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ABSTRACT 
 
 

Wild boar (Sus scrofa) is currently the most widely distributed species in overall Europe. It 

is also the more relevant wild reservoir of several diseases shared with livestock and/or 

humans, including tuberculosis (TB) that is cause by mycobacteria of Mycobaterium 

tuberculosis complex (MTC). The transmission of MTC is important in areas with high 

frequency of effective contacts between potential reservoirs, as it is the case of Doñana 

National Park (DNP), where domestic and wild ungulates cohabit. Different approaches have 

been used to determine potential contacts between individuals. In this study, using GPS-GSM 

tracked wild boar (n=18) and cattle (n=12), we aimed to (i) determine intra and interspecific 

contacts for domestic and wild ungulates; (ii) describe the seasonal contacts rates between 

wild boar and cattle, but also the intraspecific for wild boar; and (iii) identify the environmental 

variables increasing the probability of interspecific contacts occurrence. In this study, contacts 

were defined using two spatial (52 – 127 m) and three temporal (1 – 72 – 288 h) windows, so 

finally six spatio-temporal windows were used. In addition, contact presence was modelled in 

order to determine the environmental predictors explaining the contact pattern in DNP and its 

seasonality. For this purpose, random points were placed within the overlapping areas 

between seasonal home ranges of each pair of interacting individuals. Our results pin pointed 

to spring and autumn as the more relevant seasons for establishing interspecific contact. 

Whether these contacts involve higher potential for pathogen transmission in our study area 

should be addressed (for instance, less frequency of contact but occurring at localized 

environmental sources of pathogens may involve more risk in summer season). This study also 

suggests that contacts do not occur in areas with dense vegetation, as dense shrublands and 

woodlands but highlights the relevance of the proximity to water points and vera ecotone in 

explaining contacts patter in DNP. Even our results are relevant to improve the understanding 

of the epidemiology of TB in DNP and to support intervention measures for minimize the 

effective contacts between domestic and wild ungulates, a more in detail exploration of the 

contacts determined in our study is needed. For instance, by determining the contacting 

individuals, exploring the daily patterns of the contacts, and characterizing the contacts in 

terms of selected resources would provide better understanding of the seasonal patterns of 

both intraspecific and interspecific contacts. 

 

Key words: GPS relocations, home range, inter and intraspecific contact, spatio-temporal 

window.  
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1. INTRODUCTION 

 

1.1. Population status of wild boar 

 

Wild ungulate populations have grown notably in Europe in the last decades 

(Apollonio et al., 2010), and the Iberian Peninsula has been not an exception (Acevedo 

et al., 2005). Among ungulates, wild boar (Sus scrofa) should be highlighted, since it is 

currently the most widely distributed species both in Europe (Apollonio et al., 2010) 

and in the Iberian Peninsula (Palomo et al., 2007; Acevedo et al., 2014), where 

populations have recently expanded both in densities and range due to management 

changes and changes in land uses associated to rural abandonment (Gortázar et al., 

2000; Acevedo et al., 2006; 2011). But this increasing trend, in some circumstances, 

leads to conflicts involving several sectors, among others, traffic accidents (Lagos et al., 

2012), agriculture damages (Herrero et al., 2006), conservation problems (Bueno et al., 

2009) and health risks (Gortázar et al., 2007; 2011). Wild boar current distribution 

includes Europe, north of Africa, Asia and, after its introduction in some countries, 

hybrids between wild boar and domestic pigs can be found in America and Australia 

(Figure 1; see Lever, 1994; Ruiz-Fons et al., 2008).  

 

 

 

Figure 1. Geographic distribution of wild and feral forms of Sus scrofa. Source: Sjarmidi & Gerard (1988).  

Should be noted that the current distribution of the species is wider in most of the occupied areas (e.g. 

Portugal; see Vingada et al., 2010) and from 1980s this species also inhabits England (Wilson, 2013).    
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In absence of natural predators modulating wild boar populations in most of its 

distribution range, hunting activity becomes the major cause of mortality for wild boar 

both in natural and managed populations (Keuling et al., 2013). However, hunting 

seems to be insufficient to control the populations of this prolific species in Europe, 

and then overabundance situations can emerge. Overabundance is an undesirable 

situation occurring when the population abundance of a given species: (a) affects 

human life or well-being, (b) affects the fitness of the overabundant species, (c) 

reduces the density of species with an economic or esthetical value, or (d) causes 

dysfunctions in the ecosystem (Caughley, 1981). Several examples can be found in 

which wild boar produces overabundant scenarios (reviewed in Gortázar et al., 2006). 

But the diagnostic of overabundance situations is not a simple task as it requires that 

the admissible levels of “damage” on each indicator are defined. These admissible 

levels can be not considered as fixed thresholds that wild boar populations should be 

never exceeded; they can vary according to the specific objectives of each concrete 

study area. For instance, in a private hunting estate with supplementary feeding and 

the hunting as the unique economic activity the admissible levels of wild boar 

abundance are higher than in an area where livestock is a relevant activity and 

therefore wild boar population should be regulated to minimize the interspecific 

contacts, and therefore disease transmission, between domestic and wild animals 

(Gortázar et al., 2007). 

