1	Original Article
2	
3	RRH: Biogeography of the relict butterfly Elkalyce cogina
4	LRH: G. Talavera <i>et al.</i>
5	
6	One note samba: the biogeographical history of the relict Brazilian butterfly
7	Elkalyce cogina
8	
9	Gerard Talavera ^{1,2,3*} , Lucas A. Kaminski ^{1,4} , André V. L. Freitas ⁴ and Roger Vila ¹
10	
11	¹ Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), 08003 Barcelona,
12	Spain, ² Department of Organismic and Evolutionary Biology and Museum of
13	Comparative Zoology, Harvard University, Cambridge, MA 02138, USA, ³ Faculty of
14	Biology and Soil Science, St Petersburg State University, 199034 St Petersburg,
15	Russia, ⁴ Departamento de Biologia Animal, Instituto de Biologia, Universidade
16	Estadual de Campinas, CP 6109, 13083-970, Campinas, SP, Brazil
17	
18	*Correspondence: Gerard Talavera, Institut de Biologia Evolutiva (CSIC-
19	Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, 08003
20	Barcelona, Spain
21	E-mail: gerard.talavera@csic.es
22	
23	

24 ABSTRACT

25	Aim Biogeographically puzzling taxa represent an opportunity to understand the
26	processes that have shaped current species distributions. The systematic
27	placement and biogeographical history of <i>Elkalyce cogina</i> , a small lycaenid
28	butterfly endemic to Brazil and neighbouring Argentina, are long-standing
29	puzzles. We use molecular tools and novel biogeographical and life-history data
30	to clarify the taxonomy and distribution of this butterfly.
31	Location South America, with emphasis on the Atlantic Rain Forest and Cerrado
32	biomes (Brazil and Argentina).
33	Methods We gathered a dataset of 71 Polyommatini (Lycaenidae) samples,
34	including representatives of all described subtribes and/or sections. Among
35	these, we contributed new sequences for <i>E. cogina</i> and four additional relevant
36	taxa in the target subtribes Everina, Lycaenopsina and Polyommatina. We
37	inferred a molecular phylogeny based on three mitochondrial genes and four
38	nuclear markers to assess the systematic position and time of divergence of
39	<i>E. cogina</i> . Ancestral geographical ranges were estimated with the R package
40	BIOGEOBEARS. To investigate heterogeneity in clade diversification rates, we
41	used Bayesian analysis of macroevolutionary mixtures (BAMM).
42	Results Our results confirm the hypothesis that <i>E. cogina</i> belongs to the subtribe
43	Everina and not Lycaenopsina, but unexpectedly recovered it as the sister group
44	to the rest of Everina, with an estimated divergence time of approximately
45	10 Ma. Ancestral geographical range reconstruction points to an old colonization
46	from Asia, the centre of diversity for the Everina, to the New World. Whereas the
47	Neotropical Polyommatina lineage diversified to produce almost 100 species in
48	multiple genera, the <i>E. cogina</i> lineage did not diversify at all. Such lack of

49	diversification is unique among the seven Everina/Polyommatina lineages that
50	colonized the New World. We also show that the larvae of <i>E. cogina</i> feed on
51	Fabaceae, supporting the identification of this host-plant family as the ancestral
52	state for the whole group.
53	Main conclusions The age and biogeographical reconstruction of the <i>Elkalyce</i>
54	lineage are similar to those of the Neotropical lineage of Polyommatina and
55	suggest that both travelled via the route proposed by Vladimir Nabokov (Asia-
56	Beringia–North America–South America). This coincidence suggests that the
57	climatic conditions at <i>ca</i> . 10 Ma favoured dispersal from Asia to the Neotropics
58	and that later events may have erased traces of these butterfly lineages in North
59	America.
60	
61	Keywords
01	Keywol us
62	Beringia; biogeographical disjunction; colonization; dispersal;
62 63	Reywords Beringia; biogeographical disjunction; colonization; dispersal; diversification; <i>Elkalyce cogina;</i> Fabaceae; Lepidoptera; New World; relict
62 63 64	Reywords Beringia; biogeographical disjunction; colonization; dispersal; diversification; <i>Elkalyce cogina;</i> Fabaceae; Lepidoptera; New World; relict
62 63 64 65	Reywords Beringia; biogeographical disjunction; colonization; dispersal; diversification; <i>Elkalyce cogina;</i> Fabaceae; Lepidoptera; New World; relict
 62 63 64 65 66 	Reywords Beringia; biogeographical disjunction; colonization; dispersal; diversification; <i>Elkalyce cogina;</i> Fabaceae; Lepidoptera; New World; relict "This is just a little samba,
 61 62 63 64 65 66 67 	Reywords Beringia; biogeographical disjunction; colonization; dispersal; diversification; <i>Elkalyce cogina;</i> Fabaceae; Lepidoptera; New World; relict "This is just a little samba, Built upon a single note
 62 63 64 65 66 67 68 	Reywords Beringia; biogeographical disjunction; colonization; dispersal; diversification; <i>Elkalyce cogina</i> ; Fabaceae; Lepidoptera; New World; relict "This is just a little samba, Built upon a single note Other notes are bound to follow,
 61 62 63 64 65 66 67 68 69 	Reywords Beringia; biogeographical disjunction; colonization; dispersal; diversification; <i>Elkalyce cogina</i> ; Fabaceae; Lepidoptera; New World; relict "This is just a little samba, Built upon a single note Other notes are bound to follow, But the root is still that note"
 61 62 63 64 65 66 67 68 69 70 	Reywords Beringia; biogeographical disjunction; colonization; dispersal; diversification; <i>Elkalyce cogina;</i> Fabaceae; Lepidoptera; New World; relict "This is just a little samba, Built upon a single note Other notes are bound to follow, But the root is still that note"
 61 62 63 64 65 66 67 68 69 70 71 	Reywords Beringia; biogeographical disjunction; colonization; dispersal; diversification; <i>Elkalyce cogina;</i> Fabaceae; Lepidoptera; New World; relict "This is just a little samba, Built upon a single note Other notes are bound to follow, But the root is still that note"
 61 62 63 64 65 66 67 68 69 70 71 72 	Reywords Beringia; biogeographical disjunction; colonization; dispersal; diversification; <i>Elkalyce cogina</i> ; Fabaceae; Lepidoptera; New World; relict "This is just a little samba, Built upon a single note Other notes are bound to follow, But the root is still that note" "Samba de Uma Nota Só" ("One-Note Samba") is a song composed by Antonio Carlos Jobim and Newton Mendonça.

74 INTRODUCTION

75	Intriguing disjunct distributions that apparently formed after the break-up of
76	Gondwana are found within many butterfly families as the result of a complex
77	biogeographical history of colonization and extinction events (de Jong & van
78	Achterberg, 2007; Peña <i>et al.</i> , 2010). The Lycaenidae also include notable
79	disjunct distributions that are generally only attributable to long-distance
80	dispersal events, including examples in the Spalgini, Lycaenini, Heliphorini and
81	Polyommatini (de Jong & van Achterberg, 2007; Vila et al., 2011). The study of
82	the affinities and origins of these taxa is crucial to understanding the processes
83	that led to the observed patterns of species distribution and diversification
84	worldwide.
85	With over 1200 species distributed worldwide, the tribe Polyommatini is,
86	one of the two richest lycaenid clades, alongside the Neotropical/Holarctic-
87	distributed Eumaeini (Eliot, 1973). These two tribes represent the only
88	Lycaenidae groups with important South American radiations, but their current
89	biogeographical patterns are strikingly different: whereas most Eumaeini
90	diversity occurs in the Neotropics, the Polyommatini are most species-rich in the
91	Holarctic region.
92	Within the Polyommatini, a complex scenario of independent New World
93	colonization events was hypothesized by Nabokov (1944, 1945) in the 1940s
94	and recently corroborated by Vila et al. (2011), who showed that at least five
95	colonization events from the Old World to the New World occurred between <i>ca.</i>
96	11 Ma and 1 Ma, apparently always through Beringia (the region surrounding
97	the Bering strait). This scenario was postulated and evaluated for the richest
98	subtribe, Polyommatina, but other subtribes, like Leptotina, Everina,

99	Glauchospsychina and Brephidiina, also have representatives both in the Old
100	World and the New World.
101	Such complex biogeographical histories can only be unravelled by means of a
102	reliable and abundant fossil record or inferred from well-founded phylogenies.
103	For butterflies, although the fossil record is extremely poor (de Jong, 2007),
104	knowledge of their phylogenetic relationships is improving, resulting in novel
105	insights into long-standing biogeographical questions. Following the seminal
106	taxonomic revision by Eliot (1973), the higher-level systematics of Polyommatini
107	have recently been improved using molecular phylogenies (Wiemers et al., 2010;
108	Vila <i>et al.</i> , 2011; Talavera <i>et al.</i> , 2013). Some enigmatic taxa remain dubiously
109	placed at the tribal and subtribal levels, however, as is the case for the
110	Neotropical species Elkalyce cogina (Schaus, 1902), which is restricted to Brazil
111	and Misiones province in northern Argentina. The species was originally
112	described within the genus Lycaena by Schaus (1902), but because no close
113	relatives were attributable based on morphology, the monotypic genus <i>Elkalyce</i>
114	Bálint & Johnson, 1955 was erected, thought to be sister to Oreolyce and so
115	belonging to the Lycaenopsis section (equivalent to the subtribe Lycaenopsina)
116	within Polyommatinae (Bálint & Johnson, 1996). More recently, Robbins &
117	Duarte (2006) suggested that <i>Elkalyce cogina</i> could be related to <i>Tongeia</i> in the
118	Everes section (subtribe Everina), also within Polyommatinae, supporting an
119	earlier unpublished hypothesis of Heinz Ebert and John H. Eliot (see comments
120	in Brown, 1993; Robbins & Duarte, 2006). In both hypotheses, the putative sister

121 groups of *E. cogina* are exclusively distributed in Asia, and therefore this taxon

122 seems to represent a South American endemic lycaenid whose closest relatives

123 occur in the Old World.

