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Resumo 

Em comunidades de predadores, a biomassa dos mesopredadores excede a dos 

predadores de topo. Consequentemente, os requisitos energéticos dos 

mesocarnívoros (como comunidade) sugerem que o seu impacto sobre os níveis 

tróficos inferiores são significativos. Vários casos de desregulação nos ecossistemas 

têm sido descritos como resultado de alterações nas comunidades de mesocarnívoros 

(e.g. a explosão demográfica de espécies presa após a supressão da predação, ou 

imposição de um efeito de poço de predação imposto por predadores em espécies 

presa). No entanto, a estrutura das comunidades de mesocarnívoros é complexa e 

resulta de uma teia multidimensional de interações entre os diferentes níveis tróficos 

existentes, através de efeitos de regulação superior e inferior, interações com espécies 

do mesmo nível trófico ou qualidade do habitat. Assim, a compreensão dos factores 

que atuam para estruturar estes sistemas revela-se fundamental para uma adequada 

gestão e planeamento de ações de conservação. 

As características ecológicas e comportamentais dos mesocarnívoros fazem com que 

estas espécies sejam particularmente difíceis de estudar. Por outro lado, estudos 

sobre comunidades ou sobre múltiplas espécies em simultâneo revelam-se 

especialmente difíceis de implementar. No entanto, os progressos recentes em 

técnicas não-invasivas têm promovido a sua implementação, tornando-as mais 

comuns no estudo de mamíferos carnívoros terrestres. Adicionalmente, 

desenvolvimentos nas tecnologias associadas a estas amostragens, nomeadamente 

ao nível dos métodos moleculares, têm permitido uma maior acessibilidade a este tipo 

de aproximações. Na presente dissertação são focadas duas questões fundamentais: 

a avaliação da adequabilidade e desenvolvimento de metodologias não-invasivas para 

o estudo de mesocarnívoros e a investigação das estratégias utilizadas pelos 

mesocarnívoros presentes nas comunidades terrestres que permitem a sua 

coexistência no Sudoeste (SW) da Europa.  

Ao nível metodológico, identificou-se que a urina de lince, combinada com extracto de 

valeriana, atraem com eficiência a maioria das espécies presentes nas comunidades 

de carnívoros do SW Europeu, podendo ser usadas em associação a metodologias de 

detecção remota para aumentar as probabilidades de detecção. Identificou-se também 
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que a identificação de excrementos de mesocarnívoros com base nas suas 

características morfológicas são sujeitas a taxas de erro variáveis (entre 5 e 100%). 

Estas taxas de erro são dependentes da abundancia das espécies alvo, das 

características dos excrementos e de factores contexto-dependentes. Este facto 

impede a sua extrapolação entre áreas e enfatiza que as metodologias tradicionais 

(principalmente as baseadas na identificação morfológica dos excrementos) são 

favoráveis à produção de resultados incorretos, potencialmente perigosos para a 

conservação da natureza. É sugerido que as metodologias moleculares não-invasivas 

representam uma ferramenta essencial para a minimização deste tipo de 

enviesamentos. Finalmente, é sugerido que as amostragens com estações de pêlo 

poderão representar uma alternativa eficaz e de reduzidos custos para a 

monitorização de mesocarnívoros a largo prazo, com a vantagem adicional de permitir 

obter informação profunda sobre vários parâmetros populacionais através da análise 

genética das amostras recolhidas. No entanto, a reduzida detectabilidade deste 

método indica que são necessários ainda desenvolvimentos significativos para 

aumentar a sua eficiência. 

Ao nível ecológico, verificou-se que, apesar do elevado aporte energético associado à 

captura de coelho-bravo, a comunidade de mesocarnívoros sincroniza o seu ritmo 

circadiano de atividade com a dos roedores. A sua atividade é apenas parcialmente 

sobreposta com do coelho-bravo. Foi possível identificar três grupos de 

mesocarnívoros no que respeita à sua atividade circadiana: espécies estritamente 

noturnas, espécies facultativamente noturnas e espécies estritamente diurnas. No 

entanto, apesar do tipo de atividade que exibem, todas as espécies apresentam 

plasticidade suficiente alterar os seus padrões de atividade dentro do período 

preferido.  

Os resultados obtidos sugerem que as relações interespecíficas entre potenciais 

competidores são dinâmicas, podendo variar entre períodos e com a localização 

geográfica. Foram observados ajustes no eixo espacial do nicho ecológico em 

comunidades dominadas por mesocarnívoros, onde as espécies possuem tamanhos 

similares. No entanto, podem ocorrer respostas comportamentais em áreas de 

coocorrência, que potencialmente se expressam através de um comportamento mais 

ilusivo. Nesta comunidade, relações potencialmente stressantes são geridas através 

de ajustes ao nível do nicho trófico e temporal. Verificou-se assim, que a segregação 
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temporal desempenha um papel fundamental facilitando a coexistência entre espécies 

de mesocarnívoros, especialmente com o aumento da complexidade das 

comunidades. Adicionalmente, verificou-se que os recursos tróficos estão envolvidos 

na mediação das relações interespecíficas entre mesocarnívoros ibéricos, 

especialmente quando espécies potencialmente competidoras partilham a mesma 

espécie presa. Finalmente verificou-se que a dominância competitiva da marta (Martes 

martes) sobre a fuinha (Martes foina) não se verifica no Parque Nacional da Peneda-

Gerês, contrastando com a teoria vigente.  

No contexto atual de degradação dos ecossistemas a nível mundial e de alterações 

climáticas, há uma tendência generalizada para a simplificação das comunidades de 

vertebrados terrestres, com consequências potencialmente desastrosas para a 

conservação da natureza e economia mundial. Assim, torna-se relevante e urgente 

adquirir conhecimento sobre as relações interespecíficas entre os predadores, que são 

peças estruturantes dos ecossistemas. Com o presente trabalho contribui-se para este 

conhecimento nas comunidades de carnívoros terrestres da Península Ibérica e 

sugerem-se passos futuros conducentes a uma adequada visão da importância destas 

espécies no ecossistemas onde se inserem, que permita o desenvolvimento de 

medidas de conservação e gestão devidamente sustentadas. 
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Mesocarnívoros, Sudoeste Europeu, Amostragens não-invasivas, Identificação 

genética não invasiva, Armadilhagem fotográfica, Competição, Interações 
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Abstract 

In predator communities, mesopredator biomass typically exceeds that of apex 

predators. Consequently, the energetic requirements of mesocarnivores (as a 

community) suggest that their impact on lower trophic levels should be significant. 

Several cases of ecosystem disruptions have been described as a result of changes in 

predator communities (e.g. irruptions of prey species released from top-down 

regulation, or over-suppression of prey via a predator-pit effect). However, the structure 

of mesocarnivore communities is complex, and results from a multidimensional web of 

interactions with several trophic levels, upheld through top-down and bottom-up effects, 

intraguild interactions and habitat quality. Therefore, understanding the factors that act 

together in structuring such systems is crucial for adequate planning and management 

of conservation policies. 

The ecological and behavioral traits of carnivores deem them particularly difficult to 

study. Additionally, community-wide or multiple species research studies are 

particularly difficult to implement. Yet, non-invasive techniques have become 

commoner and technological advances, namely in the field of molecular genetics, have 

made for such studies more accessible. In this research we aimed to address two 

fundamental questions: to assess the reliability and improve current sampling methods 

for ecological studies of mesocarnivores in Southwestern Europe; and to evaluate the 

strategies used by mesocarnivores that facilitate their coexistence in SW European 

communities. 

At the methodological level, we found that lynx urine, combined with valerian extract 

area efficient attractants SW European carnivores, and may be used to increase 

detection probabilities when coupled with remote detection methods. We also found 

that traditional expert-based identification of carnivore scats is prone to highly variable 

accuracy rates (ranging from 0 to 95%). Accuracy is dependent on target species 

abundance, scat characteristics and context-dependent factors. This prevents the 

extrapolation of accuracy rates over time and sampling areas. We suggest that recently 

developed non-invasive molecular methods consist of a fundamental tool for 

minimizing such biases, which are potentially hazardous for nature conservation. 

Finally, while requiring higher sampling efforts, hair-snaring methods are suggested as 

a cost-effective method for large scale and long term monitoring of Iberian 



13 

	
  

mesocarnivores while providing deeper insights into population parameters attained 

through adequate analysis of genetic information. Finally, we suggest that hair snaring 

sampling may provide a valuable cost-effective method for large scale and long term 

monitoring of Iberian mesocarnivores while providing deeper insights into population 

parameters attained through adequate analysis of genetic information. However, 

further refinements are required to increase efficiency and detectability rates. 

At the ecological level, we verified that, although providing higher energetic inputs 

provided by preying on European rabbits, mesocarnivores (as a community) 

preferentially track the activity of small mammals (rodents). We were able to identify 

three distinct groups of Iberian mesocarnivores regarding their activity patterns: strictly 

nocturnal, facultative nocturnal and strictly diurnal species. However, the activity 

patterns exhibited by mesocarnivores were not constant, as we observed activity shifts, 

even though such shifts were contained within the preferred parts each species’ 

circadian cycle.  

Our results suggest that the interactions between co-occurring Iberian mesocarnivores 

are dynamic, and their strength and direction may vary seasonally and geographically. 

Adjustments along the spatial dimension of the ecological niche are not a frequent 

strategy among co-occurring similar sized mesocarnivores in the Iberian Peninsula. 

However, behavioral responses may take place in areas of co-occurrence, where 

subordinate species may adopt higher elusiveness. In these situations, potentially 

stressful interactions are preferably handled by displacements along the temporal and 

trophic niche dimensions, allowing sympatric intraguild competitors to spatially co-

occur. We verified that segregation along the temporal niche constitutes a recurrent 

strategy in facilitating carnivores’ coexistence and that it is more pronounced in more 

complex communities. Additionally, our results have shown that feeding resources are 

involved in mediating interspecific relations among potential intraguild competitors, 

especially when they share the same prey species.  Finally, we detected that the stone 

marten (Martes foina) appears to be the dominant competitor over the pine marten 

(Martes martes) in the Peneda-Gerês National Park, contrasting to what has been 

reported in other areas of sympatry.  

In the current context of worldwide environmental degradation and climate change, 

there is a generalized tendency for a simplification of vertebrate communities, with 

potentially disastrous consequences for the conservation of nature and world economy. 
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Therefore, it is highly relevant and urgent the need to gather knowledge about 

interspecific relations among predators, which are fundamental pieces in structuring 

ecosystems. With this work, we provide new information about interspecific relations in 

Iberian carnivore communities, and suggest future steps towards an adequate 

assessment of these species’ function in terrestrial ecosystems, which could lead to 

suitable conservation and management strategies. 

 

Keywords 

Mesocarnivores, SW Europe, Non-invasive sampling, Camera trapping, Non-invasive 

genetic species identification, Competition, Interspecific interactions, Coexistence 
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1 General Introduction 
 

1.1 The role of carnivores in ecosystems 

1.1.1 Carnivore function and cascading effects in ecosystems 

While eliciting diverging opinions in humans, predators are fundamental elements of 

natural ecosystems (Estes et al. 2011; Kruuk 2002; Ritchie et al. 2012). Increasing 

evidence from natural experiments and observational studies have sustained their 

crucial role as ecosystem engineers (Ritchie et al. 2012) that, directly or otherwise, 

provide a variety of ecosystem services such as enforcing top-down regulation on 

lower trophic levels (Estes et al. 2011; Prugh et al. 2009; Ritchie and Johnson 2009), 

promoting ecosystem resilience against introduced species (Carlsson et al. 2009; Salo 

et al. 2008), reducing the impact of wildlife diseases (Roemer et al. 2009) or by 

promoting seed dispersal (Rosalino and Santos-Reis 2009).  

One of the most systematically advocated functions of carnivores is the enforcing of 

top-down regulation, which has cascading effects over the entire ecosystem and has 

the potential for producing fundamental changes in it (Levi and Wilmers 2012; Prugh et 

al. 2009; Ripple et al. 2010; Ripple and Beschta 2008; Ripple and Beschta 2006a). 

Although growing evidences have been published in recent years supporting such 

theory and describing its effects on ecosystem processes, the full implications of 

predators’ removal or re-establishment are still underevaluated and most likely 

underestimated (Estes et al. 2011; Ripple et al. 2010). Top-down control imposed by 

carnivores act on two levels: on a demographic level (density-mediated effects), by 

constraining prey population numbers (Melis et al. 2009; Ripple and Beschta 2012); 

and on a behavioral level, by imposing constraints in the spatial and temporal activity 

patterns of subordinate species (Cozzi et al. 2012; Laundré et al. 2001; Ripple and 

Beschta 2006b). These effects act synergistically on prey populations by constraining 

their biomass and spatial distribution.  

Upon a meta-analysis of the predatory impacts of the wolf and brown bear (Ursus 

arctos), Ripple and Beschta (2012) found that top down forces exherted by these 

predators was relatively strong in systems where they were present, as mean density 

of cervids was significantly lower in areas where wolves were functionally present than 
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in areas where they were rare or absent. They further found that predation by brown 

bears on cervids was additive to that of wolves, rather than compensatory. In a parallel 

study, Melis et al. (2009) identified top-down control of roe deer (Capreolus capreolus) 

populations as a result of the predatory impact of wolves and Eurasian lynxes (Lynx 

lynx). Another example of top-down density-mediated control was described by Ripple 

and Beschta (2006a), who linked a decline in cougar (Puma concolor) densities to 

disproportionate irruptions of mule deer (Odocoileus hemionus) as a result of release 

from top-down control. Simultaneously, resent research has also reported behavioral-

mediated effects of predators on prey populations via implementation of a landscape of 

fear (Laundré et al. 2001), which is a visual model of how fear could alter an animal’s 

use of an area as it tries to reduce its vulnerability to predation (Laundre et al. 2010; 

Ripple and Beschta 2004). However, the top-down processes described above for 

predator-prey relations are also applied in the context of intraguild competitors. 

Dominant competitors have the ability to suppress subordinate species populations or 

constrain their access to the most beneficial resources, which can be optimal prey, 

habitat, or period of the day.  

 

1.1.2 Intraguild interactions among mammalian carnivores 

The composition and structure of carnivore communities is strongly influenced by 

interspecific competitive interactions (Donadio and Buskirk 2006; Ritchie and Johnson 

2009). Intraguild predation (IGP) constitutes an intense form of pre-emptive 

interference competition (Ritchie and Johnson 2009), and is a widespread biological 

interaction, especially in carnivore communities (Arim and Marquet 2004; Palomares 

and Caro 1999). Its intensity is mediated by relative body size (being more intense at 

intermediate body size differences), feeding ecology, prey availability and predatory 

habits of the species involved (Donadio and Buskirk 2006; Palomares and Caro 1999). 

IGP is a non-random phenomenon and its occurrence is considered to be largely 

mediated by the exploitation of a shared resource, which is more efficiently explored by 

the subordinate/victim (Arim and Marquet 2004; Palomares and Caro 1999).  

Several cases of density-mediated effects of apex predators on subordinate species 

have been reported all over the world and, at times, have provided counterintuitive 
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patterns. Eurasian lynxes had been extirpated from large areas of their former range in 

Scandinavia, and were close to extinction in the 1950s (Elmhagen et al. 2010; 

Elmhagen and Rushton 2007). This decline of the Eurasian lynx was inversely related 

to red fox (Vulpes vulpes) abundance, which increased their numbers steeply 

(Elmhagen and Rushton 2007; Pasanen-Mortensen et al. 2013). The posterior 

recolonization of Eurasian lynxes provided further support for their ability to control fox 

populations, which varied with system productivity according to the exploitation 

ecosystems hypothesis (EEH) (Oksanen et al. 1981). Ritchie et al. (2012) suggested 

that these effects might have further ramifications depending on carnivore community 

complexity. Red foxes may limit pine martens’ (Martes martes), American minks’ 

(Neovison vison) and artic foxes (Alopex lagopus) populations by actively pursuing and 

killing them (Carlsson et al. 2009; Frafjord et al. 1989; Lindström et al. 1995). 

Therefore, in complex systems where Eurasian lynxes suppress red foxes through top-

down control, pine martens could be released from a control enforced by red foxes and 

increase in abundance. A similar process could happen in arctic systems with Eurasian 

lynxes, red foxes and arctic foxes. However, the strength of these interactions is 

context-dependent, being affected by the landscape structure, system productivity and 

prey availability (Estes et al. 2011; Ritchie et al. 2012; Ritchie and Johnson 2009). 

Nonetheless, the effect of top-down control by Eurasian lynxes could have also 

undesirable effects, if the suppression of red fox populations releases the American 

minks, which is an invasive species in Europe (Kauhala 1996). However, if Eurasian 

otters (Lutra lutra) are present, they may compensate the effect of the reduced red fox 

abundance, by controlling minks themselves (Bonesi et al. 2004). Similar findings were 

obtained in a different system involving wolves, coyotes (Canis latrans) and foxes 

(Vulpes vulpes and Vulpes velox) in the North American continent. During the 19th and 

early 20th centuries, wolf populations were widely persecuted in the United States, 

which led to significant contraction of their distributional range (Laliberte and Ripple 

2004; Ripple et al. 2010). Increasing evidence suggests that the wolf presence is 

negatively related with the densities of coyotes (Berger and Gese 2007; Levi and 

Wilmers 2012; Ripple et al. 2013). Therefore, wolf extirpation from the American west 

led to dramatic increases in coyote densities (Ripple et al. 2013). However, in areas 

where coyotes have claimed the role of top predators because of the absence of 

wolves, they have the potential to suppress fox populations (Levi and Wilmers 2012; 

Ripple et al. 2013). In the Iberian Peninsula (IP), southwestern Europe (SW Europe), 
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Iberian lynxes have been reported to suppress Egyptian mongoose (Herpestes 

ichneumon) (Palomares et al. 1998; Palomares et al. 1995) following a similar cascade 

of density-mediated effects as that identified with Eurasian lynxes and red foxes in 

Scandinavia, or with wolves and coyotes in North America.  

When apex predators are removed from a system, and subordinate species (i.e. 

mesopredators) are released from their suppression effect, their abundance will most 

likely increase disproportionally (Ritchie and Johnson 2009). This effect was coined as 

the mesopredator release hypothesis (MRH) (Soule et al. 1988), and has been 

intensively described in terrestrial and marine ecosystems, although the full extent of its 

ecological impacts is just beginning to be understood (Estes et al. 2011; Prugh et al. 

2009; Ripple et al. 2010; Roemer et al. 2009).  

Competitive interactions among coexisting carnivores, however, are not restricted to 

density-mediated interactions, such as IGP. These direct lethal encounters are most 

likely just a small part of all competitive interactions among coexisting carnivores 

(Ritchie and Johnson 2009), and although IGP is responsible for a large proportion of 

deaths in predator communities (Palomares and Caro 1999), the effects of other forms 

of interference interactions are most likely underestimated in community ecology, 

because their effects are less conspicuous (Elmhagen et al. 2010; Ritchie and Johnson 

2009). The “ecology of fear” (Brown et al. 1999) and its spatially explicit representation 

- the landscape of fear (Laundré et al. 2001) - is also applicable in the framework of 

intraguild competitive interactions (Scheinin et al. 2006). Dominant competitors (apex 

predators) can influence the distribution and behavior of subordinate competitors 

(mesocarnivores) either directly, through IGP, or indirectly, through the fear of IGP 

(Roemer et al. 2009). Therefore, behavioral adjustments in foraging strategies may 

also play a critical role in reducing agonistic encounters, therefore promoting 

coexistence and biodiversity (Linnell and Strand 2000). Examples of such behavioral-

mediated effects have been reported in several systems across the world as a means 

to promote coexistence among sympatric competitors (Ritchie et al. 2012). The 

behavioral effects most frequently reported are the limitation of accessibility to the most 

favorable habitats (Harrington and Macdonald 2008; Mitchell and Banks 2005; 

Palomares et al. 1996; Wilson et al. 2010) or/and to the most profitable prey (Cupples 
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et al. 2011; Hass 2009; Moreno et al. 2006) or the temporal segregation (Di Bitetti et al. 

2009; Cozzi et al. 2012; Gerber et al. 2012; Harrington and Macdonald 2008).  

 

1.1.3 Trophic downgrading of terrestrial ecosystems 

Carnivore occupancy and persistence is dependent on a variety of factors, namely their 

biotic traits and anthropogenic impacts (Cardillo et al. 2004; Diniz-Filho et al. 2009). 

Direct or indirect human-related impacts in ecosystems such persecution (Casanovas 

et al. 2012; Woodroffe et al. 2008), degradation of natural habitats (Brooks et al. 2002) 

or disruption of ecosystem processes (Shepard et al. 2008), have led to worldwide 

declines of apex predator populations, and consequent extinction in most of their 

original range leading to a process denoted as “trophic downgrade”, which refers to the 

consequences of removing apex consumers from nature (Estes et al. 2011). The 

frequency of apex predator extinctions has transferred the role of top-down effects to 

subordinate levels in trophic webs all over the globe (Prugh et al. 2009). Yet, most 

species “promoted” to the apex predator status cannot completely replace “true” apex 

predators because they tend to have fundamentally different relations with people and 

ecosystems (Cove et al. 2012; Levi and Wilmers 2012; Prugh et al. 2009). Evidence of 

fundamental changes in ecosystems due to changes of top-down regulation have only 

recently became evident, and have just appeared in literature since the beginning of 

the 21st century (Estes et al. 2011). Given that the strength and relative dominance 

position of interspecific competitors is dependent on their relative body size, availability 

of prey and habitat (Donadio and Buskirk 2006; Ritchie and Johnson 2009), the 

removal of apex predators will contribute to the homogenization of body sizes among 

species within the affected guild. Therefore, in these apex predator deprived 

ecosystems, the web of competitive relations among similar sized sympatric 

mesocarnivores can change between areas as a result of local conditions. 

