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ABSTRACT

Natural and anthropogenic disturbances cause profound alter-
ations in organisms, inducing physiological adjustments to avoid,
reduce, or remedy the impact of disturbances. In vertebrates, the
stress response is regulated via neuroendocrine pathways, in-
cluding the hypothalamic-pituitary-interrenal axis that regulates
the secretion of glucocorticoids. Glucocorticoids have cascading
effects on multiple physiological pathways, affecting the meta-
bolic rate, reactive oxygen species production, or immune sys-
tem. Determining the extent to which natural and anthropogenic
environmental factors induce stress responses in vertebrates is
of great importance in ecology and conservation biology. Here
we study the physiological stress response in spadefoot toad tad-
poles (Pelobates cultripes) against three levels of a series of nat-
ural and anthropogenic stressors common to many aquatic sys-
tems: salinity (0, 6, and 9 ppt), herbicide (0, 1, and 2 mg/L acid
equivalent of glyphosate), water acidity (pH 4.5, 7.0, and 9.5),
predators (absent, native, and invasive), and temperature (217, 257,
and 297C). The physiological stress response was assessed exam-
ining corticosterone levels, standard metabolic rate, activity of
antioxidant enzymes, oxidative cellular damage in lipids, and
immunological status. We found that common stressors sub-
stantially altered the physiological state of tadpoles. In particular,
salinity and herbicides cause dramatic physiological changes in
tadpoles. Moreover, tadpoles reduced corticosterone levels in the
presence of natural predators but did not do so against invasive
predators, indicating a lack of innate recognition. Corticosterone
and the antioxidant enzyme glutathione reductase were the most
sensitive parameters to stress in this study. Anthropogenic per-
turbations of aquatic systems pose serious threats to larval am-
phibians even at nonlethal concentrations, judging from the
marked physiological stress responses generated, and reveal the
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importance of incorporating physiological information onto con-
servation, ecological, and evolutionary studies.

Keywords: amphibians, corticosterone, immune system, met-
abolic rate, oxidative stress, stress physiology.
Introduction

Environmental disturbances, whether natural or anthropogenic,
cause physiological alterations of individual organisms that allow
them to reduce or avoid the impact of the stressors (Romero 2004;
McCue 2010). Such physiological responses, however, may come
at a cost and result in fitness trade-offs associated with reduced
immune competence, delayed growth andmaturity, and a shorter
life span (Bonier et al. 2009; Shalev et al. 2013). In some cases, such
disturbances impose entirely novel challenges to which organisms
need to adapt, as is the case with many pollutants or the intro-
duction of invasive predators. Moreover, humans are also caus-
ing faster and more acute modifications of factors to which organ-
isms may be naturally exposed within a narrower range, as in water
acidification, salinization, or global warming (Kaushal et al. 2005;
Lafferty 2009). Stressors can profoundly alter the physiology of
organisms well before reaching lethal levels, conditioning key as-
pects of their behavior, growth, or reproductive performance.
In vertebrates, the stress response is regulated by a set of

neuroendocrine pathways, of which the hypothalamic-pituitary-
interrenal (HPI) axis is the most studied. The HPI axis modu-
lates a hormonal cascade resulting in the activation of the inter-
renal gland and glucocorticoid (GC) production: corticosterone
(CORT) in amphibians, reptiles, and birds and cortisol in most
mammals and fish (Romero 2004). GCs elicit the mobilization
of energetic metabolic substrates (e.g., lipids; Peckett et al. 2011),
which affect essential functions of the organism such as repro-
duction, behavior, and growth (Denver et al. 2002; Schoech et al.
2009; Kindermann et al. 2013), thus conditioning the transition
between life-history stages (Crespi et al. 2013). Prolonged se-
cretion of CORT has been associated with mobilization of en-
ergetic substrates and increased metabolic demands in multiple
tissues (Peckett et al. 2011; Lattin and Romero 2015) while re-
sulting in reduced long-term survival (Bonier et al. 2009). GCs
have cascading effects on multiple physiological pathways. Ele-
vated GCs cause an increased metabolic rate involving over-
production of reactive oxygen species (ROS; Peckett et al. 2011)
that often results in cellular damage (Circu and Aw 2010). Such
cellular damage, however, can be buffered by increasing the ac-
tivity of antioxidant enzymes (Costantini et al. 2011; Gomez-
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Mestre et al. 2013). Additionally, GCs are inmmunomodulators
that can exert both negative and positive effects on the immune
status of individuals (Franchimont 2004), depending on the du-
ration and intensity of the exposure to stress (Rich and Romero
2005), although chronic exposure to high GC levels seems as-
sociated with immune deregulation (Padgett and Glaser 2003).
Many amphibian species have complex life cycles with aquatic