 

1.2. Wild boar as a reservoir of tuberculosis 

 

In the context of animal and public health, wild boar is a potential host of 

numerous pathogens (Ruiz-Fons et al., 2008). This is important not only for public 

health (Michel et al., 2010), but also for other issues such as economic losses in 

livestock industry (WorldBank, 2012), conservation of threatened species (Gortázar et 

al., 2008) and animal welfare (Sainsbury et al., 1995).  

 

Bovine tuberculosis (bTB) is a zoonosis caused by Mycobacterium bovis and 

related with mycobacteria of Mycobacterium tuberculosis complex MTC (Gortázar et 

al., 2005; Neill et al., 2005). Wild boar is the biggest reservoir of MTC in the Iberian 

Peninsula (Gortázar et al., 2012) and shares it with cattle, goats and domestic pigs 
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(Parra et al., 2003; Aranaz et al., 2004; Gortázar et al., 2005). Previous studies have 

showed the complexity of this epidemiological system, involving several wild and 

domestic species, high prevalence in wildlife and no complete eradication in livestock, 

mainly in areas where the wild ungulates are abundant (Vicente et al. 2007; Gortázar 

et al., 2008). In addition, the complexity of the Mediterranean habitats in the Iberian 

Peninsula, characterized by severe droughts during the summer also modulates the 

epidemiology of these diseases (Vicente et al., 2013). The transmission of MTC 

becomes important in areas with frequent contacts between wild and domestic 

animals, as the Doñana National Park (DNP), in southern Spain, where traditional cattle 

husbandry of extensive regime still exist (González & Murphy, 2000). Furthermore, in 

this area it has been documented an increasing prevalence of MTC in wild ungulates 

(Parra et al., 2006), the highest ever described in literature for wild ungulates (Gortázar 

et al., 2008; Gortázar et al., 2011) and it has been shown a close link between wild 

boar MTC prevalence, wild boar abundance and livestock incidence (Boadella et al., 

2012).  

 

1.3. Contacts between wildlife and livestock 

 

Studying the ecology of potential hosts of bTB lets to determine the factors 

modulating direct and indirect contacts, both within the same species and inter species 

(Cooper et al., 2010). These studies are needed to understand complex 

epidemiological systems, such as MTC in the Iberian Peninsula. Contacts between 

wildlife and livestock respond to several factors, such as biophysical characteristics of 

the habitat (e.g., precipitation, soil type, topography), ecological features (e.g., fodder, 

spatial behavior) and human practices (e.g., cattle husbandry, wildlife management) 

(Miguel et al., 2013). However, wildlife often present elusive behaviors and are not 

easily detectable, so contacts have been rarely quantified (Patz et al., 2004; Smieszek, 

2009). 

 

Different approaches have been used to determine contacts rates between 

livestock and wild animals in order to clarify the transmission of different pathogens 

(Table SI.1). Direct observation allowed determining the risk of bTB transmission in 

Michigan (Hill, 2005). More often, proximity data loggers, radio-tracking of individuals 
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and camera trapping are used for this purpose. For instance, Böhm et al. (2009) 

studied the contact rate between cattle and badgers (Meles meles) in northeast 

England by proximity data loggers. Radiotracking (and also GPS-GSM technology) was 

used to study the transmission of bTB between cattle and elk (Cervus canadensis) in 

Canada (Brook & McLachlan, 2009). Kukielka et al. (2013) used camera-trapping to 

determine the nature and frequency of interactions between domestic animals (cattle 

and pigs) and wild animals (wild boar and red deer (Cervus elaphus)) in the central-

south of the Iberian Peninsula. Recent advances in Global Positioning System (GPS) 

have permitted to determine the intra – interspecific interactions on a smaller spatial 

scale (Latham et al., 2015). This approach has been used to study the transmission of 

foot and mouth disease among wild and domestic animals in south Texas (Cooper et 

al., 2010), or the transmission of foot and mouth disease between cattle and buffaloes 

in Zimbabwe (Miguel et al., 2013). Finally, GPS-GSM technology was also used to 

estimate an index of potential contact between wild boar and cattle based on the 

seasonal patterns of habitat use expressed by these species in DNP (Barasona et al., 

2014a). 

 

1.4. Justification and aims of this study 

 

Given the relevance of bTB eradication in livestock in the Iberian Peninsula and the 

role of wildlife host in the epidemiology of this and other shared diseases, the main 

aim of this study was to determine and describe the spatial pattern of contacts 

between domestic and wild ungulates. This study is the first to investigate real 

contacts between wild boar and cattle at spatial scale and to predict contact 

probabilities at landscape level.  

 

Thus, our concrete objectives were: 

 

1. Determining intra and interspecific contacts for domestic and wild ungulates. 

2. Determining the seasonal contacts rates between wild boar and cattle, but also 

the intraspecific for wild boar. 

3. Identifying the environmental variables increasing the probability of 

interspecific contacts occurrence. 
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2. MATERIALS AND METHODS 

 

2.1. Study area 

 

This study was performed in DNP (Lat. 37° 0’ N; Long. 6° 30’ W) (Figure 2). DNP is 

mainly located in the province of Huelva, but also in Sevilla and Cádiz provinces 

(Andalusia), in the southwest of the Iberian Peninsula. The total area of DNP is 52,252 

ha, and its maximum elevation is 47 m. 

 

 

 

Figure 2. Location of the study area, Doñana National Park. 

