- 1 Long-distance autumn migration across the Sahara by painted lady
- butterflies: exploiting resource pulses in the tropical savannah

3

4

- 5 Constantí Stefanescu^{1,2*}, David X. Soto³, Gerard Talavera^{4,5}, Roger Vila⁴ and Keith A.
- 6 Hobson^{3,6}

7

- ¹Natural History Museum of Granollers, Francesc Macià, 51, E-08402 Granollers, Spain
- 9 ² CREAF, E-08193 Cerdanyola del Vallès, Spain
- ³Environment Canada, 11 Innovation Blvd., Saskatoon, SK, Canada, S7N 3H5
- ⁴Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la
- Barceloneta, 37, E-08003 Barcelona, Spain
- ⁵Department of Organismic and Evolutionary Biology and Museum of Comparative
- 14 Zoology, Harvard University, Cambridge, MA 02138, USA
- ⁶Department of Biology University of Western Ontario, London, ON, Canada

16

 ${\tt 17} \qquad {\tt * Correspondence \ author. \ E-mail: \ canliro@gmail.com}$

18

- 19 Word count: <u>2508</u> (title page 106, abstract <u>200</u>, main text <u>1405</u>, data accessibility,
- 20 author's contributions, competing interests, funding 137, acknowledgements 14,
- 21 references $5\frac{70}{10}$, figure legends $\frac{7}{10}$

22

23 Abstract

24

25	The painted lady, Vanessa cardui, is a migratory butterfly that performs an annual
26	multi-generational migration between Europe and North Africa. <u>Its seasonal appearance</u>
27	south of the Sahara in autumn is well known and has lead to the suggestion that it
28	results from extremely long migratory flights by European butterflies to seasonally
29	exploit the Sahel and the tropical savannah. However, this possibility has remained
30	unproven. Here we analyse the isotopic composition of butterflies from seven European
31	and seven African countries to provide new support for this hypothesis. Each individual
32	was assigned a geographic natal origin, based on its wing stable hydrogen isotope
33	$(\delta^2 H_w)$ value and a predicted $\delta^2 H_w$ basemap for Europe and northern Africa. Natal
34	assignments of autumn migrants collected south of the Sahara confirmed long distance
35	movements (of 4000 km or more) starting in Europe. Samples from Maghreb revealed a
36	mixed origin of migrants, with most individuals with a European origin, but others
37	having originated in the Sahel. Therefore, autumn movements are not only directed to
38	north-western Africa but include southward and northward flights across the Sahara.
39	Through this remarkable behaviour, the productive but highly seasonal region south of
40	the Sahara is incorporated into the migratory circuit of <i>V. cardui</i> .
41	
42	Keywords: Vanessa cardui, insect migration, isoscapes, deuterium, Sahara, tropical
43	savannah
44	
45	1. Introduction
46	Long-range insect migration is a timely and important topic in ecological research but
47	one that is still in its infancy [1]. With a few exceptions [2], the small size of insects has
48	prevented the use of exogenous markers to track their movements, which means that the

most basic aspects of migration, the route itself and the distances covered, remain

49

50	poorly known for most species. Fortunately, this difficulty is increasingly being
51	overcome with the use of intrinsic markers such as stable isotopes [3,4].
52	In the Palaearctic, each year large numbers of insects undertake seasonal movements
53	between Africa and Europe [5]. One such insect is the painted lady butterfly Vanessa
54	cardui, which, through the succession of at least six generations, accomplishes a
55	complete round-trip migration across most of Europe in spring and summer, and
56	northern Africa in autumn and winter [6]. Although its general pattern of migration is
57	known, many uncertainties regarding the distances covered by individual butterflies and
58	the movements within Africa still exist. First, it <u>has never been shown</u> that the
59	butterflies <u>appearing</u> south of the Sahara in autumn <u>(sometimes in great numbers)</u> have
60	a European origin [6,7]. Second, although it is believed that north-western Africa
61	(Maghreb) is colonized in autumn by European migrants, both ground-level and radar
62	observations of northward migration in Morocco and Mauritania in October-November
63	also point to sub-Saharan origins [6].
64	
65	Here, we present new evidence on both of these questions by means of stable isotope
66	$(\delta^2 H)$ analysis, based on a comprehensive collection of butterflies across southern
67	Europe, North Africa and South-Saharan Africa. Our data conclusively show that, in
68	autumn, some European butterflies reach the tropical savannah south of the Sahara,
69	where they are known to breed [7]. We also show that some of their offspring migrate
70	northwards and cross the Sahara to breed in the Maghreb. These complex movements
71	across the Sahara give a new dimension to our understanding of long-distance insect
72	migration between Africa and Europe.