larvae, which are often exposed to a suite of biotic and abiotic
natural stressors. Amphibians are also deeply affected by human
disturbances and indeed constitute the most threatened group
of vertebrates (Hoffman et al. 2010). CORT regulation is a com-
mon stress response in anuran tadpoles to pond drying, pollut-
ants, predators, acidification, or UV-B radiation (Glennemeier and
Denver 2001; Chambers and Belden 2009; Burraco et al. 2013;
Chambers et al. 2013; Maher et al. 2013). However, CORT reg-
ulation has many potential cascading effects on other aspects of
amphibian biology, and these are seldom studied. Here we ana-
lyze the physiological stress response in spadefoot toad tadpoles
(Pelobates cultripes) against a series of natural and anthropogenic
stressors common to many aquatic systems. We measure phys-
iological parameters relevant for evaluating the stress response:
CORT levels, standard metabolic rate (SMR), antioxidant enzyme
activity, oxidative cellular damage, and immune status. We tested
the physiological response against three levels of salinity, herbi-
cide (glyphosate), pH, and temperature, as well as against natu-
ral and invasive predators. All factors included in this study are
considered potentially stressful for tadpoles, and some of them can
be magnified by human activities at either global or local scales.
High salinity results in reduced tadpole survival and delayedmeta-
morphosis (Hopkins and Brodie 2015). Herbicide exposure re-
duces amphibian diversity and alters the outcome of competition
interactions (Relyea and Mills 2001). Water acidity also reduces
survival and slows down development in embryos and larvae,
particularly at pH 4.5 or lower (Merilä et al. 2004). The intro-
duction of novel predators may have a deep impact on local pop-
ulations (Siesa et al. 2011), in part because native prey are very
likely to fail to recognize novel predators and hence fail to pro-
duce antipredator defenses, whether behavioral or morphological.
Last, increased water temperature causes developmental acceler-
ation, causing larvae to metamorphose smaller and with reduced
hind limbs (Gomez-Mestre et al. 2010; Duarte et al. 2012).
We expected most experimental factors to affect CORT lev-

els, since the HPI axis is known to play a central role in amphib-
ian stress responses (Denver 2013). We also expected changes
in metabolic rate to be affected by the experimental factors cho-
sen. Moreover, hormonal and metabolic changes may alter the
production of ROS, which may cause oxidative damage unless
dealt with, and therefore we also expected the activity of anti-
oxidant enzymes to increase when metabolism itself was ele-
vated. Also, increased GC secretion is tightly associated with the
immune system, as it results in an increased neutrophils∶lym-
phocytes ratio (Davis et al. 2008). Likewise, enhanced immune
responses under stress have been shown to incur increased meta-
bolic costs (Råberg et al. 2002).
This study will allow us to compare the magnitude of the

stress responses across multiple factors and assess the asso-
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ciation among physiological alterations. Comprehensive phys-
iological studies are needed that compare the intensity and am-
plitude of physiological responses to both novel environmental
challenges and the intensification of natural stressors to which or-
ganisms may already be adapted. Assessment of various aspects
of physiological stress responses to multiple factors will identify
interdependence among such responses and possibly unveil mech-
anisms underlying life-history trade-offs. Physiological analyses
of responses to multiple factors are therefore key to both con-
servation and eco-evolutionary studies.

Material and Methods

Animal Collection and Experimental Setup

We collected spadefoot toad tadpoles (Pelobates cultripes) from
three temporary ponds (80 from each location) within the bi-
ological reserve of Doñana National Park (March 2011) and
from two temporary ponds within the Sierra Norte Natural
Park (April 2012), both in southwestern Spain, to run five ex-
periments (see below). All tadpoles were collected between
Gosner stage 34 and 35 (Gosner 1960), and their weight was
2.50 5 0.3 g (SE). We also collected water beetle larvae (Dy-
tiscus circumflexus) and red swamp crayfish (Procambarus
clarkii) in several ponds within the Biological Reserve. Both
species are relevant tadpole predators, but D. circumflexus
larvae are native predators, whereas the red swamp crayfish
was introduced in the 1970s and has since become a common
invasive predator (Diaz-Paniagua et al. 2014). Nevertheless, we
still consider P. clarkii a novel predator since amphibians in
the park show a lack of innate recognition of P. clarkii, as in-
dicated by the inability of both Pelophylax perezi and P. cul-
tripes to induce behavioral or morphological defenses against
crayfish, whereas they readily deploy such defenses against na-
tive predators (Gomez-Mestre and Díaz-Paniagua 2011). We
found neither crayfish nor water beetle larvae at the ponds
where the tadpoles were collected. This suggests (but does not
grant) that the larvae included in the study were naïve to either
kind of predator. Previous exposure to native predators could
have partially induced phenotypic responses, whereas exposure
to invasive predators could have given tadpoles the chance to
learn to recognize their cues if paired with alarm cues from at-
tackedconspecific tadpoles (Polo-Cavia andGomez-Mestre 2014).
Tadpoles collected from natural ponds thus represent a conser-
vative test regarding naïveté toward invasive predators. All tad-
poleswere acclimated for 1wk in 4-L buckets (four individuals per
bucket) filled with dechlorinated tap water in climate chambers
set at 217C and a 12L∶12D cycle according to natural conditions
in the field. Tadpoles were fed ad lib. with rabbit chow. Predators
were maintained individually in 4-L buckets.
We conducted five independent experiments, each one testing