While asymmetrical competitive relations among predator species have been a fairly 

common focus of recent research (Fedriani et al. 1999; Pasanen-Mortensen et al. 

2013), mutual reciprocal competitive interactions within carnivore communities have 

rarely been addressed. Given that most of the world’s ecosystems are partially or 

completely deprived of apex predators, understanding intraguild mesopredator 
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relations should be a major concern because they are likely to have a significant impact 

on ecosystem structure (Laundre et al. 2010; Prugh et al. 2009; Roemer et al. 2009). In 

these communities, where interference competition can be mutual, an increase in 

predator diversity should result in prey release (Roemer et al. 2009). Understanding 

which forces act and in which direction to shape ecosystems is crucial for adequate 

conservation planning and management (Ripple et al. 2013). Within the current 

worldwide context of climate change and human-related habitat destruction, the ability 

to foresee potential community responses to expected changes in the environment is 

vital for the conservation of biodiversity. 

 

1.2 Ecological interactions among mammalian carnivores 

1.2.1 Ecological niche and limiting similarity 

The fundamental ecological niche refers to the full range of conditions (biotic and 

abiotic) and resources in which an organism can survive and reproduce (Elton 2001). 

However, local environmental pressures act on individuals narrowing the breadth of 

utilization of at least one of the niche dimensions or resources, promoting coexistence 

(Hutchinson 1957). Among these locally implemented environmental pressures, 

interspecific interactions play an important role.  

Hardin’s competitive exclusion principle hypothesis (CEPY) states that “complete 

competitors cannot coexist” (Hardin 1960). This statement means that if two non-

interbreeding populations occupy exactly the same ecological niche in Elton’s sense 

(Elton 2001), are sympatric, and have different growth rates, then the population 

growing faster will ultimately displace the other, which will become extinct. Further 

refinements to this theory were added by MacArthur and Levins (1967), in the form of 

the limiting similarity theory (LST), which states that competing species must 

segregate, at least partially, along one or more dimensions of their ecological niche in 

order to maintain sustainable coexistence. Since then, this topic has been the focus of 

intense theoretic and empirical research, which provide contrasting results (Abrams 

1983; Abrams and Rueffler 2009; Szabó and Meszeéna 2006). However, Gurevitch et 

al. (1992) identified a dramatic lack of research on competition among both herbivores 
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and carnivores, and referred that the question of how often organisms compete in 

nature was still largely unknown.  

In his review of resource partitioning in ecological communities Schoener (1974) found 

that the separation among species niches is generally multidimensional, and two is the 

most common number of dimensions separating species. Further, he argued that in 

competitive systems, increased complexity in ecological communities, i.e. with higher 

species diversity, would force coexisting species to segregate on more niche 

dimensions in order to preserve minimal resource overlap. The most important niche 

dimensions over which competing species segregate have been identified, in order of 

importance, as: habitat dimensions (spatial), food-type dimensions (trophic) and 

temporal dimensions (Schoener 1974). Interspecific competition has been identified in 

all types of systems (freshwater, marine and terrestrial) and this kind of interaction is 

considered quite frequent in nature (Connell 1983; Schoener 1983). Moreover, 

exploitation competition (consumption competition, sensu Schoener 1983), was 

identified as prevailing among top carnivores and in terrestrial animals, but that 

interference competition (territorial and encounter competition, sensu Schoener 1983) 

was also very common. 

 

1.2.2 The spatial dimension in carnivore interactions 

Reports of the spatial interactions among sympatric mammalian carnivores have been 

a particularly common focus in the attempt to evaluate competitive relations. Reported 

patterns of spatially explicit responses among competitors include complete exclusion 

(Balestrieri et al. 2010; Rosellini et al. 2008), changes in habitat selection at the 

landscape scale (Fedriani et al. 2000; Fedriani et al. 1999; Fisher et al. 2012; 

Scognamillo et al. 2003; Wilson et al. 2010), or behaviourally-mediated spatial 

avoidance (Broekhuis et al. 2013; Harmsen et al. 2009; Macdonald et al. 2004). 

However, the spatial relations among species are not constant, as they may display 

different patterns of spatial coexistence under different circumstances. For example, 

the jaguar (Panthera onca) and the puma are two large felids that have overlapping 

distribution areas across most of the South American continent (Haines 2006). 

However, different studies on the spatial relations between these species in areas of 
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co-occurrence revealed distinct patterns. Davis et al. (2011) found a positive but non-

significant association between jaguars and pumas in Belize. Also in Belize, Harmsen 

et al. (2009) reported sequential use of the same areas between the two co-occurring 

cats. Scognamillo et al. (2003) identified highly overlapping home ranges between 

these two felids with interspecific avoidance exhibited at fine-scale, and Sollmann et al. 

(2012) found that differences in habitat selection mediated the spatial partitioning 

between jaguars and pumas in central Brazil. Similarly, upon the analysis of European 

mesocarnivore guilds, Sarmento et al. (2010) found no effect of the presence of 

intraguild competitors in the distribution patterns of mammalian mesocarnivores in 

central Portugal. Analogous findings were reported by Šálek et al. (2013), who found 

no evidence of spatially segregated distribution of mesocarnivores in Czech Republic. 

However, also in Portugal, Pereira et al. (2012) suggested that mesocarnivores 

coexistence was mediated by fine-scale spatial partitioning. Regardless of the potential 

diversity of spatial responses exhibited by sympatric competing mammalian carnivores, 

the spatial niche dimension remains as one of the most important mediating 

competitive interactions because it entangles accessibility not only to adequate 

habitats, but also to prey (Fedriani et al. 2000; Ritchie and Johnson 2009; Wilson et al. 

2010).  

 

1.2.3 The trophic dimension in carnivore interactions 

Food acquisition and consumption is one of the most important activities for any living 

being. In the case of mammalian carnivores, prey biomass is a major determinant of 

predator density both within and between species (Carbone and Gittleman 2002; 

Gittleman and Harvey 1982). Furthermore, the area secured by a mammalian 

carnivore, i.e. home range, is directly related to its metabolic needs and diet 

composition, where predominantly carnivorous species require bigger areas than 

predominantly frugivorous or insectivorous species (Gittleman and Harvey 1982). The 

intensity of the relation between carnivores’ requirements and prey availability 

determine the competitive stress among sympatric predators that share the same prey 

(Carbone et al. 1999; Gittleman and Harvey 1982), especially when prey availability is 

limiting (Donadio and Buskirk 2006; Linnell and Strand 2000; Ritchie and Johnson 

2009). Several measures of niche overlap, such as the Pianka’s index (Pianka 1974), 
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were frequently used to make inferences about exploitative competition among 

coexisting species. However, while such measures provide compact descriptions of 

community patterns, they may not directly relate to interspecific competition given the 

multidimensional nature of species’ ecological niches (Holt 1987). Most recent research 

on the evaluation of competition between carnivores along the trophic niche dimension, 

often consist of two or three-dimensional approaches by evaluating dietary and spatial 

(and/or temporal) patterns simultaneously (Fedriani et al. 2000; Harrington et al. 2009; 

Hass 2009; Mitchell and Banks 2005; Scognamillo et al. 2003). Alternatively, the 

competitive stress induced by the presence of a dominant competitor may be assessed 

by evaluating the competitive release effect in the diets of subordinate species when 

the former is removed (Moreno et al. 2006).  

For example, in Australia, Mitchell and Banks (2005) found that the competitive stress 

induced by similar dietary patterns is lessened by fine-scale spatial segregation 

between wild dogs (Canis lupus familiaris and C. l. dingo) and red foxes. Similar 

findings were obtained by Fedriani et al. (2000) in Santa Monica Mountains (California, 

USA) with coyotes and gray foxes (Urocyon cinereoargenteus), that shared their main 

prey (small mammals), and consequently led the latter to avoid habitats were coyotes 

were more abundant. In South Spain, Fedriani et al. (1999) reported that coexisting 

Iberian lynxes, red foxes and Eurasian badgers (Meles meles) shared their main prey, 

the European rabbit (Oryctolagus cuniculus). According to these authors, red foxes 

avoided agonistic encounters with Iberian lynxes by habitat segregation during the 

periods of lynx activity, while no niche segregation was detected between badgers and 

lynxes.   

Contrasting examples in mammalian carnivores include trophic niche shifts by the 

subordinate species. Near Oxford (England), American minks changed their diets 

following the recovery of the Eurasian otter population, by intensifying the exploitation 

of terrestrial resources (Harrington et al. 2009). Likewise, Hass (2009) suggested that, 

in the Huachuca Mountains (Arizona, USA), interspecific competition between 

sympatric pumas and bobcats (Lynx rufus) was lessened via modification of their diets 

and fine-scale habitat segregation. 

These examples depict the variability of trophic relationships among coexisting 

mammalian carnivores, and emphasize that the complexity of such interactions can 
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only be understood when evaluated in a multidimensional framework. In light of the 

optimal foraging theory (Brown et al. 1999) and the risk allocation hypothesis (Lima and 

Bednekoff 1999), we anticipate that coexisting mammalian competitors that share a 

staple prey should: (i) avoid each other spatially, when prey availability is widely 

distributed in the landscape; or (ii) segregate temporally, when prey distribution is 

clustered in specific habitats therefore minimizing risks of agonistic encounters. 

However,if at least one of the species is not a specialist and alternative feeding 

resources are available, then (iii) trophic niche segregation could provide a better 

alternative to reduce competitive stress.  

 

1.2.4 The temporal dimension in carnivore interactions 

Time is another niche dimension over which interacting animals might segregate to 

reduce the effect of agonistic encounters (Carothers and Jaksić 1984; Kronfeld-Schor 

and Dayan 2003; Schoener 1974). The temporal niche can be analysed at several 

scales: daily, seasonally, or yearly (Halle and Stenseth 2000). However, the diel activity 

pattern is the most well studied of animal activity cycles, despite being the shorter 

period of analysis (Halle and Stenseth 2000; Kronfeld-Schor et al. 2001; Schoener 

1974). This is the cycle that we will be addressing throughout this work. Despite being 

regarded as the least important of the three main niche dimensions (Schoener 1974), 

the temporal niche is particularly important in the case of predator species as they 

often segregate across the diel cycle, promoting coexistence (e.g. Di Bitetti et al. 2009; 

Harrington et al. 2009; Wang and Fisher 2012). Further, the presence of competitors 

frequently influences activity patterns through interference competition, which is 

expected to be stronger whenever similarity in other niche dimensions and body mass 

are high (Schoener 1974; Linnell and Strand 2000; Donadio and Buskirk 2006; Ritchie 

and Johnson 2009). However, the activity pattern exhibited by a mammalian carnivore 

is context-dependent, as it is determined by its endogenous regulation (Kronfeld-Schor 

et al. 2001; Kronfeld-Schor and Dayan 2003) and by external abiotic and biotic factors, 

such as the presence of competitors (Cozzi et al. 2012; Harrington et al. 2009), human 

disturbance (Kitchen et al. 2000; Theuerkauf 2009) or accessibility to prey, that often 

have their own well defined activity patterns (Arias-Del Razo et al. 2011; Halle 2000). 

The interaction with these factors can change the ultimate expression of a species 
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nycthemeral activity. Therefore the observed overlap between two co-occurring species 

can change according to their location or period of time analysed. To further puzzle the 

evaluation of the temporal niche dimension for ecological separation among competing 

species, an additional constrain is that temporal partitioning can be rapidly exhausted 

with increasing species diversity (Schoener 1974). The predation risk allocation 

hypothesis proposed by Lima & Bednekoff (1999) advocates that through a reasonably 

accurate perception of predation risk, prey species adapt their activity strategies to 

avoid being active in high-risk periods. This theory should equally apply to competitive 

relations, as the risk of IGP or other forms of interference competition also constitutes a 

risk to physical integrity and individual fitness. Therefore, by allocating strong anti-

predator behaviours to such periods, competing species could then compensate by 

focusing their feeding effort in low-risk situations. However, if the diel cycle is already 

saturated by the activity of competitors, or if prey is only accessible at a certain period 

of the day, then an animal has little choice but to be active under high-risk periods 

(Broekhuis et al. 2013; Lima and Bednekoff 1999).  

The temporal segregation in diel activity patterns appears to be particularly important 

for predators (Ritchie and Johnson 2009; Schoener 1974). This kind of temporal 

partitioning has been reported among several carnivore assemblages, and it can be 

exhibited by a clear asynchrony in their foraging patterns (Di Bitetti et al. 2009; Gerber 

et al. 2012; Harrington et al. 2009; Lucherini et al. 2009), suggesting a predictive 

response to risk. Alternatively, activity segregation may be reactive, induced by the 

detection of the competitor (Broekhuis et al. 2013; Harmsen et al. 2009). The diel 

temporal niche should be important for ecological separation among potentially 

competing carnivores when: (i) carnivores are spatially clustered; (ii) they have high 

trophic niche overlap, i.e. feed mainly on the same prey; and (iii) the shared feeding 

resource is limited.  

 

1.2.5 The definition of mesocarnivore 

Before going further, it is important to define the term “mesocarnivore”. Three distinct 

definitions of the term “mesocarnivore” have been described in the scientific literature. 

A first definition of mesocarnivore is diet-based, and considers mesocarnivores as the 
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category of mammalian carnivores that include 50–70% meat in diet, with the balance 

made up of non-vertebrate foods (Van Valkenburgh 2007; Valkenburgh 1988). Buskirk 

(1999) used a bodyweight-based definition of mesocarnivores, which consisted of 

midranking mammalian carnivores with weight between 1 and 15kg. Finally, Prugh et 

al. (2009) suggested a food web-based definition, in which a mesocarnivore should be 

defined as any midranking mammalian predator in a food web, regardless of its size or 

taxonomy. Although I feel the food web-based definition (Prugh et al. 2009) to be more 

adequate, because it refers to the relative position in the trophic environment where the 

animal is included, I will use the term “mesocarnivore” in consistency to what is most 

often described in the literature, which is the bodyweight-based definition. Therefore, 

throughout the entire document, I address all mammalian carnivore species with an 

average bodyweight over 1kg and below 15kg as mesocarnivores, regardless of 

coexisting or not with apex predators.  

 

1.2.6 Iberian mammalian carnivore communities 

Southwestern (SW) European terrestrial carnivore communities include a total of 17 

species (Cabral et al. 2005; Mitchell-Jones et al. 1999; Palomo et al. 2007). Two of 

these species are clear apex predators: the brown bear (Ursus arctos) and the wolf. 

While having a bodyweight under 15kg, the Iberian lynx plays the role of an apex 

predator in Mediterranean ecosystems because it has no sympatric predators and has 

been documented to suppress or exclude smaller carnivore species (Fedriani et al. 

1999; Palomares et al. 1996). However, in the Iberian Peninsula (IP), the distribution of 

these apex predators is highly restricted. The Iberian lynx distribution is currently 

restricted to two natural unconnected populations, and two others that have been 

reintroduced, all in the south of Spain (Gil-Sánchez and McCain 2011; Sarmento et al. 

2009). The Iberian distribution of the wolf corresponds to nearly 1/3 of the NW Iberian 

territory, although their populations are frequently scattered in a metapopulation-like 

system (Blanco et al. 2007; Cabral et al. 2005). Finally, the brown bear is restricted to 

the Pyrenean and Cantabric mountains, and surrounding areas (Naves and 

Fernández-Gil 2007). Given the limited distributional range of apex predators in the IP, 

carnivore communities across a large portion of Iberia are strictly comprised of meso 

and small carnivores. Eight mesocarnivore species (six native and two introduced) 
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occur in Iberia: The red fox, the European wildcat (Felis silvestris), the pine marten 

(Martes martes), the stone marten (Martes foina), the Eurasian badger, the Eurasian 

otter, the common genet and  the Egyptian mongoose. However, they do not always 

occur in sympatry or coexist spatially within their distribution areas (Cabral et al. 2005; 

Mitchell-Jones et al. 1999; Palomo et al. 2007). While most mesocarnivore species are 

widespread in the IP, two have particularly limited ranges: the pine marten is restricted 

to the northern fringe (López-Martin 2007), and the Egyptian mongoose only occurs in 

the southwest (Balmori and Carbonell 2012; Barros and Fonseca 2011; Palomares 

2007). As a consequence, mesocarnivore communities vary geographically in 

composition and structure, potentially resulting in interspecific relations between the 

same species pairs to change from one area to another. Within the SW European 

mesocarnivore communities, the potential for exploitation and/or interference 

competition exists among several species pairs along various niche dimensions (table 

1). However, only a few studies have been conducted directly evaluating the ecological 

interactions among these coexisting species (Fedriani et al. 1999; López-Martin 2003; 

Palomares et al. 1998; Palomares et al. 1996; Sarmento et al. 2010; Zabala et al. 

2009), and none that I am aware of evaluates these interactions at a community-wide 

scale using a multidimensional approach. Therefore, a substantial lack of knowledge 

still exists regarding the ecological interactions governing carnivore communities 

across the southwest of Europe. 

A complementary characteristic that increases the biological diversity across the 

Iberian Peninsula is the fact that it includes two distinct bioclimatic regions (European 

Environmental Agency 2012; Rivas-Martínez et al. 2004): the Atlantic region, which 

extends through a northern strip, from the Pyrenees, through the Cantabric mountains 

and occupies all the northwestern region of Spain and Portugal; and the Mediterranean 

region, which occupies most of the Iberian territory (figure 1). This bioclimatic division 

of the Iberian Península is particularly important for the structure and functioning of 

mammalian carnivore communities because, among other reasons, of the differential 

availability of European rabbits. Another relevant feature, is the fact that the European 

rabbit is a keystone species in the Mediterranean region of the IP (Delibes-Mateos et 

al. 2007b), where it is the staple prey of a diversity of predators (Delibes-Mateos et al. 

2008; Jaksic and Delibes 1987). The high energetic profits of hunting rabbits (Aldama 

et al. 1991; Aldama and Delibes 1990; Malo et al. 2004) are linked to the presence of 
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rabbit specialist species, such as the Iberian lynx (Palomares 2001), and other 

mesocarnivore species that preferably prey on rabbits whenever they are available 

(Delibes-Mateos et al. 2007a; Lozano et al. 2006; Virgós et al. 2005). The differences 

in the availability of prey between the two bioclimatic regions of the Iberian peninsula, 

should provide interesting contrasts in the interspecific interactions among carnivores. 
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1.3 Current methodological limitations in mesocarnivore studies: can we trust 

our data?  

Carnivores have cascading effects on entire ecosystems, acting as ecosystems’ 

engineers by enforcing top-down control on lower trophic levels (Estes et al. 2011; Ray 

et al. 2005; Ripple et al. 2010; Wilson and Mittermeier 2009). However, these species 

typically occur in low densities, have elusive behaviors and have large home ranges, 

which make population or demographic parameters especially difficult to estimate 

(Gittleman and Harvey 1982; Long et al. 2008; O’Connell et al. 2011; Wilson and 

Delahay 2001). Consequently, the challenges involved in monitoring carnivores make 

the use of direct and invasive methods laborious, often inefficient and potentially 

hazardous for the animals (Kelly et al. 2012; Long et al. 2008).  

Traditional methods of studying carnivores include direct methods such as observation, 

capture-recapture or radiotracking (Boitani and Fuller 2000). However, such methods 

are often impractical to apply across large spatial scales since they are time-

consuming, have high costs, and involve complex logistical requirements. 

Non-invasive techniques provide alternative means of monitoring such species. Non-

invasive techniques are those that “do not require target animals to be directly 

observed or handled by the surveyor” (Long et al. 2008). Broadly these methods 

include tracking natural signs such as scats, tracks, or dens; recording tracks at track 

stations; collecting hair at hair stations; employing camera-traps, and using scat 

detection dogs (Long et al. 2008). 

The recent technological advances both in conservation genetics (Beja-Pereira et al. 

2009; Shehzad et al. 2012) and field techniques (McCallum 2013; O’Connell et al. 

2011), coupled with developments in statistical methods such occupancy models 

(Mackenzie et al. 2006) or modeling of daily routines (Ridout and Linkie 2009) have 

enhanced the value of non-invasive methods. The widespread use of these methods 

has promoted their much more common use to monitor multiple carnivore species 

across large areas at a relatively modest cost (Johnson et al. 2009; Long et al. 2007; 

Weaver et al. 2005; Zielinski et al. 2006).  

Among the non-invasive methods, camera trapping and scat searching are particularly 

common in studies of mammalian carnivore species (Boitani and Fuller 2000; Kelly et 
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al. 2012; Long et al. 2008; O’Connell et al. 2011). However, hair collection methods 

have gained renewed interest with the possibility of extracting and amplifying bad-

quality DNA from donor species (Davoli et al. 2012; Dreher et al. 2009; Kendall and 

Mckelvey 2008).   