In this study, we present a detailed molecular phylogeny of Polyommatini
including *E. cogina* and thus provide evidence about its systematic placement
within the tribe. By inferring divergence times and ancestral geographical range,
we estimate the time of colonization of the New World by this lineage, and we
explore how diversification patterns within the group can elucidate the unique
biogeographical and evolutionary history of *E. cogina*.

131 MATERIALS AND METHODS

132 Distribution and life history data

133 Specimens of *E. cogina* were studied and collected in the field at three localities

in São Paulo state (SP), south-eastern Brazil: (1) Serra do Japi, Jundiaí (23°13′ S,

135 46°58' W, 900–1200 m), (2) Grota Funda, Atibaia (23°10' S, 46°31' W, 1050–

136 1100 m), and (3) Alto do Capivari, Campos do Jordão (22°44' S, 45°31' W, 1600-

137 1800 m). Locality data for *E. cogina* were compiled from the list presented in

138 Robbins & Duarte (2006); additional data were also obtained from specimens

139 recently collected by the authors and deposited in the Zoological Collection of

140 Campinas State University, and from the personal communication of Ezequiel

141 Núñez-Bustos (Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia',

- 142 Buenos Aires, Argentina). A map of the updated distribution of *E. cogina* is
- 143 presented in Fig. 1.

144

145 **Taxon sampling and molecular data**

146 A large collection of 75 Polyommatini samples was used, including at least one

- 147 representative of each described subtribe or section *sensu* Eliot (1973). Most of
- 148 the dataset was gathered from our previous studies (Vila *et al.*, 2011; Talavera *et*

149	al., 2013), from which multilocus sequences were available. An additional
150	specimen of Elkalyce cogina was collected from Petrópolis (Brazil) and taxon
151	sampling for the target subtribes Everina, Lycaenopsina and Polyommatina was
152	strengthened with additional taxa. (See Table S1 in Appendix S1 for a list of
153	specimens used in this study.) The samples (bodies in ethanol and wings in
154	glassine envelopes) are stored in the DNA and Tissues Collection of the Museum
155	of Comparative Zoology (Harvard University, Cambridge, MA, USA) and of the
156	Institut de Biologia Evolutiva (Barcelona, Spain). Genomic DNA was extracted
157	from a leg or from a piece of the abdomen using the DNeasy Tissue Kit (Qiagen,
158	Valencia, CA, USA) following the manufacturer's protocols. Fragments from three
159	mitochondrial genes - cytochrome oxidase I (COI), leucine transfer RNA (leu-
160	<i>tRNA</i>) and cytochrome oxidase II (<i>COII</i>) – and from four nuclear markers –
161	elongation factor-1 alpha (<i>EF-1</i> α), 28S ribosome unit (<i>28S</i>), histone H3 (<i>H3</i>) and
162	wingless (Wg) – were amplified by polymerase chain reaction and sequenced as
163	described in Talavera et al. (2013). (GenBank codes for the set of sequences used
164	and obtained specifically for this study are listed in Table S2 of Appendix S1.)
165	
166	Alignment, phylogenetic inference and dating
167	A molecular matrix was generated for each independent marker (the
168	mitochondrial markers were treated as a single evolutionary unit). All sequences
169	were edited and aligned, together with those obtained in Vila et al. (2011), using
170	GENEIOUS 6.1.5 (Biomatters, Auckland, New Zealand; available at:
171	http://www.geneious.com/). Ambiguously aligned regions and regions of the

- 172 matrix lacking more than 50% of data were removed using GBLOCKS 0.96 under a
- 173 relaxed criterion with the following parameters: *b2*, 50% + 1 of the sequences;

174	<i>b3</i> , 3; <i>b4</i> , 5; <i>b5</i> , all (Castresana, 2000; Talavera & Castresana, 2007). The final
175	combined alignment consisted of 4850 bp, comprising 2172 bp of <i>COI</i> + leu-tRNA
176	+ COII, 1172 bp of EF-1 α , 811 bp of 28S, 370 bp of Wg, and 328 bp of H3 and is
177	available in TreeBASE at http://www.treebase.org/ (study ID 17438).
178	Maximum likelihood (ML) and Bayesian inference (BI) were employed to
179	estimate evolutionary relationships. ML was run using PHYML 3.0 (Guindon et al.,
180	2010), and BI was employed to simultaneously infer phylogenetic relationships
181	and divergence times with the software BEAST 1.8.0 (Drummond <i>et al.</i> , 2012).
182	JMODELTEST 2.1.4 (Guindon & Gascuel, 2003; Darriba et al., 2012) was executed to
183	select the best-fitting DNA substitution models according to the Akaike
184	information criterion (AIC). For ML, the model GTR+I+G was selected for a single
185	concatenated alignment. For BI, the data were partitioned into six markers,
186	considering <i>COI</i> + <i>leu-tRNA</i> + <i>COII</i> a single evolutionary unit in the mitochondrial
187	genome. As a result, the HKY+I+G model was used for <i>H3</i> , the TN+I+G model for
188	<i>Wg</i> and a GTR+I+G model for <i>EF-1</i> α , 28S and the mitochondrial fragment. The
189	gamma distribution was estimated automatically from the data using six rate
190	categories. Because of the absence of reliable primary calibration points (fossils)
191	for the Lycaenidae studied, normally distributed Time to the Most Recent
192	Common Ancestor (TMRCA) priors based on published age estimates were used
193	as secondary calibrations on six well-supported nodes (posterior probability \geq
194	0.95) to estimate divergence times (Fig. 2). The 95% HPD distribution of these
195	TMRCA priors included the maximum and minimum ages inferred in Vila <i>et al</i> .
196	(2011) for the selected nodes. These inferences were based on the application of
197	a wide range of substitution rates described for mitochondrial regions in
198	invertebrates. For <i>COI</i> , a slow substitution rate of 6.5×10^{-9} and a fast rate of 9.5

199	× 10^{-9} (Quek <i>et al.</i> , 2004) were used, and for <i>COI</i> + <i>leu-tRNA</i> + <i>COII</i> , a substitution
200	rate of 11.5 × 10^{-9} substitutions site ⁻¹ yr ⁻¹ (Brower, 1994) was applied. The
201	resulting 95% HPD intervals were 3.26–6.06 Ma for node 1, 2.97–5.61 Ma for
202	node 2, 3.43–6.35 Ma for node 3, 6.76–12.2 Ma for node 4, 4.78–9.32 Ma for node
203	5, and 9.95–17.2 Ma for node 6. An uncorrelated relaxed clock (Drummond <i>et al.</i> ,
204	2006) and a constant population size under a coalescent model were established
205	as priors. Two independent chains were run for 50 million generations each,
206	sampling values every 1000 steps. A conservative burn-in of 500,000
207	generations was applied for each run after checking Markov chain Monte Carlo
208	(MCMC) convergence through graphically monitoring likelihood values in TRACER
209	1.5 (available at: http://beast.bio.ed.ac.uk/Tracer). Independent runs were
210	combined in LOGCOMBINER 1.8.0, as implemented in BEAST, and all parameters
211	were analysed using TRACER 1.5 to determine whether they had also reached
212	stationarity. Tree topologies were assessed using TREEANNOTATOR 1.8.0 in the
213	BEAST package to generate a maximum-clade-credibility tree of all sampled trees
214	with median node heights. FIGTREE 1.4.0 (available at: http://beast.bio.
215	ed.ac.uk/FigTree) was used to visualize the consensus tree along with node ages,
216	age deviations and node posterior probabilities.
217	
218	Diversification rates and ancestral geographical range inference
219	To investigate possible diversification-rate heterogeneity affecting the
220	Polyommatina + Everina clade, and therefore the role of <i>Elkalyce cogina</i> , we used
221	Bayesian analysis of macroevolutionary mixtures (BAMM; Rabosky et al., 2013,
222	2014a). The software was run on the BEAST maximum-credibility tree and non-
223	random missing data were accounted for by assigning the proportion of the

224	species sampled per genus. Four MCMC chains were run for 10 million
225	generations with a burn-in of 10%. Convergence of chains was checked in CODA
226	(Plummer et al., 2006) and BAMM results were analysed and visualized with the
227	package BAMMTOOLS (Rabosky et al., 2014b) in R 3.1.1 (R Core Team, 2014).
228	A lineages-through-time (LTT) plot was calculated for the Polyommatina +
229	Everina clade and contrasted with the diversification patterns of a dataset of
230	simulated trees. The R package TREESIM (Stadler, 2011) was used to simulate 100
231	trees by fixing the extant number of species per genus and the time since the
232	most recent common ancestor (function 'sim.bd.taxa.age'). The speciation and
233	extinction rates used in the simulations (λ = 0.80, μ = 0.40) were calculated
234	through the extended version of the birth-death models (function 'bd.ext') in the
235	APE package (Paradis <i>et al.</i> , 2004), which allows phylogenetic and taxonomic data
236	for a given clade to be combined. Species richness for the genera was assigned
237	according to Talavera <i>et al</i> . (2013).
238	Ancestral geographical ranges were estimated in order to infer the most
239	likely biogeographical origin for the Everina subtribe and so know the directions
240	of the intercontinental dispersals that resulted in the current distributions. The
241	likelihoods of the two hypotheses were assessed with the R package
242	BIOGEOBEARS 0.2.1 (Matzke, 2013a,b) (Table S3 in Appendix S1). For all
243	analyses, 10 large-scale biogeographical regions and a dispersal multiplier
244	matrix were coded as in Vila et al. (2011). In order to avoid sampling effects,
245	terminals were considered placeholders for the genera they represented and the
246	distribution range of the genus was used (Table S4 in Appendix S1). A test was
247	performed for a dispersal-extinction-cladogenesis (DEC) model (Ree & Smith,
248	2008), a maximum-likelihood version of the dispersal–vicariance model