for physiological responses to exposure to different levels of each
of five factors separately: salinity, herbicide, pH, predators, and
temperature. Experiments were conducted in two consecutive
breeding seasons. We pooled tadpoles from all clutches collected
within each season. Tadpoles collected from the Biological Re-
serve of Doñana in 2011were used for salinity, pH, and predator-
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exposure experiments, whereas those from the Sierra Norte Nat-
ural Park in 2012 were used for herbicide and temperature ex-
periments. Groups of four tadpoles were kept in 3-L buckets
filled with carbon-filtered dechlorinated tap water. Experimen-
tal units were randomized within each experiment across shelves
in a walk-in chamber set at a constant 217C and a 12L∶12D cycle.
Water was renewed twice a week, and tadpoles were fed ad lib.
with rabbit chow. Each experiment had its own set of control
replicates, which all had the same conditions: 217C, pH 7, and
herbicide-free freshwater without predator cues. We randomly
assigned containers to experimental treatments. Treatments lasted
for 10 d and were initiated after a 1-wk acclimation period in the
climatic chambers under control conditions.
Stress Factors

We selected three nonlethal levels for each stress factor: salin-
ity (0, 6, and 9 ppt NaCl), herbicide (0, 1, and 2 mg/L of glyph-
osate), pH (4.5, 7.0, and 9.5), predators (absent, native, and
invasive), and temperature (217, 257, and 297C). The levels ap-
plied for the different factors were chosen based on previous
knowledge of ranges commonly experienced by amphibians in
either natural systems or areas affected by human activities (Al-
varez and Guerrero 2000; Gomez-Mestre et al. 2003; Solomon
and Thompson 2003; Serrano et al. 2006; Diaz-Paniagua et al.
2014). We replicated each treatment 10 times, for a total of
150 experimental units and 600 tadpoles. Almost all individu-
als survived throughout the experimental procedure (94.67%),
confirming the nonlethality of the treatments chosen during the
10 d of exposure. Tadpoles allocated to the highest levels of sa-
linity, temperature, and herbicide were previously acclimated
for 3 d at the intermediate levels, so they were exposed to the
highest level for only 7 d. Even short acclimation periods seem
to be critical to allow enough time to mount an effective physi-
ological response to acute stressors (Wu et al. 2014).
After 10 d, we randomly collected one tadpole per container,

and we measured their standard metabolic rate as described
below. We also extracted blood for leukocyte determination
from another tadpole randomly chosen from each container.
We then collected the remaining tadpoles, euthanized them
individually by immersion in a lethal concentration of anes-
thetic (MS-222), and randomly allocated one tadpole per ex-
perimental unit to CORT assay and oxidative stress assays.

Salinity Experiment. To obtain the target salinity levels (0, 6,
and 9 ppt), we added commercial sea salt (Instant Ocean) as
required for each treatment. To prevent possible osmotic shocks
derived from direct transfer to 9 ppt (Wu et al. 2012), we ac-
climated tadpoles assigned to the 9-ppt treatment in a solution
at 6 ppt for 3 d before onset of the experiment. We monitored
salinity twice a week using an osmometer (Multi 340i; WTW) and
a refractometer (RHS-10; LABOLAN). Salinity varied 50.2 ppt
for 6- and 9-ppt treatments and did not vary for 0 ppt.

Herbicide Experiment. We tested tadpoles’ response to glyph-
osate, which is one of the herbicides most widely used in crop
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fields worldwide (Solomon and Thompson 2003). We used a
stock solution containing 360 g/L of isopropylamine salt of glyph-
osate (Fortin; Industrial Química Key). We used two different
glyphosate concentrations: 1 and 2 mg/L acid equivalent. Glyph-
osate was made fresh before each water change to avoid possible
glyphosate degradation since its half-life in water is 7–14 d (Giesy
et al. 2000).

pH Experiment. We obtained the target pH levels (4.5, 7.0, and
9.5) by adding either sodium carbonate (PQS) or sodium bi-
sulphate (PQS) from concentrated stock solutions. We checked
water pH daily with a pH meter (Multi 340i; WTW), adjusting it
as necessary. pH values varied by50.4 regardless of the pH level.

Predator Experiment. Predators were introduced in cages made
of plastic cups (250 mL) with a mesh screen bottom that allowed
water flow and cue diffusion. Buckets in the predator-absent
treatment contained empty cages. We surveyed the experiment
daily and replaced any dead predators. We fed predators in exter-
nal housing tanks to avoid confounding the detection of pred-
ator kairomones with detection of alarm cues from injured tad-
poles in the experimental buckets.