Due to its reduced costs, scat searching is one of the survey methods most frequently 

used (Davison et al. 2002; Prugh and Ritland 2005), and it has been argued as being 

one of the most efficient methods for the detection and monitoring of European 

mammalian mesocarnivores (Barea-Azcón et al. 2006; Lozano et al. 2003; Rosellini et 

al. 2008; Sadlier et al. 2004). Moreover, scat-based research provides the possibility to 

address many ecological aspects of the target species such as the evaluation of 

conservation status (Janecka et al. 2008; Sarmento et al. 2004), distribution (Rosellini 

et al. 2008), abundance (Mondol et al. 2009), spatial interactions (Dalen et al. 2004), 

dietary patterns of the population (Posluszny et al. 2007; Shehzad et al. 2012) or diets 

of individual animals (Fedriani and Kohn 2001). 

Along with an increase in research possibilities provided by the advances in non-

invasive molecular methods, the application of molecular scatology has highlighted the 

fact that, although reliable at times (Prugh and Ritland 2005), the evaluation of scat 

morphology alone is prone to misidentifications among sympatric carnivore species, 

even when evaluated by experienced field technicians (Davison et al. 2002; Harrington 

et al. 2010; Janecka et al. 2008). However, because morphology-based scat searching 

methods are often the only available alternative for conducting large-scale surveys on 

carnivore species because of the reduced costs and labor (Barea-Azcón et al. 2006; 

Wilson and Delahay 2001), they cannot be readily discarded. Nevertheless, potential 

sources of bias need to be identified and accounted for so that reliable inferences can 

be obtained. 

Camera traps and hair collection methods consist of fixed stations that require animals 

to directly encounter them while actively moving (Kendall and Mckelvey 2008; 

O’Connell et al. 2011). These methods can either be used alone, detecting animals 

passively, or in combination with specific attractants, consisting in baited stations (Kays 

and Slauson 2008; Kendall and Mckelvey 2008). An adequate sampling design using 

these methods can provide previously unattained information about wide-ranging 

secretive species. However, the continuous developments in statistical inference and 
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refinement of these sampling methods promote enduring debate regarding their 

reliability. For instance, for the last two decades countless studies have reported 

estimations of population densities based on individual identification of coat patterns 

examined from camera-trapping records (Karanth et al. 2006; Karanth 1995; Núñez-

Pérez 2011; Silver et al. 2004). However, animals with indistinctive coat patterns deem 

their individual identification impossible from photographic records. Therefore, camera-

trapping detection rates have also been suggested as good proxies of target species’ 

population abundance (Carbone et al. 2001; Rovero and Marshall 2009). Further 

improvements in statistical methods for estimating population densities without the 

requirement of individual identification were introduced by Rowcliffe et al. (2008). 

Nevertheless, the novelty of such approaches and relatively untested status elicit 

scientific criticism (Foster and Harmsen 2012; Kelly 2008; Rowcliffe and Carbone 2008; 

Sollmann et al. 2013). 

The combined use of hair collection methods with molecular genetics, warrants species 

individual and sex identification, and recently have been extensively used to detect 

several mammal species (Kendall and Mckelvey 2008; Mills 1996; Ruell and Crooks 

2007). Particularly, the individual identification provided by hair snaring can be used for 

detailed demographic and population monitoring (Davoli et al. 2012; Zielinski et al. 

2006). However, generally, hair snaring methods tend to have relatively low detection 

rates (Comer et al. 2011; Long et al. 2007), which limits their employment for detecting 

rare or wide ranging species, and motivates the development and testing of new hair 

collection structures (Heurich et al. 2012; Schmidt and Kowalczyk 2006; Zielinski et al. 

2006)  

The challenges that involve carnivore monitoring are numerous, and the recent 

methodological advances in species monitoring research suggest that traditional 

sampling methods are bias prone, potentially leading to misadjusted interpretations of 

biological patterns. Therefore, a constant re-evaluation of such sampling methods in 

light of recent molecular and technological advances is not only useful, but also 

required to assess their validity and propose further refinements, by incorporating 

recent developments and new sampling methods in wildlife biology research and 

conservation. 
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1.4 Objectives 

The challenges that involve carnivore monitoring are several, and the recent 

methodological advances stress the need not only to incorporate new technologies in 

ecological methods, but also to use these new methods to re-assess the adequateness 

of traditional sampling methods. With the advent of recent methodological advances, 

new and more detailed information regarding mesocarnivore ecology becomes 

achievable providing an opportunity to develop deeper research focusing on 

multispecies interactions and strategies for species coexistence. In this context, we 

defined two main objectives for this thesis, that are addressed in two distinct chapters: 

I. To assess the reliability and improve current sampling methods for ecological 

studies of mesocarnivores in Southwestern Europe; 

 

II. To study the strategies that allow coexistence among mesocarnivores in SW 

European communities. 

In order to achieve these main research goals, a set of subsidiary objectives were also 

defined: 

1. To improve the detection rates of remote sampling methods by identifying lures 

that could efficiently attract most mesocarnivore species in SW European 

communities; 

2. To evaluate the level of reliability traditional sampling methods based on expert 

identification of mesocarnivore scats, and assess the potential bias in ecological 

studies on mesocarnivores using these methodologies.  

3. To evaluate the efficiency of hair snares as a cost-effective method for long 

term mesocarnivore monitoring programs in SW Europe. 

4. To assess the level of synchrony in activity patterns between mesocarnivores 

and their main prey, and to evaluate the dynamic organization of predator-prey 

systems, the bidirectional system of mesocarnivore-mediated predation risk and 

variable prey diel availability; 
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5. To evaluate the level of plasticity in the activity patterns of mesocarnivore 

species present at SW European communities, and whether ecological shifts 

along the temporal axis can promote coexistence by reducing the overlap in 

activity periods with competitors; 

6. To investigate spatial co-occurrence patterns between mesocarnivores, and to 

evaluate the levels of spatial avoidance or association among species in SW 

mesocarnivore communities, namely: if the occurrence of subordinate species 

is conditional on the presence of superior competitors; and if the presence of a 

superior competitor influences the behaviour of subordinate species. 

7. Using the stone marten / pine marten complex as a case study, for evaluating 

along which of the three main niche axes (spatial, temporal or feeding 

resources) does ecological separation occur, and identify the factors that 

influence that relationship.  

 

 

 

 

 

 

 

 

 

 

 

   



49 

	
  

1.5 Study areas 

In order to address the exposed objectives, five sampling sites in the Iberian Peninsula 

were defined. These sites were selected based on criteria of ecosystem integrity and 

representation of the existing carnivore communities. Particularly, we aimed: to 

represent both bioclimatic regions present in the Iberian Peninsula (Mediterranean and 

Atlantic; figure 1); to represent communities with and without apex predator presence; 

and that the selected sites exhibited varying abundances of the main prey species, the 

European rabbit. These study sites were selected based on previous knowledge about 

their mammalian communities and considering the logistic constraints for field 

sampling. Within each study site, a sampling area of approximately 6000 ha within 

each of the study sites was selected, based on criteria of ecosystem conservation 

status and logistic factors. The selected study sites are described below. 

 

Figure 1.5.1. Locations of the study areas in the Iberian Peninsula, and spatial distribution of the biogeographical 

regions. MNR - Muniellos Natural Reserve; PGNP - Peneda-Gerês National Park; GVNP - Guadiana Valley Natural 

Park; CNP - Cabañeros National Park; SANP - Serra de Andújar Natural Park.  
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1.5.1 Guadiana Valley Natural Park (GVNP) 

The Guadiana Valley Natural Park (GVNP) is a protected area located in Southern 

Portugal. The climate is classified as attenuated thermo-Mediterranean (Alcoforado et 

al. 1982). The landscape is highly fragmented with cereal croplands and agroforestry 

systems (Montado) of Pinus pinea L. and Quercus ilex L. Scrubland patches are mainly 

associated with steeper slopes and elevation ridges. The vegetation is dominated by 

the Myrto communis–Querco rotundifoliae S. series but other sub-serial stages can 

also be found (Costa et al. 1998). Hunting activity is extremely important in this region	
  

and about 86% of the land is included in hunting estates. The most revelant game 

species include the red-legged partridge (Alectoris rufa) and the European rabbit. The 

red fox, stone marten, Egyptian mongoose and European wildcat are the most 

common mammalian mesocarnivore species present, despite the presence, in lower 

densities, are the Eurasian badger and common genet (Monterroso et al. 2009; 

Monterroso 2006; Monterroso et al. 2006). Predator control directed towards red fox 

and Egyptian mongoose is legally conducted. 

 

 

 

 

 

 

 

 

 

 

Figure 1.5.1.1. Landscape at the Guadiana Valley Natural Park study area. 
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1.5.2 Cabañeros National Park (CNP) 

The Cabañeros National Park (CNP) is a protected area located in Central Spain. Like 

the GVNP, it is located in the Mediterranean pluviseasonal continental bioclimate 

region (Rivas-Martínez et al. 2004). The vegetation is dominated by the Pyro-

Quercetum rotundifoliae series and other subserial stages (Rivas-Martinez 1981), 

especially associated with the steeper slopes, higher elevations and main water 

bodies. The landscape at the central lower part of this study area constitutes a 

savannah-like system, with holm oak (Quercus ilex) trees scattered within a grassland 

matrix (García-Canseco 1997). The red fox, stone marten and common genet are the 

most abundant mammalian carnivore species, while European wildcats, Eurasian 

badgers and Egyptian mongooses are also found, but in lower densities (Guzmán 

1997). Neither hunting activity nor predator control is allowed. 

Figure 1.5.2.1. Landscape at the Cabañeros National Park study area. 
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1.5.3 Sierra de Andújar Natural Park (SANP) 

Located in the same bioclimatic region as the GVNP and CNP (Rivas-Martínez et al. 

2004), the studied area at SANP has grossly a similar vegetation structure as the other 

two Mediterranean areas. The main difference is that stone pine (Pinus pinea) and 

maritime pine (Pinus pinaster) forests with and without understory dominate the areas 

with gentler slopes (Gil-Sánchez et al. 2006). Because it is included in one of the last 

natural areas for the Iberian lynx (Gil-Sánchez and McCain 2011; Simón et al. 2009), 

this study area is managed for the conservation of this critically endangered feline 

(IUCN 2013; Simón et al. 2009). Therefore, intense European rabbit recovery actions, 

such as restocking operations, are implemented to maintain the required prey 

availability for the breeding lynx population. The Iberian lynx, the red fox and the 

Eurasian badger are the most abundant mammalian carnivore species, while European 

wildcats, common genets and stone martens are rare and geographically limited 

(authors, unpl. work; Gil-Sánchez, personal communication). Neither predator control 

nor small game hunting is allowed. Big game hunting (red reed, Cervus elaphus, and 

wild boar, Sus scrofa) is allowed, but controlled. 

 

 

 

 

 

 

 

 

 

 

Figure 1.5.3.1. Landscape at the Sierra de Andújar Natural Park study area. 
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1.5.4 Peneda-Gerês National Park (PGNP) 

The Peneda-Gerês National Park (PGNP) is located in the northwestern border of 

Portugal. It is a part of the Cantabrian-Atlantic subprovince, Juresian-Queixensean 

Sector and Amarela-Gerês district, and is included in the montane bioclimatic level with 

a hyper-humid and ultra-hyper-humid ombroclimate (Costa et al. 1998; Honrado 2003; 

Rivas-Martínez et al. 2002). Diverse types of granitic soils and a great topographic 

complexity result in a diversification of ecological conditions, which are reflected in the 

presence of several climacic forests, particularly, mature forests of European oak 

(Quercus robur), especially associated with steeper slopes, valleys and riverbeds 

(Honrado 2003). Pastures, agricultural fields and small villages are found scattered 

through the landscape, mainly along valleys and lower altitude locations (Carvalho and 

Gomes 2004). High levels of tourist visitation also characterize this area, which are 

mainly focused in the warmer months. Hunting is allowed, but geographically restricted. 

This area harbors one of the best populations of wolves and pine martens in Portugal 

(Álvares and Brito 2006; Pimenta et al. 2005). Other present carnivores include the 

stone marten, the common genet and the European wildcat (Carvalho and Gomes 

2004). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5.4.1. Landscape at the Peneda-Gerês National Park study area. 
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1.5.5 Muniellos Natural Reserve (MNR) 

 

     Figure 1.5.5.1. Landscape at the Muniellos Natural Reserve study area. 

The Muniellos Natural Reserve is located in the northwestern region of Spain, in the 

western range of the Cantabrian Mountains. It has a temperate oceanic 

submediterranean bioclimate (Rivas-Martínez et al. 2004) and is one of the best 

representations of Atlantic native forests of western Europe (Suárez-Eoane and 

García-Ovés 2004). The landscapes consist of mountainous agricultural–forest mosaic, 

where mountain tops are mostly dominated by scrublands with Ericaceae, Ulex sp. and 

Betulaceae habitats, and mountain slopes and valleys are essentially dominated by 

oligotrophic oak forests (dominated by Quercus sp., Betula sp. and Fagus sp.) (Prieto 

and Sánchez 1996). Pastures, agricultural fields and small villages are found scattered 

through the landscape, mainly along valleys and lower altitude locations. Hunting and 

predator control is forbidden inside the integral reserve. Human access is also 

restricted to 20 persons per day. However, hunting is allowed in the reserve 

surroundings, where roe deer and wild boar are the most hunted species. Two apex 

predators, the wolf and the brown bear, are present in this study area (Blanco et al. 
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2007; Clevenger et al. 1999; Naves and Fernández-Gil 2007). The most frequent 

mesocarnivore is the pine marten, however other species like the red fox, European 

wildcat and common genet are also present. Stone martens appear to have a more 

restricted distribution in this study area. 
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2.1 Evaluation of attractants for non-invasive 

studies of Iberian carnivore communities 

 

Abstract 

Context. The estimation of population parameters for mammalian carnivore species is 

a challenging task because of their low densities and large home ranges, which make 

detection probabilities very low. Several factors, such as the species abundance, 

habitat structure or the use of an attractant affect carnivore detection probabilities; 

however, attractants are the most easily manipulated. Some previous research 

suggests that the use of effective attractants can significantly increase detection 

probabilities. 

Aims. To assess the effectiveness of several attractants for Iberian carnivores, and to 

evaluate their usefulness for noninvasive survey methods. 

Methods. The responses of seven carnivore species to six potential attractants were 

evaluated through cafeteria-like experiments with captive specimens. A selectivity 

index was applied to assess the relative attractiveness of each tested substance. The 

enclosure tests were followed by field trials with camera-trapping, using the most 

promising attractants for field evaluation of their efficiency. 

Key results. Enclosure trials revealed that lynx urine was the most effective and 

generalist attractant because it successfully attracted six of the seven species tested. 

Rubbing behaviour was also induced in the greatest number of species by lynx urine. 

Field tests using a combination of lynx urine and valerian extract solution induced 

investigative behaviours in over 50% of all detection events in all species, with the 

exception of the Eurasian badger. 

Conclusions. No single attractant is effective for all species. Nevertheless, a 

combination of lynx urine and valerian solution should efficiently attract the majority of 

species present in Iberian carnivore communities. Furthermore, some species exhibit a 
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rubbing behaviour when they come in contact with the attractants. Regardless of the 

generalist efficiency of the lynx urine, other tested substances revealed promising 

results for single-species monitoring. 

Implications. Our results provide a baseline for selecting attractants in survey and 

monitoring programs that focus on carnivore species. The rubbing behaviours exhibited 

by several of the species tested suggest the use of these attractants could improve the 

efficiency of field studies that rely on rub-pads for the collection of biological samples. 

Additional keywords: attractant effectiveness, behavioural response, efficacy, Iberian 

carnivores, population monitoring, species detection. 

 

Introduction 

The definition of suitable management and conservation programs for wildlife strongly 

depends on an accurate assessment of target-species distribution, population size and 

trends (Williams et al. 2002). In the case of carnivore species, which occur in 

particularly low densities and have large home ranges, these parameters are especially 

difficult to estimate (Wilson and Delahay 2001; Long et al. 2008). The inconspicuous 

habits along with human-phobia of many carnivore species make the use of direct and 

invasive field methods laborious and sometimes subject species to unnecessary 

disturbance (Ballenberghe 1984; Michalski et al. 2007). For these reasons, non-

invasive methods are broadly applied to estimate carnivore distributions (Moruzzi et al. 

2002), abundance (Mondol et al. 2009) and population trends (Travaini et al. 2010). 

Among these, some require an active search of the species presence, whereas others 

(e.g. scent stations, hair-snaring and camera-trapping) rely on natural animal 

movement for data collection (Wilson and Delahay 2001; Long et al. 2008). The use of 

attractants that stimulate the investigative response of the target species has been 

reported to significantly increase the detection probabilities of carnivores (Hunt et al. 

2007; Schlexer 2008; Thorn et al. 2009). Therefore, the use of attractants should 

generally be incorporated into sampling methods, which will increase the reliability of 

resultant data and allow for more robust estimates of population parameters 

(Mackenzie and Royle 2005; Long et al. 2008). 
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Attractants used in carnivore studies can be clustered into the following three groups 

(Schlexer 2008): baits – food items or other substances that attract an animal by 

appealing to its sense of taste or smell, usually intended to be consumed (Roughton 

1982; Zielinski et al. 2005); lures – substances that attract an animal via sense of 

smell, sight or hearing (Harrison 1997); and natural attractants – objects in the existing 

environment, that are regularly used by animals as a part of their behavioural 

repertoire. Scent marks such as anal-gland secretions, urine or faeces can be included 

in both of the latter attractant types, and play an important role in the communication 

among sympatric competitors (Ralls 1971; Schlexer 2008). Because scent marks can 

remain effective for long periods of time, they are used by mammals to avoid 

aggressive encounters between competitors by allowing for spatial or temporal 

segregation, the assessment of competitive ability and the establishment of dominance 

relationships (Ralls 1971; Gosling and McKay 1990). Previous studies assessed the 

effectiveness of attractants, especially in North America and Australia (e.g. Fagre et al. 

1983; Phillips et al. 1990; Clapperton et al. 1994; Edwards et al. 1997; McDaniel et al. 

2000 among others); however, nearly all (≈90%) of these evaluations focus on canid or 

felid species such as coyotes (Canis latrans; Fagre et al. 1983; Phillips et al. 1990) and 

red foxes (Vulpes vulpes; Saunders and Harris 2000; Miguel et al. 2005) or feral cats 

(Clapperton et al. 1994; Edwards et al. 1997). To our knowledge, no study has 

focussed on the effectiveness of attractants for entire carnivore communities, with the 

exception of the study of Andelt and Woolley (1996), which targeted a mammal 

community of urban mammals in Colorado (USA). In addition, the few scientific studies 

on the efficiency of attractants for carnivores have yielded conflicting results (Schlexer 

2008). Hence, carnivore attractants are still selected mostly on the basis of tradition 

(Schlexer 2008). 

The Iberian carnivore community consists of 15 native and one introduced species. 

Despite the importance of carnivores in Iberian natural ecosystems, there is still a lack 

of knowledge regarding the distributions and population trends of many carnivore 

species in Portugal and Spain. In fact, three species have recently been classified as 

‘data deficient’ in Portugal by the latest national red book revisions (Cabral et al. 2005) 

and distribution maps of several species are incomplete (Palomo et al. 2007). In the 

present paper, we evaluate the responses of seven carnivore species present in the 
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Iberian ecosystems to six potential attractants. Our research objectives were to 

evaluate which attractants are more efficient for each species and to identify 

combinations of attractants that are effective for the widest range of carnivore species 

in the Iberian carnivore communities. 

 

Materials and methods 

Enclosure facilities, animals and attractants tested 

The enclosure tests were conducted in two zoological facilities that harbour 

autochthonous species of Iberian vertebrate fauna. The Cañada Real Open Center 

(CROC) is located 48 km west of Madrid (Spain), and the Parque Biológico de Gaia 

(PBG) is located 10 km south of Porto (Portugal). The species tested at the CROC 

were red fox (1F), European wildcat (Felis silvestris; 1M and 2F) and Iberian wolf 

(Canis lupus signatus, 3M and 2F). Common genet (Genetta genetta; 1Mand 1F), 

stone marten (Martes foina, 1M), Eurasian badger (Meles meles, 1M and 1F) and 

polecat (Mustela putorius; 8 individuals of unknown sex) were tested in the PBG. All 

individuals of the same species from each facility were kept in the same enclosure. 

Because of logistic constraints, individual marking of the tested specimens was not 

possible; therefore, we were incapable of assigning behavioural responses to specific 

individuals. All animals included in the tests were treated in compliance with guidelines 

outlined by animal ethics committees in Spain and Portugal, as part of the project 

CGL2009-10741. 