 

DNP and its surroundings have a sub-humid Mediterranean climate with Atlantic 

influence, which makes softer the temperature: the average annual temperature is 

17ºC, with large seasonal fluctuations. The annual rainfall is 575 mm (20% in spring, 5% 

in summer, 35% in autumn and 40% in winter) with high intra and interannual 

variability, which determines the irregularity of the river inputs. The actual 

evapotranspiration has an average value of 420 mm per year, equivalent to 73% of the 
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rainfall (Almonte observatory “Bodegones”, Geological and Mining Institute of Spain, 

Ministry of Economy and Competitiveness, Spain). 

 

DNP is a sandy soils area formed by great diversity of biotopes: the marsh 

occupies 27 ha of the park, is a seasonal wetland flooded by streams and rainwater 

which has great importance for its role as a passage place, breeding and wintering 

European and African birds. The beaches are the adjacent sea areas modified by 

intense coastal dynamics; mobile dunes and “corrales” have characteristic vegetation 

of scrub and pines. Scrublands represents an intermediate stage of the mature 

Mediterranean forest and are the preferred habitat by large ungulates such as red 

deer, fallow deer (Dama dama) and wild boar, and also by large predators such as the 

Iberian lynx (Lynx pardinus). Finally “la vera”, it is the area between 200 – 1.500 m 

wide which connects scrublands with the marsh, here bulrushes and grasses growth, 

and aggregates animals such as birds, reptiles, amphibians, small mammals and – 

mainly – ungulates (Network of National Parks, Ministry of Agriculture, Food and 

Environment).     

 

The traditional husbandry –“vaca marismeña”– takes place in five areas within the 

National Park. Each area is separated from the adjacent ones by proof fenced for 

cattle, which limits the movement of herds to its management area. In DNP there is a 

moderate – high density of red deer (6,26 ind/100ha), fallow deer (3,89 ind/100ha) 

and wild boar (5 ind/100 ha) according to abundance estimations calculated in 2013 (J. 

Vicente, unpublished data).  

 

2.2. Sampling animals 

 

Capture and marking of individuals was conducted between July 2011 and October 

2013 following the protocol approved by the Animal Experiment Committee of Castilla-

La Mancha University and by the Spanish Ethics Committee; the protocol was designed 

by scientists (B and C animal experimentation categories) according to EC Directive 

86/609/EEC for animal handling and experiments. In total 18 wild boars and 12 cattle 

were equipped with GPS-GSM radio-collars (Barasona et al., 2014a). 
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Wild boars were captured in different trapping areas in order to monitor multiple 

social groups. Briefly, six padded foothold cage traps monitored by camera traps were 

used, and each one was activated when a wild boar stepped on a mobile bottom 

platform in the center of the trap, causing the simultaneous closure of the two gates 

from the trap. Once captured, each wild boar was anesthetized following the protocol 

from Barasona et al. (2013) (3 mg/kg of tiletamine-zolazepam and 0.05 mg/kg of 

medetomidine). Once anesthetized, each individual was identified by ear tags and 

were radio-collared, weighed, and assessed for condition, age and sex. Eleven of the 

18 wild boars captured were males (8 adults and 3 subadults [<24 months]), and 7 

were females (5 adults and 2 subadults). In addition, cattle were marked in different 

areas of management in DNP and thus belonged to different social groups. All of them 

were radio-collared during routine veterinary inspections of each farm. Further details 

can be found in Barasona et al. (2014a). 

 

Each radio-collar transmitted a GPS location per hour and sent 20 locations 

packages with GSM (Global System for Mobile Communications) (Microsensory 

System, Spain) (Cano-Manuel et al., 2007). Each GPS location registered an 

identification of each animal, date, time, geographical coordinates and location 

acquisition time (LAT; a measure of the precision of a fix and ranges between 0 – 166 

s). According to the last parameter, GPS locations with LAT  154 s were remove 

because they were considered anomalous relocations. Also, GPS locations obtained 

during the day of collar deployment were discarded.   

 

2.3. Determining contact rates: the spatio-temporal windows 

 

To define a contact using telemetry data two parameters should be previously 

defined: the geographical distance and time between two given relocations to be 

considered as contacting. Six spatio-temporal windows, using two spatial windows and 

three temporal windows, were defined in this study (Table 1). 
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 Spatial windows:  

 The minimum spatial distance considered as a contact was 52 m. It was 

fixed according to the mean positional error of the GPS that was 

estimated in 26 m.  

 The maximum spatial distance considered as a contact was 127 m. This 

is the average distance between two consecutive locations, which 

indicates the distance that can be traveled in one hour. It was estimated 

using our field data.  

 

 Temporal window: 

 1 h; collars were programmed to acquire one GPS location per hour, 

thus this is the minimum temporal resolution of our data. 

 3 days (72 h); that corresponds to the survival of M. bovis during the dry 

season (Kukielka et al., 2013). 

 12 days (288 h); that is related to survival of M. bovis during the wet 

season (Kukielka et al., 2013). 

 

Table 1. Spatio-temporal windows used to describe contacts. 

 

Window Distance (m) Time (h) 

1 52 1 

2 52 72 

3 52 288 

4 127 1 

5 127 72 

6 127 288 
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2.4. Data analysis  

 

2.4.1. Analysis of GPS location: contacts 

 

The analytical rationale used to determine contacts can be summarized in 5 steps: 

 

1. For each relocation, for both cattle and wild boar, we identified the positions of 

a different individual within the larger spatio-temporal window (window 6).  