Temperature Experiment.We used individual aquarium heaters
(25 W) in each bucket to regulate temperature. Experimental
units in the 217C treatment also contained heaters but were
switched off. We increased temperature in a two-step process so
that tadpoles assigned to the 297C treatment were first main-
tained at 257C for 3 d to allow tadpoles to acclimate. We veri-
fied thewater temperature dailywith a thermometer (RTD;Delta
Ohm) and found it to be very stable. The temperature was con-
stant and varied only 50.37C in each level (217, 257, and 297C).
Corticosterone Assay

CORT levels were determined from whole-body homogenates
by performing enzyme immunoassay (EIA; Burraco et al. 2015)
using commercial kits (Cayman Chemical). This procedure is
a conservative test of CORT differences across treatments, as
it has lower sensitivity than radioimmunoassay (RIA) or EIA
on plasma samples (Burraco et al. 2015). However, it does not
require the use of radioactive isotopes and allowed us to keep
the number of animals used in the study at a minimum given
the high combination of factors and levels required (Burraco
et al. 2015).
Tadpole homogenates were centrifuged at 4,000 rpm at 47C

for 15 min. We took 50 mL from the resulting supernatant
for EIAs. EIAs are quantitative assays based on competitive
binding between the target hormone and a conjugated CORT
tracer (CORT-acetylcholinesterase) for a limited number of
CORT-specific sheep antiserum binding sites that bind to the
rabbit polyclonal antisheep IgG previously attached to the well.
Quantitative estimates were obtained by reading absorbance
at 412 nm, and CORT concentrations were determined based
on standard curves run in duplicate on each plate. Each sam-
ple was run by duplicate. The detection limit (80% B/B0) for
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this kit is 30 pg/mL as indicated by the manufacturer, and cross
reactivity with other steroids is below 1%.
Standard Metabolic Rate

We used an aquatic respirometer to measure standard meta-
bolic rate (SMR) consisting of a set of 10 flow-through cells
(plexiglass cylinders, 44 m in diameter # 163 mm in length)
with 20 optical sensors. Two sensors flanked each chamber to
simultaneously measure the oxygen concentration (mg/L) com-
ing in and out of the chamber. We connected the optical sensors
to an oxymeter (Oxy 10-PreSens), and we programmed it to re-
cord oxygen partial pressure every 15 s. The optical sensors used
(optodes) do not consume oxygen during measurements and
have long-term stability, and their signal does not depend on
the flow rate of the sample. We calibrated the respirometer at
the same temperature as the experimental units experienced:
257 and 297C for the experimental temperature treatments and
217C for all the rest. Calibration took place at least once daily
using a sodium sulphite solution and oxygen-saturated water to
reach 0% and 100% concentrations. From each bucket, we in-
troduced one random tadpole individually in each plexiglass
chamber. All tadpoles were at Gosner stage 35 (Gosner 1960).
We recorded oxygen consumption for 25 min but discarded the
first 5 min of the data series, considered as an acclimation pe-
riod of the animals to the chambers, and SMR values were cal-
culated following Álvarez et al. (2006). Based on our previous
experience, after 5 min, tadpoles seem to behave normally, and
respirometer output is quite stable. In our experience, 20 min of
effective recording time provides reliable measurements com-
pared to longer recordings on the same species. This procedure
allowed us to compact the overall number of days required to
collect all the data, hence avoiding the potentially confounding
factor of having later-assayed tadpoles being more advanced in
development than earlier-assayed tadpoles. All trials were con-
ducted between 0900 and 1400 hours to avoid circadian effects.
On release from the chambers, tadpoles were blotted dry and
weighed to thenearest 0.1mgon ahigh-precisionbalance (CP324S;
Sartorius).
Oxidative Stress

We quantified the activity of four antioxidant enzymes: cat-
alase (CAT), superoxide dismutase (SOD), glutathione peroxi-
dase (GPx), and glutathione reductase (GR). We also quantified
the cellular damage by measuring thiobarbituric acid substances
(TBARS) formed during lipid peroxidation.
Upon completion of the experiment, we euthanized tad-

poles in benzocaine 0.01%, snap froze them in liquid nitrogen,
and stored them at2807C until the assays were conducted. We
thawed the samples and dissected the specimens to remove the
gut in order to avoid possible interferences with the assays.
Samples were then individually homogenized in a buffered so-
lution (100 mMTris-HCL with 0.1 mM EDTA, 0.1% triton X-100,
pH 7.8 and 0.1 mM PMSF, for the inhibition of proteolysis) using
a homogenizer at 35,000 rpm (Miccra D-1). Wemixed 1 g of tissue
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in 4 mL of homogenization buffer (1∶4, w∶v). The homogenated
tissues were centrifuged at 14,000 rpm for 30 min at 47C. We
aliquoted the resulting supernatant into several 0.6-mL tubes,
and we cryopreserved it at2807C. We determined the total pro-
tein content assessed to calculate the antioxidant enzymes activ-
ity by the standard Bradford’s method (Bradford 1976).
We quantified CAT activity in terms of catalytic activity with

an indirect method, according to Cohen and Somerson (1969).
We used potassium permanganate (KMnO4), which is an ox-
idizing agent and colored compound that acts on the H2O2