The tested attractants were selected on the basis of their traditional use in carnivore 

studies, and included the following: Collarum Canine Bait (Wildlife Control Supplies, 

East Granby, Connecticut, USA), a commercial canid-specific attractant; valerian-

extract solution, containing valeric acid found in urine and anal-sac secretions of coyote 

and fox (Saunders and Harris 2000), and described as a felid-specific attractant 

(Childers-Zadah 1998; Raal et al. 2007); fatty acid scent (FAS), a mixture of seven 

volatile fatty acids found in fermented egg (Roughton 1982), commonly used as a 

generalist carnivore attractant in North America (Roughton and Sweeny 1982); lynx 

(Lynx lynx) urine (obtained from captive specimens (1M and 1F) kept in the CROC); 
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red-fox urine, obtained from captive red foxes (2M and 2F), held at Castilla La-Mancha 

University facilities; and a homogenized solution of stone-marten excrements (obtained 

from the captive specimen held at PBG). The urine and excrement solution used to test 

as attractants were frozen on collection, and kept frozen until the day they were used in 

the enclosure and field trials. 

 

Experimental procedure 

All attractants were tested simultaneously, in a cafeteria-like experiment (Rodgers 

1990; Saunders and Harris 2000). The lures were included in a plastic tube (Ø = 1 cm; 

depth = 3 cm) filled with cotton wool, which was sprayed with 3mL of attractant. The 

plastic tubes were attached horizontally to wooden stakes, with the tube mouth facing 

outwards at a height of ~30 cm above ground. Six wooden stakes, each with a different 

attractant, were placed inside the enclosures, maintaining a distance of no less than 70 

cm from each other. Tests were conducted between December 2008 and January 

2009. 

Each of the tested animals was exposed to the attractants for 3 h, during a period they 

were known to be active (as assessed by the facility keepers), namely during the 

morning for the species present at CROC and after sunset for the species present at 

PBG. By focusing the trials on periods of each specimen’s activity, their response to 

the attractants was expected to be maximized. All animal movements were recorded by 

a video digital camera, model CAMCOLBUL2DC (Velleman, Gavere, Belgium), set so 

that it could include all six attractants in the frame area. Artificial illumination was used 

in the enclosures tested during night-time. 

We considered that an animal had an investigative response whenever at least one of 

three behaviours, namely sniff, lick/bite and/or rub, was observed towards a specific 

attractant. Each individual response was adequately classified as one of the predefined 

behaviours and its intensity (time spent exhibiting that behaviour) was registered. 
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Statistical analysis 

Because preference indexes are affected by individual variation, and individual 

identification of the tested animals was not possible because of logistic constraints, 

data were standardized to allow for comparisons among species and experimental 

treatments. The standardisation was performed by using the following equation: 

 

 

 

where SIT is standardized investigation time, IIT is individual investigation time (in 

seconds), NI is number of individuals in the captive trial and TP is trial period (in hours). 

To evaluate the preference for a specific attractant in detriment of the others, we 

applied the modified Ivlev’s selectivity index (Ivlev 1961), adapted by Jacobs (1974, 

hereafter JSI). This index is broadly applied in ecological studies to evaluate resource 

selection, whether the resources are food items (Toft 1980) or habitat types Palomares 

et al. 2000). Here, we used this index to evaluate the selection towards attractants, 

considering that all of them were equally available to the tested animals. The total time 

spent investigating the attractants was considered as the time the animal was 

predisposed to investigate the lures set in the enclosure; therefore, the availability for 

each attractant was considered to be 1/6 × Ʃ (time interacting with attractants). The 

significance of the difference between the obtained index value and zero (i.e. no 

selection) was evaluated by bootstrap resampling (100 replicates) (Manly 1997) and by 

recalculating the JSI for each bootstrap sample. We then determined the average 

index, standard deviation and 95% confidence intervals for each attractant and 

species. We considered an attractant as positively selected whenever the 95% CI of 

the JSI was positive and did not overlap zero. These attractants scored ‘+1’. Because 

the main purpose of the present work was to evaluate the carnivores’ relative 

preference for attractants, and because with the applied experimental design, we could 

not evaluate behaviour of independent species towards each of them, we did not 

consider ‘avoidance’ as a possible outcome. For that reason, those attractants that 



85 

	
  

obtained 95% CI with negative values and those that overlapped zero were aggregated 

into the score ‘0’. The sum of the scores of each attractant for all the tested species 

was considered as an overall measure of performance (OMP), and used to rank their 

efficiency for the Iberian carnivore community. 

Field tests 

After the enclosure tests, we selected a combination of attractants for field trials that 

promoted a significant investigative response on the maximum number of species. The 

field tests were performed in two distinct areas in the Iberian Peninsula, with 

Mediterranean pluviseasonal continental bioclimates (Rivas-Martínez et al. 2004). 

These included the Guadiana Valley Natural Park (GVNP), located in southern 

Portugal, and the Cabañeros National Park (CNP), located in central Spain, in the 

region of Castilla La-Mancha. The natural vegetation in the GVNP was dominated by 

the Myrto communis–Quercetum rotundifoliae series with other subserial stages (Costa 

et al. 1998), whereas the vegetation in the CNP was dominated by the Pyro-Quercetum 

rotundifoliae series and other subserial stages (Rivas-Martinez 1981). 

The sampling design in each study area followed a gridsampling scheme, composed 

by 1-km2 grid squares. Camera traps, model Leaf River IR5 (LeafRiver OutDoor 

Products, Taylorsville, Mississippi, USA), were placed on every other vertex of the grid 

squares, resulting in a sampling grid of ~1.4 km (which corresponds to the distance 

between diagonal grid nodes). A circular area of 250-m radius surrounding each grid 

node was inspected for carnivore paths before placement of the camera trap. The final 

location of camera traps corresponded to areas of easy access and potentially good 

detection probability within the mentioned buffer. The distance (mean ± s.d.) between 

neighbouring camera stations was of 1203 ± 231matGVNP and 1220 ± 238m at CNP. 

Camera traps were maintained in the field for a minimum period of 28 days and were 

inspected for battery or card replacement every 7–10 days. 

Attractants were placed in the field at a distance of 2–3m from the camera traps. The 

selected attractants were deployed in separated, perforated plastic tubes supported by 

a wooden stake, at a distance of 10–15 cm from each other and ~30 cm above the 

ground. A volume of 5mL of each attractant was sprayed into a cotton gaze held inside 

each plastic tube. Attractants were rebaited every 7–10 days. 
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The GVNP was sampled from 27 July to 6 September 2009 and the CNP was sampled 

from 24 September to 28 October 2009. We chose this season for the field trials 

because it corresponds to the time when the offspring of most medium sized carnivores 

from that year become independent (Blanco 1998). Therefore, we would expect a 

higher number of contacts than during the breeding season. 

We considered a series of photographs of the same species within a 30-min interval as 

dependent events (Kelly et al. 2008). Therefore, only detections of the same species 

separated in time over 30 min were considered for this analysis, to reduce the 

possibility of the same animal being captured more than once in the same camera trap. 

Because the field trials were included in a carnivore-community research project, which 

required a constant and balanced effort of the entire study areas, we could not apply 

traditional ‘control v. treatment’ experimental protocol during field trials. Nevertheless, 

despite being set close to one another, the observed animal behaviours (such as 

sniffing, rubbing or marking) elicited by each of the attractants could be unambiguously 

identified from the photographs and were registered. The proportion of each observed 

response over the total detections for each species was calculated as an index of 

attractant efficiency. 

 

Results 

Captivity tests 

A total of 21 h of enclosure tests revealed distinct strengths in the behavioural 

responses among the species and attractants evaluated. Lynx urine scored the highest 

of the six attractants evaluated, because it was effective for six of the carnivore species 

tested (OMP = +6). Only the stone marten did not spend significantly more time 

investigating lynx urine than what would be expected by chance. 

The Collarum attractant was the second top-scored attractant (OMP = +4). This 

substance stimulated a significant investigative behaviour on the Iberian wolf, 

European wildcat, Eurasian badger and red fox. FAS effectively attracted the Iberian 

wolf, genet and stone marten (OMP = +3). The remaining attractants were effective for 
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less than half of the species tested (OMP = +2, +1 and 0, for the valerian solution, red-

fox urine and stone-marten excrements, respectively; Fig. 2.1.1). 

As for the species responses, the Iberian wolf, European wildcat and genet revealed a 

significant interest for half of the substances they were exposed to (n = 3; Fig. 2.1.1). 

The Eurasian badger, the polecat and the red fox investigated two of attractants 

significantly more than expected by chance. The stone marten revealed a significant 

interest only for FAS. 

 

Figure 2.1.1. The average Jacobs selectivity index value with95%confidence intervals, obtained for the Iberian wolf, 

European wildcat, genet, stone marten, Eurasian badger, polecat and red fox towards each of the tested attractants 

during the enclosure tests in Cañada Real Open Center, Spain, and Parque Biológico de Gaia, Portugal, between 

December 2008 and January 2009. 

 

The strength of the responses towards the elected attractants also varied among 

species (Table 2.1.1). Because of the high range of strength of responses observed for 

the different species and attractants, data were summarised with the median and the 

geometric mean, which reduced the effect of extreme values. The Iberian wolves and 
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genets exhibited the strongest responses to the positively selected attractants. Each 

individual of these species spent, on average, between 38.0 (±3.8, s.d.) and 43.8 (±9.9) 

s h–1 (Iberian wolves) and between 69.2 (±23.6) and 92.7 (±22.8) s h–1 (genets) 

investigating them. Their overall investigation times were also the highest of all species 

(Table 2.1.1). The average intensity of responses by red foxes towards the positively 

selected attractants was 21.1 (± 7.1, s.d.) and 34.0 (±7.4) s individual–1 h–1. The 

summarised responses of this species revealed an intermediate response towards the 

attractants (Table 2.1.1). The overall strength of responses of European wildcats, stone 

martens, Eurasian badgers and polecats were all below 4 s individual–1 h–1 (geometric 

mean, Table 2.1.1). However, the European wildcat did not spend any time at all 

investigating stone-marten excrements, but revealed intermediate investigation 

strengths towards the positively selected attractants (10.4±2.2 to 18.3±9.4 s individual–1 

h–1; Table 2.1.1). The stone marten was only significantly more attracted towards the 

FAS than expected by chance, with a moderate response (22.7±5.5 s individual–1 h–1). 

The Eurasian badger and the polecat displayed the weakest responses, with 

investigative responses below 10 s individual–1 h–1 towards the positively selected 

attractants (Table 2.1.1).  
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Table 2.1.1. Mean investigation time. 

The mean (±s.d.) investigation time (s individual–1 h–1) the Iberian wolf, European wildcat, genet, stone marten, Eurasian 

badger, polecat and red fox spent investigating attractants in enclosures in Cañada Real Open Center, Spain, and 

Parque Biológico de Gaia, Portugal, between December 2008 and January 2009. Zero values were replaced by the 

value 0.001 for the calculation of the geometric mean 

Species N Collarum FAS Lynx urine Stone 
marten 

excrements 

Valerian 
solution 

Red fox 
urine 

Median Geomet
ric 

mean 

Iberian wolf 5 41.1 (±6.0) 38 (±3.8) 43.8 (±9.9) 14.3 (±2.2) 10.3 (±2.4) 13.3 (±3.8) 26.15 22.62 

European 
wildcat 3 11.1 (±3.8) 0.6 (±0.5) 10.4 (±4.4) 0 (±0.0) 18.3 (±9.4) 2.7 (±1.7) 6.55 1.23 

Genet 2 6 (±3.2) 69.2 (±23.6) 78.8 (±24.0) 16.5 (±4.2) 39.7 (±13.1) 92.7 (±22.8) 54.45 35.46 

Stone 
marten 1 0.4 (±0.3) 22.7 (±5.5) 2.8 (±2.0) 1.1 (±1.0) 3.8 (±2.9) 4.3 (±2.1) 3.3 2.78 

Eurasian 
badger 2 3.1 (±1.6) 2.6 (±1.5) 5.4 (±2.0) 0.2 (±0.2) 2 (±1.3) 1.6 (±1.2) 2.6 1.77 

Polecat 8 2 (±0.8) 3.5 (±1.0) 5.7 (±1.7) 2.3 (±0.8) 6.3 (±2.6) 2.5 (±1.1) 3 3.36 

Red fox 1 21.1 (±7.1) 11.9 (±3.8) 34 (±7.4) 2.3 (±1.5) 7.3 (±3.6) 9.6 (±3.8) 10.75 10.55 

Median 
 

6 11.9 10.4 2.3 7.3 6.95 
  

Geometric 
mean 

 
5.45 8.73 14 0.83 8.26 8.37 

  

 

 

The rubbing behaviour was rarely exhibited, except by the Iberian wolf and the genet 

(Table 2.1.2). For this reason, the JSI could not be applied to this behaviour. 

Nevertheless, some indications can be obtained from the animals’ rubbing responses. 

Although the Iberian wolf exhibited rubbing behaviour for all attractants, this behaviour 

was more intense towards FAS (24.5 s individual–1 h–1). Genets also displayed a 

generalist rubbing behaviour; however, the intensity of these responses was stronger 

towards FAS, lynx urine and red-fox urine. The red fox rubbed on Collarum, lynx urine 

and red-fox urine; however these responses were very weak (<2 s individual–1 h–1). 

Both European wildcats and polecats displayed rubbing behaviours towards only one 

attractant, the valerian solution; whereas the Eurasian badger rubbed only against the 

lynx urine. The stone marten was the only species that did not rub on any of the tested 

attractants. 
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Table 2.1.2. Mean rubbing time. 
The mean (±s.d.) rubbing time (s individual–1 h–1) the Iberian wolf, European wildcat, genet, stone marten, Eurasian 

badger, polecat and red fox spent investigating attractants in enclosures in Cañada Real Open Center, Spain, and  0 

Species N Collarum FAS Lynx urine Stone 
marten 

excremen
ts 

Valerian 
solution 

Red fox 
urine 

Number of 
attractants 

with rubbing 
responses 

Iberian wol5f 5 3.6 (±0.8) 24.5 (±3.5) 1.8 (±0.7) 5 (±1.2) 1.3 (±0.4) 3.9 (±1.3) 6 

European wildcat 3 0 (±0.0) 0 (±0.0) 0 (±0.0) 0 (±0.0) 15.7 (±9.4) 0 (±0.0) 1 

Genet 2 0.7 (±0.6) 57.1 (±23.0) 69.9 (±23.9) 7.6 (±3.2) 22.4 (±12.4) 74.2 (±23.4) 6 

Stone marten 1 0 (±0.0) 0 (±0.0) 0 (±0.0) 0 (±0.0) 0 (±0.0) 0 (±0.0) 0 

Eurasian badger 2 0 (±0.0) 0 (±0.0) 0.2 (±0.2) 0 (±0.0) 0 (±0.0) 0 (±0.0) 1 

Polecat 8 0 (±0.0) 0 (±0.0) 0 (±0.0) 0 (±0.0) 3.7 (±2.5) 0 (±0.0) 1 

Red fox 1 1.4 (±1.1) 0 (±0.0) 1.1 (±0.8) 0 (±0.0) 0 (±0.0) 0.3 (±0.3) 3 

Number of species 
with rubbing 
responses  

3 2 4 2 4 3 
 

 

Field tests 

Although the combination of FAS attractant + lynx urine was effective for all species 

tested during the captivity trials (Fig. 2.1.1), yielding a joint OMP score of ‘+7’, the 

combination of lynx urine + valerian solution induced rubbing behaviour in a greater 

number of species (n = 6; Table 2.1.2), suggesting a greater efficiency. Furthermore, 

previous field experience with lynx urine revealed its effectiveness for the attraction of 

the stone marten (Monterroso 2006). For these reasons, the combination of attractants 

selected for the field trials was lynx urine + valerian solution. 

During field tests, we detected eight carnivore species on both study areas, six of 

which were evaluated during the enclosure tests, whereas the following two were not: 

the Egyptian mongoose (Herpestes ichneumon) and the least weasel (Mustela nivalis). 

Overall, 472 carnivore detections were obtained, 126 in GVNP and 346 in CNP. All 

species, except the Eurasian badger, displayed interactive behaviours (sniffing, biting 

or marking) towards some of the lure attractants on more than 50% of the detections 

(Table 2.1.3). The highest scores were obtained by the red fox, the wildcat, the stone 

marten and the Egyptian mongoose, which interacted with the attractants on at least 

70% of the detection occasions. 



91 

	
  

Table 2.1.3. Field-trial carnivore responses. 
The responses exhibited by the red fox, European wildcat, stone marten, polecat, least weasel, Eurasian badger, genet 

and Egyptian mongoose towards valerian extract and lynx urine during field trials in Guadiana Valley Natural Park 

Portugal and Cabañeros National Park, Spain, July–October 2009 

Species No. of detections Proportion of 
investigative 

behaviors over 
all detections 

Proportion of attractant specific 
investigative occasions over all occasions 

with investigative behavior 

GVNP CNP Total Lynx urine Valerian 
solution 

Red fox 41 263 304 0.75 0.69 0.25 

European wildcat 22 4 26 0.81 0.67 0.14 

Stone marten 16 42 58 0.72 0.52 0.17 

Polecat 6 0 6 0.67 0.5 0 

Least weasel 2 0 2 0.5 0 1 

Eurasian badger 12 16 28 0.18 0.8 0.2 

Genet 9 21 30 0.53 0.69 0.19 

Egyptian mongoose 18 0 18 0.78 0.29 0.57 

Mean (±s.d.) 

   

0.62 (±0.21) 0.52 (±0.26) 0.32 (±0.32) 

 

 

Of the two available attractants in the field tests, lynx urine obtained higher proportion 

of interactions for all species, except for the least weasel and the Egyptian mongoose, 

which interacted more with the valerian solution than with lynx urine. 

 

Discussion 

Despite the small sample size available for the enclosure tests, the results suggest that 

none of the tested attractants alone is significantly more efficient than the others for all 

carnivore species tested in our study. The lynx urine was the most efficient attractant 

for the majority of species, because only the stone marten did not spend more time 

than expected by chance investigating it. The Eurasian lynx does not occur naturally in 

the Iberian Peninsula; however, it co-occurs elsewhere with most of the carnivore 
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species present in Iberian ecosystems (e.g. wolf, red fox, European wildcat, stone 

marten, Eurasian badger and polecat) (Mitchell-Jones et al. 1999). Where it occurs, the 

Eurasian lynx is a top predator, known to kill smaller carnivores (Palomares and Caro 

1999). In the Iberian Peninsula, its congener, Iberian lynx (Lynx pardinus), is sympatric 

with all species tested (Palomo et al. 2007), being superior competitor to most of the 

mesocarnivores, often killing them (Palomares and Caro 1999). Several studies on 

carnivores suggest that individuals can identify odours from a competitor species 

(Erlinge and Sandell 1988; Harrington et al. 2009), even when it has never come in 

contact with them before (Harrington et al. 2009). The lack of avoidance and the 

rubbing behavior exhibited by several species in enclosure tests, and the frequent 

investigative behaviour towards lynx urine from most Iberian carnivores observed in 

field trials suggest that the predator’s scent promotes investigative and scent-marking 

behaviours from other carnivores. This finding is in accordance with Harrington et al. 

(2009), who found little support for an avoidance of otter (Lutra lutra) odour by 

American mink (Mustela vison). Similarly, Howard et al. (2002) found that coyotes and 

bobcats (Lynx rufus) were attracted to each other’s faeces. These two species are 

known to react negatively to each other (Wilson et al. 2010), and therefore this 

attraction to the faeces of the competing species could be the result of investigative 

processes that allow for the employment of adequate behavioural strategies for 

coexistence (Wilson et al. 2010). Our data suggest that the presence of lynx scent in 

the ‘familiar’ surroundings of captive and free-living Iberian carnivores must be 

understood by the animals as the presence of a competitor or a threat, which induces 

an investigative behaviour and even scent marking of their own. This was observed in 

red foxes, which urinated and rubbed against the scent, and in stone martens and 

genets that defecated on it (P. Monterroso, pers. obs.). 

The attractiveness of valerian extract on cats has been referred by other authors (Raal 

et al. 2007; Klar et al. 2009; Jerosch et al. 2010), although its effectiveness has never 

been assessed. Our results from the enclosure tests comply with the suggestion of 

these previous authors because it induced not only a significant investigative response 

from wildcats, but it also promoted a strong rubbing behaviour. Such a response to 

valerian scent is traditionally known and has resulted in its use in field studies for hair 

snaring (Djabalameli 2005). Similar behaviour is found in other felid species towards 

another plant extract, the catnip (Nepeta cataria; Edwards et al. 1997; Harrison 1997; 
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McDaniel et al. 2000). Interestingly, our field tests revealed that wildcats showed more 

interest in lynx urine than they did in valerian solution. Edwards et al. (1997) suggested 

that the efficacy of scent-based lures may be strongly influenced by seasonal changes 

in reproductive behaviour, becoming particularly less effective when reproductive 

behaviour is relatively subdued. Our field trials were performed in late summer, when 

territoriality is reduced and no reproductive activity is expected to occur (Sunquist and 

Sunquist 2002). Therefore, it is possible that, in this season, wildcats are more 

interested in a potential competitor and/or predator within their home ranges than with 

a reproduction-appealing scent. 

The Collarum Canine Bait and FAS showed significant relative efficiency for some 

species; however, the overall evaluation of these attractants suggests that they are not 

an adequate choice for the entire Iberian carnivore communities. These attractants can 

be better used for studies focusing on a limited number of species. Asexpected, the 

Collarum Canine Bait could be efficient for canid species, such as the wolf or the red 

fox. Our results suggest that, in Iberian carnivore assemblages, FAS should be used 

only in studies focused on the wolf, the genet and the stone marten, despite being 

broadly used in the United States in carnivore surveys (Roughton and Sweeny 1982) 

and being a recommended attractant for canids and temperate felids (Schlexer 2008). 