2. Material and methods

73

74

75	(a) Butterfly collection
76	We collected 334 butterflies from seven European and seven African countries around
77	the Mediterranean, and from an extensive area south of the Sahara (figure 1). Butterflies
78	were mainly collected in 2014 and, additionally, between 2009 and 2013 (electronic
79	supplementary material, table S1). European samples were obtained in spring, summer
80	and autumn (i.e. the period comprising northward and southward migrations and
81	summer breeding), while African samples were mainly obtained from October to
82	December (i.e. the period of colonization of North Africa and the region south of the
83	Sahara, and the start of local emergences).
84	
85	For each butterfly, wing condition was scored from 1 (fresh) to 5 (extremely worn). We
86	assumed that categories 1 and 1.5 corresponded to recent local emergences not having
87	undertaken migratory flights yet, and therefore these were excluded from analyses on
88	the natal origin of potential migrants (see electronic supplementary material, figure S1
89	and methods, for examples of wing-wear categories and the rationale behind our
90	assumptions).
91	
92	(b) Stable isotope analysis and natal assignments to potential migrants
93	Non-exchangeable δ^2 H values from wing chitin were obtained using the comparative
94	equilibration method [8]. All δ^2 H results were reported in per mil (‰) deviations from
95	the VSMOW-SLAP standard scale (see electronic supplementary material for details).
96	
97	Prior to any isotopic assignment, $\delta^2 H$ values from all samples were arranged into five
98	groups using a k-means clustering analysis [9]. These clusters explained 92% of the
99	variation and represented the potential groups of natal origin. The five natal areas were

100	related to eastern-central Europe (Group 1, centroid δ^2 H=-111 ‰, n = 35), western-
101	central Europe, southern Europe and Maghreb (Group 2, δ^2 H= –92 ‰, n = 116),
102	Maghreb and Mediterranean Islands (Group 3, –80 ‰, n = 96), western Africa (Group
103	4, δ^2 H= -65 ‰, n = 60), and central and eastern Africa (Group 5, δ^2 H= -39 ‰, n = 27)
104	(see electronic supplementary material, figure $S_{\underline{2}}$).
105	
106	To assign natal origins to potential migrants, a geospatial natal assignment method was
107	used to link butterfly wing $\delta^2 H$ values ($\delta^2 H_w$) to well-known spatial hydrological
108	hydrogen isotopic distribution (isoscapes) in precipitation ($\delta^2 H_p$) of Europe and northern
109	Africa [10]. The $\delta^2 H_p$ isoscape [11] was then converted to a spatially explicit butterfly
110	wing isoscape by using a calibration relationship determined for known-origin
111	butterflies across the western Palaearctic [12]. Probability density surfaces were
112	obtained using the complete individual spatial probability surface (no odds ratio used).
113	All calculations and modelling were analysed in R_[13].
114	
115	3. Results and discussion
116	Stable hydrogen isotopes confirmed that the seasonal population shift of <i>V. cardui</i>
117	between Europe and Africa is the result of long-distance migration by successive
118	generations (i.e. multi- or transgenerational migration; [14]). Butterflies collected in
119	southern Europe showed a temporal decline in $\delta^2 H_w$ values, from -81 ± 17 ‰ in April-
120	May to -100 ± 19 % in July (r=0.49, p<0.01). This is explained by the replacement of a
121	spring population of northward migrants having developed as larvae in North Africa, by
122	a summer population dominated by European local emergences. Butterflies collected in
123	Africa showed an opposite trend (r=0.40, p<0.01), from -86 ± 9 ‰ in early October to $-$
124	60 ± 17 % in late November. This trend is in accordance with first arrivals of European

migrants in October, followed by less negative values as their offspring emerged in the following month.

