification-
synchronization scenario as the coupling strength is increased.
To quantitatively describe this scenario, we used the average
amplification 〈G〉 ≡ maxi xi/τ over distinct initial conditions,
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FIG. 1. Signal f (t ; T ,m) [Eq. (12)] vs t/T , where T is the period
and N (m) ≡ 1/{a + b/[1 + exp({m − c}/d)]}, with a ≡ 0.43932,
b ≡ 0.69796, c ≡ 0.3727, and d ≡ 0.26883, for four values of
the shape parameter: m = 0 (sinusoidal pulse), m = 0.72 � mmax

(nearly square-wave pulse), m = 0.99 (double-humped pulse), and
m = 1 − 10−6 (sharp double-humped pulse). Inset: The normalized
impulse I (m,T )/I (0,T ) [Eq. (13)] vs m.

on the one hand, and the synchronization coefficient [18]

ρ =
〈
xi

2〉 − 〈xi〉2〈
x2

i

〉 − 〈xi〉2
, (2)

on the other, where the overlines indicate an average over
nodes, while the angle brackets indicate a temporal average
over a period T .

II. ENERGY VARIATION VERSUS IMPULSE

We start with a general argument showing the relationship
between energy increases and impulse increases in isolated
overdamped systems. Let us consider the family of dis-
sipative nonlinear oscillators m

..
x = −dU/dx − δ

.
x + τf (t),

with associated energy equation
.

E = .
x(m

..
x + dU/dx), where

f (t) is a unit-amplitude, zero-mean, T -periodic signal and
E(t) ≡ (m/2)

.
x

2 + U [x(t)] is the energy function, with U

being a generic potential. The energy equation can be recast
into the form

.

E = −δ
.
x

2 + τ
.
xf (t). (3)

Integration of Eq. (3) over any interval [nT ,nT + T/2], n =
0,1,2, . . . , yields

E(nT + T/2) = E(nT ) − δ

∫ nT +T/2

nT

.
x

2
(t)dt

+ τ

∫ nT +T/2

nT

.
x(t)f (t)dt. (4)

Now, after applying the first mean value theorem for integra-
tion [19] to the last integral on the right-hand side of Eq. (4),
one straightforwardly obtains

E(nT + T/2) = E(nT ) − δ

∫ nT +T/2

nT

.
x

2
(t)dt + .

x(t∗)I, (5)
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FIG. 2. Normalized average amplification 〈G(m)〉/〈G(m = 0)〉
vs shape parameter m for an isolated overdamped bistable system
[Eq. (1) with λ = 0] subjected to a signal given by Eq. (12) and
seven values of the signal period: T = 1/

√
2 (circles), T = 1 (pluses),

T = √
2 (triangles), T = 2π/

√
2 (stars), T = 7 (diamonds), T = 10

(squares), and T = 50 (crosses). The solid line shows the normalized
impulse I (m,T )/I (0,T ) [Eq. (13)] vs shape parameter m, while the
dashed vertical line indicates the value m = mmax � 0.717 for which
I (m,T )/I (0,T ) presents its single maximum as a function of m.
Notice that the period of the linearized motion around any of the
potential minima, T = 2π/

√
2, corresponds to the shortest significant

time scale.

where t∗ ∈ [nT ,nT + T/2] and I is the impulse. Let us con-
sider an initial steady (n large) situation fixing the parameters
(δ,τ,T ) and choosing a waveform such that the impulse is
relatively small. Next, we only change the waveform. For
sufficiently small values of T and τ , one expects that both the
dissipation work [integral in Eq. (5)] and

.
x(t∗) will approx-

imately maintain their initial values, while I may increase
from its initial value with the choice of a more convenient
waveform, so that, in some cases depending upon the remain-
ing parameters, the energy difference E(nT + T/2) − E(nT )
will increase with respect to the initial situation. Thus, the
maximum probability of a maximal increase of the energy
difference occurs when I is also maximum, which establishes
a clear correlation between impulse and energy transmitted
over wide regions in parameter space. Specifically, one expects
this impulse principle to be accurate when the signal period
is the shortest significant time scale. Numerical simulations
confirmed the accuracy and scope of this prediction. Figure 2
shows an illustrative example for an isolated overdamped
bistable system [see Eq. (1)].