The homogenized solution of stone-marten excrements was ineffective for any of the 

species tested. The stone marten, as other mustelids, uses faeces for scent marking 

(Hutchings and White 2000; P. Monterroso, unpubl. data). However, scent marking 

does not occur all the time. Mammals tend to mark when they are both intolerant of, 

and dominant to, other members of the same species or when they come into contact 

with scent of competitor species (Ralls 1971; Miguel et al. 005). The captive stone 

marten from which excrements where collected exhibited abnormal behaviour during 

enclosure trials. A possible outcome of the abnormality in this specimen’s behaviour 

might have been non-scent marking of faeces, which could explain the lack of interest 

displayed by all species towards this substance. Furthermore, as excrements where 

presented in the form of a solution, there was no visual stimuli, which also affects the 

scat attractiveness to other carnivores (Howard et al. 2002). These two factors 

combined may have been responsible for the lack of interest demonstrated by all 

carnivores in the homogenized solution of stone-marten excrements. Red-fox urine 

was only effective for genets, and promoted a strong rubbing response in this species. 
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To our knowledge, no competitive interaction has ever been described involving these 

two species. We acknowledge the fact that the captive environments in which the 

tested animals are maintained might, to some extent, influence their behaviour towards 

interspecific scents. Nevertheless, genets often occur in sympatry with red foxes 

(Palomo et al. 2007) and therefore a possible subtle interaction might exist between 

these two species. 

Rubbing behaviour in enclosure tests was exhibited by almost all species, but only 

towards a reduced number of attractants and very few times. This kind of behaviour is 

frequent across different kinds of mammals, and serves the purpose of leaving their 

scent in response to the scent of a stranger (Ralls 1971). This behavior has been 

observed in felids (Clapperton et al. 1994; Harrison 1997; Thomas et al. 2005) and 

canids (Harrison 2006) and serves as the basis for hair-sample collection in field 

surveys (McDaniel et al. 2000; Thomas et al. 2005; Weaver et al. 2005; Schmidt and 

Kowalczyk 2006). Although none of the tested attractants elicited a strong rubbing 

response from more than two species, the lynx urine and the valerian solution induced 

this type of behaviour for the largest number of species. 

Most evaluations of carnivore attractants involve captive animals and their 

effectiveness is assessed by exposing the animals to the evaluated substances 

(Phillips et al. 1990; Harrison 1997; Saunders and Harris 2000); however, field-testing 

is more appropriate because it incorporates environmental factors and population 

density (Schlexer 2008). Because we could not apply an adequate experimental 

protocol for our field trials, it is not possible to unequivocally state that the use of 

attractants provides higher encounter rates than does not using any attractant at all. 

Nevertheless, our results suggest that the combination of lynx urine and valerian 

solution elicits investigative behaviours in nearly all target species. These results not 

only support those provided by the enclosure tests regarding the efficiency of lynx urine 

for most carnivores, but they also revealed that this attractant might also attract the 

stone marten and, to some extent, the Egyptian mongoose (not evaluated in captivity 

trials). 

Our findings suggest that using lynx urine as an attractant in non-invasive survey 

methods would increase detection probability relative to the remaining attractants 

tested because this substance is actively investigated by most carnivore species 
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present in Iberian communities. Furthermore, our results demonstrate that several of 

these species (e.g. the wildcat, the wolf or the red fox) exhibit rubbing behaviour in the 

presence of this attractant, a fact that allows for the use of rub pads to acquire hair 

samples that could be later used for genetic evaluation, e.g. in mark–recapture studies. 

Another advantage of this attractant is that lynx specimens exist in most zoological 

facilities, making it accessible to wildlife researchers. Indeed lynx urine fits the criteria 

of Fagre et al. (1983), who suggested that an adequate lure should be (1) uniform in 

quality, (2) high in availability, (3) low in cost, (4) easy to handle and (5) highly 

attractive to target species. Some factors, such as seasonality, might affect the 

composition of the urine samples collected throughout the year, thus compromising 

Fagres’ first criteria. However, urine samples from captive animals generally fulfill these 

requirements because captive animals are maintained at near constant conditions, 

regarding feeding and environment, all year long (Howard et al. 2002). 

The fact that the use of the same lures results in varying degrees of success (Schlexer 

2008) highlights the importance of carefully replicating and evaluating attractant studies 

so as to obtain standardized and consistent patterns of target-species responses. To 

our knowledge, the present study is the first attempt to evaluate the efficiency of 

attractants for Iberian carnivore species. Despite the low number of captive animals 

tested and the seasonal characteristics of field sampling, our tests reveal patterns of 

relative attractant efficiency for Iberian carnivores, suggesting that for studies that focus 

on the assessment of carnivore assemblages similar to those present in the Iberian 

Peninsula, lynx urine should be a preferred lure over markings of smaller species or 

other commercial lures. 
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2.2 Factors affecting the (in) accuracy of 

mammalian mesocarnivore scat 

identification in South-western Europe 

 

Abstract  

Research on terrestrial carnivore ecology frequently relies on scat identification and 

analysis. However, species assignment is commonly based on scat morphology. 

Potential errors in scat identification are rarely accounted for and might contribute to 

substantial bias of the final results. Using molecular methods, we evaluate the 

accuracy of species identification based on morphological characteristics of 

mammalian mesocarnivore scats collected in two areas in the Iberian Peninsula. Our 

results revealed that error rates in species assignment of scats based on morphology 

were highly variable, ranging from 14%, for putative red fox Vulpes vulpes samples, to 

88%, for putative wildcats Felis silvestris. The developed models revealed that putative 

species, season, study area and target species abundance are among the factors 

involved in identification accuracy. However, the low variability explained suggests that 

unaccounted factors also had significant effects on accuracy rates. The error rates in 

scat species assignment constitute a potential source of bias in ecological studies, with 

serious consequences for the management of threatened species, as unrealistic 

estimates of status and distribution are prone to occur. Our results suggest that scat 

identification accuracy rates are circumstance-specific and therefore should not be 

transferred or extrapolated. We suggest that scat-based studies should implement 

measures (molecular or others) that allow researchers to determine their own 

circumstance-specific error rates in scat identification, which should be incorporated in 

subsequent analyses, ensuring reliable ecological inferences. 
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Mammalian mesocarnivores; scat; identification; accuracy rates; non-invasive genetics; 
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Introduction 

Adequate and adjusted conservation planning relies on the collection, analysis and 

interpretation of field data. For this reason, the accuracy and reliability of data collected 

in the field assumes a crucial role in wildlife conservation. Data collection on 

mammalian carnivores is particularly challenging because they typically occur in low 

densities, are crepuscular and/or nocturnal, and elusive (Wilson & Delahay, 2001). As 

a result, knowledge on these species frequently relies on indirect methods, namely on 

species presence signs rather than on the observation or capture of the animals 

themselves (Heinemeyer, Ulizio & Harrison, 2008). Among the indirect field methods 

employed for carnivores, scat searching is one of the most frequently used (Davison et 

al., 2002). This method has been argued as being one of the most efficient methods for 

the detection and monitoring of European mammalian mesocarnivores (Sadlier et al., 

2004; Barea-Azcón et al., 2006; Rosellini et al., 2008). Moreover, scat analysis has the 

potential to provide information on many other ecological aspects (e.g. Trites & Joy, 

2005; Janko et al., 2011; Asa, 2012). However, all the potential information retrieved 

from carnivore scats can only be useful upon correct species identification. During 

recent years, advances in non-invasive molecular methods have allowed the extraction 

and amplification of fragmented and degraded DNA (Broquet, Ménard & Petit, 2007; 

Beja-Pereira et al., 2009) and species-specific markers have been developed (Livia et 

al., 2006; Oliveira et al., 2010). The application of genetic scatology has highlighted the 

fact that the evaluation of scat morphology alone is prone to misidentifications among 

sympatric carnivore species, even when evaluated by experienced field technicians 

(Davison et al., 2002; Janecka et al., 2008; Harrington et al., 2010). Regardless, 

monitoring programmes and ecological research on carnivore species are still mainly 

carried out based on morphologically identified scats, without acknowledging potential 

biases induced by misidentifications. However, morphology-based scat searching 
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methods are often the only available alternative for conducting large-scale surveys on 

carnivore species because of the reduced costs and labor when compared with other 

methods (Wilson & Delahay, 2001; Barea-Azcón et al., 2006). Moreover, information 

on the diet of species as elusive as most carnivores can only be accessible through 

scat analysis (Janecka et al., 2008; Napolitano et al., 2008). For these reasons, scat-

based methods cannot be readily discarded; however, potential biases should be 

acknowledged and accounted for.  

The red fox Vulpes vulpes, the European wildcat Felis silvestris and the stone marten 

Martes foina are three mammalian mesocarnivores whose distribution areas overlap in 

Europe (Mitchell-Jones et al., 1999), occurring in sympatry in the Iberian Peninsula 

(Palomo, Gisbert & Blanco, 2007). These species' similar size leads to potential 

misidentifications of their scats, particularly when their scats dimensions and diets 

overlap significantly (Farrell, Roman & Sunquist, 2000; Posluszny et al., 2007).  

In this work, we evaluate the accuracy of species identification of mammalian 

mesocarnivore scats collected in the field in two study areas during two different 

seasons. An evaluation of potential factors that affect scat identification accuracy is 

also implemented. This evaluation provides a glimpse on some factors affecting the 

accuracy of scat morphological identification and thus allows the implementation of 

measures that minimize (or at least account for) scat misidentification rates.  

 

Methods  

Study areas  

Samples were collected in two Iberian Mediterranean protected areas: the Guadiana 

Valley Natural Park (GVNP, south-east Portugal) and the Cabañeros National Park 

(CNP, Central Spain). These two areas belong to the Mediterranean pluviseasonal 

continental bioclimate region (Rivas-Martínez, Penas & Díaz, 2004). A study area of 

approximately 6000 ha within each of the protected areas was selected based on the 

criteria of ecosystem conservation status and logistic factors.  
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The landscape at GVNP is highly fragmented with cereal croplands and agroforestry 

systems ('Montado') of stone pine Pinus pinea L. and holm oak Quercus ilex L. 

Scrubland patches are mainly associated with steeper slopes and elevation ridges. The 

red fox, stone marten, Egyptian mongoose Herpestes ichneumon and European 

wildcat are the most common mammalian mesocarnivore species present, despite the 

presence, in lower densities, of Eurasian badger Meles meles and common genet 

Genetta genetta (Monterroso et al., 2009; Monterroso, Alves & Ferreras, 2011). 

Predator control directed towards red fox and Egyptian mongoose is legally allowed. 

The landscape at CNP is dominated by Pyro-Quercetum rotundifoliae series and other 

sub-serial stages (Rivas-Martinez, 1981), especially associated with the steeper 

slopes, higher elevations and main water bodies. The landscape at the central lower 

part of this study area constitutes a savannah-like system, with holm oak trees 

scattered within a grassland matrix (García-Canseco, 1997). The red fox, stone marten 

and common genet are the most abundant mammalian carnivore species, while 

wildcats and Eurasian badgers are also found but in lower densities (Guzmán, 1997; 

Monterroso et al., 2011). Neither hunting activity nor predator control is allowed. 

Field sampling 

Both study areas were sampled in two distinct seasons: summer/autumn (July-

October), when the offspring of most medium-sized carnivores from that year become 

independent, and winter/spring (February-April), during these species breeding season 

(Blanco, 1998).  

Within each study area, 10 transects, 3 km long each, were designed along 

unimproved roads or trails for active searching of carnivore signs. Each transect was 

sampled twice per season: once at the beginning of the sampling campaign and again 

after approximately 20 days (20.25 ± 3.16 days; mean ± sd). Transects were spatially 

distributed in order to adequately sample all existing habitats. They were surveyed on 

foot by trained field technicians who collected all carnivore scats within a bandwidth of 

2 m to each side of the transect line. Scats were identified based on their location, 

morphology, dimensions, colour and odour, with the aid of specific field guides (Bang, 

Dahlstrom & Mears, 2007; Iglesias & España, 2010). Scats were collected, taking all 

precautions to prevent contamination from the collector or cross- contamination from 
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other samples. All scats estimated to be over 1-month old, or for which species 

assignment was doubtful, were discarded from further procedures. Selected samples 

identified as belonging to the European wildcat, red fox or stone marten were 

preserved in plastic vials in ethanol (96%) until DNA extraction. Additional 

opportunistically collected scats, from the same study areas and seasons, were also 

included in this study.  

As a measure of carnivore-relative abundance, we used data obtained from camera 

trapping (see details in Monterroso et al., 2011). The trap success estimated for each 

of the target species followed the methods described by the previous studies (Carbone 

et al., 2001; Kelly & Holub, 2008) and consisted of the mean number of independent 

detections per 100 trap days, over all camera stations.  

Genetic analysis and identification  

DNA extractions were performed with the Qiagen QIAamp DNA Stool Mini Kit (Qiagen, 

Hilden, Germany) according to manufacturer's instructions in a separate and 

autonomous facility, under sterile conditions. Species assignment was per- formed 

using two diagnostic methods described by Oliveira et al. [2010; interphotoreceptor 

retinoid-binding protein (IRBP) fragment] and Palomares et al. [2002; domain 1 of the 

control region (CR)]. Amplifications were performed in a final volume of 10µL using 5µL 

of Qiagen PCR MasterMix, 0.2µM of each primer and 2µL of DNA extraction (c. 10 ng 

of genomic DNA). Thermocycling conditions for both fragments were as follows: 95°C 

for 15 min, followed by 40 cycles at 95°C for 30 s, 60°C (IRBP) or 58°C (CR) for 20 s 

and 72°C for 20 s, with a final extension step at 72°C for 5 min (IRBP) or 60°C for 10 

min (CR). Polymerase chain reaction (PCR) amplifications were carried out in a 

thermocycler MyCycler (Bio-Rad, Hercules, CA, USA). Successful amplifications were 

purified using the enzymes exonuclease I and shrimp alkaline phosphatise, and 

sequenced for both strands with BigDye chemistry (Applied Biosystems, Carlsbad, CA, 

USA). Sequencing products were separated in a 3130 XL Genetic Analyzer (Applied 

Biosystems). Pre- and post-PCR manipulations were conducted in physically separated 

rooms. 

Sequence alignment was performed using Clustal W (Thompson, Higgins & Gibson, 

1994) implemented in BioEdit software (Hall, 1999) and was manually checked and 
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reassessed for any discrepancy. Species identification using IRBP followed the 

variants in Iberian wild carnivores reported by Oliveira et al. (2010). Aligned CR 

sequences were compared with the corresponding region of the mitochondrial genome 

from target species in the GenBank. Both markers were consistently used to increase 

identification confidence. Each marker has its own advantage: the IRBP nuclear marker 

is highly discriminative for Southern European carnivores (Oliveira et al., 2010); 

however, mtDNA is usually available in higher quantity in non-invasive samples, 

increasing the species identification success. All molecular identifications were blind, 

that is, information from morphologic identifications was not available to the laboratory 

staff. 

Data analysis  

For the sake of reliance, the molecular species assignment of each sample was 

considered the correct one. The success of the genetic procedure was assessed as the 

proportion of samples with species identification over the total number of samples 

analysed. Samples were grouped in each study area and season on the basis of their 

morphological identifications. The accuracy of morphological identifications was 

expressed as the proportion of correct identifications over the total number of samples 

with molecular identification. Several factors were considered to potentially influence 

the accuracy of morphological identifications: study area, season and mammalian 

community composition. These relations were tested using a binary response variable, 

identification accuracy, where '1' corresponds to correctly identified samples and '0' for 

cases where morphological and molecular identification differed. Basic variables 

consisted of season (summer/autumn vs. winter/spring), study area (CNP vs. GVNP) 

and putative species ID (i.e. morphological identification: red fox vs. stone marten vs. 

European wildcat). Biological variables were estimated for a buffer area of 1 km 

surrounding each scat- searching transects. This buffer size roughly corresponds to the 

radius of a hypothetical circular home range of the target species in Europe and was a 

criterion previously used by other authors (Barea-Azcón et al., 2006; Pita et al., 2009). 

Data obtained from all camera traps included in the buffer area of a particular transect 

were pooled to estimate biological parameters potentially related to the morphological 

identification accuracy. Derived variables consisted of red fox, stone marten and 

European wildcat camera-trap successes, as well as the interactions between these 
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variables, and carnivore species evenness (as defined by Heip, 2009). As available 

prey may be related to their consumption by predator species, the camera- trap 

success of three prey items - European rabbit, Iberian hare Lepus granatensis and 

small mammals (Rodentia) - was considered. Generalized linear models were used to 

model the identification accuracy, assuming a binomial error distribution and logit link 

function (Crawley, 2007). As the ratio for global model was≈20, the corrected AIC 

values for small sample sizes (AICc) was used (Burnham & Anderson, 2002). The 

∆AICc and model weights were used to compare and rank all tested models, which 

included all variable combinations and a null (intercept-only) model (Burnham & 

Anderson, 2002). We only considered the top models whose summed weights 

accounted for 95% of the total. Individual variable weights were estimated by summing 

the weights of all the selected models in which they were included. All statistical 

analyses were performed using R software (R Development Core Team, 2008). Models 

and model parameters were developed with the AICcmodavg package, version 1.21 

(Mazerolle, 2011).  

 

Results  

A total of 320 putative scats from red fox, stone marten and European wildcat were 

submitted to genetic analysis. Approximately half of the samples were collected at each 

study area (44.7%, n=143, at CNP and 55.3%, n=177, at the GVNP). According to the 

season, 134 samples were collected in summer/autumn, while 186 were acquired in 

winter/spring. The majority of the collected scats (88.5%) was identified by 

morphological characteristics as belonging to either red fox (49.1%, n=157) or stone 

marten (39.4%, n=126), while potential European wildcat scats consisted only of 11.5% 

(n=37) of the total sample. Species assignment based on molecular methods was 

achieved in 251 samples, resulting in an overall genetic identification success of 

78.4%. The genetic identification success varied slightly across seasons, areas and  

putative species [species G=4.501, 2 degrees of freedom (d.f.), P= 0.105; season 

G=1.049, 1 d.f., P= 0.306; area G=0.484, 1 d.f., P= 0.487], ranging from 64.0% (CNP 

at winter/spring) to 94.7% (GVNP at summer/autumn; Table 2.2.1). The IRBP nuclear 

fragment provided a lower identification success (34.3%) than the CR mitochondrial 
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marker (97.6%). The identification success for both markers simultaneously was 

31.1%. 

Over a total of 251 genetically identified scats, 244 belonged to one of the target 

species (red fox, stone marten or wildcat), even though not always matching the 

morphological identification. The remaining seven samples were genetically assigned 

to polecat Mustela putorius (n=2) and dog Canis lupus familiaris (n=5). The 

morphological identification of putative red fox scats had an accuracy rate of over 82% 

(101 out of 117; 86.3% as average) across all seasons and study areas. Red fox 

misidentified scats belonged to stone marten (n=9, 7.7%), dog (n=5, 4.3%) and 

European wildcat (n=2, 1.7%; Table 2.2.1). These genetically identified stone marten 

scats were mostly collected at CNP (n=8), while most dog scats were collected at 

GNVP (n=4). European wildcat scats morphologically assigned to red fox were 

collected both at CNP and at GVNP. 

Putative stone marten scats were accurately identified by morphological characteristics 

in 77.8% (84 out of 108) of the occasions. Misidentified stone marten scats were 

genetically assigned mostly to red fox (n=22, 20.4%) and, to a lesser extent, to polecat 

(n=2, 1.8%; Table 2.2.1). Misidentification of red fox scats as stone martens occurred 

across all seasons and study sites, while misidentification of polecat scats as stone 

martens only occurred in two samples collected in GVNP during summer/autumn. 

The lowest overall accuracy rate corresponded to putative European wildcat scats 

(11.5%) and most misidentified samples were genetically assigned to red fox (84.6%; 

Table 2.2.1).  

Data obtained from camera trapping revealed that while the three target mammalian 

mesocarnivores (red fox, stone marten and European wildcat) produced trap success 

within the same range of values in both seasons at GVNP, in the CNP study area the 

guild is highly biased towards the red fox (Table 2.2.1).  

The models developed for scat identification accuracy hardly explained 25% of the 

observed variability (Table 2.2.2). The top 95% confidence model sets systematically 

included the season, study area and morphological species assignment, and these 

variables' individual weights were always higher than 0.90 (Appendix 2.2). The 
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European wildcat and red fox trap successes were the fourth and fifth ranked variables, 

with weights of 0.63 and 0.60.  

Table 2.2.1 Red fox Vulpes vulpes, stone marten Martes foina and European wildcat Felis silvestris relative abundances 

and genetic results for the scats morphologically identified, collected at Cabañeros National Park (CNP) and Guadiana 

Valley Natural Park (GVNP), during the summer 2009 and winter 2010. 