2. The resulting contacts were characterized with the following information: ID of 

each contacting relocations, ID of each contacting individual, distance between 

contacting relocations, time between relocations, date (season) and the 

geographical coordinates of the mean point between both relocations. 

3. As in this analysis each contact was identified twice (relocationi-relocationj and 

relocationj-relocationi), we removed duplicates by considering the ID of each 

contacting relocation. 

4. Type of contact, namely cattle intraspecific, wild boar intraspecific, and wild 

boar-cattle interspecific, were determined by using IDs of the contacting 

individuals.  

5. Filtering was applied in order to split the data base with contacts into 

independent bases for each spatio-temporal window. Each data base was 

exported as Shape file to be represented in GIS. 

 

The script used for these analyses was included as Supplementary Material II Script 

SII.1. 

 

2.4.2. Frequency of the contacts 

 

We estimated the frequencies of contacts to check for differences among seasons 

(spring, summer, autumn and winter) and contact type (wild boar intraspecific and 

wild boar-cattle interspecific), in each window. We excluded of these analyses the 

intraspecific cattle contacts because they are related to cattle management. As the 

number of monitored animals varied along the study period, frequencies should be 

relativized by the number of relocations. That is, intraspecific contacts frequencies 
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were calculated by dividing the number of contacts in each season by the total 

relocations obtained for the species, and interspecific contacts were calculated by 

dividing the number of contacts in each season by the minimum number of relocations 

for any specie. We also calculated standard deviation of each estimated frequency 

using the formula: 

𝑆𝐷 = √
𝑛 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 ·  (1 − 𝑛 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠) 

𝑛 𝑟𝑒𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 

 

Finally we tested differences between groups of frequencies using 2 x 2 tables and 

Chi square tests (www.semergen.es/semergen/calc/apcalc.htm).  

 

2.4.3. Home ranges, home ranges intersections, statistical models and contact 

probability 

 

These analyses were just focused in the interspecific contacts detected using the 

minimum temporal windows (i.e., windows 1 and 4) because of this is the 

configuration with higher relevance in the transmission of MTC. The aim of these 

analyses was to identify the environmental variables increasing the probability of 

interspecific contacts occurrence. For this purpose, the contacts previously defined 

were modelled against random points within the overlap area of the seasonal home 

ranges of the interacting individuals. 

 

Seasonal home ranges (95% Utilization Distribution; see Sodeikat & Pohlmeyer, 

2003) of each animal were estimated using fixed-kernel function from the 

ADEHABITATHR package in R (Calenge, 2006). Intersection of the home ranges of each 

pair of interacting animals was determined and then a number of points (10 points for 

each contact between the interacting animals) were randomly located in this area. For 

both contacts and random points, we extracted eight environmental variables as main 

predictors of spatial patterns of host abundance and aggregation (Barasona et al., 

2014b): surface occupied by dense shrubland (T1), low-clear shrubland (T2), 

herbaceous grassland (T3), woodland (T4), bare land (T5), watercourse vegetation and 

http://www.semergen.es/semergen/calc/apcalc.htm
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water body (T6), distance to water body (DWAT), and distance to the vera (DVER). 

Information was in raster format (1ha spatial resolution). 

 

Generalized mixed lineal models, with binomial distribution and logit link function, 

were performed for each window and season. In all cases contact vs. random points 

was the response variable, environmental variables the predictors and the ID of each 

pair of contacting individuals the random factor. Models were parameterized using 

80% of data and the remaining 20% was reserved for validation purposes. On this 

independent information the predictive performance of the models was explored 

using the area under the ROC curve (AUC) for assessing discrimination capacity, and 

calibration plots and the associated Hosmer-Lemeshow test, for assessing for model 

reliability (see Jiménez-Valverde et al., 2013).  

 

Finally, we estimated the environmental domain of the models in order to delimit 

the area within DNP for which models can be projected. The multivariate 

environmental similarity surface (MESS; see Elith et al., 2010), which represent how 

similar each 10 ha grid cells (territorial units) in DNP is in relation to conditions in the 

set of points used for models parameterization, was estimated.  
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3. RESULTS 

 

3.1. Sampled animals and relocations 

 

During the study period 30 individuals were GPS-collared, 18 wild boars and 12 

cattle heads (Figure 3). From this individuals we got 75,372 GPS locations, and after R 

analyses, 602,873 contacts were identified for windows 6 (see below). A high potential 

overlapping between tracked domestic and wild ungulates was observed in the study 

area (Figure 4).   

 

 

 

Figure 3. Individuals GPS-collared and duration of the GPS data collection for each wild boar and cattle 

throughout the study period. Source: Adapted from Barasona et al. (2014a).  
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Figure 4. Home ranges (defined as the 95% isopleth of kernel density estimators) of the GPS collared 

individuals of the study (18 wild boar and 12 domestic cattle). 