III. STAR-LIKE NETWORK

Next, we consider a star-like network of overdamped
bistable systems:

.
xH = [1 − λ(N − 1)]xH − x3

H + τf (t) + λ

N−1∑
i=1

yi,

.
yi = (1 − λ)yi − y3

i + τf (t) + λxH , (6)
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which describes the dynamics of a highly connected node (or
hub) xH and N − 1 linked systems (or leaves) yi . We study
the case of sufficiently small coupling λ and external signal
amplitude τ such that the dynamics of the leaves may both be
decoupled from that of the hub and be suitably described by
linearizing their equations around one of the potential minima.
Thus, one straightforwardly obtains

yi(t → ∞) ∼ ξi − τ

∞∑
n=1

[Cn cos(ωnt) + Sn sin(ωnt)],

Cn ≡ an(ωn cos ϕn − 2 sin ϕn)

ω2
n + 4

, (7)

Sn ≡ −an(ωn sin ϕn + 2 cos ϕn)

ω2
n + 4

,

where ωn ≡ 2nπ/T and ξi = ±1, depending on the initial
conditions. Since the initial conditions are randomly chosen,
this means that the quantities ξi behave as discrete random
variables governed by Rademacher distributions. After insert-
ing Eq. (7) into Eq. (6) and solving the resulting equation for
the hub,

.
xH = [1 − λ(N − 1)]xH − x3

H +
∞∑

n=1

[C ′
n cos(ωnt)

+ S ′
n sin(ωnt)] + λη, (8)

where

η ≡
N−1∑
i=1

ξi,

C ′
n

τ
≡ an

(
1 + 2λ(N − 1)

ω2
n + 4

)
sin ϕn − λ(N − 1)anωn

ω2
n + 4

cos ϕn,

S ′
n

τ
≡ λ(N − 1)anωn

ω2
n + 4

sin ϕn + an

(
1 + 2λ(N − 1)

ω2
n + 4

)
cos ϕn,

one straightforwardly obtains

xH (t → ∞) ∼ x
(0)
H +

∞∑
n=1

[
(C ′

nωn + S ′
naH ) sin(ωnt)

ω2
n + a2

H

+ (C ′
naH − S ′

nωn) cos(ωnt)

ω2
n + a2

H

]
, (9)

where aH ≡ V ′′
H (x(0)

H ) = −{ 3λη

x
(0)
H

+ 2[1 − λ(N − 1)]}, with x
(0)
H

being the equilibrium in the absence of any external signal,
and VH (xH ) ≡ −√

hx2
H + x4

H /4 is the hub potential, with h =
[1 − (N − 1)λ]2/4 being the height of the potential barrier.
For finite N , the quantity η behaves as a discrete random
variable governed by a binomial distribution with zero mean
and variance N − 1. One sees that the hub’s dynamics is
affected by spatial quenched disorder through the term λη,
while an estimate of its amplification [20] is given by

G[f (t)] = 1

τ

( ∞∑
n=1

C ′2
n + S ′2

n

ω2
n + a2

H

)1/2

. (10)

For sufficiently large N , we may assume that the quantity
η behaves as a continuous random variable governed by a

FIG. 3. Theoretical average amplification 〈G〉 in the (λ − m)
parameter plane [left panel; Eqs. (11) and (12)] and corresponding
numerical results 〈G〉 (right panel) for a star-like network [Eq. (6)]
with λ ∈ [0,0.01],m ∈ [0,0.99], and N = 500,T = 10,τ = 0.01.
The dashed lines indicate the values λ = λmax � 0.002, m = mmax �
0.717 for which 〈G〉 presents its single maximum in the (λ − m)
parameter plane.

standard normal distribution, and hence,

〈G〉 = 1√
2π (N − 1)

∫ ∞

−∞
G[f (t)] exp

[ −η2

2(N − 1)

