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Abstract 

 

Bi-2212 samples prepared by a solid-state reaction technique have been grown from 

the melt using the laser floating zone method. After annealing the as-grown bars, the samples 

showed a good grain alignment and a high transport critical current density. Secondary 

annealing processes were performed on the annealed samples with the aim of producing Bi-

2212 phase controlled decomposition. Hence, the Bi-2201 phase and the secondary phases 

which act as effective pinning centers, were obtained with the secondary annealing process. 

After these thermal treatments, the transport critical current densities of samples significantly 

increased, when compared to the annealed ones. The maximum critical current density was 

achieved when the samples were subjected to secondary annealing at 680 ºC for 168 h with an 

improvement of 80 %, compared to the annealed ones. Moreover, it was found that 

magnetization of the secondarily annealed samples was also increased. The magnetic critical 

current densities in these secondary annealed samples were about 3 times higher than the 

values obtained for the annealed ones. These results clearly indicate that the secondary 

annealing processes lead to the formation of effective pinning centers in the bulk material. 

PACS: 74.72.-h; 74.25.Ha; 74.25.Sv 

Keywords: BSCCO Cuprates; Magnetic properties; Critical current density 
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INTRODUCTION 

 

Since the discovery of the high-temperature (HTc) BiSrCaCuO (BSCCO) 

superconducting system [1], many studies have been made to improve its superconducting 

properties. Some of these studies have been related with synthesis processes [2-5], cationic 

substitutions, as Pb2+ for Bi3+ [6,7] or transition metals for Cu [8,9], and compositional 

modifications [10,11]. In spite of these intense works, weak-links and grains random 

orientation are still important drawbacks in these materials, which avoid reaching high 

superconducting transport properties. 

Fabrication of textured HTc superconducting materials with high electrical and 

magnetic properties is necessary for practical applications at 77 K [12]. HTc BSCCO system 

possesses a very important crystallographic anisotropy which is reflected in a preferential 

grain growth along the ab-planes which are the conducting ones. As a consequence, the 

alignment of ab-planes, results in the reduction of number of low-angle grain boundaries, 

maximizing the transport properties. As a consequence, these alignment processes are 

essential for technological applications needing high transport properties [13]. Different 

conformation methods have been successfully used to produce well oriented grains with their 

ab-planes parallel to the current flow, such as sinter-forging [14], partial melting [15] or 

directional solidification from a totally molten material [16-19]. Among all these methods, the 

laser floating zone (LFZ) method has been shown as very suitable to produce textured 

materials with high electrical and magnetic properties at a relatively high growth rates [20-

22]. On the other hand, it should be considered that BSCCO system shows incongruent 

melting producing several secondary phases. As a consequence, after the growth process it is 

https://www.researchgate.net/publication/257030782_Enhancement_of_superconductivity_in_LFZ-grown_BSCCO_fibres_by_steeper_axial_temperature_gradients?el=1_x_8&enrichId=rgreq-8f30ce2ba18f7fcadac4f33878188bbe-XXX&enrichSource=Y292ZXJQYWdlOzI4MjcyMzM5NztBUzo0Nzc5NzEwNTMwNjAwOTZAMTQ5MDk2ODU4NzIxNA==
https://www.researchgate.net/publication/256627455_Microstructure_of_laser_floating_zone_LFZ_textured_Bi_PbSrCaCuO_superconductor_composites?el=1_x_8&enrichId=rgreq-8f30ce2ba18f7fcadac4f33878188bbe-XXX&enrichSource=Y292ZXJQYWdlOzI4MjcyMzM5NztBUzo0Nzc5NzEwNTMwNjAwOTZAMTQ5MDk2ODU4NzIxNA==
https://www.researchgate.net/publication/248455104_Properties_variation_of_Bi2212_directionally_solidified_induced_by_04Pb_substitution?el=1_x_8&enrichId=rgreq-8f30ce2ba18f7fcadac4f33878188bbe-XXX&enrichSource=Y292ZXJQYWdlOzI4MjcyMzM5NztBUzo0Nzc5NzEwNTMwNjAwOTZAMTQ5MDk2ODU4NzIxNA==
https://www.researchgate.net/publication/242656024_Structural_superconducting_and_mechanical_properties_of_molybdenum_substituted_Bi18Sr2Ca11Cu21Oy?el=1_x_8&enrichId=rgreq-8f30ce2ba18f7fcadac4f33878188bbe-XXX&enrichSource=Y292ZXJQYWdlOzI4MjcyMzM5NztBUzo0Nzc5NzEwNTMwNjAwOTZAMTQ5MDk2ODU4NzIxNA==
https://www.researchgate.net/publication/216249709_Textured_BI-Sr-Ca-Cu-O_rods_processed_by_laser_floating_zone_from_solid_state_or_melted_precursors?el=1_x_8&enrichId=rgreq-8f30ce2ba18f7fcadac4f33878188bbe-XXX&enrichSource=Y292ZXJQYWdlOzI4MjcyMzM5NztBUzo0Nzc5NzEwNTMwNjAwOTZAMTQ5MDk2ODU4NzIxNA==
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necessary to perform an annealing treatment in order to recombine the secondary phases 