Natal assignments of autumn migrants collected south of the Sahara revealed long distance movements most likely starting in southern and central Europe (natal cluster groups 2-3 mostly, 6% from group 1, 7% from group 4, figure 2a). Although the mountains in the Maghreb also appeared as a potential natal area, field observations indicate that densities in the region are very low until the arrival of European migrants in October. This means that summer breeding in Maghreb mountains is at most a local phenomenon and cannot explain the origin of most butterflies appearing south of the Sahara in autumn. Although migration between Europe and the African tropical savannah had already been suggested [6,7,15], our analyses represent the first empirical confirmation of this phenomenon. Depending on the exact origin of the butterflies, these flights could exceed 4000 km. Such flights can probably only be accomplished by taking advantage of favourable winds [6,16].

Samples from Maghreb revealed a mixed origin of migrants. Most individuals (78%) shared essentially the same European natal origins as those collected south of the Sahara (figure 2b). A smaller fraction (22%), however, appeared to originate in the Sahel (natal groups 4-5, figure 2c). Butterflies with a European origin showed a wider range of wing wear, including very worn individuals that were absent from the samples of Sahelian origin. The proportion of categories 2-3.5 versus categories 4-5 differed between these two geographical groups (χ^2 =4.371, P=0.037), suggesting that European butterflies comprised a mixture of early and late migratory waves, while Sahelian butterflies only corresponded to more recent waves.

173

150	
151	For a migratory insect, colonization of the Sahel and further south in autumn seems
152	highly adaptive, as the whole region offers <u>suitable</u> breeding conditions coinciding with
153	a short period of high productivity after the rainy season [7, 17]. This also explains the
154	3500-4500 million birds migrating in autumn into this region, most of which depending
155	on the seasonal insect populations $[18]$.
156	
157	However, strong seasonality also means that locally produced sub-Saharan generations
158	of <i>V. cardui</i> experience rapid worsening of environmental conditions. Our data
159	conclusively show that some butterflies migrate northwards across the Sahara, to
160	colonize favourable areas in the Maghreb. This may seem surprising in a period when
161	continuous southward-blowing dry winds (the so-called 'Harmattan') prevail in the
162	Sahara [5]. However, autumn flights between western Sahel and the Maghreb also occur
163	in other migrant insects moving down-wind (e.g. in swarms of the desert locust [19]),
164	indicating that favourable conditions for northward migration across the Sahara still
165	occur under some circumstances. Additional evidences come from repeated
166	observations of northward migrations of <i>V. cardui</i> in the south of Morocco in late
167	autumn (CS, pers. obs.).
168	
169	In conclusion, our results convincingly show that autumn migration by <i>V. cardui</i> entails
170	extremely long flights of 4000 km or more from Europe to the south of the Sahelian
171	belt, in addition to the well-known destination in north-western Africa. Moreover, we
172	confirm the existence of complex movements in Africa leading to the reinforcement of

the autumn breeding population in the Maghreb by butterflies originating south of the

174	Sahara. This information will prove essential to model population trends in Europe in
175	relation to the weather conditions experienced by the African populations.
176	
177	Data accessibility
178	Data supporting this article are included as part of the electronic supplementary
179	material.
180	
181	Author's contributions
182	All authors conceived the study. C.S., G.T. and R.V. carried out the fieldwork. D.S.,
183	K.H. and C.S. analysed the data. C.S. drafted the manuscript and all authors edited and
184	approved the final version of the manuscript.
185	
186	Competing interests
187	We declare we have no competing interests.
188	
189	Funding
190	K.A.H. was funded by an operating grant and D.X.S. by a NSERC visiting fellowship
191	from Environment Canada. Funding to R.V. and G.T. was provided by the Committee
192	for Research and Exploration of National Geographic (grant number 9528-14) and by
193	the Spanish Ministerio de Economía y Competitividad (CGL2013-48277-P). G.T. is
194	supported by the Marie Curie Actions FP7-PEOPLE-2013-IOF (project 622716) and the
195	grant BP-A00275 (AGAUR-Generalitat de Catalunya). Expeditions in Morocco were
196	funded by Antoni Jonch Cooperació.
197	
198	Acknowledgments

199	Many people co	ontributed to	this work.	See a comp	lete list in el	ectronic suppl	lementary

200 material.

