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1. ABSTRACT 

The circulation of Avian Influenza viruses (AIV) in wild birds has been intensively 

studied, due to their implication in the maintenance and spread of these viruses. Most of 

these studies have focused on natural aquatic environments, where birds aggregate and 

in which viral survival is enhanced. Nevertheless, other places such as rubbish dumps 

also lead to massive aggregation of wild birds, including some known AIV reservoirs. 

Particularly, during the winter months, Spanish rubbish dumps harbor a great number of 

wintering wild birds. This is the case in rubbish dumps in the province of Ciudad Real 

(community of Castilla-La Mancha, Spain), where these animals also visit the 

surrounding wetlands where AIV circulation had been detected in previous years. In this 

study we analyzed the prevalence of AIV genome excretion in sympatric species that 

use two rubbish dumps in Ciudad Real, during the wintering season 2014-2015 and 

determined temporal, spatial and species variation. We tested 1190 fresh fecal samples, 

cloacal and oral swabs for AIV genome excretion by real time-RT PCR for the AIV 

matrix gene. We found an overall prevalence of 0.6%, peaking in October, which 

coincides with the arrival of migratory wild birds to Spanish territories. A higher 

prevalence was detected in gulls, which are known AIV reservoirs in natural 

environments, followed by cattle egrets and white storks. The detection of AIV genome 

excretion in all studied species indicates that all might play a role in the epidemiology 

of these viruses.  

Our results indicate that AIV circulates in wild birds that visit the studied rubbish 

dumps, and, at least in gulls, probably continuously during the wintering season. This 

underlines the potential importance of developing surveillance tasks in these places, 

namely through collection of fresh feces, a cost-effective sampling method appropriate 

for large scale LPAIV surveillance in wild birds. 

Key words: AIV, cattle egrets, gulls, non-invasive sampling methods, rubbish dumps, 

white storks, wintering. 
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2. INTRODUCTION 

2.1. Etiology 

Avian Influenza viruses (AIV) belong to the family Orthomyxoviridae, genus 

Influenza virus. Their genome consists of eight segments of single-stranded RNA. This 

characteristic enables viral evolution through exchange of genes between different 

viruses infecting a single cell at the same time (genetic reassortment/genetic shift) 

(Macken et al., 2006). The characterization of AIV is based on the antigenic properties 

of two transmembrane glycoproteins: the hemagglutinin (HA) and neuraminidase (NA) 

(Webster et al., 1992). There are 16 HA and 9 NA subtypes described in wild birds 

(Fouchier et al., 2005), although some infrequently (Kam et al., 2004) and others seem 

to be species-specific such as HA13 and H16 that primarily infect Laridae species 

(Olsen et al., 2006).  

 

2.1.1. Highly pathogenic and low pathogenic AIV 

AIV are also classified into highly pathogenic AIV (HPAIV) and low pathogenic 

AIV (LPAIV) according to their pathogenicity in chickens (Munster & Fouchier 2009). 

The HA cleavage site is constituted of one or two basic amino acids at distinct positions 

in the case of LPAIV (Wood et al., 1993), and is recognized by trypsin-like enzymes 

specific from respiratory and gastrointestinal epithelia. These proteases cause the 

rupture of the HA, which allows the fusion of the viral envelope and the host cellular 

membrane (Skehel & Wiley 2000).  On the other hand, HPAIV  present a multibasic 

aminoacid motif at the HA cleavage site, which is recognized by subtilisin-like 

endoproteases that exist in almost every host tissue, leading to systemic infections with 

high mortality rates in gallinaceous bird species (Horimoto et al., 1994, Rott et al., 

1995). Pathogenicity of HPAIV in wild birds can be very different from the chicken and 

varies with species. Thus, in wild birds the infection with HPAIV can cause death, but 

may also be asymptomatic. Some individuals have also been described to develop 

temporal cross-protective immunity due to previous infections with LPAIV (Seo et al., 

2002). 
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2.2. LPAIV in natural environments 

The viruses circulating in natural ecosystems are generally LPAIV with tropism 

for the intestinal tract, leading to excretion in high concentrations in feces. Transmission 

occurs mainly via the fecal-oral route through direct or indirect contact with 

contaminated water (Webster et al., 1992). In aquatic environments virus survival is 

enhanced, which allows viral exchange in bird populations in different time frames 

(Munster & Fouchier 2009).  

Although AIV primarily infect birds, interspecies transmission to mammals, 

including humans, have been described (Kalthoff et al., 2010) (Figure 1). Wild birds, 

especially aquatic wild birds from the orders Anseriformes and Charadriiformes, 

constitute the main reservoir of these LPAIV (Webster et al., 1992) and host a great 

diversity of subtypes, providing a scenario that allows for a slow (but not negligible) 

viral evolution (Olsen et al., 2006) and potential transmission to non-avian species. 

These LPAIV are thought to be adapted to their natural hosts and appear to have little or 

no effects on their health, although some studies revealed that the infection can 

potentially reduce body weight, probably due to the reduced intestinal tract function, 

which can have a negative impact in the survival and reproductive success (Kuiken 

2013). There are two recognized lineages of LPAIV: Eurasian and American. Wild 

waterfowl have been shown to spread LPAIV along their migratory routes (Webster et 

al., 1992, Munster et al., 2007), and as these migrations connect bird populations of 

different continents, although rare, exchanges of genes from both lineages have been 

recorded (Fouchier & Munster 2009).  

 

 

 

 

 

Figure 1 - Schematic illustration of influenza A virus 

transmission among different species (Kalthoff et al., 2010) 
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2.2.1. Factors that shape LPAIV circulation 

The efficient circulation and transmission of AIV, and thus the prevalence, are 

modulated by ecological factors related to the host species and to the virus itself. 

Regarding the host species, these factors are related to host ecology (age, foraging and 

migratory behavior, habitat selection, bird community composition, frequency of 

aggregation), but also to intrinsic differences in susceptibility and ability to function as 

host (Munster et al., 2009). Regarding virus specific ecological factors, the conditions 

within aquatic habitats, such as temperature, pH or salinity, determine the 

environmental persistence of AIV (Brown et al., 2009). 