formed in the texturing process to produce the superconducting one [23]. 

Flux pinning is a well known phenomenon which, in spite of the Lorentz force, avoids 

the movement of magnetic flux lines in a current-carrying type-II superconductor. The motion 

of vortices in type-II superconductors and, in particular, in high-Tc superconducting (HTSC) 

cuprates is avoided by pinning forces associated with different structural defects, such as edge 

dislocations, twin planes, and grain boundaries as well as by artificial, radiation-induced 

columnar defects [24,25]. Flux pinning is a desirable phenomenon in high temperature 

ceramic superconductors in order to prevent flux creep, which can create a pseudo-resistance 

and depress both critical current density and critical field. In the BSCCO system, the Bi–O 

layers between the superconducting CuO planes limit carrier conduction between planes, 

leading to a weak vortex coupling. The magnetic vortices are usually represented as 2D flat 

disks, called pancakes [26], which can be pinned by insulating and small size secondary 

phases. As a consequence, pinning centers lead to improvements in the critical current 

density, Jc. Due to these factors, many works have been performed on the production of 

effective pinning centers in this system. The first approach is the chemical substitution and/or 

addition of foreign compounds to create pinning centers in the system [27-30]. The second 

one is the formation of effective pinning centers by a temperature-controlled decomposition 

of the superconducting phase, producing insulating phases with sizes depending on the 

thermal treatment duration [31-34]. 

The aim of this work is developing a simple process to produce effective pinning 

centers by the controlled decomposition of the superconducting Bi2Sr2CaCu2O8+ (Bi-2212) 

phase by secondary annealing treatments using different temperatures and durations. The 

optimal processes should raise the transport and magnetic Jc of LFZ-grown Bi-2212 

superconducting samples without a drastic microstructural modification. 

https://www.researchgate.net/publication/239637355_Natural_strong_pinning_sites_in_laser-ablated_YBa2Cu3O7-d_thin_films?el=1_x_8&enrichId=rgreq-8f30ce2ba18f7fcadac4f33878188bbe-XXX&enrichSource=Y292ZXJQYWdlOzI4MjcyMzM5NztBUzo0Nzc5NzEwNTMwNjAwOTZAMTQ5MDk2ODU4NzIxNA==
https://www.researchgate.net/publication/28303411_Efecto_de_la_adicion_de_Ag_en_Bi-2212_texturado_mediante_laser?el=1_x_8&enrichId=rgreq-8f30ce2ba18f7fcadac4f33878188bbe-XXX&enrichSource=Y292ZXJQYWdlOzI4MjcyMzM5NztBUzo0Nzc5NzEwNTMwNjAwOTZAMTQ5MDk2ODU4NzIxNA==
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EXPERIMENTAL DETAILS 

 

Bi-2212 samples with Bi2Sr2.1Ca0.9Cu2O8+ nominal composition were prepared by the 

conventional solid-state reaction technique. Bi2O3 (98%, Panreac), SrCO3 (98 + %, Panreac), 