]
dη (11)

provides the final average amplification. Next, we demonstrate
that the impulse is the relevant quantity controlling the effect
of the external signal on the amplification by considering the
illustrative example

f (t ; T ,m) ≡ N (m) sn (4Kt/T ) dn (4Kt/T ), (12)

in which sn (·) ≡ sn (·; m) and dn (·) ≡ dn (·; m) are Jacobian
elliptic functions of parameter m [K ≡ K(m) is the com-
plete elliptic integral of the first kind] [21] and N (m) is a
normalization function (see Fig. 1, top) which is introduced
for the elliptic signal to have the same amplitude 1 and
period T for any wave form (i.e., ∀m ∈ [0,1]). When m = 0,
then f (t ; T ,m = 0) = sin (2πt/T ); that is, one recovers the
previously studied case of a harmonic signal [14], whereas,
for the limiting value m = 1, the signal vanishes. Note that, as
a function of m, the impulse per unit of amplitude,

I |τ=1= I (m,T ) ≡ T N (m)

2K(m)
, (13)

presents a single maximum at m = mmax � 0.717 (see
Fig. 1, inset). In this case, Eq. (11) predicts that
〈G〉(λ,N,T ,m = mmax) > 〈G〉(λ,N,T ,m �= mmax) and that
the signal amplification increases on average as the impulse is
increased, i.e., as the shape parameter m → mmax (see Fig. 3,
left), which is accurately confirmed by numerical simulations
(see Fig. 3, right). One also has from Eqs. (11) and (12) that
〈G〉(λ,N,T ,m) as a function of only λ presents a sharp single
maximum at λ = λmax � (N − 1)−1 for all m, which indicates
that the topology-induced amplification mechanism is robust
against diversity in the uniform distributions of periodic signals
in star-like networks.
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FIG. 4. Top: 〈G〉 vs λ for a BA scale-free network, T = 10 and
four values of the shape parameter: m = 0 (pluses), m = 0.72 � mmax

(crosses), m = 0.99 (stars), and m = 1 − 10−6 (squares). Note that
the first relative maximum of 〈G〉 occurs around λ ≈ 0.008 for the
four values of m while the network has a maximal active hub with 136
leaves. For this effective star-like network the theoretically predicted
maximum occurs at λ = λmax ,1 ≈ 0.0074. Middle: 〈G〉 vs m for a
BA scale-free network, T = 10, and three values of the coupling:
λ = 0.009 (pluses), λ = 0.015 (crosses), and λ = 0.045 (squares).
Bottom: 〈G〉 vs m for T = 1,λ = 0.015 and two external signals:
f (t ; T ,m) [Eq. (12); stars] and g(t ; T ,m) (see the text). The dashed
vertical and horizontal lines indicate the values m = mmax � 0.717
and 〈G〉(m = 0), respectively. Averaged degree 〈κ〉 = 3, γ = 2.7,
N = 500, τ = 0.01.
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FIG. 5. Average of the average amplification over 102 random
realizations of the network connectivity 〈〈G〉〉 ≡ 〈maxixi/τ 〉 for two
values of the shape parameter [m = 0 (circles) and m = 0.72 � mmax

(squares); top panel] and corresponding synchronization coefficient
〈ρ〉 [Eq. (2)] for m = 0 and m = 0.72 (bottom panel) vs coupling
λ for a BA scale-free network with 〈κ〉 = 3,γ = 2.7. Other fixed
parameters are as in Fig. 3.

IV. SCALE-FREE NETWORK

Next, we discuss the possibility of extending the results
obtained for a star-like network to Barabási-Albert (BA)
networks [2] of the same overdamped bistable systems. Indeed,
a highly connected node in the BA network can be thought of
as a hub of a local star-like network with a certain degree κ