249	(DIVALIKE) (Ronquist, 1997) and a Bayesian biogeographical inference
250	(BAYAREALIKE) (Landis et al., 2013). The three models were also tested when
251	allowing for founder-effect speciation (j) (Matzke, 2014). The resulting models
252	recovered the common ancestor of Everina and Polyommatina in several regions
253	simultaneously, including both the Old World and the New World, a scenario that
254	is biologically implausible. AIC scores and weights were used to detect the best-
255	performing model (BAYAREALIKE), which was subsequently used to
256	independently test each of the six favoured areas as a potential origin by fixing
257	the root.
258	
259	RESULTS
260	Distribution and life history
261	Published geographical distribution data and field observations show that
262	<i>E. cogina</i> is associated with montane habitats, usually above 800 m (with the
263	exception of the southernmost records in Argentina) (Fig. 1). The species has
264	usually been observed associated with open habitats, especially partly flooded
265	montane swamps (as noted by Robbins & Duarte, 2006), where other
266	polyommatines such as Leptotes cassius, Hemiargus hanno and Zizula cyna are
267	also common (although these three species have much broader geographical and
268	elevational distributions). Adults are generally only found in particular localities
269	where populations exist, sometimes displaying notable densities. For example,
270	we observed about 20 individuals in a small swamp area of ca . 100 m ² in Serra
271	do Japi (Jundiaí, SP), and more than 50 individuals in a 30-m sector of a trail
272	through a swamp area in Campos do Jordão (SP). Adults of <i>E. cogina</i> are present
273	all year round, although they are more common from January to April. They have

274	a low, fluttering flight, usually 10–50 cm above ground, usually flying inside the
275	vegetation or just above it. Adults were observed feeding from flowers of small
276	Asteraceae, Fabaceae and Lamiaceae that were growing in the marshy areas. In
277	Serra do Japi, one larva has been reared on inflorescences of Desmodium
278	uncinatum (Fabaceae), but no oviposition behaviour has ever been observed.
279	This represents the first host plant record for <i>E. cogina</i> . Because no ants were
280	recorded tending larvae at any of the studied sites, a low degree of
281	myrmecophily or a non-myrmecophilous condition is assumed.
282	
283	Phylogenetic systematics
284	ML and BI recovered phylogenetic trees displaying generally concordant
285	topologies that are very similar to those previously published for Polyommatini
286	(Vila <i>et al.</i> , 2011; Talavera <i>et al.</i> , 2013) for the supported nodes (Fig. 2,Fig. S1 in
287	Appendix S1). Elkalyce cogina was recovered basally in the Everina subtribe with
288	strong support (posterior probability, 1.0; bootstrap support, 100), and is thus
289	most closely related to the Old World genera Tongeia, Talicada and Cupido. The
290	inferred divergence times also generally matched previously published
291	probability distributions, and the estimated divergence between <i>E. cogina</i> and
292	the common ancestor of Everina was 10.17 Ma (95% highest posterior density
293	interval, HPD, 7.69–12.86 Ma).
294	
295	Diversification

296 Net diversification rates, as estimated by the BAMM model, accelerated noticeably

- during the Palaearctic Polyommatina radiation (Fig. 3a). The 95% HPD sampled
- 298 by BAMM comprised the ten most probable distinct shift configurations. The

299	single best shift configuration in BAMM inferred one increasing rate shift for the
300	most diverse Palaearctic Polyommatina clade, with a probability of 0.52 (Fig. 3b).
301	The second-best configuration ($f = 0.14$) suggested an additional minor second
302	shift in the form of a diversification decrease for the <i>E. cogina</i> lineage (Fig. 3c).
303	The diversification-through-time curve showed that diversification rates peaked
304	between 7 and 4 Ma (Fig. 3d). This strong signal can be attributed to the shift
305	detected for Palaearctic Polyommatina; the peak disappeared when
306	diversification rates in this clade were not considered (Fig. 3e). The LTT plot
307	showed an overall accumulation of lineages increasing fairly smoothly (Fig. 3f).
308	The curve displayed minor fluctuations in the cladogenesis through time that
309	might result from clade diversification heterogeneity, but generally fitted within
310	the margins of the simulated trees under a constant-rate model (Fig. 3f). No
311	strong shifts in diversification rate, either increases or decreases, were detected
312	in the lineages colonizing the New World, and only <i>Elkalyce</i> displayed a
313	marginally significant rate decrease. Indeed, <i>Elkalyce</i> was recovered as the oldest
314	lineage with a single extant taxon in the Everina + Polyommatina tree (Fig. 3g).
315	
316	Ancestral geographical range
317	The BAYAREALIKE model (LnL, –137.28; AIC, 278.4) was by far the best among
318	all models tested with BIOGEOBEARS, and the addition of founder-event
319	speciation (j) parameters improved the results (LnL, -134.71 ; AIC, 275.4) (Table
320	S3 in Appendix S1). Among the six potential ancestral regions for the root of the
321	tree, the Oriental region was strongly favoured (LnL, -142.96 ; AIC, 291.92),
322	followed by the East Palaearctic region (LnL, –144.30; AIC, 294.60) (Table S3 in
323	Appendix S1). Thus, a dispersal event from Asia to the New World is recovered

324 as the most likely hypothesis, although the exact route is uncertain.

325

326 **DISCUSSION**

327 The systematic position of *Elkalyce cogina*

328 Our results contradict the hypothesis of Bálint & Johnson (1996) that Elkalyce 329 cogina belongs to the subtribe Lycaenopsina (Lycaenopsis section). Rather, the 330 present data and analyses support the close relationship to the Everina (Everes 331 section) proposed by Robbins & Duarte (2006) and confirm the ideas of H. Ebert, 332 as mentioned by Brown (1993). Talavera et al. (2013) suggest 15 Myr as a 333 minimum age for subtribes in Polyommatini. Accordingly, the monotypic genus 334 *Elkalyce* (10.17 Myr; HPD, 7.69–12.86 Myr) may be included within Everina. 335 (Note that Everina is the correct name for this subtribe, rather than Cupidina as 336 used by Talavera *et al.*, 2013.) Concerning the position within the subtribe, our 337 phylogeny shows *Elkalyce* to be the sister group to all the other Everina sampled 338 (Fig. 2), and thus this taxon is not 'sister to, or congeneric with, *Tongeia*' as 339 suggested by Eliot (1988, unpublished letters to Robbins) as described in 340 Robbins & Duarte (2006). Interestingly, Robbins & Duarte (2006) expressed 341 doubts regarding the homology of the male genital 'false alulae' because of slight 342 differences in their position, which led them to be cautious about synonymizing 343 *Elkalyce* with *Tongeia*. Even though monotypic genera are sometimes considered 344 of dubious classificatory value (Farris, 1976), the phylogenetic position and age 345 (cf. discussion of generic ages in Talavera et al., 2013) of Elkalyce support the 346 acceptance of this genus.

347

348 Historical biogeography and diversification

349 Ancestral geographical range reconstruction indicates the most likely scenario to 350 consist of the common ancestor of Everina + Polyommatina originating in the Old 351 World – probably in the Oriental region or in the Eastern Palaearctic – followed 352 by dispersal to the New World by the *Elkalyce* lineage (Table S3 in Appendix S1). 353 The centre of diversity for Everina is clearly Southeast Asia, as is the case for 354 several other lycaenid groups. Indeed, all the genera except *Elkalyce* occur there, 355 some of them (Bothrinia, Shijimia and Talicada) exclusively. The remarkable 356 disjunction between *Elkalyce* and the other Everina taxa does not, however, 357 represent the only example of a New World lycaenid whose closest relatives are 358 in the Old World. Other notorious biogeographical disjunctions exist, including 359 those of two species of *Brephidium*, apparently related to South African taxa in 360 the same genus and in *Oraidium*, and *Zizula cyna* – the only other species of 361 Zizula occurring in Africa, Southeast Asia and Australia (Robbins & Duarte, 2006; 362 de Jong & van Achterberg, 2007). Although debate about a Gondwanan vicariant 363 or dispersal origin has been generated for other higher-level butterfly taxa (e.g. 364 de Jong, 2003; Hall et al., 2004; Braby et al., 2005; Kodandaramaiah & Wahlberg, 365 2007; Peña *et al.*, 2010), most cases in Lycaenidae are arguably too young to 366 consider a Gondwanan vicariant-origin hypothesis. 367 Vila *et al.* (2011) proposed that at least five colonization events from the Old 368 World to the New World through Beringia occurred within the Polyommatina, 369 the sister subtribe to Everina. The ancestor of *Elkalyce* might represent another 370 case that occurred approximately 10 Ma, at a similar time to the ancestor of the 371 current Neotropical Polyommatina (ca. 10.7 Ma) and the ancestor of the *lcaricia* 372 + *Plebulina* clade (*ca.* 9.3 Ma). During this period, climatic conditions were