CaCO3 (98.5%, Panreac), and CuO (98%, Panreac) commercial powders were weighed in the 

appropriate proportions and ball-milled in a planetary ball-mill using acetone media for 30 

min at 300 rpm. The obtained suspension was subsequently dried in an infrared (IR)-operated 

quick dryer system. The dried mixture was manually milled to break agglomerates produced 

in the drying procedure. The homogeneous powder mixture was heat treated twice at 750 and 

800 ºC for 12 h under air, with an intermediate manual milling, to assure the complete 

decomposition of alkaline-earth carbonates [35]. The resulting powders were then isostatically 

cold pressed at ~200 MPa to obtain green ceramic cylinders which were subsequently used as 

feed in a LFZ device equipped with a continuous power Nd:YAG laser ( = 1.06 µm) 

described elsewhere [36]. The LFZ process was performed in the same conditions for all the 

samples; they were directionally solidified from the melt at 30 mm/h with a seed rotation of 3 

rpm to maintain the cylindrical geometry. Moreover, an opposite feed rotation of 15 rpm was 

applied to assure compositional homogeneity in the molten zone. Finally, after the texturing 

process, long (more than 15 cm) and geometrically homogeneous ( 2 mm diameter) textured 

cylindrical rods were produced. 

As mentioned previously, the Bi-2212 phase presents incongruent melting producing 

Bi2Sr2CuOx (Bi-2201) and cuprate phases, in agreement with the equilibrium phase diagram 

[31]. Consequently, after the directional solidification process it is necessary to perform a heat 

treatment to produce the Bi-2212 phase from the secondary ones [37,38]. This annealing 

process is performed under air and consists in two steps: First heat treatment at 860 ºC for 60 
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h to produce the Bi-2212 phase, and second one at 800 ºC for 12 h to adjust the oxygen 

content in the superconducting phase, followed by quenching in air to room temperature. On 

the other hand, before the heat treatment procedure, as-grown samples were cut into pieces for 

the electrical transport measurements ( 3 cm long) and four-point probe contacts were 

painted on these pieces using Ag paste. After thermal treatment, typical resistance values of 

these contacts are below 1  [39]. Moreover, for the magnetic measurements, smaller pieces 

( 0.5 cm long) were cut from as-grown bars and directly subjected to the thermal treatment 

process. After these annealing processes, some of the samples were kept to be used as 

reference, while others were subjected to secondary annealing treatments. Two different 

temperatures and time scales were used: 680 ºC between 24 and 312 h and 900 ºC between 1 

and 4 min. Difference among the chosen heat secondary annealing durations is due to the 

different decomposition rates induced by these two temperatures. 

Structural evaluation of the samples, before and after the secondary annealing 

processes, was carried out using X-ray powder diffraction measurements (Rigaku D/max-B) 

between 10 and 60º. Microstructural characterizations were performed on polished 

longitudinal sections of the samples in a field emission scanning electron microscope 

(FESEM, Carl Zeiss MERLIN) equipped with an energy dispersive spectroscopy (EDX) 

system. 

Electrical measurements were performed by the conventional four-point probe 

technique. Resistivity as a function of temperature from 77 to 300 K was measured using a dc 

current of 1 mA. Transport critical current intensity (  ) was determined from the I-V 

curves at 77 K, using the 1 V/cm standard criterion. From the I-V data, the transport critical 

current density ( ) values were calculated with the samples dimensions. The magnetic 

properties of the samples were studied using a Quantum Design Physical Properties 
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Measurement System (PPMS-9T). Temperature dependence of magnetization was measured 

under an applied magnetic field of 50 Oe perpendicular to the growth direction. M-H 

measurements were carried out under external magnetic fields up to 9 T at three different 

temperatures (5, 15 and 25 K). From M-H hysteresis loops, the magnetic critical current 

density, , was calculated using Beans’ equation [40]. 

 

RESULTS AND DISCUSSION 

 

Figure 1 shows the XRD patterns of samples subjected to different thermal treatments. 