201

202

References

- 1. Chapman JW, Reynolds DR, Wilson K. 2015. Long-range seasonal migration in
- insects: mechanisms, evolutionary drivers and ecological consequences. *Ecol. Lett.*
- 205 **18**, 287–302. (doi:10.1111/ele.12407)
- 206 2. Wikelski M, Moskowitz D, Adelman JS, Cochran J, Wilcove DS, May ML. 2006.
- Simple rules guide dragonfly migration. *Biol. Lett.* **2**, 325–329.
- 208 (doi:10.1098/rsbl.2006.0487)
- 209 3. Flockhart DT, Wassenaar LI, Martin TG, Hobson KA, Wunder MB, Norris DR.
- 2013. Tracking multi-generational colonization of the breeding grounds by monarch
- butterflies in eastern North America. *Proc. R. Soc. B* **280**, 20131087.
- 212 (doi:10.1098/rspb.2013.1087)
- 4. Hobson KA, Anderson RC, Soto DX, Wassenaar LI. 2012. Isotopic evidence that
- dragonflies (*Pantala flavescens*) migrating through the Maldives come from the
- Northern Indian subcontinent. *PLoS One* **7(12)**, e52594.
- 216 (doi:10.1371/journal.pone.0052594)
- 5. Pedgley DE, Reynolds DR, Tatchell GM. 1995. Long-range insect migration in
- relation to climate and weather: Africa and Europe. In *Insect migration: tracking*
- resources through space and time (eds VA Drake, AG Gatehouse), pp. 3–29.
- 220 Cambridge: Cambridge Univ. Press.
- 221 6. Stefanescu C, Páramo F, Åkesson S, Alarcón M, Ávila A, Brereton T, Carnicer J,
- Cassar L, Fox R, Heliölä J, Hill JK, Hirneisen N, Kjellén N, Kühn E, Kuussaari M,
- Leskinen M, Liechti F, Musche M, Regan E, Reynolds D, Roy DB, Ryrholm N,

- Schmaljohann H, Settele J, Thomas CD, van Swaay C, Chapman J. 2013. Multi-
- generational long-distance migration in insects: studying the painted lady butterfly
- in the Western Palaearctic. Ecography **36**, 474–486. (doi:10.1111/j.1600-
- 227 0587.2012.07738.x)
- 7. Talavera G, Vila R. 2016. Mass migration and abundance of *Vanessa cardui* in the
- subtropical African Savannah suggest and early fall colonization by European
- 230 migrants, J. Lepid. Soc. (in press)
- 8. Wassenaar LI, Hobson KA. 2003. Comparative equilibration and online technique
- for determination of non-exchangeable hydrogen of keratins for use in animal
- migration studies. *Isotopes Environ. Health Stud.* **39**, 211–217.
- 234 (doi:10.1080/1025601031000096781)
- 9. García-Pérez B, Hobson KA. 2014. A multi-isotope (δ^2 H, δ^{13} C, δ^{15} N) approach to
- establishing migratory connectivity of Barn Swallow (*Hirundo rustica*). *Ecosphere*
- **5**, art21. (doi:10.1890/ES13-00116.1)
- 238 10. Hobson KA, Soto DX, Paulson DR, Wassenaar LI, Matthews JH. 2012b. A
- dragonfly (δ^2 H) isoscape for North America: a new tool for determining natal
- origins of migratory aquatic emergent insects. *Methods Ecol. Evol.* **3**, 766–772.
- 241 (doi:10.1111/j.2041-210X.2012.00202.x)
- 242 11. Terzer S, Wassenaar LI, Araguás-Araguás LJ, Aggrawal PK. 2013. Global isoscapes
- for δ^{18} O and δ^{2} H in precipitation: improved prediction using regionalized climatic
- regression models. *Hydrol. Earth Syst. Sci. Discuss.* **10**, 7351–7393.
- 245 (doi:10.5194/hess-17-1-2013)
- 246 <u>12.</u> Brattström O, Bensch S, Wassenaar LI, Hobson KA, <u>Å</u>kesson S. 2010.
- 247 Understanding the migration ecology of European red admirals *Vanessa atalanta*