(reducing agent), producing H2O2 and O2. KMnO4 is reduced,
producing a red product (absorbance read at a wavelength at
480 nm). We performed standard curves of commercial cata-
lase (SIGMA-60634), and we determined absorbance at a wave-
length of 480 nm 5 min after adding KMnO4. We expressed the
catalase activity as units per milligram of total proteins. Follow-
ing Cord and Fridovich (1969) we obtained the SOD activity lev-
els by measuring the cythocrome C inhibition rate, produced by
SOD: superoxide free radicals (O–

2) reduce the ferrocytocrome C
(xantine-xantine oxidase enzymatic system), but in SOD pres-
ence this reaction is inhibited because of superoxide radicals
producing hydrogen peroxide and molecular oxygen. One unit
of SOD is defined as the amount of enzyme that inhibits the rate
of reduction of ferrocytochrome C by 50% at 257C at 550 nm
(Cord and Fridovich 1969). We determined GPx activity as de-
scribed by Paglia and Valentine (1967). GPx converts hydro-
gen peroxide into water but requires reduced glutathione that
is produced by GR through oxidized glutathione reduction. To
quantify the GPx activity, we measured NADPH oxidation by
reading absorbance at a wavelength of 340 nm. We quantified
GR activity following Cribb et al. (1989). We measured the change
in absorbance at 340 nm due to NADPH oxidation, as described
in the GPx assay. The formation of TBARS is due to lipid per-
oxidation and is increased during cellular damage processes. One
product of lipid peroxidation is malondialdehyde (MDA), which
reacts with thiobarbituric acid and produces a red product ab-
sorbing at 535 nm. We measured TBARS concentration accord-
ing to Buege and Aust (1978). We measured the optical density
values for the blank and the calibration curve. We then calculated
the TBARS concentration (nmol MDA/mL) from the absorbance
of each sample, subtracting the blank values and comparing with
the calibration values.
Immune Status

We counted leukocytes to assess stress condition through di-
rect cell observation from blood smears. Although a single ob-
server recorded leukocyte proportion, we estimated the variation
between observers (coefficient of variation [CV]p 8.71%). The
CV intrasample was 6.99%. The blood was obtained via car-
diac venipuncture with a 29G syringe (BD Micro-Fine Insuline
U-100, 0.5 mL) in tadpoles anesthetized with MS-222. The re-
sulting blood smears were stained using the Pappenheim method
(May-Grünwald-Giemsa staining) andwerefixed onto the glass
slides with DPX (Eukitt mounting medium). We identified and
counted the proportion of lymphocytes and granulocytes (ba-
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sophils, neutrophils, and eosinophils) out of 100 white cells in
each sample using a#100 ocular Zeiss microscope (total mag-
nification #1,000) with the aid of immersion oil DC.
Statistical Analyses

We conducted all statistical analyses in R, version 2.14-1 (R De-
velopment Core Team 2007). We tested for normality by means
of Kolgomorov-Smirnov tests (lillie.test, package nortest, ver. 1.0-
3) and for homogeneity of variances with Barlett’s tests (bartlett
.test), as well as through visual inspection of residuals. Other-
wise, we used the Akaike information criterion to assess the good-
ness of fit of each model and chose the appropriate error distri-
bution. When parametric assumptions were met, we used linear
models with a Gaussian distribution and an identity link func-
tion. We used gamma distributions where appropriate in gener-
alized linear models with the glm function included in the MASS
package (ver. 7.3-40). For SMR analysis, we used body weight as
a covariate to control for the effect of body mass in oxygen con-
sumption. CORT, GR, and GPx were also significantly affected
by body mass, although its explanatory power was very low (R2 !

0.05) except for GR (R2 p 0.156, P ! 0.001). Therefore, we in-
cluded only body mass as a covariate in SMR and GR analyses.
CORT and SMR data were log transformed to meet parametric
assumptions. We tested for differences in the proportion of leu-
kocytes by fitting generalized linear models with a binomial dis-
tribution. We conducted post hoc tests (Tukey tests) using the
TukeyHSD function (multcomp package, ver. 1.2-13) when over-
all tests were significant to test for differences among treatments.
Results

Pelobates cultripes tadpoles exposed to nonlethal levels of sa-
linity and glyphosate experienced changes in most of the phys-
iological parameters measured, modifying CORT levels, meta-
bolic rate, antioxidant enzymatic activity, and leukocyte counts
(see table 1). Furthermore, changes in pH, temperature, and pred-
ators also produced hormonal, enzymatic, or immune alterations
in spadefoot toad tadpoles. Because experiments were run in two
consecutive breeding seasons including animals from two differ-
ent locations, the absolute values were not directly comparable
across all experiments. Consequently, and since each experiment
had its independent control treatment at 217C and neutral water,
we plotted the results for each experimental treatment as the
relative change of each variable with respect to the control.
Responses to Salinity