The peaks corresponding to the Bi-2212 phase have been indexed in the figure, in agreement 

with previously published data [5]. In these patterns, it has been found that the annealed 

samples are nearly pure Bi-2212. Moreover, it can be observed that no evident modifications 

are produced after the secondary annealing processes, independently of temperature and heat 

treatment duration. From these observations, it can be deduced that the secondary annealing 

processes caused only the decomposition of a very small amount of Bi-2212 phase, leading to 

very small proportions of secondary phases with very small sizes, avoiding their detection by 

XRD analyses. 

Figure 2 shows SEM images performed on polished longitudinal sections of samples 

with different thermal treatments. In the annealed samples, three different contrasts were 

identified and numbered, for clarity, in the corresponding micrograph. EDX analysis revealed 

that these contrasts corresponded to Bi-2212 (#1, grey contrast) as the major phase, and Bi-

2201 (#2, light grey contrast), and (Sr,Ca)CuO2 (#3, dark grey contrast) as minor secondary 

ones. When these samples were subjected to the different secondary annealing treatments, the 

Bi-2212 phase is decomposed, producing secondary phases, as it can be observed in the phase 

https://www.researchgate.net/publication/253098445_Magnetization_of_Hard_Superconductors?el=1_x_8&enrichId=rgreq-8f30ce2ba18f7fcadac4f33878188bbe-XXX&enrichSource=Y292ZXJQYWdlOzI4MjcyMzM5NztBUzo0Nzc5NzEwNTMwNjAwOTZAMTQ5MDk2ODU4NzIxNA==
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equilibrium diagram [31]. From this diagram, it can be deduced that the samples treated at 

680 ºC should possess Bi2+x(Sr,Ca)2CuO6+, Sr3Bi2O6, and Sr14Cu24O41-x phases in different 

amounts and sizes, depending on the thermal treatment duration. In the corresponding 

micrographs it can be observed that Bi-2212 is still the major phase (grey contrast, #1). 

Additionally, three different contrasts were also identified in these images and EDX has 

determined their composition as Bi2+x(Sr,Ca)2CuO6+ (#4 , light grey), Sr3Bi2O6 (#5 , white) 

and Sr14Cu24O41-x (#6 , dark grey). On the other hand, as it is difficult to distinguish between 

white and light grey contrasts in the micrographs, an inset in the figure shows the white 

contrast (#5). As can be observed in the inset, the white phase is appearing as very fine linear 

grains between the Bi-2212 grains and close to the regions where the Sr14Cu24O41-x phase 

appears. All these results agree with the previously ones obtained in similar works [31,34]. 

When the samples are thermally treated at 900 ºC, the phase decomposition is much 

quicker due to the formation of a liquid phase, in agreement with the phase equilibrium 

diagram [31]. In this case, Bi-2212 phase is still the major one (grey contrast, #1). Moreover, 

some secondary phases are appearing, as Bi2+x(Sr,Ca)2CuO6+ (light grey contrast, #4) and 

(Sr,Ca)Cu2O3 solid solution with different Ca and Sr proportions between regions (black 

contrast, #7). These phases are in accordance with the expected ones from the previously 

mentioned phase equilibrium diagram [31] and with the observed in previous works in this 

system [34]. 

Electrical resistivity variation with temperature for the annealed and secondarily 

annealed samples is presented in Figure 3. As it can be easily observed in the plot, all the 

samples show metallic behavior from room temperature down to Tc. Zero resistivity 

temperature, T0, values do not significantly change with the different thermal treatments. T0 

values for the annealed samples were 90 K, however T0 values for the secondarily annealed 
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samples at 680 ºC for 24 and 312 h were 88 and 87 K while they were 89 and 90.5 K for the 

samples heat treated at 900 ºC for 2 and 4 min, respectively. These results clearly indicate that 

the samples consist of nearly pure Bi-2212 and that the secondary annealing treatments 

slightly change the T0 values. From these data, it can be deduced that the conducting path is 

only slightly affected by the secondary annealing treatments. On the other hand, normal state 

resistivity values are, approximately, the same at 300 K for the annealed samples and those 

thermally treated at 680 ºC for 168 h. Samples treated for longer times raise the normal state 

resistivity value at 300 K, compared with the annealed ones. This is a clear indication of Bi-

2212 decomposition, raising the amount of secondary phases. Furthermore, the normal state 

resistivity at 300 K is still raised in samples heated at 900 ºC, showing that the decomposition 

process of Bi-2212 phase is speeded up, compared with the other samples, due to the liquid 

phase formation discussed previously. 