373	warmer than at present and a land-bridge existed in Beringia, which
374	undoubtedly facilitated this dispersal route for presumably warm-adapted
375	butterflies. The discovery that <i>E. cogina</i> feeds on Fabaceae, as was presumably
376	also the case for the ancestors of the Neotropical Polyommatina and of the
377	Icaricia + Plebulina clade (Vila et al., 2011), helps explain their parallel
378	biogeographical histories. In addition, this result strengthens the hypothesis that
379	Fabaceae was the ancestral host plant for both Polyommatina and Everina
380	subtribes (see Fig. S7 in Vila <i>et al.</i> , 2011). Within the Everina, the genus <i>Cupido</i>
381	includes two apparent sister species in the Nearctic – Cupido comyntas and
382	Cupido amyntula – that are estimated to have colonized the New World less than
383	2 Ma, the estimated time of divergence between <i>C. comyntas</i> and the Palaearctic
384	Cupido alcetas (Fig. 2). Overall, at least seven Old World-to-New World
385	colonization events have occurred within the Polyommatina + Everina clade (Fig.
386	4, Table 1).
387	It is generally understood that older lineages have had more time to
388	accumulate species (McPeek & Brown, 2007) and an exponential correlation
389	between time and number of species is expected if we assume a constant
390	diversification rate. The number of species versus time of colonization
391	approximates an exponential curve across the New World lineages, with the
392	exception of <i>Elkalyce</i> (Fig. 4). There is a particularly strong contrast between the
393	successful Neotropical Polyommatina and the monotypic <i>Elkalyce</i> which, despite
394	having similar ages, have resulted in <i>ca</i> . 91 and 1 species in the Neotropics,
395	respectively. We cannot be certain that no undescribed species exist within
396	<i>Elkalyce</i> ; because there is no apparent bias in the intensity of research carried
397	out in the different lineages of South American polyommatines, however, it

398	seems unlikely that the documented contrast in richness is an artefact. This
399	pattern shows that <i>Elkalyce</i> has been much diversified much less than most
400	extant New World lineages. Nevertheless, our BAMM results show that the
401	decrease in the diversification rate of the <i>Elkalyce</i> lineage is only marginally
402	significant. This could be due to the generally low species richness of Everina and
403	of the early divergent branches in Polyommatina. Moreover, other examples of
404	old singletons exist in the Polyommatina, including the Neotropical
405	Pseudochrysops bornoi [9.89 (7.97–11.88) Myr old]. Pseudochrysops is only found
406	on Caribbean islands, and islands are well known for harbouring relict lineages.
407	Elkalyce cogina is one of the few polyommatines that occur in eastern South
408	America. Regardless of any factor that explains the low diversity in <i>Elkalyce</i> , the
409	Neotropical Polyommatina, which are most diverse in western South America,
410	may exhibit high species richness due to habitat heterogeneity and Andean
411	orogenesis, as found for other Neotropical butterflies (see Wahlberg & Freitas,
412	2007; Elias <i>et al.</i> , 2009).
413	A significant increase of the diversification rates in Polyommatina was
414	detected by BAMM for the hyperdiverse Palaearctic genera. This clade is generally
415	associated with mountainous habitats and arid conditions, similar to the
416	Polyommatina in South America, which also display high relative species
417	numbers. Polyommatina and Everina are both typical of open vegetation, with
418	very few species occurring in forested habitats. This could in part explain why
419	lineages such as Elkalyce or Pseudochrysops have not diversified: both are
420	endemics of areas with a low diversity of open habitats, which could prevent
421	diversification by vicariance in these two lineages. Therefore, even if the relict
422	distribution of <i>Elkalyce</i> suggests extinction in the intervening areas after

423	colonization and dispersal through the New World, the limited diversification
424	observed for this lineage might also be a product of a low speciation rate.
425	Although <i>Elkalyce</i> maintained the apparently ancestral host-plant family
426	(Fabaceae), New World Polyommatina genera including Pseudolucia, Icaricia,
427	Plebejus and Agriades displayed host-plant shifts to new families of plants, which
428	is a well-known driver of butterfly diversification (Nylin & Wahlberg, 2008;
429	Fordyce, 2010; Nylin <i>et al.</i> , 2014).
430	Larval association with ants (myrmecophily) is another factor that might
431	increase diversification in Lycaenidae (Pellissier et al., 2012). This may be
432	important when comparing the diverse and generally myrmecophilous
433	Polyommatina with the Everina (<i>Cupido</i> section in Fiedler, 1991; Benyamini,
434	1995), but it is not particularly relevant in explaining the uniqueness of <i>Elkalyce</i> ,
435	larvae apparently display a low degree of myrmecophily, similar to that observed
436	in the other Everina taxa.
437	

438 **CONCLUSIONS**

439 We provide the first molecular assessment of the taxon *Elkalyce cogina*, a species 440 of Polyommatini, endemic to Brazil and neighbouring Argentina, of unclear 441 systematic placement and biogeographical history. Our results show that 442 *E. cogina* belongs to the Everina subtribe, which agrees with one of the published 443 hypotheses based on morphology. The supported position of *E. cogina* as sister 444 to the other Everina taxa studied and the estimated divergence time of about 445 10 Ma are, however, unexpected. We observed the larvae of *E. cogina* feeding on 446 *Desmodium uncinatum* (Fabaceae), which suggests that the common ancestor of 447 both the sister subtribes Everina and Polyommatina fed on Fabaceae. A

448	biogeographical history parallel to that of the Neotropical Polyommatina (Asia-
449	Beringia–North America–South America) is proposed. The lack of diversification
450	in <i>Elkalyce</i> is unique among lineages of New World colonists.
451	
452	ACKNOWLEDGEMENTS
453	We thank Ezequiel Núñez-Bustos and Alfred Moser for supplying additional
454	distribution data. Maice S. Franco collected the larva in Serra do Japi. Nicholas
455	Matzke helped with BIOGEOBEARS. Gabriel Miller reviewed the English language.
456	Zolt Bálint kindly provided photos of museum specimens of <i>Elkalyce cogina</i> .
457	Comments from Bob Robbins and two anonymous referees greatly improved this
458	manuscript. Funding was provided by the Spanish Ministerio de Economía y
459	Competitividad (project CGL2013-48277-P). G.T. is supported by the grant BP-
460	A00275 (AGAUR-Generalitat de Catalunya), Marie Curie Actions FP7-PEOPLE-
461	2013-IOF (project 622716) and the grant 1.50.1617.2013 at Saint Petersburg
462	State University; L.A.K. was supported by CAPES (3200-14-0); A.V.L.F. thanks
463	ICMBio for research permits (SISBIO no. 10802-5), CNPq (fellowship
464	302585/2011-7 and grant 564954/2010-1), RedeLep-SISBIOTA-Brasil/CNPq
465	(563332/2010-7), the National Science Foundation (DEB-1256742), BR-BoL
466	(MCT/CNPq/FNDCT 50/2010) and FAPESP (grant 2012/50260-6 and BIOTA-
467	FAPESP Programs 2011/50225-3 and 2013/50297-0).
468	
469	REFERENCES

- 470 Bálint, Z. & Johnson, K. (1996) Systematic position and generic status of *Lycaena*
- 471 *cogina* Schaus, 1902: an endemic Neotropical Lycaenopsina (Lepidoptera,
- 472 Lycaenidae). *Acta Zoologica Academiae Scientiarum Hungaricae*, **41**, 343–347.

- 473 Benyamini, D. (1995) Synopsis of biological studies of the Chilean Polyommatini
- 474 (Lepidoptera, Lycaenidae). Reports of the Museum of Natural History,
- 475 *University of Wisconsin, Stevens Point*, **52**, 1–51.
- 476 Braby, M.F., Trueman, J.W.H. & Eastwood, R. (2005) When and where did
- 477 troidine butterflies (Lepidoptera: Papilionidae) evolve? Phylogenetic and
- 478 biogeographic evidence suggests an origin in remnant Gondwana in the Late
- 479 Cretaceous. *Invertebrate Systematics*, **19**, 113–143.
- 480 Brower, A.V. (1994) Rapid morphological radiation and convergence among
- 481 races of the butterfly *Heliconius erato* inferred from patterns of mitochondrial
- 482 DNA evolution. *Proceedings of the National Academy of Sciences USA*, **91**, 6491–
- 483 6495.
- 484 Brown, K.S., Jr (1993) Neotropical Lycaenidae: an overview. Conservation biology
- 485 *of Lycaenidae (butterflies)* (ed. by T.R. New), pp. 45–61. IUCN, Gland,
- 486 Switzerland.
- 487 Castresana, J. (2000) Selection of conserved blocks from multiple alignments for
- their use in phylogenetic analysis. *Molecular Biology and Evolution*, **17**, 540–
- 489 552.
- 490 Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more
- 491 models, new heuristics and parallel computing. *Nature Methods*, **9**, 772.
- 492 Drummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A. (2006) Relaxed
- 493 phylogenetics and dating with confidence. *PLoS Biology*, **4**, e88.
- 494 Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian
- 495 phylogenetics with BEAUti and the BEAST 1.7. *Molecular Biology and*
- 496 *Evolution*, **29**, 1969–1973.
- 497 Elias, M., Joron, M., Willmott, K., Silva-Brandão, K.L., Kaiser, V., Arias, C.F., Gomez