 

2.3. Role of wild birds in HPAIV epidemiology  

2.3.1. Genesis of HPAIV 

The transmission of LPAIV from wild birds to poultry produces minor effects on 

their health status, such as a reduction in weight gain and decline in egg production 

(Capua & Mutinelli 2001). However, LPAIV can evolve into HPAIV after transmission 

to poultry with subsequent mutation and selection of HPAIV by multiple host passages 

during recirculation in the flock (Subbarao et al., 2006). This has been described only 

with subtypes H5 and H7 (Olsen et al., 2006), and for this reason any H5/H7 infection 

in poultry, both LPAIV and HPAIV, are classified as “notifiable avian influenza” (OIE, 

EU directive 2005/94/EC).  

 

2.3.2. HPAIV circulation in wild birds  

Highly pathogenic H5N1 influenza viruses have been circulating in Asia, 

causing serious outbreaks on poultry farms since 1997 (Chen et al., 2006). Less 

frequently, HPAIV have also been isolated from wild birds (Becker 1996, Ellis et al., 

2004). Some cases of disease and death in wild birds have been reported (Ellis et al., 

2004), but this virus did not seem to seriously affect wild bird populations until April 

2005, when an outbreak occurred in a migratory bird population at Qinghai Lake in 

China (Chen et al., 2005). This episode triggered a westward spread of HPAIV H5N1 

into eastern and central Europe, and early in 2006, H5N1 HPAIV had already reached 

20 European countries, including Spain, and multiple cases of fatalities in wild birds 

were reported (Kalthoff et al., 2010). 
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Migration connects distant populations (Figure 2). At the stopovers/destination, 

where wild birds frequently aggregate, direct and indirect contact between birds allows 

for pathogen transmission and posterior spread along the migratory flyways. Despite 

being controversial, the coincidence between the geographic expansion of HPAIV and 

the migratory flyways (Tian et al., 2015), as well as the detection of HPAIV in countries 

without reports of outbreaks in poultry (Olsen et al., 2006) appear to support the theory 

of HPAIV spread through migratory birds movements. Thus, wild birds can also play an 

important direct role in the epidemiology of HPAIV.  

 

 

 

 

2.4. Impact of AIV circulation 

The circulation of HPAIV is responsible for important economic losses 

associated with disease and control measures in the poultry industry. HPAIV can also 

be implicated in massive deaths in wild birds, as described in South Africa in 1961 

(Becker 1966) and China in 2005 (Chen et al., 2005). However, the potential effect on 

the security of public health is the main concern associated to AIV, as wild bird 

community represents a reservoir of precursors of potential zoonotic viruses (Kalthoff et 

al., 2010).  Thus, studying the circulating subtypes allows for earlier implementation of 

measures that prevent future pandemics. 

Figure 2- Main general migratory flyways of wild bird populations (Olsen et al., 2006). 
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2.5. AIV in Spain 

The information about circulation of AIV in Spain is scarce. Spanish wetlands 

act as resting and stopover feeding points for birds that migrate between Africa and 

Northern Europe. In fact, Spain is one of the most important wintering areas in Europe 

(Muñoz et al., 2006). Despite this location along migratory routes that also cross several 

European countries affected after HPAIV outbreaks in wild birds,  there is only one 

known report of  HPAIV H5N1 in a free-living crested grebe (Podiceps cristatus) 

(Barral et al., 2008). This might be an indicator of the unfavorable conditions for the 

persistence and spread of this HPAIV subtype (Winker et al., 2007). The situation 

appears to be different in the case of LPAIV. In the 90´s, two serological studies 

indicated that LPAIV were circulating among wild birds in southern Spain, detecting a 

seroprevalence of 40% (Arenas et al. 1990) and 6,2% ( Astorga et al., 1994) . High 

prevalence were also found in poultry flocks, mainly in turkeys, which suggest an 

enzootic form of LPAIV circulation in this region (Arenas et al. 1990). More recent 

studies have used molecular methods to study LPAIV circulation in wild aquatic birds 

in Spain (Pérez-Ramírez et al., 2010, Busquets et al., 2010, Pérez-Ramírez et al., 2012).     

 

2.6. Rubbish dumps and demography of wild birds 

The availability of abundant and constant feeding resources at rubbish dumps 

attracts regularly a great number of opportunistic species (Garrido y Sarasa 1999). This 

has caused changes in the diet, as well as in the migratory behavior of many species. In 

Spain, this change in the migratory behavior seems to be particularly evident for white 

storks. For this species, the existence of rubbish dumps has contributed to an increase in 

the number of resident individuals in the last years (Tortosa et al., 1995), although 

Spanish rubbish dumps are also important stopovers and wintering areas for white 

storks of the western European flyway (Hernández 2015). Likewise, the number of gulls 

has experienced great increases, partially due to the existence of these easy feeding 

resources. In Salamanca, the black headed gull (Chroicocephalus ridibundus) and lesser 

black backed gull (Larus fuscus) have changed their status from “rare or moderately 

abundant wintering” to species highly common in winter, that feed mostly at the city 

rubbish dump (Blanco 2007).  
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2.7. Rubbish dump users as AIV study targets 

2.7.1. White storks, cattle egrets and gulls: ecology 

 White storks (Ciconia ciconia, order Ciconiiformes), cattle egrets 

(Bubulcus ibis, order Pelecaniformes) and gulls such as the black headed 

gull (BHG), yellow legged gull (Larus michahellis) (YLG) and lesser black 

backed gull (LBBG) that belong to the order Charadriiformes and family 

Laridae (Mullarney et al., 1999) are all opportunistic species that often 

visit rubbish dumps (SEO/Birdlife 2008). In past years the number of white 

storks that depend on these feeding resources has increased (Blanco 1996). 

Rubbish dumps also represent one of the most important food sources for YLG that 

usually use them year round. All these species are also commonly seen in other 

humanized landscapes, living in close contact with humans . The five 

species present a colonial breeding behavior and are related to aquatic 

environments, being frequently seen in wetlands. In fact, wetlands in the 

province of Castilla-La Mancha present some of the largest breeding 

colonies in Spain for BHG. White storks, BHG and LBBG are migratory 

species, wintering in Spain. Nevertheless, there are also some resident non-

migrant individuals. In the other hand, both cattle egrets and YBG are 

mostly resident, although some individuals display some movements of 

variable range. In fact, cattle egrets from the Iberian Peninsula have been 

detected in other countries during the wintering season (SEO/Birdlife 2008). 