Putative 
species Season Study area TS N SGI (%) 

Proportion (%) of samples genetically identified as: 

Red fox  Stone 
marten 

European 
wildcat 

Polecat Dog 

Red fox Summer/Autumn CNP 22.08 ± 22.04 26 64.00 82.35 17.65 0.00 0.00 0.00 

GVNP 4.16 ± 6.46 39 79.49 93.55 0.00 0.00 0.00 6.45 

Winter/Spring CNP 34.19 ± 34.68 54 77.78 83.33 11.90 2.38 0.00 2.38 

GVNP 2.27 ± 4.96 38 71.05 85.19 3.70 3.70 0.00 7.41 

Overall 16.78 ± 25.28 157 75.52 86.32 7.69 1.71 0.00 4.27 

Stone 
marten 

Summer/Autumn CNP  3.53 ± 5.72 30 90.00 7.41 92.59 0.00 0.00 0.00 

GVNP 1.63 ± 3.58 19 94.74 16.67 72.22 0.00 11.11 0.00 

Winter/Spring CNP 2.14 ± 3.83 32 75.00 45.83 54.17 0.00 0.00 0.00 

GVNP 6.26 ± 7.96 45 86.67 15.38 84.62 0.00 0.00 0.00 

Overall 3.34 ± 5.71 126 85.71 20.37 77.78 0.00 1.85 0.00 

European 
wildcat 

Summer/Autumn CNP 0.10 ± 0.30 1 100.00 100.00 0.00 0.00 0.00 0.00 

GVNP 0.69 ± 0.97 19 84.21 80.00 6.67 13.33 0.00 0.00 

Winter/Spring CNP 0.18 ± 0.45 0 - - - - - - 

GVNP 0.53 ± 1.05 17 69.23 90.00 0.00 10.00 0.00 0.00 

Overall 1.29 ± 2.80 37 78.78% 84.62 3.85 11.54 0.00 0.00 

Proportion of samples genetically identified: red fox, stone marten, European wildcat, polecat Mustela putorius and 

dog scats Canis lupus familiaris. Correct morphological assignments are marked in bold.  

n, total number of putative red fox, stone marten and European wildcat scats sent for genetic analysis; SGI, 

proportion of scats identified through genetic analyses; TS, trap success, that is, the number of independent red fox 

detection per 100 camera-trap days (mean standard deviation).  

The stone marten trap success ranked next, while the remaining variables (interactions 

between target species trap successes) revealed a very limited influence in explaining 

the observed data structure (appendix 2.2).  

Model parameter estimates reveal that higher morphological identification accuracy 

was obtained in summer/autumn season and a positive effect of the GVNP study area 

(Appendix 2.2). Furthermore, morphological identifications had a significantly higher 

probability of being accurate for samples originally classified as belonging to red fox, 

while samples classified as European wildcat scats had the less chance of being 

accurately identified. Additionally, identification accuracy was significantly higher 



114 

	
  

where wildcat trap success was lower and red fox trap success was higher (Appendix 

2.2). Carnivore evenness and prey availability variables had very limited influence in 

explaining the observed data variability. 

Table 2.2.2 Models for accuracy of mammalian mesocarnivore scats morphologic identification. 

Model ka ∆AICc D2 wi Cum.w ER rank 

Ssn, SA, MID, Wldct, Fox  7 0 24.70 0.31 0.31 1.00 1 

Ssn, SA, MID, Wldc, Fox, Mrtn 8 1.17 25.05 0.17 0.48 1.80 2 

Ssn, SA, MID, Fox:Mrtn 6 2.44 23.06 0.09 0.57 3.39 3 

Ssn, SA, MID, Wldc 6 2.51 23.04 0.09 0.65 3.51 4 

Ssn, SA, MID, Fox, Mrtn 7 2.81 23.69 0.07 0.73 4.07 5 

Ssn, SA, MID, Wldct:Fox 6 3.59 22.65 0.05 0.78 6.03 6 

Ssn, SA, MID, Wldc, Mrtn 7 3.93 23.28 0.04 0.82 7.13 7 

Ssn, SA, MID, Fox 6 4.19 22.43 0.04 0.86 8.13 8 

Ssn, MID, Mrtn 5 4.36 21.62 0.03 0.89 8.86 9 

Ssn, SA, MID, Mrtn 6 5.66 21.91 0.02 0.91 16.13 10 

SA, MID, Wldc 5 6.13 20.98 0.01 0.92 21.43 11 

SA, MID, Fox 5 6.66 20.79 0.01 0.94 27.91 12 

SA, MID, Wldct 5 6.89 20.71 0.01 0.95 31.41 13 

ΔAICc, variation in Aikake's information criteria in relation to the highest ranked model; Cum.w, cumulative weight; D2, 

squared deviance; ER, evidence ratio; Fox, red fox Vulpes vulpes trap success (detections per 100 trap days); 

Fox:mrtn, interaction between red fox and stone marten trap successes (detections per 100 trap days); k, number of 

model parameters; MID, morphologic identification; Mrtn, stone marten Martes foina trap success (detections per 100 

trap days); SA, study area; Ssn, season; wi, model weight; Wldc, European wildcat Felis silvestris trap success 

(detections per 100 trap days); Wldc:mrtn, interaction between European wildcat and stone marten trap successes 

detections per 100 trap days). 

 

 Discussion  

Our results indicate that errors are common in the identification of mammalian 

mesocarnivore scats, and that its accuracy is influenced by biological, environmental 

and human-related factors. Morphological identification efficiency is generally assessed 

by comparison with alternative procedures (Barea-Azcón et al., 2006; Long et al., 

2007). We used genetic identification to evaluate the accuracy of morphology-based 

scat identification. The technical difficulties inherent to the analysis of low quantity and 

quality DNA limit the efficiency of this approach (Broquet et al., 2007). However, our 

genetic identification success (78.4%) was in agreement with other studies: 72% in 

Fernandes et al. (2007), 81.1% in Oliveira et al. (2010) and 60% in Harrington et al. 
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(2010). Mitochondrial assays are often more efficient than nuclear ones for non-

invasive samples (Broquet et al., 2007). Nevertheless, both markers provided 

identification data simultaneously in nearly one- third of the samples, which proves that 

confirming species identification using two different markers is feasible and fruitful 

(Beja-Pereira et al., 2009). Our study areas reach high temperatures during summer 

season, which leads to a fast degradation of scat DNA (Santini et al., 2007), but in both 

areas, the overall amplification success was high (≈80%). On the other hand, the cold 

weather, low atmospheric moisture and reduced precipitation during winter should help 

preserve DNA. Therefore, a higher extraction success would be expected during 

winter. However, no evident seasonal differences occur in genetic identification 

success, neither among putative species identification in this work. The morphological 

classification errors ranged between ≈14% for putative red fox and ≈88% for putative 

European wildcat scats. Most observed identification errors consisted of scats 

belonging to one of the three target species. Only seven samples (≈3%) actually 

belonged to other carnivores (polecat and dog). Our results are consistent with those of 

other authors who reported that substantial misidentifications have been perpetuated in 

scat-based studies on mammalian mesocarnivores in Europe. For instance, the scats 

of pine marten Martes martes were consistently misidentified in the UK, mostly with red 

fox (Davison et al., 2002). In another study, on American mink (Neovison vison), none 

of the genetically analysed scats belonged to the target species, rather being of pine 

marten or fox origin (Harrington et al., 2010).  

The low variability explained by our models (25%) suggests that some important 

factors affecting the accuracy of morphological identification of scats were most likely 

not considered. Nevertheless, the accuracy of scat identification seems to be affected 

by the species assignment by morphological characteristics, the season and the study 

area. The relative abundance of target species also influenced accuracy, although to a 

lesser extent. Scats morphologically classified as red fox had the highest probability of 

being correctly identified, whereas those classified as belonging to European wildcat 

had the least chance of being correctly identified. The high abundances and marking 

behaviour may be responsible for the high detection rates of red fox scats (Cavallini, 

1994; Monclús et al., 2008; Monterroso et al., 2011) and, hence, a higher probability of 

a given scat being from red fox.  
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Season also revealed a significant effect on the accuracy of scat morphological 

identification. Scats were more accurately identified when collected in summer/autumn 

than in winter/ spring. The Mediterranean area is characterized by marked seasonal 

climatic variations (Blondel & Aronson, 1999), causing fluctuation in the availability of 

food resources throughout the year. Summer and autumn are characterized by a high 

diversity of food items, enabling segregation in the exploitation of key resources 

(Barrientos & Virgós, 2006). The reduced diversity of available food resources during 

winter most likely leads to a high dietary niche overlap (Carvalho & Gomes, 2004) and, 

as a consequence, higher similarities among scats should be expected. These 

seasonal fluctuations in species feeding behaviours may be responsible for the varying 

rates of scat identification accuracy.  

Overall, scats collected in the GVNP had the greatest probability of being correctly 

identified compared with scats collected in CNP. Feeding resources show remarkable 

differences in their availability among the two study areas. While the European rabbit is 

very abundant in the GVNP (Monterroso et al., 2009; Sarmento et al., 2009), it is nearly 

absent in CNP (Guzmán, 1997). Moreover, fruits are more widely available in CNP 

than in GVNP.  

Both the European wildcat and the red fox are considered as facultative specialists in 

European rabbit (Lozano, Moleón & Virgós, 2006; Delibes-Mateos et al., 2008), 

meaning that they preferably prey on it when it is available. However, when rabbits are 

not available, the European wildcat switches prey, mainly towards rodents (Lozano et 

al., 2006), while the red fox feeds on a wider variety of alternative foods (Díaz-Ruiz et 

al., in press). On the other hand, the stone marten diet in Mediterranean areas is highly 

variable (Serafini & Lovari, 1993; Genovesi, Secchi & Boitani, 1996; Rosalino & 

Santos-Reis, 2009). Different availabilities of feeding resources could lead to locally 

adapted strategies within the carnivore community, which likely led to varying scat 

morphological characteristics. However, as data on the local feeding ecology of target 

species are not available, an adequate evaluation of how diet composition affects scat 

identification accuracy is not possible. 

Moreover, another potential uncontrolled factor could have some influence on the 

observed accuracy differences among study areas, which is the human factor. The 

prior knowledge that field technicians have on the carnivore community structure in 
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each area might subconsciously bias their judgment. Varying error rates were also 

found in other studies across different study areas surveyed (Davison et al., 2002).  

The red fox and stone marten abundances showed a positive relation to classification 

accuracy. The same pattern has been identified by Davison et al. (2002) with pine 

martens and red foxes. The more abundant the target species, the more likely it is to 

find its scats in a given area (Sadlier et al., 2004; Webbon, Baker & Harris, 2004). 

Moreover, several authors have referred that scats' misidentification rates tend to 

increase when targeting species are rare or when scats are difficult to detect (Bulinski 

& McArthur, 2000; Prugh & Ritland, 2005). Thus, when target species are common, 

accuracy rates increase, as supported by our models. However, wildcat abundance 

negatively influenced identification accuracy. The European wildcat distribution in 

southern Iberian Peninsula is strongly influenced by the availability of the European 

rabbit (Monterroso et al., 2009). As a consequence, where rabbit abundances are high, 

so is the abundance of European wildcat, and higher dietary overlap with the red fox is 

expected. Scats with similar contents, combined with the increased abundance of 

wildcat faeces, probably lead to a decrease in the accuracy of scat classification.  

The use of scats to study mammalian carnivores is common in Europe, but the use of 

molecular methods to assess the reliability of the identification of the collected samples 

is scarce. For instance, among 35 studies on ecology of mammalian mesocarnivores 

using scats published in the last 10 years, and performed in 13 European countries, 

only 8.5% assessed the reliability of the identification of the collected samples based 

on molecular methods (Appendix 2.2). Our results suggest that error rates in carnivore 

scat identifications vary between species and target species abundance, becoming 

more severe for scarce species or when species with similar scats occur in equivalent 

abundances. We suggest that some cautionary measures can be implemented to 

minimize potential biases, such as restricting scat collection to specific well-known 

sites, used exclusively by the target species. Regardless, only one-third of the 

reviewed literature took such cautions (Appendix 2.2). In light of our results, as well as 

other recent studies (Davison et al., 2002; Janecka et al., 2008; Harrington et al., 

2010), mammalian mesocarnivore studies undertaken using morphology of scats 

should be carefully reviewed for potential biases. As bias severity is associated with 

species rarity, serious consequences for the management of threatened species when 
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data led unrealistic estimates of status and distribution are prone to occur (Birks et al., 

2005; Miller et al., 2011). While this study focused on a three-species complex, the 

applicability of our conclusions can be extended to other carnivore species complexes, 

where similar problems are known to occur (e.g. Hansen & Jacobsen, 1999; Pilot et al., 

2007). 

Our results suggest that scat identification accuracy rates are circumstance-specific, 

and for that reason, should not be transferred or extrapolated. We recommend that 

future scat- based studies should implement measures (molecular or other) that allow 

researchers to determine their error rates in scat identification. If financial constraints 

prevent all samples to be analysed, at least a subsample should be subjected to a 

confirmation method, and error rates should be considered for subsequent analysis, 

ensuring adequate results and consequent ecological inferences.  
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Appendix 2.2 

 

Table A.2.2.1. Relative contribution of each variable for the models for accuracy of morphologic identification of 

carnivore scats. Ssn – Season, SA – Study area, MID – Morphologic identification, Wldc – European wildcat trap 

success (detections/100 trap days), Fox – Red fox trap success (detections/100 trap days), Mrtn – Stone marten trap 

success (detections/100 trap days), Fox:mrtn – interaction between red fox and stone marten trap successes 

(detections/100 trap days), Wldct:mrtn – interaction between European wildcat and stone marten trap successes 

(detections/100 trap days). 

Model wi
 a Rc b (%) Cc c (%) rank 

MID 0.94 21.08 21.08 1 
Ssn 0.92 20.63 41.70 2 
SA 0.90 20.18 61.88 3 
Wldct 0.63 14.13 76.01 4 
Fox 0.60 13.45 89.46 5 
Mrtn 0.33 7.40 96.86 6 
Fox:mrtn 0.09 2.02 98.88 7 
Wldct:fox 0.05 1.12 100.00 8 
a – wi – variable weight; b – Rc – Relative contribution (percentage); c – Cc – Cumulative contribution (percentage) 
 

 

Table A.2.2.2 – Model averaged coefficients of factors for accuracy of morphologic identification of carnivore scats. Ssn 

– Season, SA – Study area, MID – Morphologic identification, Wldct – European wildcat trap success (detections/100 

trap days), Mrtn – Stone marten trap success (detections/100 trap days), Fox – Red fox trap success (detections/100 

trap days). 

Variable categories  Model averaged estimate Unconditional S.E. 95% Conf. Int. 

Intercepta  1.56 0.73 0.13 3.00 
Ssn: Winter/Spring -1.07 0.43 -1.92 -0.22 

SA: GVNP 1.65 0.76 0.15 3.15 

MID: stone marten  -0.73 0.37 -1.46 0.00 

MID: wildcat -4.41 0.76 -5.91 -2.91 

Wldct -0.17 0.08 -0.32 -0.02 

Mrtn 0.06 0.05 -0.04 0.17 

Fox 0.04 0.02 0.00 0.07 
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2.3 Efficiency of hair snares and camera traps 

to survey mesocarnivore populations 

 

Abstract  

Mammalian carnivore communities affect entire ecosystem functioning and structure. 

However, their large spatial requirements, preferred habitats, low densities, and elusive 

behavior deems them difficult to study. In recent years, non-invasive techniques have 

become much more common as they can be used to monitor multiple carnivore 

species across large areas at a relatively modest cost. Hair snares have the potential 

to fulfill such requirements, but have rarely been tested in Europe. Our objective was to 

quantitatively assess the effectiveness of hair snares for surveying mesocarnivores in 

the Iberian Peninsula (Southwestern Europe), by comparison with camera trapping. We 

used an occupancy modeling framework to assess method-specific detectability and 

occupancy estimates, and hypothesized that detection probabilities would be 

influenced by season, sampling method, and habitat related variables. 

A total of 163 hair samples were collected, of which 136 potentially belonged to 

mesocarnivores. Genetic identification success varied with diagnostic method: 25.2% 

of identification success using mitochondrial CR, and 9.9% using the IRBP nuclear 

gene. Naïve occupancy estimates were, in average, 5.3 ± 1.2 times higher with camera 

trapping than with hair snaring, and method-specific detection probabilities revealed 

that camera traps were, in average, 6.7 ±1.1 times more effective in detecting target 

species. Overall, few site-specific covariates revealed significant effects on 

mesocarnivore detectability. 

Camera traps were a more efficient method for detecting mesocarnivores and 

estimating their occurrence when compared to hair snares.  To improve our hair 

snares’ low detection probabilities, we suggest increasing the number of sampling 

occasions and the frequency at which hair snares are checked. With some refinements 

to increase detection rates and the success of genetic identification, hair snaring 

methods may be  valuable for providing deeper insights into population parameters, 
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attained through adequate analysis of genetic information, that is not possible with 

camera traps. 

 

Keywords 

Noninvasive sampling, monitoring, molecular methods, occupancy, detection 

probability, carnivores 

 

Introduction 

Carnivores have cascading effects on entire ecosystems despite being relative sparse 

across landscapes (Gompper et al. 2006).  As a result, carnivores are often the target 

of conservation efforts and an increasing number of studies have focused on assessing 

their density, relative abundance, or occupancy across large geographical areas 

(Gompper et al. 2006, Linkie et al. 2007).  However, the challenges involved with 

monitoring carnivores are numerous.  The majority of carnivores have large spatial 

requirements, often live in remote and rugged habitats, occur at low densities, and are 

nocturnal and elusive (Long et al. 2007, Mills 1996).  Invasive techniques, such as 

mark-recapture or radiocollaring, are impractical to apply across large spatial scales 

since they are time-consuming, have high costs, and involve complex logistical 

requirements.  Non-invasive techniques are therefore becoming much more common 

as they can be used to monitor multiple carnivore species across large areas at a 

relatively modest cost (Johnson et al. 2009, Weaver et al. 2005, Zielinski et al. 2006).          

Camera traps and hair snares, two non-invasive techniques, are often used to confirm 

the presence of a species.  Camera traps have successfully documented the presence 

of a vast array of common and rare mammals including felids, ursids, viverrids, 

mustelids, and cervids (Baldwin and Bender 2008, Johnson et al. 2009, Linkie et al. 

2007, Tobler et al. 2009).  Camera traps generally have high detection rates (Long et 

al. 2007, O’Connell et al. 2006) but only permit species identification if patterns in the 

pelage or specific markings allow individual identification. Hair snares, conversely, 

permit individual and sexual identification (using genetic methods) in addition to 
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species identification, and recently have been extensively used to detect several 

mammal species (Kendall et al. 2009, Mills 1996, Ruell and Crooks 2007). The 

complementary individual identification provided by hair snares can be used to study 

the spatial structure, demography and occurrence of carnivore populations (Davoli et 

al. 2013; Zielinski et al. 2006).  

The success of camera traps and hair snares at detecting animals varies across 

species and habitats.  Thus, quantifying the efficacy and potential biases of these 

techniques would help inform researchers and managers on what sampling method(s) 

and survey design can be used to optimally achieve their research objectives (Nichols 

et al. 2008). The ability to effectively and efficiently monitor carnivores is particularly 

critical in Southwestern (SW) Europe, since it has a diverse mammalian carnivore 

community, and where research studies and funding for conservation are limited in 

comparison to North America and other parts of Europe.     

Using an occupancy modeling framework, we aimed to quantitatively assess the 

effectiveness of hair snares for surveying Iberian mesocarnivores, by investigating how 

sampling method (i.e., hair snares and camera trap surveys) affects the ability to detect 

and estimate species’ occupancy. Occupancy modeling allows the estimation of 

method-specific detection probabilities, and consequently the sampling effort required 

to determine the occupancy status of each target species using camera traps vs. hair 

snares (Bailey et al. 2007). We hypothesized that site-specific covariates such as 

distance to water, habitat type, slope or elevation would influence target species 

behavior, and consequently, their detectability. Detection is also expected to be 

influenced by season and sampling method (O’Connell et al. 2006, Royle and Nichols 

2003). Therefore, by controlling for these external factors potentially influencing 

detectability, we explored whether a hair snaring sampling protocol would provide 

adequate data for mesocarnivore population monitoring. As detection by rub stations is 

dependent on a behavioral response elicited by a lure or bait, we anticipated that 

detectability would be lower by hair snaring than by camera trapping.  
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Methods  

This study was performed in two different protected areas within the Mediterranean 

bioclimatic region of the Iberian Peninsula (Rivas-Martínez et al. 2004): the Guadiana 

Valley Natural Park (GVNP; Portugal; N 27o40’50’’, W 7o44’30’’), and the Cabañeros 

National Park (CNP; Spain; N 39o20’10’’, W 4o25’50’’).  A study area of approximately 

6000ha within each park was selected based on the criteria of ecosystem conservation 

status and logistic factors. The GVNP is located in the Guadiana River basin 

(Southeastern Portugal), the most important ecological corridor in southern Portugal, 

and harbors some of the most endangered species in Europe (ICN 2006, Sarmento et 

al. 2004).  Small game hunting is a major economic driver within GNVP, and predator 

control directed towards red fox (Vulpes vulpes) and Egyptian mongoose (Herpestes 

ichneumon) is legally allowed. The landscape is highly fragmented with cereal 

croplands and agroforestry systems (‘Montado’) of stone pine Pinus pinea L. and holm 

oak Quercus ilex L. Scrubland patches are mainly associated with steeper slopes and 

elevation ridges (Costa et al. 1998, Monterroso et al. 2009). The CNP is located in the 

Castilla La-Mancha Spanish community, and is dominated by Pyro-Quercetum 

rotundifoliae series and other sub-serial stages (Rivas-Martinez 1981), especially 

associated with the steeper slopes, higher elevations and main water bodies. The 

landscape at the central lower part of this study area constitutes a savannah-like 

system, with holm oak trees scattered within a grassland matrix (García-Canseco 

1997). Neither hunting activity nor predator control is allowed. 