498	Piñerez, G.L., Uribe, S., Brower, A.V.Z., Freitas, A.V.L. & Jiggins, C.D. (2009) Out
499	of the Andes: patterns of diversification in clearwing butterflies. <i>Molecular</i>
500	<i>Ecology</i> , 18 , 1716–1729.
501	Eliot, J.N. (1973) The higher classification of the Lycaenidae (Lepidoptera): a
502	tentative arrangement. Bulletin of the British Museum of Natural History
503	(Entomology), 28 , 373–506.
504	Farris, J.S. (1976) Phylogenetic classification of fossils with recent species.
505	<i>Systematic Biology</i> , 25 , 271–282.
506	Fiedler, K. (1991) Systematic, evolutionary, and ecological implications of
507	myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea).
508	Bonner Zoologische Monographien, 31 , 1–210.
509	Fordyce, J.A. (2010) Host shifts and evolutionary radiations of butterflies.
510	Proceedings of the Royal Society B: Biological Sciences, 277 , 3735–3743.
511	Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate algorithm to
512	estimate large phylogenies by maximum likelihood. <i>Systematic Biology</i> , 52 ,
513	696–704.
514	Guindon, S., Dufayard, JF., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O.
515	(2010) New algorithms and methods to estimate maximum-likelihood
516	phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59 ,
517	307–321.
518	Hall, J.W., Robbins, R.K. & Harvey, D.J. (2004) Extinction and biogeography in the
519	Caribbean: new evidence from a fossil riodinid butterfly in Dominican amber.
520	Proceedings of the Royal Society B: Biological Sciences, 271 , 797–801.
521	de Jong, R. (2003) Are there butterflies with Gondwanan ancestry in the
522	Australian region? Invertebrate Systematics, 17, 143–156.

- 523 de Jong, R. (2007) Estimating time and space in the evolution of the Lepidoptera.
- 524 *Tijdschrift voor Entomologie*, **150**, 319–346.
- 525 de Jong, R. & van Actherberg, C. (2007) Global disjunctions and flying insects.
- 526 *Biogeography, time, and place: distributions, barriers and islands* (ed. by W.
- 527 Renema), pp. 5–44. Topics in Geobiology 29. Springer, Berlin.
- 528 Kodandaramaiah, U. & Wahlberg, N. (2007) Out-of-Africa origin and dispersal-
- 529 mediated diversification of the butterfly genus *Junonia* (Nymphalidae:
- 530 Nymphalinae). *Journal of Evolutionary Biology*, **20**, 2181–2191.
- 531 Landis, M.J., Matzke, N.J., Moore, B.R. & Huelsenbeck, J.P. (2013) Bayesian
- analysis of biogeography when the number of areas is large. *Systematic*
- 533 *Biology*, **62**, 789–804.
- 534 Matzke, N.J. (2013a) *BioGeoBEARS: biogeography with Bayesian (and likelihood)*
- *evolutionary analysis in R scripts.* R package version 0.2.1. Available at:
- 536 http://cran.r-project.org/package=BioGeoBEARS (accessed 10 March 2015)
- 537 Matzke, N.J. (2013b) Probabilistic historical biogeography: new models for
- 538 founder-event speciation, imperfect detection, and fossils allow improved
- 539 accuracy and model-testing. *Frontiers of Biogeography*, **5**, 242–248.
- 540 Matzke, N.J. (2014) Model selection in historical biogeography reveals that
- 541 founder-event speciation is a crucial process in island clades. *Systematic*
- 542 *Biology*, **63**, 951–970.
- 543 McPeek, M.A. & Brown, J.M. (2007) Clade age and not diversification rate
- 544 explains species richness among animal taxa. *The American Naturalist*, **169**,
- 545 E97–E106.
- 546 Nabokov, V. (1944) Notes on the morphology of the genus *Lycæides* (Lycænidæ,
- 547 Lepidoptera). *Psyche*, **50**, 104–138.

548	Nabokov, V. (1945) Notes on Neotropical Plebejinæ (Lycaenidæ). <i>Psyche</i> , 51 , 1–
549	61.
550	Nylin, S. & Wahlberg, N. (2008) Does plasticity drive speciation? Host-plant shifts
551	and diversification in nymphaline butterflies (Lepidoptera: Nymphalidae)
552	during the tertiary. <i>Biological Journal of the Linnean Society</i> , 94 , 115–130.
553	Nylin, S., Slove, J. & Janz, N. (2014) Host plant utilization, host range oscillations
554	and diversification in nymphalid butterflies: a phylogenetic investigation.
555	<i>Evolution</i> , 68 , 105–124.
556	Paradis, E., Claude, J. & Strimmer, K. (2004) APE: analyses of phylogenetics and
557	evolution in R language. <i>Bioinformatics</i> , 22 , 289–290.
558	Pellissier, L., Litsios, G., Guisan, A. & Alvarez, N. (2012) Molecular substitution
559	rate increases in myrmecophilous lycaenid butterflies (Lepidoptera).
560	<i>Zoologica Scripta</i> , 41 , 651–658.
561	Peña, C., Nylin, S., Freitas, A.V.L. & Wahlberg, N. (2010) Biogeographic history of
562	the butterfly subtribe Euptychiina (Lepidoptera, Nymphalidae, Satyrinae).
563	Zoologica Scripta, 39 , 243–258.
564	Plummer, M., Best, N., Cowles, K. & Vines, K. (2006) CODA: convergence diagnosis
565	and output analysis for MCMC. <i>R News</i> , 6 , 7–11.
566	Quek, SP., Davies, S.J., Itino, T. & Pierce, N.E. (2004) Codiversification in an ant-
567	plant mutualism: stem texture and the evolution of host use in Crematogaster
568	(Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae). Evolution,
569	58 , 554–570.
570	R Core Team (2014). R: A language and environment for statistical computing.
571	Version 3.1.1. R Foundation for Statistical Computing. Vienna, Austria. URL
572	http://www.R-project.org/.

573	Rabosky, D.L., Santini, F., Eastman, J., Smith, S.A., Sidlauskas, B., Chang, J. & Alfaro,
574	M.E. (2013) Rates of speciation and morphological evolution are correlated
575	across the largest vertebrate radiation. <i>Nature Communications</i> , 4 , 1958.
576	Rabosky, D.L., Donnellan, S.C., Grundler, M. & Lovette, I.J. (2014a) Analysis and
577	visualization of complex macroevolutionary dynamics: an example from
578	Australian scincid lizards. <i>Systematic Biology</i> , 63 , 610–627.
579	Rabosky, D.L., Grundler, M., Anderson, C., Title, P., Shi, J.J., Brown, J.W., Huang, H.
580	& Larson, J.G. (2014b) BAMMtools: an R package for the analysis of
581	evolutionary dynamics on phylogenetic trees. Methods in Ecology and
582	Evolution, 5 , 701–707.
583	Ree, R.H. & Smith, S.A. (2008) Maximum likelihood inference of geographic range
584	evolution by dispersal, local extinction, and cladogenesis. Systematic Biology,
585	57, 4–14.
586	Robbins, R.K. & Duarte, M. (2006) Systematic placement of Lycaena cogina
587	Schaus (Lepidoptera: Lycaenidae: Polyommatinae), a biogeographically
588	disjunct New World species. Proceedings of the Entomological Society of
589	Washington, 108 , 226–236.
590	Ronquist, F. (1997) Dispersal-vicariance analysis: a new approach to the
591	quantification of historical biogeography. <i>Systematic Biology</i> , 46 , 195–203.
592	Schaus, W. (1902) Descriptions of new American butterflies. Proceedings of the
593	United States National Museum, 24 , 383–460.
594	Stadler, T. (2011) Simulating trees with a fixed number of extant species.
595	<i>Systematic Biology</i> , 60 , 676–684.
596	Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing
597	divergent and ambiguously aligned blocks from protein sequence alignments.

598	Systematic Biology, 56 , 564–577.
599	Talavera, G., Lukhtanov, V.A., Pierce, N.E. & Vila, R. (2013) Establishing criteria
600	for higher-level classification using molecular data: the systematics of
601	Polyommatus blue butterflies (Lepidoptera, Lycaenidae). Cladistics, 29 , 166–
602	192.
603	Vila, R., Bell, C.D., Macniven, R., Goldman-Huertas, B., Ree, R.H., Marshall, C.R.,
604	Bálint, Z., Johnson, K., Benyamini, D. & Pierce, N.E. (2011) Phylogeny and
605	palaeoecology of <i>Polyommatus</i> blue butterflies show Beringia was a climate-
606	regulated gateway to the New World. Proceedings of the Royal Society B:
607	Biological Sciences, 278 , 2737–2744.
608	Wahlberg, N. & Freitas, A.V.L. (2007) Colonization of and radiation in South
609	America by butterflies in the subtribe Phyciodina (Lepidoptera:
610	Nymphalidae). Molecular Phylogenetics and Evolution, 44, 1257–1272.
611	Wiemers, M., Stradomsky, B.V. & Vodolazhsky, D.I. (2010) A molecular phylogeny
612	of <i>Polyommatus</i> s. str. and <i>Plebicula</i> based on mitochondrial <i>COI</i> and nuclear
613	ITS2 sequences (Lepidoptera: Lycaenidae). European Journal of Entomology,
614	107 , 325–336.
615	
616	SUPPORTING INFORMATION
617	Additional Supporting Information may be found in the online version of this
618	article:
619	Appendix S1 Supporting tables (Tables S1–S4) and figure (Fig. S1).
620	
621	BIOSKETCH

622 Members of the research team are actively engaged in the study of the

623 biodiversity, biogeography and evolution of Lepidoptera, with specific interest in

624 unravelling the historical and present-day factors responsible for current species

- 625 distributions.
- 626
- 627 Author contributions: G.T. and R.V. conceived the study; R.V., L.A.K. and A.V.L.F.
- 628 collected the data; R.V. obtained molecular data and G.T. performed phylogenetic
- and diversification analyses. G.T. led the writing. All authors contributed in the
- 630 form of discussions and suggestions, and approved the final manuscript.
- 631
- 632 Editor: Michelle Gaither

633 **TABLES**

- 634 **Table 1** Inferred timing of colonization (mean ± SD) and approximate number of
- 635 species and genera for New World lineages of Polyommatinae. Values for non-
- 636 inferred nodes were extracted from Vila *et al.* (2011). See also Fig. 4.