 

2.7.2. Role in AIV epidemiology 

2.7.2.1. White storks 

White storks have been considered potential vectors for the introduction of 

HPAIV H5N1 into the European Union, based on ecological and behavioral features 

such as gregariousness and habitat use (Veen et al., 2007). AIV shows a strong 

persistence in water under favorable conditions, and given that this virus is transmitted 

primarily by fecal-oral route in avian species (Stallknecht et al., 1990), it is probable 

that white storks can eventually contact with AIV when feeding or resting in wetland 

habitats shared with important AIV reservoirs (Fouchier & Munster 2009). In fact, 

different strains of influenza virus, both HPAIV and LPAIV, have been reported in 

white storks in different European countries, such as Germany, Poland, Slovenia, Spain 
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(Globig et al., 2009, Müller et al., 2009, Smietanka & Minta 2014, Pérez-Ramírez et al., 

2010, Slavec et al., 2012). Despite these occasional findings, other authors were not 

able to detect evidence of AIV circulation in this species in Germany, France, Czech 

Republic and Serbia (Müller et al. 2009, Kaleta 2003, Kaleta & Kummerfeld 2012, 

Lebarbenchon et al., 2007, Nagy et al. 2007, Šekler et al., 2009)  

 

2.7.2.2. Cattle egrets 

The habitat use and colonial breeding behavior might allow the circulation of 

AIV in cattle egrets. Some authors have reported the detection of both LPAIV in Spain 

(Pérez-Ramírez et al., 2010) and HPAIV (Kayali et al., 2011) in Egypt, in free living 

individuals, which indicates that this species might act as an AIV host in their natural 

environment. Besides, Phuong et al., 2011 demonstrated the susceptibility of cattle 

egrets to the infection with HPAIV H5N1 AIV under experimental conditions.  

Nevertheless, surveillance activities carried out in France did not detect any AIV 

positive cattle egret (Lebarbenchon et al., 2007) and more studies are needed in order to 

better understand the role of cattle egrets in AIV epidemiology. 

 

2.7.2.3. Gulls 

Charadriiforms are recognized as one of the main reservoirs of AIV 

in natural environments (Webster et al., 1992). Their colonial breeding 

behavior allows for a high contact rate, which might create a good scenario 

for viral transmission (Lebarbenchon et al., 2007). The aggregation of 

animals during migration and winter, the assemblage of distinct bird 

populations and feeding patterns may also pose risk factors for AIV 

infection (Munster et al., 2007). As expected, many cases of AIV detection in 

different gull species have been reported worldwide, either in dead animals 

or live, healthy animals (Anna et al., 2010, Spackman et al., 2009, Sivay et 

al., 2012 Jurinović et al., 2014, Verhagen et al., 2012, Marco et al., 2005, 

Busquets et al., 2010, Slavec et al., 2020), including the HPAIV H5N1 

(Ellis et al., 2004, Marchenko et al. 2011, Sakoda et al., 2012,  Savić et al., 

2010) . Though the subtypes H13 and H16 are the most commonly found in 

gulls4, different subtypes have been detected (Anna et al., 2010, Spackman 

et al., 2009, Sivay et al., 2012, Jurinović et al., 2014, Marco et al., 2005, 

Busquets et al., 2010, Slavec et al., 2012, Ellis et al., 2004, Marchenko et 
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al., 2011, Sakoda et al., 2012, Savić et al., 2010). Nevertheless, some studies 

carried out in southern Europe (Marco et al., 2005, Lebarbenchon et al., 2007, Pérez-

Ramírez et al., 2010), but also in China (Chen et al., 2006) failed to detect the 

circulation of AIV in these species.  

 

The described species use the studied rubbish dumps as feeding points and 

frequently aggregate around small ponds that exist inside and around them. Also, some 

of them move between these rubbish dumps and surrounding wetlands (Hernández & 

Höfle 2014), which may contribute to the fecal-oral transmission cycle of AIV 

characteristic of aquatic environments. Therefore, they represent potentially interesting 

targets for AIV surveillance studies 

 

2.8. Objectives 

The aim of the present work is to study AIV prevalence dynamics during 

wintering in sympatric species in the use of two Spanish rubbish dumps: the white stork, 

three species of gulls and the cattle egret. Specifically, this study tried to capture the 

temporal and spatial patterns, and also host species variation in prevalence in both 

rubbish dumps, in the period between September and March when changes in the bird 

community occur continuously due to wintering and migration. 

Taking into consideration the recent spread of HPAIV H5N8 in some European 

countries (Adlhoch et al., 2014), this short term active monitoring study also aimed to 

obtain information about the possible circulation of HPAIV H5 subtype in wild birds in 

Spain. 
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3. MATERIALS AND METHODS 

3.1. Study area  

The samples were collected at two active rubbish dumps in the province of 

Ciudad Real in the Community of Castilla-La Mancha, Spain (UTM coordinates: 30S 

294,348–681,063 4,208,706–4,575,340) (Figure 5) one located close to the small town 

of Alcázar de San Juan and the other close to the town of Almagro . In Almagro, the 

entry for sampling purposes was temporarily denied for security reasons (explosive gas 

in a recently sealed part of the dump) and sampling was carried out around two ponds of 

runoff of the rubbish dump outside the fenced premises. 

Figure 3 – Aggregation of YLG and LBBG in a small pound inside 

Alcázar de San Juan rubbish dump. The slope behind the gulls covers a 

recent rubbish deposit and on top the tubing of the gas from fermentation.  

Figure 4 – Aggregation of white storks in a small pond around Almagro 

rubbish dump. 
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3.2. Study species 

 The species included in this study were white storks, cattle egrets and three 

species of gulls (LBBG, YLG and BHG). Unfortunately, cattle egrets could not be 

sampled in Almagro rubbish dump as these had changed to the newly sealed area (too 

dangerous for sampling activities) for resting and did not use the areas around the runoff 

ponds. 

 

3.3. Study period 

Samples were collected from September 2014 to March 2015 (Figure 6). The 

beginning of the sampling period in Almagro rubbish dump was postponed for 15 days 

due to the lack of water in the pounds at the end of September and beginning of 

October. The sampling period was selected in order to include the wintering of white 

storks, LBBG and BHG in Spanish territories and because in previous studies LPAIV 

prevalence was highest in winter (Pérez-Ramirez et al., 2010, Pérez-Ramírez et al., 

2012). The high number of wintering individuals allowed for an acceptable sample size, 

which would have been difficult for all the studied species throughout the rest of the 

year. In each of the two sampling areas, samples were taken every 15 days 

approximately. This periodicity was chosen to obtain data that reflect the changes in the 

Figure 5 - Study area. The community of Castilla-La Mancha is represented in grey. 