 

3.2. Frequency of the contacts 

 

Frequency graphs for both interspecific and intraspecific wild boar contacts for all 

spatio-temporal windows are shown in Figure 5 (Chi square values can be found in 

Supplementary Material I: Table SI.2.). Results showed that the relative frequencies of 

intraspecific contacts were higher in winter, followed by spring and autumn, for all 

spatio-temporal windows, except for window 1, where the frequency of contacts in 

winter were smaller than that in spring. Frequencies of interspecific contacts were 

higher in spring and autumn, and smaller in winter and summer. Finally, contact 

frequencies were significantly higher for intraspecific than interspecific in winter and 

spring in all spatio-temporal windows. On the contrary, interspecific frequencies in 

summer and autumn were significantly higher than intraspecific ones in all windows 

except in window 1 and 4.    
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Figure 5. Frequency of the contacts according to contact type (wild boar intraspecific WB-WB, and wild 

boar and cattle interspecifica WB-C) and season (WINT = winter; SPR = spring; SUM = summer; and AUT 

= autumn) in each spatio-temporal window. (>> represent significant differences between parameters, > 

represent not significant differences).  
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3.3. Spatial patterns of contacts 

 

Interspecific contacts for windows 1 and 4 (Figure 6) presented similar seasonal 

spatial patterns, with a higher number of contacts in window 4 than in window 1. Visual 

representation suggests that the number of contacts varied among seasons: spring and 

summer with a lower number of contacts than winter and autumn, in both windows. 

 

Regarding to the intraspecific contacts between wild boar in windows 1 and 4 

(Figure 6), a similar pattern in the distribution range of contacts can be observed. 

Contacts seem to occur mainly in winter, autumn and spring, and less in summer.  

   

Comparing both type of contacts, there are more intraspecific contacts than 

interspecific ones, except in summer, where the interspecific were significantly higher 

than the intraspecific ones. We can also see that both types of contacts appear in the 

same areas, with the exception of contacts in winter, where intraspecific contacts 

appear in the north of the park.  
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Figure 6. Distribution of intraspecific contacts between wild boars (WB – WB) and interspecific contacts 

between wild boar and cattle (WB – C) in DNP according to season, in Windows 1 and 4. (See also 

Supplementary material III, Figures SIII.1. and SIII.2.).   

 

The final models carried out to identify the environmental predictors explaining 

seasonal interspecific contacts can be found in Table 2 (statistical parameters of the 

models in Supplementary Material I: Table SI.3. and Table SI.4.). No models for winter 

and spring in window 1 were obtained, likely related to a low number of contacts. 

Briefly, all seasonal models highlighted the relevance of habitat variables (e.g. T1, T4) 

and distance to water sources (e.g. DWAT, DVERA) to explain the pattern of interspecific 

contacts. 
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Table 2. Seasonal models calibrated to explain the spatial pattern of interspecific contact between wild 

boar and cattle in Doñana National Park. Results of models validation on independent data are also 

shown: area under de ROC curve (AUC) and the Chi-square associated to Hosmer-Lemeshow test of the 

calibration plot. See text for codes of predictors (* = p < 0.05). 

 

Window Season Model AUC χ2 (p) 

1 

All Seasons  -T1 -T4 -DWAT -DVERA 0.67 1.11 

SPR  -T1 -DVERA 0.71 17.50 * 

AUT  -DVERA  0.49 1.83 

4 

All Seasons  -T1 -T5 -DWAT -DVERA  -T4 -T6 -T2 0.69 5.77 

WINT  -T4 -T1 -T6 -T2 -T5 0.71 4.16 

SPR  -T1 -DVERA -DWAT -T2 -T5 -T4 -T6 0.82 18.44 * 

SUM  -T1 -T5 +T4 -DWAT -T6  0.72 9.25 

AUT  -DWAT -T4 -T1 -DVERA -T5 -T6 -T2 0.64 7.82 

 

 

MESS excluded the westernmost area of DNP. Figure 7 shows the prediction of the 

statistical models in DNP. Cartographic representations of the models showed the 

relevance of DVERA, and that the pattern obtained for winter (window 4) marked areas 

of high probability of interspecific contacts that had not been identified by the other 

models. 

 

In the cartographic representation of the predicted probability for interspecific 

contact occurrence (Figure 7) we observed a clear pattern of high probability around 

vera: This pattern is no so marked in the model for all the seasons, neither for winter 

and summer. It is also remarkable the high probability of contact predicted for areas far 

away from vera in summer.  
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Figure 7. Predicted probability of interspecific (wild boar-cattle) contact occurrence according to the seasonal models showed in Table 2.  
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4. DISCUSSION 

 

4.1. On the methodological approach 

 

Global positioning system is nowadays the most reliable and employed technology 

used to study fine-scale interaction between species (Latham et al., 2015). Some studies 

have developed mathematical functions to predict contacts between species (Kilpatrick 

et al., 2009) but these approaches are not useful to determine real contact rates and 

potential transmission of diseases. Other techniques allow to detect contacts, as data 

logger and camera traps (Böhm et al, 2009; Kukielka et al, 2013), however, these ones 

have limitations in collection and storage of useful data for inter and intraspecific real 

contacts studies, like date, time or identification of individuals, allowing us to identify 

risky areas for contacts or individuals prone to interspecific contacts.       

 
 

4.2. Relative frequency of the contacts 

 

Higher relative frequencies of intraspecific contacts were observed in winter, spring 

and autumn, for all spatio-temporal windows. Only one interesting exception was 

observed window 1 (the smallest one), where the frequency of intraspecific contacts 

was lower in winter than in spring. The intraspecific contacts can be considered as 

contacts among different wild boar groups since only one animal by group was marked 

in this study. Bearing this fact in mind, the results suggested that different groups are 

using the same territories in winter but not direct contacts between animals are 

established, likely due to the absence of limitation of key resources during this season. 