Ancostor	Date of colonization	Approximate	Number
Allestor	(Ma)	number of species	of genera
Neotropical Polyommatina	11.74 (9.74–13.86)	91	9
Elkalyce	10.17 (7.69–12.86)	1	1
Icaricia–Plebulina	8.49 (6.94–10.04)	8	2
Plebejus	2.40 (1.50-4.70)	4	1
Cupido	1.65 (1.02–2.45)	2	1
Agriades glandon group	1.10 (0.15–2.40)	3	1
Agriades optilete	1.00 (0.49–2.00)	1	1

637

638 **FIGURE LEGENDS**

639

Figure 1 Recorded distribution of *Elkalyce cogina* (black dots) in South America.

Locality data include records compiled by Robbins & Duarte (2006), new

- 642 collections and museum data.
- 643

644 Figure 2 Bayesian chronogram for Polyommatini based on seven genes: COI, leu-

tRNA, COII, EF-1α, Wg, 28S and *H3* (4850 bp). Thick lines indicate supported

646 relationships (posterior probabilities \geq 0.95); node bars show uncertainty in

647 estimated divergence times. The six well-supported nodes (posterior probability

 ≥ 0.95) used for clock calibration are marked with clock symbols. Age priors for

649 these nodes were based on Vila *et al.* (2011). Branches in blue indicate

650 Polyommatina and Everina lineages that have colonized the New World. The two

651 Polyommatini subtribes involved in taxonomic hypotheses for *Elkalyce cogina*

652 (Bálint & Johnson, 1996; Robbins & Duarte, 2006) and Polyommatina are

653 indicated with coloured boxes. Upperside and underside photographs of the

654 monotypic species *Elkalyce cogina* are shown (female specimen Ex. Oberthür

655 Coll. British Museum 1927-3, with label indicating: *Brésil, Nova Friburgo, P.*

656 *Germain, Février 1884*. Photos: Zsolt Bálint).

657

Figure 3 Diversification for the Polyommatina + Everina clade. (a) BAMM phylorate

659 plot showing average net diversification rates along each branch of the

660 Polyommatina + Everina clade. Warmer colours denote faster diversification

rates (in lineages per Myr). Number of species per genera is indicated in

662 parentheses. (b,c) The two shift configurations with the highest posterior

663	probability. Circles denote locations of rate shifts (red, rate increase; blue, rate
664	decrease) and are proportional to the overall marginal probability of a shift on
665	the branch. Trajectories of diversification rate through time (RTT) for (d) the
666	whole Polyommatina + Everina clade and (e) after excluding the hyperdiverse
667	Palaearctic Polyommatina subclade. Colour density shading illustrates the
668	relative probability of a rate at any point in time. (f) Lineages-through-time
669	(LTT) plot for the Polyommatina + Everina clade (red) and LTT plots for 100
670	simulated trees (black). (g) Species richness of each terminal lineage
671	(representing genera) against their estimated ages (Myr). The red dot
672	corresponds to <i>Elkalyce cogina</i> .
673	
674	Figure 4 Representative specimen photographs (dorsal view) and maps showing
675	the current distribution of the seven lineages (a–g) of Polyommatinae that
676	colonized the New World. (h) Correlation between number of species and
677	estimated time since colonization of New World (Ma). The monotypic genus
678	<i>Elkalyce</i> (in red) can be considered an outlier breaking up any correlation.
679	

SUPPORTING INFORMATION

One note samba:

the biogeographical history of the relict Brazilian butterfly Elkalyce cogina

Gerard Talavera, Lucas A. Kaminski, André V. L. Freitas and Roger Vila

Table S1 Samples used in this study: taxon name, specimen label, sample accession number at the Museum of Comparative Zoology (Cambridge, MA, USA), or at the Institute of Evolutionary Biology (Barcelona, Spain) in the case of *Maurus vogelii*, and sample collection locality.

Subtribe/ Section	Taxon	Sample code	Locality
Polyommatina	Afarsia morgiana (Kirby, 1871)	VL-02-X393	Iran, Kerman, Kuh-e-Lalizar Mts
	<i>Agriades podarce</i> (Felder & Felder, 1865)	AS-92-Z130	USA, California, Leek Spring
	Alpherakya sarta (Alphéraky, 1881)	VL-02-X098	China, Xinjiang, Kuqa
	Aricia agestis (Denis & Schiffermüller, 1775)	NK-00-P712	Kazakhstan, Kayandy
	Chilades lajus (Stoll, 1780)	DL-99-T242	Thailand, Prachuap Khiri Khan Province, Ampuh Thap Sakae
	<i>Cyaniris semiargus</i> (Rottemburg, 1775)	AD-00-P206	Russia, Low Volga, Volgograd region, Kamytshinky
	Cyclargus ammon (Lucas, 1857)	JE-01-C283	USA, Florida, Big Pine Key
	Echinargus isola (Edwards, 1871)	AS-92-Z185	USA, California, Alpine, Carson River
	Eldoradina cyanea (Balleto, 1993)	RV-05-M735	Peru, Lima, Oyón
	Eumedonia eumedon (Esper, 1780)	AD-03-B062	Russia, Altai, Aktash
	Freyeria trochylus (Freyer, 1844)	VL-01-L462	Turkey, Artvin, Kiliçkaya
	<i>Glabroculus cyane</i> (Eversmann, 1837)	VL-02-X159	Kazakhstan, Karaganda region, Aktchatau
	Hemiargus hanno (Stoll, 1790)	MH-01-I001	Puerto Rico, Culebra Island, Flamenco Beach
	Icaricia icarioides (Boisduval, 1852)	AS-92-Z065	USA, California, Nevada, Donner Pass
	<i>Itylos titicaca</i> (Weymer, 1890)	MFB-00-N206	Chile, P.N. Lanca, Las Cuevas
	Kretania eurypilus (Freyer, 1851)	VL-01-L152	Turkey, Gümüshane Prov., 35 km SW Gümüshane, Dilekyolu
	Luthrodes pandava (Horsfield, 1829)	MWT-93-A009	Malaysia, Kepong
	<i>Lysandra bellargus</i> (Rottemburg, 1775)	AD-00-P129	Armenia, Transcaucasus, Amberd Valley, Aragatz Mt.
	<i>Maurus vogelii</i> (Oberthür, 1920)	RVcoll.09-X164	Morocco, Khenifra, S. Timahdite, Col du Zad
	<i>Nabokovia cuzquenha</i> Bálint & Lamas, 1997	RV-03-V234	Peru, Cuzco, Pisac
	<i>Neolysandra coelestina</i> (Eversmann, 1843)	AD-00-P092	Armenia, Gegadyr, Gegamsky Mountains

Journal of Biogeography

Supporting Information

Subtribe/			
Section	Taxon	Sample code	Locality
	Pamiria chrysopis (Grum-Grshimaïlo, 1888)	VL-05-Z998	Tajikistan, East Pamir, Sarykolski Range, Dunkeldyk Lake
Polyommatina	Paralycaeides inconspicua (Draudt, 1921)	RV-03-V188	Peru, Arequipa, Cañón del Colca
	Patricius lucifer (Staudinger, 1866)	VL-05-Z995	Russia, Altai, Chikhacheva Range, Sailugem Mountain
	Plebejidea loewii (Zeller, 1847)	AD-00-P266	Armenia, Gnishyk, Aiodzor Mts.
	Plebejus idas (Linnaeus, 1761)	NK-00-P165	Russia, St Petersburg, Luga
	Plebulina emigdionis (Grinnell, 1905)	CCN-05-1856	USA, California, Kern, W. Onyx
	Polyommatus amandus (Schneider, 1792)	AD-00-P053	Russia, Volgograd region, Kamyshinsky
	Pseudochrysops bornoi (Comstock & Huntington, 1943)	MAC-04-Z114	Dominican Republic, Punta Cana
	Pseudolucia chilensis (Blanchard, 1852)	MFB-00-N227	Chile, Farellones
	Rimisia miris (Staudinger, 1881)	NK-00-P575	Kazakhstan, Altai, Oktyabrsk
	<i>Rueckbeilia fergana</i> (Staudinger, 1881)	NK-00-P777	Kazakhstan, Shymkent Reg., Karatau Mountains, Turpan Pass
Everina	<i>Cupido alcetas</i> Hoffmannsegg, 1804	MAT-99-Q954	Spain, Catalonia, Montseny
	Cupido comyntas (Godart, 1824)	AS-92-Z312	USA, California, Davis
	Cupido minimus (Fuessly, 1775)	AD-00-P540	Russia, Tula, Tatinki
	Elkalyce cogina (Schaus, 1902)	TQ-05-M179	Petrópolis, Rio de Janeiro, Brazil
	Talicada nyseus (Guerin, 1843)	JXM-99-T709	India, Karala, Trivandrum
	<i>Tongeia bisudu</i> Zhdanko & Yakovlev, 2001	VL-02-X094	China, Xinjiang, Kuqa
	Tongeia fischeri (Eversmann, 1843)	NK-00-P594	Kazakhstan, Altai, Oktyabrsk
Cacyreus	Cacyreus marshalli (Butler, 1897)	AH-95-Y685	Republic of South Africa, Capetown, Pinelands
Lampides	Lampides boeticus (Linnaeus, 1767)	MWT-93-E012	Malaysia, Poring Hot Spring
Actizera	Actizera lucida (Trimen, 1883)	AP-98-W773	Republic of South Africa, Kwazulu Natal, Hillcrest
Azanus	Azanus mirza (Plötz, 1880)	TL-96-W903	Ghana, Kibi, Atewa
Brephidium	Oraidium barberae (Trimen, 1868)	AAM-98-V076	Republic of South Africa, Springbok
Castalius	Castalius rosimon (Fabricius, 1775)	MWT-93-B024	Malaysia, Selangar
Catochrysops	<i>Catochrysops panormus</i> (C. Felder, 1860)	KD-93-C044	Australia, Queensland, Pialba
Danis	<i>Psychonotis caelius</i> (C. & R. Felder, 1860)	KD-93-C021	Australia, Queensland, Nathan
Eicochrysops	<i>Eicochrysops hippocrates</i> (Fabricius, 1793)	TL-97-W513	Cameroon, Korup N.P.
Euchrysops	Euchrysops cnejus (Fabricius 1798)	KD-93-C045	Australia, Queensland, Pialba
	Lepidochrysops dukei Cottrell, 1965	AH-98-Y715	Republic of South Africa, Eastern Swartberg, Blesberg Mountain
Famegana	Famegana alsulus (Herrich-Schäffer, 1869)	KD-95-Z506	Australia, Queensland, Wulguru
Glaucopsyche	Euphilotes enoptes (Mattoni, 1955)	AS-92-Z024	USA, California, Nevada, Donner Pass