Transport critical current intensity, trans
cI , determined from I-V characteristics, and 

samples dimensions, allowed calculating transport critical current density, trans
cJ , which is 

plotted in Figure 4 as a function of the secondary annealing durations. It is obvious that these 

thermal treatment processes lead to an important increase in trans
cJ . The maximum trans

cJ  value 

(3650 A/cm2) was obtained in samples subjected to secondary annealing at 680 ºC for 164 h. 

In the case of samples treated at 900 ºC, the maximum values reach only 2750 A/cm2 after 2 

min. These trans
cJ  values are much higher (75 and 30 %, respectively) than the value 

obtained in the annealed samples (2050 A/cm2). On the other hand, trans
cJ is strongly 

decreased for longer secondary annealing durations, independently of the temperature. These 

results clearly point out that the secondary annealing process can produce a beneficial effect 

on the transport properties of the Bi-2212 textured samples when it is adequately controlled. 
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Magnetic behavior of samples as a function of temperature under an applied field of 

50 Oe, is illustrated in Figure 5. The diamagnetic signal started at approximately the same 

temperatures in all samples. Moreover, the transition between normal and superconducting 

state is sharp in all cases, indicating that the individual grains can shield the magnetic field. 

As it can be observed, the diamagnetic signal is raised in all secondarily annealed samples, 

probably due to changes in their density, compared with the annealed ones. Furthermore, the 

strong increase of diamagnetic signal observed thermally treated samples at 680 ºC for 168 h 

can be due to these density modifications, together with changes in their demagnetization 

factor. The diamagnetic onset temperature, mag
cT , of samples is ranging from 68.75 K for the 

annealed samples to 74.66 K for the secondarily annealed samples at 680 ºC for 312 h and 

75.11 K for the samples treated at 900 ºC for 4 min. As a consequence, it is possible to 

establish that the microstructural changes induced by these additional thermal treatments do 

not induce drastic modifications on the mag
cT  values. 

The M-H curves determined at 5 and 25 K for some of the samples are presented in 

Figure 6. The other samples (not drawn for clarity) displayed similar M-H trends. As it can be 

seen in the graphs, the shape of the M-H loops changed when the measurement temperature 

was increased from 5 K to 25 K. The magnetization decreased when the temperature and the 

applied magnetic field are increased, which can be attributed to the flux motion. At low 

temperatures, the flux pinning is strong and fluxes mostly penetrate the crystals as vortices. 

Vortex motion begins with the increase of temperature, which leads to a deterioration of 

fluxes magnetic configuration. It should be highlighted that the magnetization is higher in the 

secondarily annealed samples at 680 ºC than in the ones thermally treated at 900 ºC, 

independently of the measuring temperature. This effect can be associated with the secondary 

phases produced by these additional thermal treatments. It could be expected that the 

produced secondary phases can act as effective pinning centers due to their nature and sizes. 
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As a consequence, an increase in the magnetization has been found until 168 h thermal 

treatment. Longer secondary annealing increases the size of these secondary phases, 

decreasing their effectiveness and deteriorating the magnetic behavior of samples. The same 

reasoning can be applied to the magnetic behavior observed for the secondarily annealed 

samples at 900 ºC. However, these high temperatures promote a quicker Bi-2212 phase 

decomposition and higher growth rate of the secondary phases due to the already mentioned 

effect of liquid phase formation. 