Almagro rubbish dump is represented by the symbol in the center and Alcázar de San 

Juan rubbish dump is represented by the symbol in the upper right of the figure that 

represents this province. 
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dynamics of the studied species (arrival from the breeding countries, stopover during 

migration to wintering quarters further south, wintering, and stopover on the way to and 

departure to the breeding grounds). Also, the LPAIV infection in waterbirds has been 

described as having a short duration (up to one to two weeks) (Latorre-Margalef et al., 

2009, Hénaux & Samuel 2011), and with this periodicity we reduce the possibilities of 

detecting the same positive individual twice. 

  

 

 

 

 

3.4. Sample collection  

Fresh feces (n=1185) were collected at resting places, in each rubbish dump, 

from monospecies flocks after flushing the flocks by approaching them. The three 

species of gulls that belong to the Laridae family were usually mixed in the same flock 

(being the LBBG the less frequent). Thus, samples from gulls were obtained from 

monofamiliar flocks. With this method of non-invasive sampling, we ensure the use of 

only fresh material and a high probability that the collected feces belong to individuals 

of a determined species/family (Pérez-Ramírez et al., 2010). Approximately 30 samples 

were collected for each species/family in each sampling moment, with the goal of 

obtaining a representative number, adapted to the available logistics. Although we 

defined a maximum number of samples to be collected in each visit (30 samples by 

species), unfortunately we could not always achieve this number due to the small size of 

the sampled flocks. Thus, differences in the sample size were obtained between 
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different species and study months at both rubbish dumps. We collected a total of 692 

fecal samples from white storks, 377 from gulls and 166 from cattle egrets. When the 

samples were collected near ponds, feces closer than 5 cm to the shoreline or inside the 

water were avoided. Each sample was collected using a sterile cotton swab and placed 

inside a small zip-lock bag. Also, cloacal and oral cotton swabs were obtained from 

dead BHG (n=2) or sick LBBG (n=1), BHG (n=1) and white stork (n=1) found in the 

sampling areas. The collection of these individual samples was done at the IREC 

facilities and thus they were processed immediately afterwards. 

Fecal samples were maintained refrigerated (4 to 10º C) and transported within 

2-3 hours to the laboratory facilities at IREC. The samples were either processed 

immediately or stored at (4º C) and processed the next day. 

 

3.5. Processing 

Fecal samples collected at both rubbish dumps were pooled into transport 

medium (Hank’s balanced solution containing 10% glycerol, 200 U/ml penicillin, 

200mg/ml streptomycin, 100 U/ml polymixin B sulphate, 250mg/ml gentamycine and 

50 U/ ml nystatin (Munster et al., 2007). Each pool contained feces from 5 individuals 

of the same species/family, collected in the same rubbish dump and on the same day. 

The samples collected from dead or diseased animals were processed the same way but 

were not pooled. Nevertheless, the oral and cloacal swab of each animal were put 

together, as this appears to allow a higher detection rate of LPAIV (Ip et al., 2012). The 

processed samples were frozen at -80º C until further analysis. The portion of feces that 

was not included in the pools was also frozen at -80º C. 

 

3.6. RNA Extraction 

 Viral RNA was extracted using a commercial kit (High PureRNA isolation kit, 

Roche Diagnostics, Germany), according to the manufacturer’s instructions. Briefly, 

200µl of transport medium were directly used to extract the RNA, and the nucleic acid 

was eluted in a final volume of 50 µl elution buffer. A negative control of extraction 

was used in each extraction assay. The quantity of extracted RNA was determined using 

Nanodrop (NanoDrop 1000 Spectrophotometer V3.7, Thermo Fisher Scientific, 

Wilmington, DE, USA). The extracted RNA was frozen at -80º C until further analysis.  
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3.7. Real time RT-PCR  

The extracted RNA was screened following the real-time RT-PCR (RRT-PCR) 

protocol targeting the influenza A virus matrix gene as described by Ward et al. 2004 

and modified by Munster et al. 2007. Briefly the reaction mix for each sample contained 

13.5 µl of ultrapure water, 2.5 pmol (0,5 µl) of a Taqman FAM-labeled probe 1293 (5´–

6-carboxyfluorescein–TTT-GTG-TTC-ACG-CTC-ACC-GTG-CC–6 

carboxytetramethylrhodamine–3´), 20 pmol (0,5 µl) of primer 1074 (5´-CAA-AGC-

GTC-TAC-GCT-GCA-GTC-C-3´), 15 pmol (0,5 µl) of primer 1073 (5´-AAG-ACC-

AAT-CCT-GTC-ACC-TCT-GA-3´), 5 µl of Taqmanfast virus master mix (Applied 

Biosystems) and 5 µl of the extracted RNA. The reaction was performed under the 

following conditions: 50ºC for 2 minutes, 60ºC for 30 minutes, followed by 45 cycles of 

95ºC for 3 minutes, then 94ºC for 20 seconds and finally 60ºC for one minute. Samples 

with a CT ≤40 were considered positive. For the pools that yielded positive results, the 

RNA extraction was repeated for the individual samples within each pool and analyzed 

in the same way. A positive and negative control of amplification were used in each 

RRT-PCR assay.  Amplification and detection was performed using an iQ5 real time 

detection system (BioRad, Applied Biosystems, New Jersey, USA) for all the RRT-

PCR assays. 

 

3.8. AIV isolation and typing 

Samples that yielded positive results in RRT-PCR abovementioned were then 

analyzed for H5 by real-time RT-PCR as described by Munster et al 2009. The reaction 

mixfor each sample contained 13.5 µl of ultrapure water, 5pmol (0,5 µl) of 1150 probe, 

10 pmol (0,5 µl) of primer 1148, 10 pmol (0,5 µl) of primer 1149, 5 µl of Taqmanfast 

virus master mix (Applied Biosystems) and 5 µl of the extracted RNA. The reaction was 

performed under the following conditions: 50ºC for 2 minutes, 60ºC for 30 minutes, 

followed by 50 cycles of 95ºC for 7 minutes, then 94ºC for 20 seconds and finally 60ºC 

for one minute. A positive and negative control of amplification were used in the RRT-