Increased salinity significantly increased CORT levels (F2, 22 p
3.856, Pp 0.040; fig. 1), with tadpoles in 9 ppt showing a 2.78-
fold increased on average compared to tadpoles in 0 and 6 ppt.
High salinity also increased SMR (F2, 28 p 3.86, Pp 0.035; fig. 2).
Tadpoles in 9 ppt increased their SMR on average by 2.41-fold
(P p 0.026) compared to the ones in 0 ppt. Salinity altered the
activity of antioxidant enzymes, particularly for GR (F2, 29 p 4.09,
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Pp 0.029;fig. 3) and SOD (F2, 30p 10.43,P≤ 0.001).High salinity
(9 ppt) resulted in an average reduction of 26.8% in GR activity
(P p 0.025) compared to control tadpoles, although tadpoles in
6 ppt did not vary GR activity. Tadpoles in 6 ppt reduced their
SOD activity by 28.8% (P p 0.005) compared with tadpoles in
freshwater, whereas the reduction in SOD activity at 9 ppt reached
on average 35.9%. We found no significant variation in CAT
and GPx activity in response to salinity (all P 1 0.686) and no
evidence for oxidative cellular damage (TBARS;F2, 30p0.03,Pp
0.962). Furthermore, salinity increased the proportion of neu-
trophils 41.3% and 41.6% on average in 6 and 9 ppt, respec-
tively (F2, 28p 20.19, P ! 0.001), whereas lymphocytes decreased
by 10.1% and 8.5% in 6 and 9 ppt, respectively (F2, 28 p 13.43,
P ! 0.001). The proportion of basophils or eosinophils did not
vary among treatments (P 1 0.286).
Responses to Herbicide

Herbicide increased CORT levels (F2, 28 p 3.94, P p 0.033;
fig. 1) at both concentrations used, ranging from a 65% to a
91.4% increase, although in the case of the 2-mg/L glyphosate
treatment, the difference with the control was marginally non-
significant (P p 0.060). Exposure to herbicide also increased
SMR (F2, 22 p 5.69, Pp 0.0122; fig. 2). SMR increased on aver-
age by 2.6- and 2.7-fold in 1 and 2 mg/L, respectively, both
differing from the control treatment (P ! 0.029). Herbicide ex-
posure also altered antioxidant activity. GR activity decreased
with herbicide (F2, 29 p 5.15, P p 0.012; fig. 3) at both concen-
trations (37.6% at 1 mg/L and 30.72% at 2 mg/L) compared to
tadpoles in nonherbicide treatment. GPx activity tended to de-
crease in tadpoles exposed to 1 mg/L of glyphosate, but this
change was marginally nonsignificant (F2, 30p 2.74, Pp 0.082).
We found no changes in SOD or CAT activity (P 1 0.372) and
no evidence of oxidative damage (TBARS; F2, 29 p 0.615, P p
0.548). Herbicide exposure did not significantly affect leukocyte
proportion (P 1 0.369).
Responses to Changes in pH

Exposure to acid or basic pH did not cause tadpoles to vary their
CORT levels (F2, 23p 1.37,Pp 0.278; fig. 1) or SMR (F2, 30p 1.45,
P p 0.448; P p 0.252; fig. 2). We found, however, a marginally
nonsignificant decrease in GR activity (F2, 30 p 2.94, P p 0.070;
fig. 3) so that tadpoles exposed to pH 4.5 showed on average
20.5% lower GR activity than tadpoles in neutral water. We
found no significant changes in GPx, SOD, or CAT activities (all
P 1 0.205) and no sign of oxidative damage (TBARS; F2, 30 p
0.26, P p 0.774). Leukocyte count was similarly unaffected by
exposure to acidic and basic pH (P 1 0.267) except for the pro-
portion of basophils, which increased by 1.46-fold in tadpoles
exposed to basic pH (F2, 24 p 4.76, Pp 0.009).
Responses to Predator Exposure

Exposure to predators altered CORT levels (F2, 23 p 4.11, P p
0.032; fig. 1). Tadpoles raised in the presence of native beetle
11.152.057 on March 27, 2017 00:25:28 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).
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468 P. Burraco and I. Gomez-Mestre
larvae decreased CORT by an average of 50.1% (P p 0.046).
CORT levels, however, did not change when exposed to inva-
sive crayfish (P p 0.618). Neither native nor alien predators
altered SMR (F2, 29 p 0.37, P p 0.693; fig. 2). Likewise, the
activity of antioxidant enzymes was unaffected by the pres-
ence of either type of predator (P 1 0.081), and no cellular
damage was detected (F2, 27 p 0.42, P p 0.66). The presence
of predators had no effect on leukocyte count (P 1 0.275).
Responses to Temperature