The distribution of resource limitation in spring, likely linked to the presence of scarce 

unflooded areas, can determine the high frequency of contacts for the window 1 (the 

more similar configuration in our study to direct contacts between individuals). Likely 

this could be explained by an expansion of wild boar territories to marshland reducing 

the contact between familiar groups during this season. To our best knowledge, this is 

the first study determining intraspecific contacts in wild boar and therefore we have not 

information to contrast our results. They suggested that spring could be a relevant 
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season for establishing intraspecific direct contacts in DNP and that the dry season does 

not seem to determine high contact rates.  

 

Interestingly, the frequency of intraspecific contacts is quite higher than the 

interspecific ones for winter and spring, but this relation is inverse in summer and 

autumn for most of the windows. Fernández-Llario et al., (1996) described that social 

groups of wild boars depends on the biological cycle of the species that appears to be 

aggregated in the mating season (winter and spring) and then females tend to separate 

from other individuals when giving close to birth in summer (Martínez-Rica, 1980). This 

may explain our observation of increases of the frequency of intraspecific contacts in 

winter and spring and then a decrease in summer and autumn. Possibly, these 

separated groups of wild boars tend to contact with cattle in summer and autumn near 

to limiting resources which increase interspecific contacts.   

 

The relative frequency of interspecific contacts was higher in spring and autumn, 

than in winter and summer, and the summer was the season that, consistently for all 

spatio-temporal windows, achieved the lowest frequency. This result, a priori, does not 

match with previous studies (e.g., Kukielka et al., 2013; Miguel et al. 2013), in which 

higher interspecific contact rates were observed during the dry seasons (summer and 

autumn) near to commonly used restricted resources. However, in DNP resources are 

limited at the end of summer and autumn, and likely this environmental asynchrony is 

able to explain the low number of contacts determined in summer.  

 

 Similarly to the results obtained for the intraspecific contacts, spring seems to be a 

critical season for establishing higher interspecific contacts in our study area. As 

previously stated, the marshland dynamics could explain these results. Summarizing, our 

results pin pointed that spring and autumn are the more relevant seasons for 

establishing interspecific contacts, and therefore with higher potential of pathogen 

transmission in our study area. This result also highlights the relevance of the 

environmental gradients explaining interspecific contact rates. However, a more in 

detail exploration of the contacts determined in our study, for instance, by determining 

the contacting individuals, exploring the daily patterns of the contacts, and 
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characterizing the contacts in terms of selected resources, would be carried out for a 

better understanding of the seasonal patterns of both intraspecific and interspecific 

contacts. 

 

4.3. Where do the contacts occur? 

 

Spatially explicit statistical modelling clearly shows the relevance of some habitat 

uses and the proximity to water for establishing direct contacts. According to previous 

studies, our results suggested that contacts do not occur in areas with dense vegetation 

as dense shrublands and woodlands and also highlighted the relevance of the proximity 

to water points and vera in explaining contacts patter in DNP (Barasona et al., 2014a). 

Therefore, contacts generally occurred in the habitats forcing high aggregation of hosts 

(Barasona et al., 2014b). 

 

The predicted pattern of probability for interspecific contact occurrence was quite 

consistent among seasons and spatio-temporal windows of analyses. However, a higher 

potentiality for interspecific contacts was predicted for summer, mainly in southern 

areas. This result appears because the environmental potential for contacts is scarce in 

this area, and therefore animals should aggregate in some favorable areas (Barasona et 

al., 2014b). Looking for predicted patterns, some differences in the expected contact 

rates between seasons are observed. So, for instance, in southern areas the higher 

frequency of interspecific contacts is expected for summer, which reinforces the idea of 

higher contact rates during dry season (Kukielka et al., 2013). Therefore, interspecific 

contacts patterns and their seasonality are not consistent in all areas of DNP, and they 

are likely modulated by the effects of dynamic of marshlands and the presence and 

abundance of risk points in the area. 
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5. CONCLUSIONS  

 

The main conclusions obtained in this study are: 

 

I. Frequency of intraspecific contacts between wild boars are higher in spring and 

winter, probably due to aggregation of wild boar groups during the mating 

season in unflooded areas.   

II. Frequencies of interspecific contacts are higher in autumn, which can be 

explained by the aggregation of wild boars and cattle around limiting resources 

which start to be scarce at the end of summer. Spring seem to be critical too in 

the establishment of interspecific contact because of the marshland dynamics.     

III. The proximity to water points and to vera ecotone are crucial to determine the 

contact probability in Doñana National Park. 

IV. Pattern of contact probabilities are consistent in values and also in distribution 

among seasons, except on summer, where we found higher probabilities of 

contact located in southern areas because of the aggregation of individuals in 

scarce favorable areas.  

 

After this study we can conclude that potential transmission of pathogens occur in 

dry seasons (autumn and summer) as shown by previous studies, but also in spring due 

to marshland dynamics. Distance to vera and to water points are key factors to predict 

contact probability joined to other environmental resources.   
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SUPLEMENTARY MATERIAL I: Tables 

 

Table SI.1. Techniques used in controlling the transmission of different diseases between wild and 

domestic animals. 