PCR assay.  Amplification and detection were performed using an iQ5 real time 

detection system (BioRad, Applied Biosystems, New Jersey, USA). All the samples that 

yielded positive results in RRT-PCR protocol targeting the influenza A virus matrix 

were also submitted for viral isolation and sequence analysis. Because these procedures 

have to be carried out in BSL3 facilities, they were done at the Basque institute for 

Agricultral Research (NEIKER). Briefly, for AIV isolation, 100-200 µl of the original 
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fecal material were inoculated into the allantoic cavity of 9-11 day-old embryonated 

specific pathogen free chicken eggs following OIE recommendations (OIE, 2009). The 

allantoic fluid was harvested when death of the embryo was detected, or, in the case it 

survived, at the day seven after inoculation. RNA from this fluid was extracted using a 

commercial kit (QIAmp Viral RNA Mini kit, Qiagen, Hilden, Germany) and RRT-PCR 

to detect AIV matrix gene was done (Spackman et al., 2002). If no AIV was detected, 

the allantoic fluid was passaged two times in embryonated chicken eggs. The sequences 

obtained from isolated virus were compared with published sequences by sequence 

homology searches at the network server of the National Centre for Biotechnology 

Information (NCBI) using BLAST (http://www.ncbi.nlm.nih.gov/BLAST/). 

3.9. Census and ring lecture data 

Monthly mean numbers and lectures from long distance identification rings were 

available for white storks and allowed an approximate idea of the number of 

commensals and the countries of origin of a proportion of these (Hernández & Höfle 

2014, Hernández 2015, personal comment). We compared these monthly mean numbers 

with the mean number of samples collected from white storks at the same month.  

 

3.10. Statistics 

Due to the low AIV prevalence found in this study, we could not apply any 

statistical model in order to comprehensively analyze factors that could influence AIV 

prevalence in the sampled species, between sample sites and throughout time. We used 

Fisher’s exact test  to compare AIV prevalence between the two rubbish dumps, 

excluding the months of September (no samples at Almagro) and cattle egrets (no 

samples at Almagro) and Chi square test  to compare AIV prevalence between species 

and sampling months. We compared sample size between rubbish dumps using a U 

Mann Whitney test. We also used this test to compare the numbers of samples obtained 

from gulls and white storks respectively in the two rubbish dumps and between white 

storks and gulls in Almagro. We also used the U Mann-Whitney test to compare sample 

size between months with and without AIV positive samples within each rubbish dump. 

Finally we compared sample size between species (cattle egrets, gulls and white storks) 

in Alcázar de San Juan using a Kruskal Wallis test.  For all tests p was set at p=0.05. 

SPSS statistics software (IBM armonk, NY, USA) version 19.0 was used in all analysis.   
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4. RESULTS 

Between September 2014 and March 2015 we collected a total of 1190 samples 

(fresh feces, cloacal and oral swabs) from sympatric wild birds (white storks, cattle 

egrets, and gull species) at two rubbish dumps in the province of Ciudad Real, Spain 

(Table 1). Due to the aforementioned difficulties sample size varied considerably 

between months and species. Sample size was not significantly different between 

Alcázar de San Juan and Almagro (Statistic= 149196, p= 0.310). Also, the sample size 

for white storks between Alcázar de San Juan and Almagro was not significantly 

different (Statistic= 61706, p= 0.319), while significantly more samples from gulls 

(Statistic= 3251, p= 0.000) were obtained in Alcázar de San Juan as compared to 

Almagro. In Alcázar de San Juan significantly less samples were collected from cattle 

egrets than from white storks and gulls (Statistic= 95447, p= 0.000), but also from gulls 

than from white storks (Figure 7), while in Almagro significantly more fecal samples 

were obtained from white storks than from gulls (Statistic= 4753, p=0.000) (Figure 8). 

Both in Alcázar de San Juan and Almagro, the sample size was not significantly 

different in months with and without detection of positive samples (Statistic=2 392, 

p=0.977 and Statistic=38 500, p=0.201, respectively). 

 We detected seven AIV positive samples by means of a generic RRT-PCR 

against the AIV matrix protein, and thus a mean prevalence of 0.6% of AIV genome 

excretion in our sample set. None of the samples collected from dead or diseased 

animals (n=5) yielded positive results. Because it was impossible to assign the species 

of origin to each individual sample collected from groups of gulls, these results are 

presented jointly for the three primary gull species that composed the groups (BHG, 

YLG and LBBG).  

We detected a higher prevalence in Alcázar de San Juan (0.75%, 6 out of 797 

samples) as compared to Almagro (0.25%, 1 out of 393) (Figure 9) that was however 

not significant (χ2=1.086, d.f=1, p=0.297).  

In the whole sample set, the highest AIV prevalence was found in gulls (1.31%, 

5 out of 381 samples), followed by cattle egrets (0.86%, 1 out of 116 samples) and 

white storks (0.14%, 1 out of 693 samples). This interspecies variation in prevalence 

was not significant (χ2=5.858, d.f=2, p=0.053). In Alcázar de San Juan, we found 

positive samples in all studied species. A higher prevalence was found for gulls 
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(1.27%, 4 out of 316 samples). Lower prevalence were obtained for white storks 

(0.27%, 1 out of 365 samples) and cattle egrets (0.86%, 1 out of 116 samples), although 

these differences were not significant (χ2=1.264, d.f=2, p=0.532) (Figure 7).  In 

Almagro we detected a single positive sample in gulls, and thus, we obtained a 

prevalence of 1.54% AIV genome excretion (1 out of 65 samples) in this species. 

Nevertheless, the difference in AIV prevalence in gulls and white storks was not 

significant (χ2=0.813, d.f=1, p=0.367). 

In Alcázar de San Juan and Almagro, AIV prevalence peaked in October 

(2.31% in Alcázar de San Juan corresponding to 3 out of 130 samples (Figures 7), and 

1.27% in Almagro, corresponding to 1 out of 79 samples (Figure 8), respectively) This 

variation in prevalence was not significant neither in Alcázar de San Juan (χ2=8.377, 

d.f=6, p=0.212) nor in Almagro (χ2=4.444, d.f=5, p=0.487). 

We were able to isolate three viruses out of seven RRT-PCR positive samples, 

obtaining a recovery rate of 42.86%.  

In Alcázar de San Juan, it seems that the variation in the monthly mean number 

of collected samples matches the variation in monthly mean number of white storks 

that visit this rubbish dump. We have however not tested this apparent correlation 

statistically (Figure 10).  