248	using stable hydrogen isotopes. <i>Ecography</i> 33 , 720-729. (doi: 10.1111/j.1600-
249	0587.2009.05748.x)
250	12.13. R CoreTeam. 2015. A language and environment for statistical computing. R
251	Foundation for Statistical Computing.
252	13.14. Chapman BB, Hulthén K, Wellenreuther M, Hansson L-A, Nilsson J-A,
253	Brönmark C. 2014. Patterns of animal migration. In <i>Animal movement across scales</i>
254	(eds. L-A Hansson, S Akesson), pp. 11–35. Oxford: Oxford University Press.
255	14.15. Williams CB. 1958. Insect migration. London: Collins.
256	15.16. Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR,
257	Hill JK. 2010. Flight orientation behaviors promote optimal migration trajectories in
258	high-flying insects. Science 327, 682–685. (doi: 10.1126/science.1182990)
259	16.17. Zwarts L, Bijlsma RG, van der Kamp J, Wymenga E. 2009. Living on the edge:
260	wetlands and birds in a changing Sahel. Zeist, The Netherlands: KNNV Uitgeverij.
261	47.18. Newton I. 2008. The migration ecology of birds. London: Academic Press.
262	18.19. Symmons PM, Cressman K. 2001. Desert locust guidelines. 1. Biology and
263	behaviour. Rome: FAO.
264	benaviour. Rome. FAO.
265	
266	

267	Figure 1. Sample locations and sizes, superimposed on the isoscape of estimated $\delta^2 H_v$
268	for the wings of painted ladies in Europe and Africa.
269	
270	
271	Figure 2. Assigned natal origins of painted ladies collected in autumn in the Sahel (a)
272	and Morocco (b, c), with the corresponding number of butterflies analysed (N). Natal
273	groups 1-5 were defined with a k-means clustering analysis (see Material and
274	methods). Colours depict the predicted probability (0-1) of natal origins of these
275	migrants.
276	

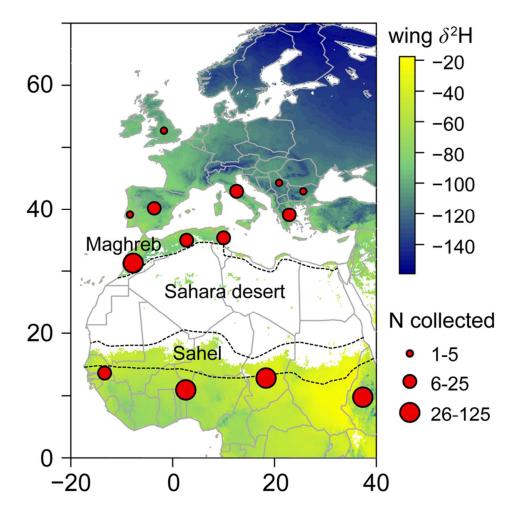


Figure 1. Sample locations and sizes, superimposed on the isoscape of estimated $\delta 2Hw$ for the wings of painted ladies in Europe and Africa.

75x77mm (300 x 300 DPI)

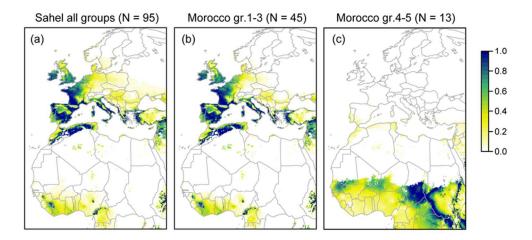


Figure 2. Assigned natal origins of painted ladies collected in autumn in the Sahel (a), and Morocco (b, c), with the corresponding number of butterflies analysed (N). Natal groups 1-5 were defined with a k-means clustering analysis (see Material and methods). Colours depict the predicted probability (0-1) of natal origins of these migrants.

73x34mm (300 x 300 DPI)