We observed no variation in CORT levels (F2, 26 p 1.83, P p
0.183; fig. 1) or SMR (F2, 27 p 0.80, Pp 0.462; fig. 2) across the
three temperatures used in the experiment. However, tempera-
F
fi

a
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ture affected the activity of antioxidant enzymes and leukocyte
count. Tadpoles reared at 257C decreased their SOD activity with
respect to the other two temperatures (217 and 297C; F2, 30 p 3.59,
P p 0.041). GR activity also varied with temperature (F2, 30 p
5.80, P p 0.008; fig. 3), with tadpoles exposed to 257C showing
on average 30.6% higher activity with respect to tadpoles reared
at 217C and 31.3% higher activity with respect to those raised
at 297C. We found no effects of temperature on GPx or CAT
activity (all P 1 0.512). However, tadpoles exposed to 257C in-
creased TBARS (F2, 30 p 4.98, Pp 0.014) by 1.23- and 1.40-fold
compared to tadpoles at 217 and 297C, respectively. Moreover,
tadpoles in either 257 or 297C showed a decrease in the neutro-
phil proportion by 52.17% and 58.30% and an increase in the
lymphocyte proportion by 7.6% and 8.4% (F2, 18 p 15.12, P !
Figure 1. Effect of experimental stress factors on corticosterone concentration in spadefoot toad tadpoles, expressed as percent variation from
the average concentration (5SE) in control tadpoles. Corticosterone (CORT) was measured in picograms per milliliter of sample after 10 d of
exposure to each factor: salinity (0, 6, and 9 ppt), herbicide (0, 1, and 2 mg/L of glyphosate), pH (4.5, 7.0, and 9.5), predators (absence, native,
and invasive), and temperature (217, 257, and 297C). A color version of this figure is available online.
igure 2. Percent deviation from average control values (5SE) of standard metabolic rate (SMR; mL O2/h/g) after 10 d of exposure to
ve factors: salinity (0, 6, and 9 ppt), herbicide (0, 1, and 2 mg/L of glyphosate), pH (4.5, 7.0, and 9.5), predators (absence, native, and invasive),
nd temperature (217, 257, and 297C). A color version of this figure is available online.
11.152.057 on March 27, 2017 00:25:28 AM
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0.001) compared to tadpoles raised at 217C, respectively. The
proportion of eosinophils decreased by 41.6% and 85.3% (F2, 18p
3.63, P ! 0.026) in tadpoles exposed to 257 and 297C, respec-
tively. We did not find a significant change in basophil propor-
tions (F2, 18 p 2.66, P p 0.070).
Discussion

Exposure to nonlethal levels of salinity, pH, temperature, her-
bicide (glyphosate), and predators caused marked physiolog-
ical alterations in spadefoot toad tadpoles. Of all the potential
stressors studied, salinity and herbicide seemed to affect am-
phibian physiology the most. These two factors altered CORT
levels, standard metabolic rate, and antioxidant enzymes ac-
tivity in Pelobates cultripes tadpoles (table 1). The highest lev-
els of salinity and herbicide (i.e., 9 ppt and 2mg/L of glyphosate,
respectively) produced comparable physiological unbalances
since hormonal and metabolic rate changes occurred in the
same direction and similar magnitude. These results outline
that even nonlethal levels of stressors may have marked physio-
logical effects, and it is important to take this into consideration
when designing conservation policies.
Both salinity and herbicide exposure caused tadpoles to in-

crease their energy expenditure, possibly driven by increased
corticotropin-releasing hormone that ultimately elevates thyroid
hormone and CORT levels (fig. 1), causing associated increases
in metabolic rate (Denver et al. 2002; Wack et al. 2012; fig. 2).
Moreover, the activation of corticotropin-releasing hormone in-
creases expression of mineralocorticoid receptors (Gesing et al.
2001). These receptors are involved in the regulation of body
fluid osmolality and ion balance (Terker and Ellison 2015), which
is essential for amphibian osmoregulation, especially under os-
motic stress (Hopkins and Brodie 2015). As predicted, factors
that increased CORT concentration and metabolic rate resulted
in redox imbalance, as indicated by alterations in antioxidant en-
zyme activity (fig. 3; table 1). Decreased GR activity might be due
This content downloaded from 161.1
All use subject to University of Chicago Press Term
to low levels of NADPH, a secondary manifestation of cellular
free radical stress (Moreno et al. 2005). Likewise, decreased
SOD activity is likely related to oxidative inactivation of en-
zymes by free radicals (Pigeolet et al. 1990) due to reduced de
novo synthesis (Kaushik and Kaur 2003). Despite possible re-
dox imbalance, no cellular damage in cell membranes was ob-
served, as indicated by a lack of differences among treatments
in TBARS (Lin et al. 2004). In addition, salinity affected the leu-
kocyte profile, causing increased proportions of lymphocytes and
granulocytes (table 1). Common stress-induced changes in the
proportion of leukocytes include neutrophilia (abnormally high
numberofneutrophils) and lymphopenia (abnormally lownumber
of neutrophils) and are often associated with increased GC levels
(Davis et al. 2008). Herbicide, however, had no apparent effects
on the immune system in this experiment; glyphosate has been
shown to affect the leukocyte proportion of tadpoles (Shutler and
Marcogliese 2011; Burraco et al. 2013).
Contrary to our expectations, high temperature did not af-