Survey methods and design 

The sampling design was based on a sampling grid composed by 1-km2 grid cells, 

which was superimposed over each study area. Sampling devices were deployed at 

grid cell vertexes, alternating between camera traps and hair snares. As a result, all 

cameras and all hair snares were approximately 1.4km apart, promoting method-

specific independence. Study areas were surveyed in August-October 2009 (hereafter 

autumn season) and in February-April 2010 (hereafter spring season) for a period ≥ 28 

days, and assumed occupancy was constant during each survey period (MacKenzie et 

al. 2002). All procedures were performed in accordance with the guidelines for the care 

of mammals, as approved by the Portuguese Nature and Biodiversity Institute and the 
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Animal Experimentation Ethic Committee of the University of Castilla La-Mancha 

(process nr. PP1104.3).     

Hair snares on baited rub stations consisted of hair collection structures and scent 

lures (Kendall and Mckelvey 2008), and were set at 38 and 29 sampling locations in 

CNP and GVNP, respectively.  Hair collection structures included both barbed rub pads 

and adhesive pads.  This design exploits the cheek-rubbing behavior of felids, the 

neck-rubbing behavior of canids, and has been found to detect other mesocarnivores 

(e.g., mustelids) as by-catches (Kendall and Mckelvey 2008).  Rub stations comprised 

a 50×5×5cm wooden stake, on which four 5x3cm pieces of dog wire (one at each side 

of the stake) were glued at 20 to 30cm above the ground. Below the dog wire, we 

covered the stake with sticky-side-out tape, which functioned as an adhesive pad. The 

attractants were deployed in separated, perforated plastic tubes supported by the 

wooden stake, at a distance of 10–15cm from each other (Monterroso et al. 2011). A 

volume of 5mL of each attractant was sprayed into a cotton gaze held inside each 

plastic tube. The selected attractants were Lynx urine and Valerian, which have been 

described as efficient in attracting mesocarnivores (Monterroso et al. 2011, Steyer et 

al. 2013). Hair snares were monitored and scent lures replenished every 7 days.  We 

collected hairs with tweezers, stored them in plastic vials with ethanol (96%) and then 

kept at room temperature until lab processing.  Hair samples were identified under a 

microscope by analyzing its medular and cuticular structure with the aid of specific 

guides (e.g. Teerink 1991). Hair was identified as either under hair (UH), type 1 (GH1) 

or type 2 (GH2) guard hair. GH1 hair is usually stiff and firm, and occurs very often 

within pelage. It can be slightly wavy or bent. In GH2 hair the shaft is usually straight 

and forms an angle with the shield (Debelica and Thies 2009). Subsequently, samples 

were identified by molecular methods. Species assignment was performed using two 

diagnostic methods described by Oliveira et al. (2010; interphotoreceptor retinoid-

binding protein, IRBP, fragment) and Palomares et al. (2002; domain 1 of the 

mitochondrial control region. CR), following the procedures described by Monterroso et 

al. (2012). Aligned IRBP and CR sequences were compared with the corresponding 

regions from the target species available in the GenBank and in CIBIO’s genetic 

database. Both markers were consistently used to increase identification confidence. 

Whenever hair samples, collected from the same hair snare in the same sampling 

occasion, were identified as belonging to the same species from their medular and 
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cuticular structure, they were used together for DNA extraction and molecular 

identification. Otherwise, single hair samples were analyzed idependently. 

Leaf River IR5 infrared-triggered digital cameras (LeafRiver OutDoor Products, 

Taylorsville, Mississippi, USA) were deployed at 38 and 32 sampling locations in CNP 

and GVNP, respectively.  A circular area of 250-m radius surrounding each grid-cell 

vertex was inspected for carnivore paths prior to camera trap placement. The final 

location of camera traps corresponded to areas of easy access and potentially good 

detection probability within the mentioned buffer. Cameras were then mounted on trees 

approximately 0.5 – 1.0m off the ground and set to record time and date when 

triggered.  We programmed cameras to fire a burst of three photos when triggered, and 

with the minimal delay time possible (< 1min). 

In order to enable adequate comparisons between sampling methods, the same 

attractants used in hair snares were used to attract animals to camera traps. Therefore, 

the same structure built for hair snares (but without the dog wire and adhesive tape) 

was set at a distance of 2-3m of camera traps. Scent lures at camera stations were 

replenished in 7 days intervals, when stations were checked for batteries and to 

change memory cards.   

Occupancy modeling 

Likelihood-based occupancy modeling was used to estimate detection probability (P), 

given presence, and the probability of occupancy (𝜓; MacKenzie et al. 2002, 

Mackenzie et al. 2006).  To account for potential heterogeneity in probabilities of 

occupancy and detection, and to evaluate our a priori hypotheses we assessed four 

site-specific covariates at the local scale: elevation, slope, distance to water and habitat 

type (forest, shrub or grassland). These covariates were assessed at each sampling 

location (camera trap or hair snare).  We extracted elevation and slope data from the 

ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) global 

digital elevation model (GDEM: www.gdem.aster.ersdac.or.jp), which has a spatial 

resolution of 30m; and estimated distance to water by measuring the linear distance 

from the sampling site to the nearest water source (i.e., river, lake, or reservoir).  

Habitat type was reclassified into three major structural types: forest, shrub and 

grassland cover from vegetation geographic information system coverages of CNP and 
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GVNP, with a spatial resolution of 30m, and was assigned to each sampling site 

(camera trap or hair snare) according to its exact location.   

We divided survey periods into four 1-week sampling occasions during which the 

detection/non-detection data on each target species was recorded. We created 

species-specific detection histories, allowing us to assess factors that may affect 

species-specific detection.  The probabilities of detecting target species given they 

occupy a site (i.e. P) were estimated from their detection histories. Missing values 

during a sampling occasion resulted from cameras malfunctioning or temporary inability 

to access a camera trap or hair snare.   

Multi-season occupancy models were developed in PRESENCE 5.8 (Hines and 

Mackenzie 2013) to estimate species and method-specific occupancy and detection 

probabilities.  A set of candidate models was built for each species-study area 

combination based on our a priori hypotheses. We modeled occupancy as constant 

across all sampling sites and constant vs. dependent on sampling season. Detection 

probability was modeled as constant or dependent on season, sampling occasion or 

site-covariates.   

As we wanted to assess the effect of detection method (i.e. hair snare vs. camera trap) 

on detection probabilities we tested the simplest models with and without a detection 

method covariate: models 𝜓(.)p(.),𝜓(.)p(method), 𝜓(season)p(.), 𝜓(season)p(method). 

If the effect of method was found to be significant, we developed the models further, 

constraining them to always include the method covariate.  We used Spearman’s rank 

correlation (rs) to test for collinearity among the landscape variables; if variables were 

correlated (rs  > 0.70) we kept the variable with the greatest univariate effect size  

(β/SE) as a potential covariate for the probability of detection (Zar 2005). We estimated 

overall AIC weights for individual variables by summing the AIC weights of all the 

candidate models in which they were included (Mackenzie et al. 2006). If no single 

model accounted for > 90% of the total model weights, we model-averaged by 

extracting the top 95% model confidence set and recalculating model weights 

(Burnham and Anderson 2002). Model averaged estimates were calculated using the 

spreadsheet developed by B. Mitchell 

(http://www.uvm.edu/%7Ebmitchel/software.html).   
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Finally, we estimated the number of hair snare surveys and the number of camera trap 

surveys, ni, required to achieve a specified probability of detection. We estimated ni  

following Long et al. (2007): P = 1 – (1 – pi)ni. The effectiveness of camera traps and 

hair snares for mesocarnivores using 3 indicators: (1) naïve occupancy estimates (i.e. 

proportion of sites where the target species was detected by a single sampling method 

in a single season), (2) method-specific estimates of the probabilities of occupancy and 

detection; and (3) number of surveys required using each method to reach a 

designated detection probability.     

 

Results  

A total of 163 hair samples were collected in hair snare stations (Table 2.3.1). CNP 

accounted with 43 and 70 samples in autumn and spring seasons, respectively, while 

24 and 26 samples were obtained from the same seasons at GVNP. The average 

number of hairs collected per sample was 5.42 ± 0.35 (mean ± SE). Hair samples that 

were unequivocally identified by their microscopic structure as belonging to non-target 

species (e.g. ungulates or lagomorphs) were not sent for genetic analysis (n=27). 

However, potential carnivores’ or unidentified hair samples were sent for genetic 

analysis, and consisted of 83.4% of the total samples (n=136).  

The genetic identification success varied with diagnostic method: 25.2% of 

identification success using mitochondrial CR, and 9.9% using the IRBP nuclear gene. 
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Table 2.3.1.  Proportion of samples obtained of each hair type, collection structure, and results from molecular analysis 

obtained from hair snaring methods at Guadiana Valley Natural Park (GVNP) and Cabañeros National Park (CNP) in 

the autumn 2009 and spring of 2010.  Proportion positive (number of samples). UH - Under hair; GH - Type I guard hair; 

GH2 - Type 2 guard hair. 

 CNP GVNP 
Total 

 Autumn Spring Autumn Spring 

Number of samples collected 43 70 24 26 163 

Presence of intact hair 0.63 (27) 0.90 (63) 0.38 (9) 0.88 (23) 0.75 (122) 

Hair type 

 UH 0.42 (18) 0.56 (39) 0.54 (13) 0.58 (15) 0.52 (85) 

 GH 0.60 (26) 0.39 (27) 0.46 (11) 0.27 (7) 0.44 (71) 

 GH2 0.28 (12) 0.07 (5) 0.00 (0) 0.08 (2) 0.12 (19) 

Collection device 
Brush 0.86 (37) 0.81 (57) 1.00 (24) 0.85 (22) 0.86 (140) 

 Tape 0.14 (6) 0.21 (15) 0.00 (0) 0.15 (4) 0.15 (25) 

 Samples sent for genetic ID 0.77 (33) 0.96 (67) 0.50 (12) 0.92 (24) 0.83 (136) 

CR (mitochondrial) 

 Amplification 0.85 (28) 0.27 (18) 0.25 (3) 0.38 (9) 0.43 (58) 

 Sequencing 0.85 (28) 0.21 (14) 0.25 (3) 0.38 (9) 0.40 (54) 

 Identification 0.52 (17) 0.13 (9) 0.17 (2) 0.25 (6) 0.25 (34) 

IRBP (nuclear) 

 Amplification 0.36 (12) 0.16 (11) 0.17 (2) 0.50 (12) 0.27 (37) 

 Sequencing 0.27 (9) 0.10 (7) 0.08 (1) 0.50 (12) 0.21 (29) 

 Identification 0.24 (8) 0.06 (4) 0.00 (0) 0.00 (0) 0.09 (12) 

 

Hair samples were identified as belonging to red fox, stone marten, and European 

wildcat when employing conventional microscopic methods; no samples were identified 

as belonging to common genets, European badger, or Egyptian mongoose. However, 

employing genetic methods hair samples were identified as belonging to red fox, genet, 

and stone martens; no samples were identified as belonging to European wildcat, 

European badger, or Egyptian mongoose. 25 samples from CNP were genetically 

identified as red fox: 15 from autumn and 10 from spring seasons; 5 samples from 

GVNP were red fox: 2 from autumn and 3 from spring seasons. Genetically identified 

genet hair was only obtained at CNP, with one sample from each season. Only one 
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hair sample collected at GVNP during the spring season was genetically confirmed as 

stone marten. 

From all of the genetically confirmed red fox hair samples (n=30), 67% contained under 

hair (UH) while 50% and 10% contained GH2 and GH1 guard hair, respectively. 

Seventy-three percent of the hair samples were collected from dog wire brush and 27% 

from adhesive tape. Genetically confirmed common genet samples (n=2), were either 

UH  (n=1) or GH1 ( n=1). Both genet hair samples were collected from dog wire brush. 

The only genetically confirmed stone marten hair sample consisted of GH2 guard hair, 

and it was obtained from the adhesive tape.    

With camera trapping methods we were able to detect red foxes, European wildcats, 

common genets, stone martens, Egyptian mongooses and Eurasian badgers at GVNP 

in both seasons (Table 2.3.2). At CNP, we were able to detect the same species during 

autumn using camera traps. However, the Egyptian mongoose was not detected during 

autumn. Although mesocarnivore species composition was similar between the two 

study areas, their spatial distribution differed, as supported by their naïve occupancy 

estimates (Table 2.3.2).  

Naïve estimates, occupancy and detection probabilities 

We had a greater number of detections via camera trapping than we did via hair 

snares. When both methods detected the target species, naïve occupancy estimates 

were, on average, 5.3 (± 1.2) times higher with camera trapping than with hair snaring 

(table 2.3.2). For the species undetected by hair snares, naïve occupancy based on 

camera traps were always  < 10% in CNP (Table 2.3.2). Conversely, at GVNP species 

undetected by hair snaring displayed naïve occupancy estimates ranging from 3 to 

23% (Table 2.3.2). 
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Table 2.3.2.  Naïve occupancy estimates (# sites with detections/# sampling sites) of mesocarnivores based on camera-

trapping (CT) and hair snaring (HS) at Guadiana Valley Natural Park (GVNP) and Cabañeros National Park (CNP) in 

the autumn 2009 and spring of 2010.   

Study área Species 

Overall naïve 
estimates 

Partial naïve estimates 

Autumn Spring 
Autumn Spring 

CT HS CT HS 

GVNP 

Red fox 0.23 0.20 0.41 0.03 0.25 0.14 

Stone marten 0.16 0.36 0.25 0.07 0.63 0.14 

Common 
genet 0.08 0.12 0.16 0.00 0.22 0.00 

European 
wildcat 0.26 0.13 0.44 0.07 0.25 0.00 

Eurasian 
badger 0.03 0.07 0.06 0.00 0.13 0.00 

Egyptian 
mongoose 0.11 0.18 0.22 0.00 0.34 0.00 

CNP 

Red fox 0.56 0.65 0.90 0.42 0.88 0.03 

Stone marten 0.26 0.22 0.46 0.05 0.28 0.16 

Common 
genet 0.14 0.12 0.27 0.03 0.20 0.05 

European 
wildcat 0.04 0.08 0.07 0.00 0.15 0.00 

Eurasian 
badger 0.06 0.04 0.12 0.00 0.08 0.00 

Egyptian 
mongoose 0.00 0.03 0.00 0.00 0.05 0.00 

 

The limited numbers of detections prevented us from modeling common genet at 

GVNP and European wildcat, Eurasian badger, and Egyptian mongoose in both study 

areas. For the species that did have sufficient numbers of detections, our estimated 

probabilities of occupancy were, on average, 31.5% (± 3.7%) greater than our overall 

naïve estimates (Tables 2.3.2 and 2.3.3). 

Method-specific detection probabilities revealed that camera traps were, on average, 

6.7 (± 1.1) times more effective in detecting target species than hair snares (Table 
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2.3.3). Given presence, red foxes had, on average, a 49.9% (± 10.4%) and 14.2% (± 

5.4%) chance of being detected by camera traps and hair snares, respectively, in a 

give sampling occasion (Table 2.3.3). The mean probability of detecting stone martens 

by camera trapping was 21.7% (± 3.2%) and 3.5% (± 0.6%) by camera trapping and 

hair snaring, respectively (Table 2.3.3). Common genets at CNP had mean chance of 

being detected of 20.1% (± 1.2%) by camera trapping and 2.1% (± 0.2%) by hair 

snaring (Table 2.3.3).  

The top ranked models for red fox consistently included habitat type at CNP and 

elevation at GVNP. Distance to water was included in three, and slope in one of the top 

ranked models at CNP; whilst slope, elevation and distance to water were each 

included at a single model of the top ranked models at GVNP. The top ranked models 

for common genet at CNP consistently included distance to water, but elevation also 

appeared in 5 of these models. Slope was included in two of these models and habitat 

type in one. 

Table 2.3.3.  Model averaged occupancy (𝜓) and method-specific detection probabilities (P) of red foxes based on 

camera-trapping and hair snaring at Guadiana Valley Natural Park (GVNP) and Cabañeros National Park (CNP), in 

autumn 2009 and spring 2010. Estimates ± SE. 

Study 
area Parameter 

Red fox Stone marten Common genet 

Autumn Spring Autumn Spring Autumn Spring 

GVNP 

𝜓 0.44 ± 0.15 0.44 ± 0.17 0.70 ± 0.19 0.71 ± 0.15 - - 

Pcameras 0.34 ± 0.13 0.32 ± 0.14 0.16 ± 0.09 0.31 ± 0.08 - - 

Phairsnares 0.06 ± 0.04 0.06 ± 0.04 0.02 ± 0.02 0.05 ± 0.03 - - 

CNP 

𝜓 0.81 ± 0.15 0.79 ± 0.15 0.67 ± 0.21 0.64  ± 0.22 0.43 ± 0.16 0.42 ± 0.17 

Pcameras 0.60 ± 0.18 0.74 ± 0.15 0.20 ± 0.09 0.20  ± 0.09 0.21 ± 0.11 0.19 ± 0.10 

Phairsnares 0.17 ± 0.07 0.29 ± 0.14 0.04 ± 0.02 0.04  ± 0.02 0.02 ± 0.02 0.02 ± 0.02 

 

The effect of detection method was positive and significant across species and study 

areas, with 𝛽 estimates ranging from 1.75 to 2.56 (Table 2.3.4). The 95% confidence 

intervals of all red fox model-averaged covariates overlapped 0.0 at GVNP. However, a 

significant seasonal influence was detected at CNP, with the probability of detecting a 
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red fox being significantly higher in spring than in autumn (Table 2.3.4). Elevation also 

showed a significant negative effect on detection probability at CNP (table 2.3.4). For 

stone martens at GVNP, season was the only covariate to significantly influence 

detectability with P decreasing from autumn to spring. At CNP, there were no 

observable covariate effects (Table 2.3.4). For genets, distance to water significantly 

negatively influenced detection probability (Table 2.3.4). All remaining variables’ 

coefficients exhibited 95% confidence intervals that overlapped 0.0 (Table 2.3.4).  

Table 2.3.4.  Model averaged variable weights and beta estimates (𝛽), with 95% confidence intervals, on detection 

probability (P) at Guadiana Valley Natural Park (GVNP) and Cabañeros National Park (CNP), in autumn 2009 and 

spring 2010. 

Study 
area Covariate 

Red fox Stone marten Common genet 

AIC 
wgt 𝛽 [95% CI] AIC wgt 𝛽 [95% CI] AIC wgt 𝛽 [95% CI] 

GVNP 

Intercept - -2.97 [-4.71; -1.24] - -4.42  [-6-16; -2.69] - - 

Season 0.34 -1.09 [-4.27; 2.10] 0.32 -3.01 [-5.16; -0.87] - - 

Method 1.00* 2.17 [0.96; 3.38] 1.00* 2.56 [1.48; 3.64] - - 

Habitat: forest 0.75 0.39 [-0.64; 1.43] 0.75 -0.04 [-0.54; 0.45] - - 

Habitat: shrub 0.75 1.38 [-0.65; 3.41] 0.75 -0.04 [-0.61; 0.54] - - 

Distance to 
water 0.23 0.06 [-1.14; 1.25] 0.20 -0.27 [-1.79; 1.25] - - 

Elevation 0.27 -0.56 [-6.38; 5.26] 0.18 -1.64 [-8.14; 4.86] - - 

Slope 0.20 -0.02 [-0.14; 0.10] 0.25 0.10 [-0.05; 0.25] - - 

CNP 

Intercept - 3.03 [-0.48; 6.53] - -4.52 [-8.88; -0.17] - -5.92 [-12.22; 
0.38] 

Season 0.98 3.71 [0.13; 7.28] 0.27 -1.15 [-5.60; 3.31] 0.35 -2.11 [-8.83; 4.61] 

Method 1.00* 2.17 [1.23; 3.10] 0.99* 1.75 [0.70; 2.80] 1.00* 2.51 [0.90; 4.12] 

Habitat: forest 0.23 -0.17 [-1.15; 0.80] 0.18 0.07 [-0.59; 0.74] 0.29 0.02 [-1.25; 1.29] 

Habitat: shrub 0.23 -0.07 [-0.53; 0.40] 0.18 0.05 [-0.38; 0.48] 0.29 0.23 [-0.83; 1.29] 

Distance to 
water 

0.60 -0.64 [-2.08: 0.81] 0.87 -1.98 [-4.57; 0.62] 0.93 -4.00 [-7.92; -0.09] 

Elevation 0.95 -6.42 [-11.82; -
1.03] 

0.46 2.31 [-3.45; 8.07] 0.62 3.83 [-4.36; 12.03] 

Slope 0.38 0.01 [-0.05; 0.07] 0.56 0.02 [-0.05; 0.09] 0.33 0.02 [-0.08; 0.11] 

* - All models except models 𝜓(.)p(.) and 𝜓(season)p(.) were constrained to include the method covariate.  
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A greater number of 1-week sampling occasions are required to attain a given 

detection probability when employing hair snares than when employing camera traps 

(Figure 2.3.1).  Based on the obtained detection probabilities, camera traps would have 

to be deployed, on average, for ≥ 4 1-week sampling occasions to confirm red fox 

occupancy, with 95% accuracy.  In order to achieve the same level of accuracy, ≥ 20 1-

week occasions are required when employing hair snares. Additionally, ≥ 12 and 13 

camera trapping sampling occasions are required to confirm stone marten and genet 

occupancy, respectively, with 95% accuracy (Figure 2.3.1). It would take 6.9 and 10.8 

times longer to achieve the same confidence level for stone martens and genets, 

respectively, if using hair snares. 
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Figure 2.3.1. Mean estimated sampling occasions (weeks) required to attain a given detection probability, given species 

presence, for a) red foxes, b) stone martens, and c) common genets. 
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Discussion  

Camera traps were a more efficient method for detecting mesocarnivores and 

estimating their occurrence when compared to hair snares.  These results are 

consistent with previous studies done in North America (Comer et al. 2011, Long et al. 