 

 

 

 

 

Family N RT-PCR positive 
Family 
prevalence (%) 

Samplig 
location 

Sampling months 

Ciconiidae 693 1 0.14 ASJ, AL S, O, N, D, J, F, M 

Ardeidae 116 1 0.86 ASJ S, O, N, D, F 

Laridae 381 5 1.31 ASJ, AL O, N, D, J, F, M  

Total 1190 7 0.6 ASJ, AL S, O, N, D, J, F, M 

 

Table 1 

Number of collected samples, number of AIV positives in real time RT-PCR and AIV prevalence in 

white storks, cattle egrets and gulls in Alcázar de San Juan and Almagro rubbish dumps between 

September 2014 and March 2015. Sampling location in bold type represents at least one positive 

sample in the location (ASJ= Alcázar de San Juan, AL= Almagro). Sampling months in bold type 

represent at least one positive sample in the month (S= September, O= October, N= November, D= 

December, J= January, F= February, M= March).  
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Figure 8 – Prevalence (%) of AIV genome excretion by month in white storks 

(black) and gulls (dark grey) (bars) and sample size (number of fresh fecal samples 

collected) by month from white storks (black) and gulls (dark grey) (lines) at the 

Almagro rubbish dump between September 2014 and March 2015. Cattle egrets 

were not included because they were not sampled at the Almagro rubbish dump. 
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Figure 7 – Prevalence (%) of AIV genome excretion by month in white storks 

(black), gulls (dark grey) and cattle egrets (light grey) (bars) and sample size 

(number of fresh fecal samples collected) by month from white storks (black), gulls 

(dark grey) and cattle egrets (light grey) (lines) at the Alcázar de San Juan rubbish 

dump between September 2014 and March 2015. 
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Figure 10- Estimated monthly numbers of white storks at the Alcázar de San Juan 

rubbish dump (black) and Almagro rubbish dump (grey) between October 2014 

and March 2015 (Hernández 2015, in preparation) (bars) and mean sample size 

(mean number of collected samples) from white storks per month during the same 

period in Alcázar de San Juan rubbish dump (black) and Almagro rubbish dump 

(grey) (lines). 

Figure 9– Prevalence (%) of AIV genome excretion in fresh feces collected from 

aquatic wild birds between September 2014 and March 2015 in Alcázar de San Juan 

and Almagro rubbish dumps. 
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5. DISCUSSION 

The present study describes the detection of AIV genome in the feces of wild 

birds sympatric in the use of two rubbish dumps. To the best of my knowledge, this is 

the first study that explores the dynamics of AIV infections in wild birds in Spanish 

rubbish dumps. All studied species had already been targeted in previous studies, 

including a work on AIV circulation in BHG on a rubbish dump in Croatia (Jurinovic et 

al., 2014). Nevertheless, although it is tempting to compare results of different studies 

in order to explain variations in AIV prevalence, different surveillance approaches 

across studies can lead to variations in prevalence (Olsen et al., 2006). Thus, temporal 

and geographical data, and also number and type of sampled species should be taken in 

account when drawing conclusions (Busquets et al., 2010).  

 

5.1. AIV genome excretion prevalence  

The prevalence of AIV in wild birds tends to be low (Hoye et al., 2010), as 

evidenced by some studies based on molecular detection method (Pérez-Ramírez et al., 

2010, Spackman et al., 2009, Sivay et al., 2012, Slavec et al., 2012, Busquets et al., 

2010). Nevertheless, studies on LPAIV prevalence in wild birds in Spain found 

considerably higher prevalence than in the present study. Precisely in Castilla-La 

Mancha, one of these studies determined an AIV prevalence of 2.6% between the years 

2005 and 2007 (Pérez-Ramírez et al., 2010). A higher prevalence (5%) was found in 

the study carried out in Catalonia between the years 2006 and 2009 (Busquets et al., 

2010). In the cited studies, Anatidae represented 50% (686 out of 1374) (Pérez-

Ramírez et al., 2010) and 44% (628 out of 1435) (Busquets et al., 2010) of the total of 

sampled aquatic birds. Birds from the Anatidae family are well known AIV reservoirs 

in nature (Webster et al., 1992), and in fact presented the highest AIV prevalence in 

both studies, which could explain the difference in mean prevalence as our study did 

not include ducks because these do not normally forage at rubbish dumps. A third 

study, that combined data collected from wetlands in Castilla-La Mancha, Catalonia 

and Basque Country between the years 2007 and 2009 found and overall LPAIV 

prevalence of 1.7% (Pérez-Ramírez et al., 2012). However, specifically for the autumn 

migration and wintering (targeted in the present study) these authors found important 

fluctuations in prevalence between years, varying from 7.7% to as low as 0.82%. Thus, 

the temporal context can also explain the differences in prevalence between this and 
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other studies. Another factor could be real time RT-PCR inhibition that has been 

identified when using feces from YLG for the diagnosis of AIV infection, and was 

suggested to be due to components of the diet (Busquets et al., 2010).  Thus, some 

positive samples might have been missed in the present study, at least in gulls, 

contributing to the low prevalence detected. Internal positive controls (IPC) can be used 

to identify false negatives associated to PCR inhibitors in fecal samples (Busquets et 

al., 2010). Previous experiments in IREC using IPC did not provide consistent results 

and thus were not applied in the present study 

 

5.2. Spatial variation in AIV genome excretion prevalence 

A higher AIV prevalence was found in Alcázar de San juan (6 out of 797 

samples), although the difference in prevalence between the two rubbish dumps was 

not significant. However, we suspect that the low number of positive samples 

negatively affects statistical power. Due to the low prevalence of AIV encountered, we 

would probably have to increase sample size to detect significant differences.  In gulls, 

despite the significantly higher sample size in Alcázar de San Juan (Statistics= 3251, 

p= 0.000), the prevalence was apparently higher in Almagro. As we could not sample 

individuals inside the premises of the rubbish dump, our sample size was low in most 

months and restricted to a fraction of the population leading most probably to an 

underestimation of the true prevalence in Almagro. However, despite these differences, 

both rubbish dumps showed the same trend of a higher prevalence of AIV in gulls than 

in the other two species. An apparently higher prevalence was obtained in white storks 

in Alcázar de San Juan as compared with Almagro. Sample size in storks was more 

consistent throughout the study period both in Alcázar de San Juan and Almagro, and, 

in Alcázar de San Juan, apparently matched the number of storks present (Figure 10). 