fect either CORT levels or SMR. This could be due to lack of
statistical power, but other stressful factors did cause marked
changes in these parameters, so at least we can conclude that
the effect of temperature was milder than that of factors such
as salinity or herbicide. Nevertheless, we observed increased
GR activity at 257C, as well as evidence for oxidative cellular dam-
age (TBARS). Tadpoles at 257C may have been closer to their
optimum temperature (from a physiological point of view) and
consequently experienced higher growth and developmental rates
than tadpoles at either 217 or 297C, hence increasing lipid per-
oxidation (by-product of fat degradation). However, tadpoles
reared at 297Cmay have developed too quickly to even have time
to accumulate fat (Kulkarni et al. 2011), hence reducing the rate
of lipid peroxidation. More detailed analysis of lipid consump-
tion during the course of anuran development and in response
to changes in developmental and growth rates is needed to clar-
ify the observed nonlinear patterns in oxidative stress with vary-
ing temperature.
Figure 3. Percent deviation from control treatments (5SE) of glutathione reductase activity (GR; mU/mg protein) after 10 d of exposure
against five stress factors: salinity (0, 6, and 9 ppt), herbicide (0, 1, and 2 mg/L of glyphosate), pH (4.5, 7.0, and 9.5), predators (absence, native,
and invasive), and temperature (217, 257, and 297C). A color version of this figure is available online.
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470 P. Burraco and I. Gomez-Mestre
Changes in pH within the range used in this study did not
cause deep physiological adjustments. A slight (and margin-
ally nonsignificant) reduction in GR activity may reflect in-
creased free radicals against acidic and basic pH. Chambers
and Belden (2009) found effects of acid or basic pH on CORT
levels in amphibian larvae, but these changes were species de-
pendent. The range of water pH in the Doñana National Park is
wide (from 4 or 5 to 7 or 8; Serrano et al. 2006); thus, P. cultripes
tadpoles could be adapted to large fluctuations of pH.
The observed responses to predators indicate a conflict be-

tween the population-level and the organismal-level concepts
of environmental stress. Predators clearly pose a threat to in-
dividual survival and could consequently dramatically reduce
fitness within populations. In that respect, predators are clearly
a source of environmental stress. In some species, predators
also trigger physiological stress responses that would typically
characterize them as a stressful factor, such as when raptors
induce overexpression of heat-shock proteins in nestling pas-
serines (Thomson et al. 2010). Similarly, Maher et al. (2013)
reported CORT elevation in Rana sylvatica tadpoles exposed
to dragonfly nymphs. However, we observed reduced CORT
levels in spadefoot toad tadpoles exposed to native beetle lar-
vae (fig. 1). Reduced CORT in the presence of predators may
simply be associated with the reduction in activity rate ob-
served in P. cultripes, which can be up to 57% in the presence
of native predators (Polo-Cavia and Gomez-Mestre 2014).
Other amphibians have been shown to also lower their meta-
bolic rate in the presence of predators (Barry and Syal 2013),
sometimes after an initial transient increase (Steiner and Van
Buskirk 2009). Invasive predators, however, did not alter tad-
poles’ CORT levels (fig. 1). This lack of hormonal response to
invasive crayfish is congruent with past observations that local
tadpoles do not activate their morphological or behavioral de-
fenses against invasive crayfish at the study site for lack of innate
recognition (Gomez-Mestre andDíaz-Paniagua 2011; Polo-Cavia
and Gomez-Mestre 2014).
Our data show that common stressors to aquatic systems sub-

stantially alter the physiological state of tadpoles. Herbicides
constitute a major threat because they are novel to amphibians
at an evolutionary scale and have marked physiological conse-
quences. However, while most of the other factors may vary consid-
erably in nature, they are often drastically intensified by human
activities, as in salinization or acidification of aquatic systems,
raises in temperature, or the introduction of alien predators. In
particular, high levels of salinity and herbicide cause similarly
steep physiological alterations in tadpoles. It is, however, impor-
tant to understand the nature of the responses against each type of
stressor, because different risks may induce physiological changes
of very different magnitudes and even in opposite directions.
Among the parameters used, CORT and GR were the most sensi-
tive to environmental stress in our study, although a combined ap-
proach determining several other physiological parameters such
as metabolic rate or leukocyte profile provides a more compre-
hensive assessment of the physiological responses. Systematic
comparisons of physiological alterations against multiple fac-
tors and factor combinations will fuel larger-scale comparative
This content downloaded from 161.1
All use subject to University of Chicago Press Term
physiology, providing mechanistic insights into conservation,
ecological, and evolutionary studies and contributing to explain-
ing large geographical and temporal patterns (Chown and Gaston
2015). Moreover, stress experienced during early life stages and
high levels of GCs in particular have long-lasting effects (Weaver
2009; Wu et al. 2012). Therefore, long-term studies are needed to
fully understand the consequences of stress during the larval stages
on the phenotype and fitness of the adults. Comparative physio-
logical studies will also contribute to inform effective manage-
ment decisions aimed at soothing the impact of anthropogenic dis-
turbances before marked population declines are detected (Chown
and Gaston 2008).
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