Mag
cJ  of all samples was calculated using Beans’ equation [40]: 

 

         (1) 

 

where M is the width of the magnetization hysteresis, and d the diameter of the cylindrical 

samples. The magnetic field dependence of Mag
cJ  as a function of the measurement 

temperature is shown in Figure 7. At a first sight, it is clear that Mag
cJ  H behavior is very 

similar for all the samples. Secondarily annealed samples show Mag
cJ  higher than the obtained 

in annealed ones. On the other hand, the thermally treated samples at 680 ºC showed higher 

Mag
cJ  values than the obtained for the ones treated at 900 ºC. The Mag

cJ values for the annealed 

samples were 2.25x105 A/cm2 while the maximum ones for the secondarily annealed samples 

were obtained for the ones thermally treated at 680 for 168 h and 900 ºC for 2 min (around 

6.55x105 and 4.50x105 A/cm2, respectively). As a consequence, secondarily annealed samples 

exhibited Mag
cJ values about 3 and 2 times higher, respectively, than the obtained in annealed 

d

M
J mag

c




30

https://www.researchgate.net/publication/253098445_Magnetization_of_Hard_Superconductors?el=1_x_8&enrichId=rgreq-8f30ce2ba18f7fcadac4f33878188bbe-XXX&enrichSource=Y292ZXJQYWdlOzI4MjcyMzM5NztBUzo0Nzc5NzEwNTMwNjAwOTZAMTQ5MDk2ODU4NzIxNA==
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ones. The increase in Mag
cJ can be associated to the formation of non-superconducting 

secondary phases such as Sr3Bi2O6 or Sr14Cu24O41-x produced during the Bi-2212 phase 

decomposition in the secondary annealing conditions. These phases, detected in the SEM 

investigations, can act as effective pinning centers due to their isolating nature and sizes, 

raising the magnetic response of secondarily annealed samples leading to higher Mag
cJ  values 

than the measured in annealed ones. 

 

CONCLUSIONS 

 

Well textured Bi2Sr2.1Ca0.9Cu2O8+ samples were successfully grown from the melt 

using the LFZ process. After the annealing process, nearly pure superconducting Bi-2212 

phase has been obtained. Secondary annealing processes performed on the annealed samples 

caused an enhancement in the electrical and magnetic properties of samples. This 

enhancement can be explained by the controlled thermal decomposition of the Bi-2212 phase 

during the secondary annealing processes. These decomposition processes led to the 

formation of small and well distributed isolating secondary phases which can act as effective 

pinning centers. It has been found that these decomposition processes are very quick at high 

temperatures (900 ºC) while it is slower at low ones (680 ºC). Microstructural studies have 

also demonstrated that these decomposition processes produce the secondary phases predicted 

in the phase equilibrium diagram. Transport and magnetic measurements have shown that 

secondary annealing raises the samples performances. Moreover, the improvements become 

more important when the samples are thermally treated at low temperatures. The best results 

have been obtained in samples subjected to a secondary annealing at 680 ºC for 168h which 
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drastically improves trans
cJ  and Mag

cJ values in about 80 and 300 %, compared with the values 

measured in the annealed ones. All these results clearly indicate that it is possible to produce 

effective pinning centers with the adequate sizes and isolating nature by careful control of the 

Bi-2212 phase decomposition processes. 
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Figure Captions 

 

Figure 1. XRD patterns of textured Bi-2212 samples with the different thermal treatments. 

The Bi-2212 diffraction peaks have been identified by the corresponding crystallographic 

planes. 

 

Figure 2. Representative SEM images performed on polished longitudinal sections of 

textured Bi-2212 samples with different thermal treatments. Inset is a high magnification 

micrograph to clearly show the Sr3Bi2O6 secondary phase. The numbers indicate the different 

phases: 1) Bi-2212; 2) Bi-2201; 3) (Sr,Ca)CuO2; 4) Bi2+x(Sr,Ca)2CuO6+; 5) Sr3Bi2O6; 6) 

Sr14Cu24O41-x; and 7) (Sr,Ca)Cu2O3. 

 

Figure 3. Electrical resistivity evolution with temperature determined for textured Bi-2212 

samples subjected to different thermal treatments. 

 

Figure 4. Jc values as a function of the secondary annealing duration in textured samples 

treated at different temperatures. 

 

Figure 5. Magnetization curves as a function of measuring temperature determined in 

textured Bi-2212 samples with different thermal treatments. 
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Figure 6. Hysteresis loops obtained at different temperatures for textured samples subjected 

to different thermal treatments. 

 

Figure 7. Jc
Mag  vs. magnetic applied field, as a function of the measurement temperature for 

annealed (a) and secondarily annealed samples at 680 (b) and 900 ºC (c). 
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