In Almagro this correlation does not seem to be so clear, which can be due to the fact 

that we did not sample inside the rubbish dump, where the ring lectures were carried 

out.  

 

5.3. Interspecies variation in AIV genome excretion prevalence  

Differences in AIV genome excretion prevalence among the studied species 

were observed, and gulls presented the highest value as compared to the other species 

(1.31% versus 0.86% and 0.14% for cattle egrets and white storks, respectively). This 

differences were not significant (χ2=5.858, d.f=2, p=0.053), possibly due to the overall 
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low prevalence, but the marginally significant difference suggests a trend. These 

differences were also observed in Alcázar de San Juan among the studied species, 

presenting gulls the highest value (1.27% versus 0.86% and 0.27% for cattle egrets and 

white storks, respectively). In fact, a higher prevalence in gulls was expected, as 

aquatic birds from the order Charadriiformes are known AIV reservoirs in natural 

environments (Webster et al., 1992). Interspecies variation in AIV prevalence can be 

explained by intrinsic differences in host susceptibility, but also in host ecology 

(Munster & Fouchier 2009). In the study area, gulls were frequently seen resting in 

large groups floating inside the ponds (personal observation). Thus, it is possible that 

gulls use these aquatic environments, known to enhance AIV survival (Munster & 

Fouchier 2009), more often than the other studied species. Some studies have reported 

high AIV prevalence in gulls. In the Netherlands a prevalence of 7.4% was reported for 

BHG in rural environments between the years 2006 and 2009 (Verhagen et al., 2012) 

and a prevalence of 21.1% was found in this species in Norway in the year 2006 (Anna 

et al., 2010). However, lower prevalence, more similar to what we found, were reported 

in BHG sampled in a rubbish dump in Croatia in the year 2009 (0.7%) (Jurinović et al., 

2014) and in Catalonia in YLG sampled between the years 2006 and 2009 (1.32%) 

(Busquets et al., 2010). In Castilla- La Mancha, Pérez-Ramirez et al., 2010 were not 

able to detect AIV in any of the 36 BHG and 6 LBBG sampled between the year 2005 

and 2007. Unfortunately, in the present study it was impossible to identify the species 

for samples belonging to the Laridae family, which complicates comparisons with 

other studies. In future studies using the same sampling methodology it would be 

interesting to estimate the proportion of each of the three species in the sample set, 

using recently developed molecular techniques such as DNA barcoding (Cheung et al., 

2009). 

We obtained a significantly higher number of samples from white storks 

(Statistics= 95447, p= 0.000). The low prevalence in white storks (we found a single 

positive sample) despite the high sampling size, might indicate that in white storks AIV 

circulates with a low prevalence, and that they thus  have a limited role in this viruses’ 

epidemiology, similarly to the results obtained in white storks in Germany (Kaleta & 

Kummerfeld 2012). However, other studies obtained higher prevalence in this species. 

For instance, Müller et al., 2009 found a prevalence of 2.9% (3 out of 103) of AIV in 

white storks sampled in the year 2006 in Germany. One possible explanation is that 
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these individuals were sampled right after the return to their breeding grounds in 

Germany, when a high contact rate among individuals with different ages and immune 

status occurs due to colonial breeding behavior, which may enhance viral transmission. 

The work of Pérez-Ramirez et al., (2010) carried out in the years 2005 and 2007 in 

Castilla- La Mancha wetlands, also found a higher prevalence (0.8%, corresponding to 

1 out of 128 samples) in white storks. In this case, the only positive sample was found 

between February and April, which also coincides with the beginning of the breeding 

season (SEO/Birdlife 2008). 

The recurrent low sample size in cattle egrets (we collected less than 30 samples 

in all sampling moments) might lead us to underestimate the circulation of AIV in this 

species, and thus their role in the epidemiology of AIV. In fact, higher prevalence were 

found in the study of Pérez-Ramirez et al., 2010 for cattle egrets (1.4%, corresponding 

to 2 out of 147 samples, versus the prevalence of 0.86% of the present study). 

Nevertheless, despite the higher sample size, the 2 positive samples from cattle egrets 

found in their study were obtained in late May, which coincides with the breeding 

period in which these animals aggregate in breeding colonies (SEO/Birdlife 2008). 

We detected a single positive sample both in white storks and cattle egrets, and 

thus we cannot exclude a low level of AIV circulation in both host species. 

Nevertheless both species seem to be of reduced importance for AIV maintenance. In 

fact, the single positive finding in cattle egrets was detected in October, and might be 

the result of a spillover from gulls (which presented a higher prevalence in this month). 

Unfortunately virus typing results are still pending. Although we found AIV genome 

excretion in all studied species/families, subtyping and sequencing of AIV found in this 

study would give us more hints about the potential transmission of the virus among 

them in the studied rubbish dumps. 

 

5.4. Temporal variation in AIV genome excretion prevalence  

           A higher AIV prevalence was found in October, in Alcázar de San Juan (2.31%) 

and Almagro (1.27%). Although this temporal variation in prevalence was not 

significant, probably due to the reasons mentioned above, a higher prevalence was 

expected during the autumn migration, as was found for many other European countries 

and specifically, Spain, due to the arrival of migrant birds (Pérez-Ramírez et al., 2012). 

In the present study, as gulls were the main contributors to the peak in prevalence (two 
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positive samples in Alcázar de San Juan and one positive sample in Almagro). A higher 

prevalence in gulls has been reported in late summer-early autumn, which is 

presumably due to the aggregation of individuals that belong to different age groups 

(and thus, immune status) in crowded breeding colonies (Olsen et al., 2006). However, 

a peak in prevalence of AIV in gulls was also described at the beginning of the autumn 

migration, shortly after they have left their breeding grounds (Munster et al., 2007). 