 

Technique Wildlife - Livestock Disease Study 

Latent selection difference 

functions (LSDs) 
Wild boar - Cattle Bovine tuberculosis 

Barasona et al., 

2014a 

Radio collar, GPS collar, 

interviews from local farmers 
Elk – Cattle  Bovine tuberculosis Brook et al., 2009 

GPS collar 
Feral swine – 

Domestic swine 
Brucellosis 

Wyckoff et al., 

2009 

Mathematic functions Bison – Cattle  Brucellosis 
Kilpatrick et al., 

2009 

Proximity data loggers Badgers – Cattle  Bovine tuberculosis Böhm et al., 2009 

GPS collar Feral swine – Cattle 
Foot-and-mouth 

disease 
Cooper et al., 2010 

Camera trapping 

Wild boar, red deer 

– Cattle, domestic 

pigs 

Bovine tuberculosis 
Kukielka et al., 

2013 

GPS collar 
African buffalo – 

Cattle  

Foot-and-mouth 

disease 
Miguel et al., 2013 
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Table SI.2. Chi square values (χ²) from season frequencies according to the three different contacts in the 

spatio-temporal windows. (Values in bold represent those no significant differences between 

parameters). (WB = Wild Boar; C = Cow; WINT = Winter; SPR = Spring; SUM = Summer; AUT = Autumn). 

 

   Season 

Window Contact WINT SPR SUM AUT 

1 WB – WB /WB – C 212.56 119.04 0.53 6.86 

2 WB – WB /WB – C 4199.11 634.25 50.39 32.83 

3 WB – WB /WB – C 11273.81 1290.22 335.01 72.4 

4 WB – WB /WB – C 686.82 138.67 4.63 0.88 

5 WB – WB /WB – C 10197.82 752.96 438.75 772.81 

6 WB – WB /WB – C 16520.07 945.56 1577.13 1460.77 
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Table SI.3. Statistical parameters of the models carried out to determine the probability of interspecific 

contact occurrences in DNP, using contacts determined by window 1. 

 

  Estimate Std. Error z value Pr (>|z|)   

All Seasons 

(Intercept) -2.798 0.335 -8.354 < 2E-16 ***  

T1 -1.565 0.509 -3.072 2.130E-03 **  

T2 -  

T4 -3.122 1.919 -1.627 1.038E-01   

T5 -  

T6 -  

DWAT -0.628 0.243 -2.578 9.940E-03 **  

DVERA -0.709 0.346 -2.048 4.053E-02 *  

WINT Model null  

SPR 

(Intercept) -3.741E+00 1.029E+00 -3.635 2.790E-04 ***  

T1 -1.469E+03 1.465E+07 0 9.999E-01   

T2 -  

T4 -  

T5 -  

T6 -  

DWAT -  

DVERA -1.721E+00 1.118E+00 -1.54 1.236E-01   

SUM Model null  

AUT 

(Intercept) -4.298 1.017 -4.226 2.380E-05 ***  

T1 -  

T2 -  

T4 -  

T5 -  

T6 -  

DWAT -  

DVERA -2.268 1.086 -2.087 3.690E-02 *  

 

P-values are shown as: ( ) = p > 0.05, * = p < 0.05, ** = p < 0.01, *** = p < 0.001 
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Table SI.4. Statistical parameters of the models carried out to determine the probability of interspecific 

contact occurrences in DNP, using contacts determined by window 4. 

 

   Estimate Std. Error z value Pr (>|z|)  

All Seasons 

(Intercept)  -2.462 0.127 -19.340 < 2E-16 *** 

T1  -2.270 0.213 -10.668 < 2E-16 *** 

T2  -0.862 0.162 -5.305 1.130E-07 *** 

T4  -1.968 0.335 -5.877 4.170E-09 *** 

T5  -3.418 0.555 -6.160 7.280E-10 *** 

T6  -0.860 0.159 -5.413 6.210E-08 *** 

DWAT  -0.956 0.099 -9.631 < 2E-16 *** 

DVERA  -0.864 0.118 -7.340 2.130E-13 *** 

WINT 

(Intercept)  -1.314 0.152 -8.651 < 2E-16 *** 

T1  -1.762 0.336 -5.243 1.580E-07 *** 

T2  -1.237 0.305 -4.061 4.890E-05 *** 

T4  -3.307 1.006 -3.288 1.010E-03 ** 

T5  -2.526 0.901 -2.802 5.070E-03 ** 

T6  -1.390 0.303 -4.595 4.330E-06 *** 

DWAT  - 

DVERA  - 

SPR 

(Intercept)  -3.387 0.516 -6.569 5.050E-11 *** 

T1  -4.649 0.808 -5.754 8.690E-09 *** 

T2  -1.860 0.380 -4.890 1.010E-06 *** 

T4  -1.828 0.637 -2.872 4.080E-03 ** 

T5  -2.678 0.764 -3.506 4.550E-04 *** 

T6  -1.055 0.364 -2.900 3.736E-03 ** 

DWAT  -1.717 0.329 -5.219 1.800E-07 *** 

DVERA  -2.092 0.548 -3.817 1.350E-04 *** 

SUM 

(Intercept)  -2.040E+00 2.161E-01 -9.438 < 2e-16 *** 

T1  -9.438E+00 5.261E+00 -1.794 0.073 · 

T2       

T4  1.917E+00 7.001E-01 2.739 0.006 ** 

T5  -3.290E+03 1.852E+07 0.000 1.000  

T6  -9.785E-01 4.588E-01 -2.133 0.033 * 

DWAT  -5.640E-01 2.396E-01 -2.354 0.019 * 

DVERA  - 

AUT (Intercept)  -2.586 0.261 -9.905 < 2E-16 *** 
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T1  -1.729 0.302 -5.730 1.000E-08 *** 