Subtribe/							
Section	Taxon	Sample code	Locality				
	Glaucopsyche lygdamus (Doubleday,	AS-02-Z131	USA, California, Leek Spring				
	Maculinea arion (Linnaeus, 1758)	RV-03-N585	Spain, Barcelona, Gombrèn				
Jamides	Jamides alecto (Felder, 1860)	MWT-93-A070	Malaysia, Kepong				
Leptotina	Leptotes marina (Reakirt, 1868)	AS-92-Z272	USA, California, Santa Barbara				
	Leptotes trigemmatus (Butler, 1881)	RV-03-V095	Chile, Coquimbo, Alcohuas				
Lycaenopsis	Acytolepis puspa (Horsfield, 1828)	MWT-93-D010	Malaysia, Sabah, Kokol				
	Celastrina echo (Edwards, 1864)	AS-92-Z186	USA, California, Alpine, Carson River				
	<i>Lycaenopsis haraldus</i> (Fabricius, 1787)	MWT-93-B038	Malaysia, Pelindung				
	Megisba malaya (Horsfield, 1828)	MWT-93-D008	Malaysia, Sabah, Kokol				
Nacaduba	Nacaduba angusta (Druce, 1873)	MWT-93-B058	Malaysia, Kepong				
Petrelaea	Pseudonacaduba aethiops (Mabille, 1877)	TL-97-W507	Cameroon, Korup N.P.				
Phylaria	Phylaria cyara (Hewitson 1876)	TL-96-W917	Ghana, Kibi, Atewa				
Theclinesthes	Theclinesthes miskini (Lucas, 1889)	KD-93-Q030	Australia, Queensland, Mount Gammie				
Una	Una usta (Distant, 1886)	DL-02-P705	Thailand, Chiang Mai, Doi Suthep-Pui N.P.				
Upolampes	<i>Caleta elna</i> (Hewitson 1876)	MWT-93-D027	Malaysia, Sabah, Kokol				
Uranothauma	Uranothauma falkensteini (Dewitz, 1879)	TL-96-W908	Ghana, Kibi, Atewa				
Zintha	Zintha hintza (Trimen, 1864)	AH-00-T289	Republic of South Africa, Gautony, Helepoort				
Zizeeria	Zizeeria karsandra (Moore, 1865)	KD-94-Q064	Australia, Queensland, Townsville, Hermit Park				
Zizula	Zizula hylax (Fabricius, 1775)	KD-94-R033	Australia, Queensland, Inglewood				

Journal of Biogeography	

Table S2 GenBank codes for the Polyommatini specimens used in the current study. Codes in
bold indicate new sequences obtained.

Sample code	Taxon	COI + COII	EF-1α	Wg	28S	НЗ
VL-02-X393	Afarsia morgiana	JX093487	JX093302	_	JX093228	JX093344
AS-92-Z130	Agriades podarce	GQ128943	GQ128632	GQ128839	GQ128447	GQ128731
VL-02-X098	Alpherakya sarta	JX093451	JX093311	JX093446	JX093224	JX093353
NK-00-P712	Aricia agestis	AY496801	AY496824	GQ128843	GQ128451	GQ128735
DL-99-T242	Chilades lajus	GQ128946	GQ128635	GQ128844	GQ128452	GQ128736
AD-00-P206	Cyaniris semiargus	JX093491	JX093301	JX093412	JX093235	JX093338
JE-01-C283	Cyclargus ammon	GQ128948	GQ128637	GQ128846	GQ128454	GQ128738
AS-92-Z185	Echinargus isola	DQ018914	DQ018914	DQ018885	GQ128456	GQ128740
RV-05-M735	Eldoradina cyanea	GQ128952	GQ128641	GQ128850	GQ128459	GQ128743
AD-03-B062	Eumedonia eumedon	GQ128953	GQ128642	GQ128851	GQ128460	GQ128744
VL-01-L462	Freyeria trochylus	GQ128955	GQ128644	GQ128853	GQ128462	GQ128746
VL-02-X159	Glabroculus cyane	JX093489	JX093283	JX093434	JX093221	JX093356
MH-01-I001	Hemiargus hanno	GQ128960	GQ128649	GQ128858	GQ128467	GQ128751
AS-92-Z065	Icaricia icarioides	GQ128963	GQ128652	GQ128861	GQ128470	GQ128754
MFB-00-N206	Itylos titicaca	GQ128970	GQ128659	GQ128867	GQ128477	GQ128760
VL-01-L152	Kretania eurypilus	JX093457	JX093298	JX093433	JX093218	JX093345
MWT-93-A009	Luthrodes pandava	GQ128951	GQ128640	GQ128849	GQ128458	GQ128742
AD-00-P129	Lysandra bellargus	JX093472	JX093299	JX093410	JX093225	JX093340
RVcoll.09-X164	Maurus vogelii	JX093485	JX093316	—	JX093230	JX093361
RV-03-V234	Nabokovia cuzquenha	GQ128985	GQ128674	GQ128883	GQ128493	GQ128776
AD-00-P092	Neolysandra coelestina	JX093490	JX093303	JX093417	JX093223	JX093337
VL-05-Z998	Pamiria chrysopis	JX093469	JX093312	JX093447	_	JX093348
RV-03-V188	Paralycaeides	GQ128987	GQ128676	GQ128885	GQ128495	GQ128778
	inconspicua					
VL-05-Z995	Patricius lucifer	JX093475	_	JX093443	_	JX093357
AD-00-P266	Plebejidea loewii	GQ128989	GQ128678	GQ128887	GQ128497	GQ128780
NK-00-P165	Plebejus idas	GQ128974	GQ128663	GQ128872	GQ128482	GQ128765
CCN-05-1856	Plebulina emigdionis	GQ128991	GQ128680	GQ128890	GQ128500	GQ128783
AD-00-P053	Polyommatus amandus	JX093452	JX093315	JX093418	JX093204	JX093321
MAC-04-Z114	Pseudochrysops bornoi	GQ128994	GQ128683	GQ128894	GQ128504	GQ128787
MFB-00-N227	Pseudolucia chilensis	GQ128999	GQ128688	GQ128899	GQ128509	GQ128792
NK-00-P575	Rimisia miris	JX093493	AY496848	JX093445	JX093213	JX093352
NK-00-P777	Rueckbeilia fergana	JX093477	AY496850	JX093448	JX093231	JX093358
MAT-99-Q954	Cupido alcetas	KP824778	KP824781	KP824791	KP824772	KP824787
AS-92-Z312	Cupido comyntas	GQ128954	GQ128643	GQ128852	GQ128461	GQ128745
AD-00-P540	Cupido minimus	GQ128947	GQ128636	GQ128845	GQ128453	GQ128737
TQ-05-M179	Elkalyce cogina	KP824777	KP824782	KP824794	KP824774	KP824785
JXM-99-T709	Talicada nyseus	GQ129009	GQ128697	GQ128908	GQ128519	GQ128801