picked up from the degree distribution. Thus, one can expect
that the enhancer effect of the impulse will act at any scale to
yield a significant enhancement of the signal amplification over
the whole scale-free network in the weak-coupling regime.
Figure 4 shows an illustrative example where the averaged
amplification 〈G〉 is plotted against the coupling λ (top panel)
and the shape parameter m (middle and bottom panels). One
sees that 〈G〉 becomes ever larger as m approaches mmax over
the complete range of values of λ, confirming the predictions
of the above theoretical analysis. Remarkably, the dependence
of 〈G〉 on m follows in detail the respective dependence of the
impulse (see Fig. 1, inset, and Fig. 4, middle and bottom). In
particular, the bottom panel of Fig. 4 shows 〈G〉 versus m for
two different signals: f (t ; T ,m) [Eq. (12)] and g(t ; T ,m) ≡
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FIG. 6. Average of the average amplification over 102 random
realizations of the network connectivity 〈〈G〉〉 ≡ 〈maxi xi/τ 〉 for two
values of the shape parameter [m = 0 (triangles) and m = 0.717 �
mmax (circles); top panel] and corresponding synchronization coeffi-
cient 〈ρ〉 (2) for m = 0 and m = 0.717 (bottom panel) vs coupling
λ for a BA scale-free network with N = 2 × 103,〈κ〉 = 3,γ = 2.7.
Other fixed parameters are as in Fig. 3.

I (m = 0,T )f (t ; T ,m)/I (m,T ), where I (m,T ) is given by
Eq. (13). Note that, after fixing T and τ , g(t ; T ,m) changes
its effective amplitude and waveform as m is varied from 0 to
1, while the impulse transmitted (per unit of amplitude τ ) by
g(t ; T ,m) remains constant:

∫ T/2
0 g(t ; T ,m)dt = I (m = 0,T ).

In this case, the impulse principle predicts that 〈G〉 will also
remain constant, which is indeed confirmed by numerical
simulations (see Fig. 4, bottom).

We found that this scenario remains the same in any random
realization of the network connectivity and for any value
of m (see Fig. 5, top panel). The synchronization decreases
monotonically as λ is increased for any value of m, with the
decrease being ever faster as m → mmax (Fig. 5, bottom panel).
This can be understood as the result of two conjoint mecha-
nisms: the impulse-induced enhancement of amplification and
the amplification-induced lowering of synchronization in the
weak-coupling regime. Finally, we tested the robustness of the
present results against possible finite-size effects: we found
that the features of the impulse-induced amplification scenario
remain the same for much larger networks (see Fig. 6).

V. CONCLUSIONS

We have shown through the example of a network of
overdamped bistable systems that maximizing the impulse
transmitted by the periodic external signals strongly enhances
topology-induced signal amplification in scale-free networks.
We have analytically demonstrated that this resonant-like
effect of the impulse is due to a correlative increase of the
energy transmitted by the periodic signals as the impulse
is increased, while it may be completely characterized in
the simple model of a star-like network. Remarkably, our
results indicate that varying the impulse does not signifi-
cantly change the values of the coupling strength for which
amplification is maximum, which means that the topology-
induced amplification mechanism is robust against diversity
in the uniform distributions of periodic external signals.
Thus, the present findings provide a reliable criterion for
the optimization of topology-induced amplification processes
in scale-free networks by controlling the periodic external
signals according to the impulse principle. This novel principle
opens up new avenues for studying external-signal-induced
amplification processes in complex networks, including, for
example, control of chaos by weak periodic excitations [22]
or optimization of signal transmission in neuronal networks
[23,24] in which a cooperative effect with the underlying noise
of the neural medium is expected under certain conditions.

ACKNOWLEDGMENTS

P.J.M. and R.C. acknowledge financial support from the
Ministerio de Economı́a y Competitividad (Spain) through the
FIS2014-55867-P and FIS2012-34902 projects, respectively.
P.J.M. acknowledges financial support from the Gobierno de
Aragón (Spain, E19-Grupo FENOL) and European Social
Funds. R.C. acknowledges financial support from the Junta
de Extremadura (JEx, Spain) through project GR15146.

[1] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks:
From Biological Nets to the Internet and WWW (Oxford
University Press, Oxford, 2003).

[2] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[3] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[4] G. Caldarelli, Scale-Free Networks: Complex Webs in Nature

and Technology (Oxford University Press, Oxford, 2007).

[5] M. A. Serrano, D. Krioukov, and M. Boguñá, Phys. Rev. Lett.
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