T2  -0.832 0.278 -2.992 2.771E-03 ** 

T4  -5.377 1.465 -3.670 2.430E-04 *** 

T5  -4.407 1.258 -3.504 4.590E-04 *** 

T6  -1.163 0.287 -4.044 5.240E-05 *** 

DWAT  -1.262 0.160 -7.898 2.830E-15 *** 

DVERA  -0.930 0.268 -3.475 5.110E-04 *** 

 

P-values are shown as: ( ) = p > 0.05, * = p < 0.05, ** = p < 0.01, *** = p < 0.001 
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SUPLEMENTARY MATERIAL II: R Script 

 

Script SII.1. Spatio-temporal windows: contacts. 

 

############################################### 

#                                                                                                   # 

# ANALYZING DATA FOR SPATIO-TEMPORAL CONTACTS  # 

#      20-02-2015 R Triguero, JA Barasona, P Acevedo        # 

#                                                                                                   # 

############################################### 

 

# The aim of this analysis is to identify contacting relocations of different radio-tracked animals. Two  

# relocations are considered as contact when:  

# 1) they are of different animals 

# 2) they are closer than a previously defined spatial window 

# 3) they are closer in time than a previously defined temporal window 

# The script starts with relocations of the animals and generates a table containing the identified 

contacts 

 

DIST<-c(); TIME<-c(); DATE<-c();IND_ref<-c(); IND_par<-c(); LOC_ref<-c(); LOC_par<-c(); Xmean<-c(); 

Ymean<-c() # empty vectors are created to save the parameters associates to each contact 

 

for (i in 1:length(loc_IDs)) # The loop, for each relocation 

  ID.i<-loc_IDs[i]  

  data.i<-data[data$ID_loc==ID.i,] 

  x<-data.i$X 

  y<-data.i$Y 

  fecha_ref<-data.i$Date 

  hora_ref<-data.i$H 

  Indiv<-data.i$ID  

  ID_ref<-data.i$ID_loc 

 

  data.i2<-data[data$ID!=Indiv,]  

  data.i2$horas<-abs(as.numeric(fecha_ref-data.i2$Date))*24+abs(hora_ref-data.i2$H)  

  data.i2<-data.i2[data.i2$horas<=288,] #maximum temporal window 

  data.i2$dist<-sqrt((x-data.i2$X.X)**2+(y-data.i2$X.Y)**2) # Euclidean distance 

  data.i2<-data.i2[data.i2$dist<=127.7,] # Maximum spatial window 
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if(dim(data.i2)[1]>0){  

    for (j in 1:dim(data.i2)[1]){ 

    xj<-data.i2$X.X[j]  

    yj<-data.i2$X.Y[j] 

    fecha_par<-data.i2$Date[j] 

    hora_par<-data.i2$H[j] 

    Indiv_par<-data.i2$ID[j] 

    ID_par<-data.i2$ID_loc[j] 

     

    horas<-abs(as.numeric(fecha_ref-fecha_par))*24+abs(hora_ref-hora_par) # Distance in hours  to 

LOC_ref 

    dist<-sqrt((x-xj)**2+(y-yj)**2) # Euclidean distance to LOC_ref  

     

    xmean<-((abs(x-xj))/2)+min(x,xj) # Average coordinate between LOC_ref and LOC_par  

    ymean<-((abs(y-yj))/2)+min(y,yj) 

     

    LOC_ref<-c(LOC_ref, ID_ref)  

    LOC_par<-c(LOC_par, ID_par) 

    Xmean<-c(Xmean,xmean) 

    Ymean<-c(Ymean,ymean) 

    DIST<-c(DIST, dist) 

    TIME<-c(TIME,horas) 

    DATE<-c(DATE,fecha_ref) 

    IND_ref<-c(IND_ref, Indiv) 

    IND_par<-c(IND_par, Indiv_par) 

  }}}  

 

data.i3<-data.frame(IND_ref, LOC_ref, IND_par, LOC_par, Xmean, Ymean, DIST, TIME, DATE)  

 

data.i3$ID_unique<-paste(pmin(data.i3$LOC_ref,data.i3$LOC_par) 

pmax(data.i3$LOC_ref,data.i3$LOC_par), sep="-") # We remove duplicated contacts 

data.i4 <- data.i3[!duplicated(data.i3$ID_unique),]  
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SUPLEMENTARY MATERIAL III: Figures  

 

 

 

Figure SIII.1. Distribution of interspecific contacts (WB – C) in DNP according to season, in Windows 1 to 6.  
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Figure SIII.2. Distribution of intra and interspecific contacts (WB – C, C – C, WB – C) in DNP according to 

season, in Windows 1 to 6.  
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Figure SIII.3. Calibration plots of the studied model for Window 1 and 4 according to each season and all 

the season together.  

 