Page 34 of 41

Sample code	Taxon	COI + COII	EF-1α	Wg	28S	НЗ	
VL-02-X094	Tongeia bisudu	KP824775	KP824780	KP824790	KP824773	KP824786	
NK-00-P594	Tongeia fischeri	GQ129010	GQ128698	GQ128909	GQ128520	GQ128802	
AH-95-Y685	Cacyreus marshalli	EU919304	GQ128703	GQ128914	GQ128526	GQ128808	
MWT-93-E012	Lampides boeticus	GQ129023	GQ128712	GQ128924	GQ128537	GQ128819	
AP-98-W773	Actizera lucida	GQ129013	GQ128701	GQ128911	GQ128523	GQ128805	
TL-96-W903	Azanus mirza	GQ129014	GQ128702	GQ128913	GQ128525	GQ128807	
AAM-98-V076	Oraidium barberae	GQ129029	GQ128718	GQ128930	GQ128544	GQ128826	
MWT-93-B024	Castalius rosimon	GQ129016	GQ128705	GQ128916	GQ128528	GQ128810	
KD-93-C044	Catochrysops panormus	GQ129017	GQ128706	GQ128917	GQ128529	GQ128811	
KD-93-C021	Psychonotis caelius	GQ129033	GQ128723	GQ128935	GQ128549	GQ128831	
TL-97-W513	Eicochrysops hippocrates	GQ129019	GQ128708	GQ128919	GQ128531	GQ128813	
KD-93-C045	Euchrysops cnejus	GQ129020	GQ128709	GQ128920	GQ128532	GQ128814	
AH-98-Y715	Lepidochrysops dukei	GQ129024	GQ128713	GQ128925	GQ128538	GQ128820	
KD-95-Z506	Famegana alsulus	GQ129021	GQ128710	GQ128922	GQ128534	GQ128816	
AS-92-Z024	Euphilotes enoptes	AY675410	AY675363	GQ128921	GQ128533	GQ128815	
AS-02-Z131	Glaucopsyche lygdamus	AY675411	AY675364	GQ128923	GQ128535	GQ128817	
RV-03-N585	Maculinea arion	AY675422	AY675375	GQ128928	GQ128541	GQ128823	
MWT-93-A070	Jamides alecto	GQ129022	GQ128711	AF233556	GQ128536	GQ128818	
AS-92-Z272	Leptotes marina	GQ129025	GQ128714	GQ128926	GQ128539	GQ128821	
RV-03-V095	Leptotes trigemmatus	JX093474	GQ128660	GQ128868	GQ128478	GQ128761	
MWT-93-D010	Acytolepis puspa	KP824776	KP824783	KP824792	KP824770	KP824788	
AS-92-Z186	Celastrina echo	GQ129018	GQ128707	GQ128918	GQ128530	GQ128812	
MWT-93-B038	Lycaenopsis haraldus	GQ129026	GQ128715	GQ128927	GQ128540	GQ128822	
MWT-93-D008	Megisba malaya	KP824779	KP824784	KP824793	KP824771	KP824789	
MWT-93-B058	Nacaduba angusta	GQ129027	GQ128716	GQ128929	GQ128542	GQ128824	
TL-97-W507	Pseudonacaduba aethiops	GQ129032	GQ128722	GQ128934	GQ128548	GQ128830	
TL-96-W917	Phylaria cyara	EU919287	GQ128719	GQ128931	GQ128545	GQ128827	
KD-93-Q030	Theclinesthes miskini	DQ456544	DQ456617	GQ128936	GQ128550	GQ128832	
DL-02-P705	Una usta	GQ129034	GQ128724	GQ128937	GQ128551	GQ128833	
MWT-93-D027	Caleta elna	GQ129015	GQ128704	GQ128915	GQ128527	GQ128809	
TL-96-W908	Uranothauma falkensteini	EU919282	GQ128725	GQ128938	GQ128552	GQ128834	
AH-00-T289	Zintha hintza	GQ129035	GQ128726	GQ128939	GQ128553	GQ128835	
KD-94-Q064	Zizeeria karsandra	GQ129036	GQ128727	GQ128940	GQ128554	GQ128836	
KD-94-R033	Zizula hylax	GQ129037	GQ128728	GQ128941	GQ128555	GQ128837	

Table S3 Model testing output parameters for the BIOGEOBEARS analysis of the Polyommatina + Everina clade. The two best models with unconstrained region at the root are highlighted in bold, but they result in biologically unrealistic scenarios. The best model with constrained region at root is shaded. OR, Oriental; EPa, East Palaearctic; WNa, West Neartic; SSA, southern South America; ENa, East Nearctic; WPa, West Palaearctic.

	Constrained							
Model	region at root	LnL	d.f.	d	е	j	AIC	ΔAIC
BAYAREALIKE+J	Unconstrained	-134.71	3	0.0214	0.0601	0.0205	275.40	0.00
BAYAREALIKE	Unconstrained	-137.28	2	0.0248	0.0897	0.0000	278.60	3.20
BAYAREALIKE+J	OR	-142.96	3	0.0272	0.0566	0.0170	291.92	16.52
BAYAREALIKE+J	EPa	-144.30	3	0.0273	0.0577	0.0187	294.60	19.20
BAYAREALIKE	EPa	-148.63	2	0.0312	0.0835	0.0000	301.26	25.86
BAYAREALIKE+J	WPa	-148.60	3	0.0293	0.0601	0.0253	303.20	27.80
BAYAREALIKE	SSA	-149.65	2	0.0318	0.0915	0.0000	303.30	27.90
BAYAREALIKE+J	SSA	-149.01	3	0.0294	0.0645	0.0243	304.02	28.62
BAYAREALIKE+J	WNa	-150.12	3	0.0302	0.0640	0.0271	306.24	30.84
BAYAREALIKE+J	ENa	-150.35	3	0.0290	0.0606	0.0307	306.70	31.30
BAYAREALIKE	WNa	-151.52	2	0.0335	0.0947	0.0000	307.04	31.64
BAYAREALIKE	WPa	-152.09	2	0.0335	0.0936	0.0000	308.18	32.78
BAYAREALIKE	ENa	-153.27	2	0.0339	0.1002	0.0000	310.54	35.14
DEC	Unconstrained	-159.49	2	0.0419	0.0159	0.0000	323.00	47.60
DEC+J	Unconstrained	-159.49	3	0.0419	0.0159	< 0.0001	325.00	49.60
DIVALIKE	Unconstrained	-162.64	2	0.0483	0.0135	0.0000	329.30	53.90
DIVALIKE+J	Unconstrained	-162.48	3	0.0474	0.0183	< 0.0001	331.00	55.60
BAYAREALIKE	OR	-176.49	2	0.0316	0.0819	0.0000	356.98	81.58

Table S4 Taxon name and biogeographic regions where it occurs for terminals used in the Ancestral area reconstruction with BioGeoBEARS for the Polyommatina + Everina clade. In order to avoid sampling effects, terminals were considered placeholders for the genera they represented and the distribution range of the genus was used. Af, Africa; Au, Australia; CA, Central America–Caribbean; ENa, East Nearctic; EPa, East Palaearctic; NSA, northern South America; Or, Oriental; SSA, southern South America; WNa, West Nearctic; WPa, West Palaearctic.

Terminal	Af	Au	CA	ENa	EPa	NSA	0r	SSA	WNa	WPa
Elkalyce cogina	0	0	0	0	0	0	0	1	0	0
Cupido minimus	0	0	0	0	1	0	0	0	0	1
Cupido alcetas	0	0	1	1	1	0	0	0	1	1
Talicada nyseus	0	0	0	0	0	0	1	0	0	0
Tongeia bisudu	0	0	0	0	1	0	1	0	0	0
Freyeria trochylus	1	1	0	0	0	0	1	0	0	1
Plebejus idas	0	0	0	1	1	0	0	0	1	1
Patricius lucifer	0	0	0	0	1	0	0	0	0	0
Pamiria chrysopis	0	0	0	0	1	0	0	0	0	0
Neolysandra coelestina	0	0	0	0	1	0	0	0	0	1
Polyommatus amandus	0	0	0	0	1	0	0	0	0	1
Lysandra bellargus	0	0	0	0	1	0	0	0	0	1
Cyaniris semiargus	0	0	0	0	1	0	0	0	0	1
Rimisia miris	0	0	0	0	1	0	0	0	0	0
Agriades podarce	0	0	0	1	1	0	0	0	1	1
Eumedonia eumedon	0	0	0	0	1	0	0	0	0	1
Plebejidea loewii	0	0	0	0	1	0	0	0	0	1
Maurus vogelii	0	0	0	0	0	0	0	0	0	1
Aricia agestis	0	0	0	0	1	0	0	0	0	1
Glabroculus cyane	0	0	0	0	1	0	0	0	0	0
Alpherakya sarta	0	0	0	0	1	0	0	0	0	0
Kretania eurypilus	0	0	0	0	1	0	0	0	0	1
Afarsia morgiana	0	0	0	0	1	0	0	0	0	0
Rueckbeilia fergana	0	0	0	0	1	0	0	0	0	0
Icaricia icarioides	0	0	0	0	0	0	0	0	1	0
Plebulina emigdionis	0	0	0	0	0	0	0	0	1	0
Paralycaeides inconspicua	0	0	0	0	0	0	0	1	0	0
Itylos titicaca	0	0	0	0	0	1	0	1	0	0
Pseudochrysops bornoi	0	0	1	0	0	0	0	0	0	0
Pseudolucia chilensis	0	0	0	0	0	0	0	1	0	0
Nabokovia cuzquenha	0	0	0	0	0	1	0	1	0	0
Eldoradina cyanea	0	0	0	0	0	0	0	1	0	0
Hemiargus hanno	0	0	1	1	0	1	0	1	1	0
Cyclargus ammon	0	0	1	1	0	0	0	0	0	0
Echinargus isola	0	0	1	0	0	0	0	0	1	0
Edales pandava	0	0	0	0	1	0	1	0	0	1
Chilades lajus	1	0	0	0	0	0	1	0	0	0

Journal of Biogeography

Figure S1 Maximum-likelihood phylogenetic tree for the Polyommatini inferred from three mitochondrial genes – cytochrome oxidase I (*COI*), leucine transfer RNA (*leu-tRNA*), and cytochrome oxidase II (*COII*) – and from four nuclear markers – elongation factor-1 alpha (*EF-1* α), 28S ribosome unit (*28S*), histone H3 (*H3*) and wingless (*Wg*). Bootstrap support is shown at nodes. The scale bar represents substitutions per position.