AIVs can be transmitted over long distances during migration (Olsen et al., 2006, Lam 

et al., 2012). The higher number of positive samples in October might thus be due to 

the arrival of birds that leave their breeding colonies carrying LPAIV and reach 

Spanish territories. The aggregation of migrant species at the stopover or wintering 

sites allows the transmission of LPAIV in these crowded sites (Olsen et al., 2006). This 

transmission may occur from migrant to resident birds and vice-versa.  The influx of 

migrant mallards in Netherlands was recently associated with amplification of endemic 

LPAIV (Verhagen et al., 2014). Birds that arrive to their wintering territories have 

carried out a long trip. After this effort they are exhausted and the low immune efficacy 

might not be sufficient for prevention of AIV infection (Li et al., 2010). Also, 

migratory individuals may be immunologically naïve to endemic pathogens and thus 

more susceptible than resident individuals (Leighton 2002). Thus, the arrival of 

migrating birds from their breeding grounds may allow for the introduction and 

circulation of viruses into the studied rubbish dumps, or allow for increase of 

transmission of local endemic AIV. The prevalence decreased after October. LPAIV 

infections in mallards provided protection against re-infection with homologous and 

heterologous LPAIV subtypes (Jourdain et al., 2010). In BHG previous infection with a 

homologous LPAIV virus was associated with a strong, long-lasting protective effect 

(Verhagen et al., in preparation). The epizootics is gulls appear to occur in late 

summer-early autumn, as commented above. Thus, a decrease in susceptible/resistant 

ratio can explain a decrease in AIV prevalence over the study period. 

Climatic conditions, such as humidity and temperature, determine 

environmental viral survival and thus, AIV prevalence (Pérez-Ramirez et al., 2012). 

Nevertheless, in the present study we were not able to associate these data with AIV 

prevalence over time due to difficulties in obtaining accurate meteorological data.  
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5.5. Consequences of LPAIV carriage in rubbish dump guests: potential for local 

and regional spread 

The detection of birds shedding AIV virus at both rubbish dumps is of major 

importance. Particularly, despite the low prevalence the detection of AIV genome 

excretion in white storks should not be neglected. In the province of Castilla-La 

Mancha, the proximity between wetlands (and also the local National Park “Tablas de 

Daimiel”) and rubbish dumps might create an interesting scenario for viral exchange 

between avian users of these wetlands, as they are used, for instance, by the same white 

storks for feeding and resting. This situation occurs with the Alcázar de San Juan 

rubbish dump and a close-by small shallow lake (Hernández & Höfle 2014). At this 

lake, the peak of LPAIV prevalence was detected in winter in previous years (Pérez-

Ramírez et al., 2010).Thus, white stork movements could be a risk factor for the 

introduction of AIV acquired at the rubbish dump into the wetland especially during the 

wintering season. Most of the storks observed at Almagro use another wetland for 

resting at night thus the same scenario applies. Likewise vice-versa white storks 

foraging at the rubbish dumps could during foraging or resting transmit wetland 

acquired AIV to other species.  As cattle egrets and gulls also use aquatic 

environments, and AIV genome excretion was detected in both, they can also have a 

role in the viral circulation between rubbish dumps and wetlands.  Foreign European 

wintering white storks constitute the biggest part of the wintering population at Alcázar 

de San Juan and Almagro (Figure 11). Thus, there is a potential for viral dispersion 

from and into different European countries, especially Germany, France and 

Switzerland (Figure 12) or influx of AIV from these regions through incoming 

migrants. Lastly, regarding public health, all the studied species present a synanthropic 

behavior and may thus function as “bridge species” for zoonotic AIV, spreading these 

viruses into domestic animals and/or different human communities. 
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Figure 11 - Proportion between centraleuropean white storks and iberian white storks in 

Alcázar de San Juan and Almagro rubbish dumps ((*) represents the detection of AIV 

positive samples in Alcázar de San Juan and Almagro rubbish dumps between September 

2014 and March 2015) (graph courtesy of J.M. Hernández) 

 

 

Figure 12 - Proportion of european white storks in Alcázar de San Juan and 

Almagro rubbish dumps by provenience ((*) represents the detection of AIV 

positive samples in the Alcázar de San Juan and Almagro rubbish dumps between 

September 2014 and March 2015) (Graph courtesy of J.M. Hernández). 
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5.6. Role in HPAIV epidemiology 

Taking into accont the recent outbreaks of H5N8 in Europe and the case of 

H5N1 detected in 2006 (Adlhoch et al., 2014), there is a possibility of introduction of 

H5 HPAIV in Spain. In fact H5 HPAIV has been detected in white storks (Globig et al., 

2009, Śmietanka & Minta 2014), gulls (Ellis et al., 2004, Marchenko et al. 2011, 

Sakoda et al., 2012, Savić et al., 2010) and cattle egrets (Kayali et al., 2011), but 

according to our data, during our study period the subtype H5 has not circulated in the 

wild bird community of the studied rubbish dumps. Nevertheless, HPAIV H5N1, for 

instance, appears to present more affinity for the respiratory tract (Sturm-Ramirez et al., 

2005). Thus, the sampling method applied in the present study may have missed this 

virus if present.  

 

5.7. Non-invasive sampling methods: pros and cons 

The collection of fresh fecal samples has been described as an appropriate 

method for large scale LPAIV surveillance programs in wild birds (Pérez-Ramírez et 

al., 2005). In the present study, this non-invasive approach allowed for the collection of 

a high number of samples from wild birds, which otherwise would be difficult in such a 

short period of time. It is also cost-effective and causes less impact in the wild bird 

community, as it does not require capture of the birds. On the other hand, the collection 

of fresh feces in cases of mixed species flocks does not allow a completely accurate 

identification of the species-origin of the samples. This handicap can be overcome by 

DNA barcoding through amplification and sequencing of the mitochondrial cytochrome 

oxidase I gene from fecal and cloacal samples (Cheung et al., 2009). However, this 

technique is not yet available at IREC and is pending at the collaborative institution 

(NEIKER) that currently carries out viral culture and AIV subtyping of the positive 

samples. 

 

6. CONCLUSIONS 

1- The present study identifies a low prevalence of AIV genome excretion in 

aquatic bird species that forage at the studied rubbish dumps.  This indicates 

that these rubbish dumps where birds aggregate are sites where AIV 

excretion may occur and where cost-effective sampling for surveillance 

activities can provide relevant information on AIV circulation in wild birds. 
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2- AIV genome excretion was detected in all studied species, showing that all 

of them could to some extent participate in AIV maintenance in the studied 

rubbish dumps or at least have a role as sentinels.  

 

3- A higher prevalence was obtained in gulls, which agrees with their definition 

as reservoirs of AIV in natural ecosystems.  

 

4- Despite the high sample size in white storks, this species showed the lowest 

prevalence. Thus, although white storks can be targeted in surveillance 

studies (as AIV genome excretion was detected), they do not seem to be a 

good reservoir for AIV. 

 

5- As described in other studies, the arrival of migrating wild birds to Spain can 

be associated with a peak in AIV prevalence in wild birds at these territories. 
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