2007, O’Connell et al. 2006).  We detected a total of six mesocarnivore species in each 

of the study areas when employing camera trapping, in comparison to only three 

mesocarnivore species in each of the study areas when employing hair snares. When 

both methods were able to detect a target species, partial naïve (raw) occupancy 

estimates were 7.7 ± 1.9% higher when assessed through camera trapping than 

through hair snaring methods. Lastly, we found that hair snares required a greater 

number of sampling occasions to attain a given detection probability than camera traps.  

This suggests that our four-week sampling period would not have provided adequate 

estimates of species occupancy in our study areas had we only employed hair snares. 

A limited number of hairs were collected from hair snares (< 10 hairs/sample) and this 

number was reduced even further when considering the tufts of hair that yielded 

sufficient DNA for species identification. Our overall success of the molecular methods 

was rather low when compared to similar studies, which usually ranges from 40 to 80% 

(Weaver et al. 2005, Long et al. 2007, Steyer et al. 2012). Three main factors may be 

responsible for our low success rates in genetic identification: low DNA quantity, low 

DNA quality and contamination (Kendall and Mckelvey 2008). Most hair collected from 

rub stations, such the ones used in our study, consists of shed hair. Shed hair can 

provide enough DNA for genetic species assignment if mitochondrial DNA is used 

(Mills et al. 2000, Riddle et al. 2003). However, the DNA quantity obtained of plucked 

hair is usually higher because it often contains follicles, which are the main source of 

DNA for analysis (Goossens et al. 1998). DNA quality can also be affected by exposure 

to harsh environmental conditions, especially environmental temperature (Nsubuga et 

al. 2004, Santini et al. 2007). Both of our study areas are located in the Mediterranean 

Bioclimatic region of the Iberian Peninsula, where ambient temperature often rises 

above 35°C during the warmer seasons (Hijmans et al. 2005, Rivas-Martínez et al. 

2004). These warm temperatures could have decreased DNA quality in the autumn 

period. Further, the spring season corresponded to a period of heavy precipitation, 

which could have led to sample “wash”, and a consequent reduction of DNA quality. 
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Cross-contamination from multiple visits to the same station within a sampling 

occasion, can also reduce DNA identification success because mixed samples could 

lead to more multiple alleles at one or more diagnostic loci, preventing adequate 

genotyping (Mowat and Paetkau 2002). Reducing the time between station revisits 

could increase genetic identification success by preventing excessive exposure of hair 

DNA to environmental conditions and reducing the probability of multiple visits. 

However, a likely drawback of reducing the length of sampling occasions would be a 

reduction in detection probabilities and increase in survey costs (Long et al. 2007, 

Mowat and Paetkau 2002). Our sampling occasion length, 7 days, is similar to that 

used in other studies (e.g. Long et al. 2007, Stricker et al. 2012,Burki et al. 2010). 

The baited hair snare model we tested (sensu Kendall and McKelvey 2008) required an 

active response from the target species in order to produce a detection (i.e. the rubbing 

behavior exhibited by most felid and canid species). Similar rub stations have been 

tested worldwide on a variety of species and yielded contrasting results. Long et al. 

(2007) failed to detect bobcats (Lynx rufus) in Vermont, USA, with rub pad hair snares, 

but successfully detected them with scat detection dogs and camera traps. However, 

they successfully detected black bears with all three methods. Comer et al. (2011) 

obtained low bobcat detection rates in Texas, USA, when compared to those obtained 

by camera traps. Using similar rub pads, Downey et al. (2007) failed to detect margays 

(Leopardus wiedii) at El Cielo Biosphere Reserve (Mexico), but obtained a 20.8% 

success in detecting gray foxes (Urocyon cinereoargenteus), whereas Castro-Arellano 

et al. (2008) were successful in detecting 67% of the medium and large mammals 

species known to be present. Steyer et al. (2012) were successful in identifying 

individual European wildcats with rub pad hair snares at a low-density area, in the 

Kellerwald-Edersee National Park,Germany. Even though cubby-like designs have 

been preferred for collecting hair from mustelids (Kendall and Mckelvey 2008), pine 

martens have been successfully detected by their hair using lure sticks at the Jura 

Mountains, Switzerland (Burki et al. 2010).  

We used lynx urine and valerian extract solution as our scent lures because they have 

been found to elicit rubbing behavior in captive red foxes, European wildcats, common 

genets and Eurasian (Monterroso et al. 2011). We were surprised by the small number 

of wildcat hair samples collected in our study, especially in GVNP where a stable 
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wildcat population is known to occur (Monterroso et al. 2009). Similar studies (with 

regard to hair collection structures and attractants) have proved effective for wildcat 

detection  (Steyer et al. 2013) and estimation of population parameters (Kéry et al. 

2011,). However, some studies have found valerian to be ineffective in attracting 

wildcats (Kilshaw & Macdonald, 2011; Anile et al. 2012), suggesting that genetic 

characteristics of wildcat populations could be related to their attractiveness towards 

valerian lure. Further field tests could help clarify the reasons for the poor performance 

of hair snares for detecting wildcats in our study areas.   

Overall, a limited number of site-specific covariates revealed influence on the 

detectability of mesocarnivores. In CNP, we found the probability a red fox was 

detected was negatively related to elevation and the probability a genet was detected 

was negatively related to distance to water.  We suggest that this is because the foxes’ 

scavenging behavior at CNP is related to the abundance of Red deer (Cervus elaphus) 

and Wild boar (Sus scrofa) carcasses at lower elevations (García-Canseco 1997) and 

waterways provide abundant cover, food, and often serve as travel corridors (Rondinini 

and Boitani 2002, Santos et al. 2008). Given the close relationship between abundance 

and detectability (McCarthy et al. 2012), we would foxes were more abundant at lower 

elevations and genets closer to water.. In CNP, red fox were also more likely to be 

detected in autumn than in spring and in GVNP, stone marten were more likely to be 

detected in spring than in autumn. This was most likely the result of seasonal 

differences in the annual biological cycle of the target species. For example, the 

yearlings of most mesocarnivores disperse and incorporate the ‘active’ population in 

autumn. Thus, territoriality is more relaxed when compared to the spring season, which 

coincides with the breeding season of most species (Blanco 1998).  

To our knowledge, this is the first study that evaluates the efficiency of hair snares for 

monitoring a mesocarnivore community in Europe. If individuals only need to be 

identified to the species-level, then our results suggest that camera trapping is a more 

efficient sampling method than hair snares.  Other noninvasive methods, such as 

detection dogs or scat surveys, may also provide detection rates comparable to those 

of camera traps (Gompper et al. 2006, Long et al. 2007, O’Connell et al. 2006).  

However, because hair samples can be identified to the individual level through 

microsatellite analysis of nuclear DNA (Beja-Pereira et al. 2009), they allow for the 
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estimation of population parameters such as density (Kéry et al. 2011), spatial 

organization (Davoli et al. 2012) or genetic diversity (Mullins et al. 2009).  

Protected area administrations require adequate information on the status of wildlife 

populations through constant monitoring in order to detect population trends or sudden 

changes, and adjust management actions accordingly (Moriarty et al. 2011). 

Occupancy modeling, in combination with camera trap surveys, may be an ideal 

method for large-scale, long-term monitoring of wildlife populations as it provides 

information on the spatial distribution of species and patch-specific rates of colonization 

and extinction (MacKenzie et al. 2003, Moriarty et al. 2011).  If management objectives, 

however, require deeper insights into population dynamics that can only be attained 

through analysis of genetic information (Kendall and Mckelvey 2008), then hair snaring 

may need to be employed.  To improve the efficacy of hair snaring, we suggest 

increasing the number of sampling occasions (Bailey et al. 2007, O’Connell et al. 2006) 

and the frequency at which hair snares are checked.  This will likely improve detection 

rates, minimize environmental degradation of DNA, and decrease incidence of cross-

contamination.  Additionally, depending on the target species, employing multiple types 

of hair snares (e.g., rub pads and cubby boxes) and multiple types of lures at each 

station may increase the number of species detected and overall detection rates.  We 

suggest that future studies test different hair snare protocols and sampling designs, 

perhaps through simulation studies, to increase the efficiency of hair snare techniques; 

namely, determining the optimal duration of sampling occasions and the design of 

snares that increases both detection probabilities and the success of molecular 

methods.    
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3.1 Catch me if you can: diel activity patterns of 

mammalian prey and predators 

 

Abstract  

The activity patterns exhibited by animals are shaped by evolution, but additionally fine-

tuned by flexible responses to the environment. Predation risk and resource availability 

are environmental cues which influence the behavioural decisions that make both 

predators and prey engage in activity bursts, and depending on their local importance, 

can be strong enough to override the endogenous regulation of an animals’ circadian 

clock. In Southern Europe, wherever the European rabbit (Oryctolagus cuniculus) is 

abundant, it is the main prey of most mammalian mesopredators, and rodents are 

generally the alternative prey. We evaluated the bidirectional relation between the diel 

activity strategies of these mammalian mesopredators and prey coexisting in south-

western Europe. Results revealed that even though predation risk enforced by 

mammalian mesocarnivores during night-time was approximately twice and five times 

higher than during twilight and daytime, respectively, murids consistently displayed 

unimodal nocturnal behaviour. Conversely, the European rabbits exhibited a bimodal 

pattern that peaked around sunrise and sunset. Despite the existence of some overlap 

between the diel rhythms of mesocarnivores and rabbits, their patterns were not 

synchronized. We suggest that the environmental stressors in our study areas are not 

severe enough to override the endogenous regulation of the circadian cycle in murids. 

European rabbits, however, are able to suppress their biological tendency for 

nocturnality by selecting a predominantly crepuscular pattern. In spite of the higher 

energetic input, mesocarnivores do not completely track rabbits’ activity pattern. They 

rather track rodents’ activity. We propose that these systems have probably evolved 

towards a situation where some degree of activity during high-risk periods benefits the 

overall prey population survival, while the accessibility to sufficient prey prevents 

predators to completely track them.   
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Introduction 

The fundamental ecological niche refers to the full range of conditions (biotic and 

abiotic) and resources in which an organism can survive and reproduce (Elton 2001). 

However, local environmental pressures such as interspecific relations act on 

individuals narrowing the breadth of utilization of at least one of the niche dimensions 

or resources, promoting coexistence (Hutchinson 1957). Apart from other biological 

functions, time may serve as a niche dimension over which interacting animals might 

segregate to reduce the effect of agonistic encounters (Carothers & Jaksić 1984). The 

nycthemeral or diel activity patterns are the most evident and best studied in animal 

ecology (Halle & Stenseth 2000) and, according to Halle (2000), consist of ‘adaptative 

sequences of daily routines that meet the time structure of the environment, shaped by 

evolution, but additionally fine-tuned by flexible responses to the actual state of the 

environment’. This means that the daily activity of an animal is intrinsically constrained, 

and therefore, its plasticity for local adaptation is fairly limited (Schoener 1974; 

Kronfeld-Schor & Dayan 2003). For instance, nocturnal mammals have developed 

characteristics adapted to dim light activity (p.e. effective camouflage, large inner ears 

or eyes with large lens in relation to the focal length and large corneas; Ashby 1972; 

Bartness & Albers 2000). Therefore, each animal will try to explore the temporal niche 

dimension to maximize energetic gain and other biological needs, while reducing 

individual costs, for example mortality risk (Brown et al. 1999; Halle 2000; DeCoursey 

2004). In predator–prey systems, continuous arms race take place over the spatial and 

temporal dimensions (Eriksen et al. 2011). While at a spatial level, prey should try to 

avoid using high-risk locations following what has been described as the landscape of 

fear (Brown et al. 1999), at the temporal level, a simplistic way of viewing this system is 

that prey struggles to reduce predation risk by reducing activity overlap with predators, 

while the latter track down prey by trying to synchronize their activity with them, in a 

constant and dynamic relation (Lima 2002). Consequently, we would expect that the 

diel activity pattern of a given prey species in a particular location to be the result of its 
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evolutionary physiological adaptations (i.e. fundamental niche) and the selective 

pressures exerted locally such as predation pressure, accessibility to resources and 

intraguild interactions (Fenn & MacDonald 1995; Kronfeld-Schor & Dayan 2008). 

Predator activity should be shaped by the same evolutionary processes and local 

constraints, but with an additional limitation imposed by temporally available feeding 

resources (i.e. prey; Halle 2000; Lima 2002). However, feeding specialization and prey 

availability also play an important role in the structure of the daily activity pattern. A 

specialist predator should more avidly try to synchronize its rhythm with that of its 

staple prey. Conversely, a more generalist species should only track a given prey so 

far, especially if alternative feeding resources are available with minor costs. 

In Southern Europe small mammals (mainly rodents) and the European rabbit 

(Oryctolagus cunicu- lus) are the most profitable prey for predator communities, namely 

mammalian mesocarnivores (Malo et al. 2004; Lozano et al. 2006; Delibes-Mateos et 

al. 2008b). In fact, rodents are consumed with considerable frequency by most 

European mesocarnivore species, especially in the Atlantic ecoregion (Lozano et al. 

2006; 2006; Zhou et al. 2011; Díaz-Ruiz et al. 2013). However, the energetic trade-off 

between predation costs and individual prey intake favours the predation upon 

European rabbit wherever it reaches moderate to high abundance (Malo et al. 2004). 

Hence, the European rabbit assumes a particularly important role in the Mediterranean 

ecosystems’ functioning, being the preferred prey of a variety of predators (Delibes & 

Hiraldo 1981; Delibes-Mateos et al. 2008a). Here, we evaluate the bidirectional 

temporal strategies of mammalian prey (small mammals and European rabbits) and 

mammalian mesocarnivore imposed predation risk. Our predictions were that where 

rabbits are scarce (Atlantic region), a high overlap and synchrony between rodents and 

mammalian mesopredators should indicate a dominant strategy within the predator 

community to maximize access to small mammals, whereas where European rabbits 

are widely available, the mammalian mesopredator community should track their 

activity in detriment of small mammals.  
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Methods  

Study areas 

Activity data were collected in four different study sites of the Iberian Peninsula (figure 

3.1.1): two in Portugal, the Guadiana Valley Natural Park (GVNP) and the Peneda-

Gerês National Park (PGNP) and two in Spain, the Cabañeros National Park (CNP) 

and the Muniellos Natural Reserve (MNR). Two of these study sites (GVNP and CNP) 

are located in the Mediterranean region of the Iberian Peninsula, and have a 

Mediterranean pluviseasonal continental bioclimate (Rivas-Martínez et al. 2004). 

Scrubland patches are mainly associated with steeper slopes, elevation ridges and 

main water bodies and are dominated by Pyro-Quercetum rotundifoiae and Myrto 

communis–Querco rotundifoliae series and other subserial stages (Rivas-Martínez 

1981; Costa et al. 1998). Areas with gentler slopes are mainly occupied by cereal crops 

and a savannah-like system, with holm oak trees (Quercus rotundifolia) scattered 

within a grassland matrix (García-Canseco 1997). The PGNP and MNR are located in 

the Atlantic region of the Iberian Peninsula and have a temperate oceanic sub-

Mediterranean bioclimate (Rivas-Martínez et al. 2004). The landscapes consist of 

mountainous agricultural–forest mosaic, where mountain tops are mostly dominated by 

scrublands with Ericaceae, Ulex sp. and Betulaceae habitats, and mountain slopes and 

valleys are essentially dominated by oligotrophic oak forests (dominated by Quercus 

sp., Betula and Fagus sp.). Pastures, agricultural fields and small villages are found 

scattered through the landscape, mainly along valleys and lower altitude locations 

(Prieto & Sánchez 1996; Carvalho & Gomes 2004; UNESCO). A study area of 

approximately 6000 ha within each of the study sites was selected, based on criteria of 

ecosystem conservation status and logistic factors. 
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Figure 3.1.1. Location of the study areas: MNR - Muniellos Natural Reserve; PGNP - Peneda-Gerês National Park; 

GVNP - Guadiana Valley Natural Park; CNP - Cabañeros National Park. 

Field sampling 

Each study area was sampled for one year during two seasons: July–October 

(hereafter non-breeding season), when the offspring of most medium-sized carnivores 

from that year become independent; and February–April (hereafter breeding season), 

during these species’ breeding season (Blanco 1998). Field sampling was based on 

camera-trapping of both carnivore mesopredators and their mammalian prey. The 

spatial sampling scheme and camera-trap sites’ selection followed the procedures 

described by Monterroso et al. (2011). In summary, between 32 and 41 cameras were 

uniformly spaced in each study area following a grid sampling scheme. Camera traps 

were placed in a sampling grid, where mean distance among neighbouring cameras 

was ~1.4 km. Two camera-trap models were used: Leaf River IR5 (LeafRiver OutDoor 

Products, Taylorsville, MS, USA) and Scout- Guard (HCO OutDoor Products, Norcross, 

GA, USA). Cameras were mounted on trees approximately 0.5–1.0 m off the ground 

and set to record time and date when triggered. We programmed cameras with the 

minimum time delay between consecutive photos to maximize the number of photos 

taken per captured individual. Camera traps were maintained in the field for a minimum 
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period of 28 days and were inspected for battery or card replacement every 7–14 d. A 

combination of carnivore attractants was used to incite animals’ curiosity and thus 

increase detection probabilities. The attractants used were Lynx urine, obtained from 

captive specimens of Eurasian lynx (Lynx lynx) and Iberian lynx (Lynx pardinus), and 

Valerian extract solution, as suggested by Monterroso et al. (2011) for Iberian carnivore 

sampling. Attractants were placed in the field at a distance of 2–3m from the camera 

traps and were deployed in perforated separated plastic containers, at a distance of 

10–15 cm from each other and approximately 30 cm above the ground. Five to 10 ml of 

each attractant was sprayed into a cotton gaze, held inside each container. Attractants 

were rebaited every 7–14 d. When multiple photographs of the same species were 

taken within a 30-min interval, we considered them as a single capture event to ensure 

capture independence (unless animals were clearly individually distinguishable; Kelly & 

Holub 2008; Davis et al. 2011).  

Prey abundance 

European rabbits’ relative abundance was estimated using pellet counts, which has 

been argued as the indirect method that provides the most reliable estimates 

(Palomares 2001; Fernández-de-Simón et al. 2011). Fourteen to 15 (mean ± SE: 14.5 

± 0.3) grids were sampled in each study area. Each sampling grid consisted of 9–12 

(mean ± SE: 10.5 ± 0.9) sampling plots, regularly spaced at 15-m intervals. Each 

sampling plot consisted of a circular 0.5m2 area, which was cleared of all rabbit pellets 

at the beginning of each sampling campaign. Sampling plots were then recounted after 

18.7 ± 0.4 (mean ± SE) days post-clearing. Rabbit relative abundance was assessed 

as an uncorrected daily pellet accumulation rate (UNC), which was obtained by 

calculating the average number of pellets per square metre divided by the number of 

days elapsed since the initial cleaning (Fernández-de-Simón et al. 2011). Sampling 

grids location in each study area followed criteria of accessibility and proportional 

spatial representativity of the most relevant habitats. The relative abundance of murids 

(Apodemus sp. and Mus sp.) was assessed by the means of live captures. Using the 

same sampling grids and plots’ placement previously described, nine live traps (5.1 x 

6.4 x 16.5 cm, SFG folding traps, H.B. Sherman traps, Tallahassee, FL, USA) were set 

for the capture of small mammals. In the study areas located in the Atlantic ecoregion 

(PGNP and MNR), an extra line of three larger sized live traps (7.6 x 8.9 x 22.9 cm, 
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LFG folding traps, H.B. Sherman traps) was set at each sampling grid because of the 

expected higher abundance of voles (Microtus sp. and Arvicola sp.). A trapping 

campaign consisted of three consecutive trapping days. Traps were monitored after 

sunrise, to reduce stress in captured animals. All captured individuals were then 

identified to the species level, sexed, weighted and aged without the resort to any kind 

of chemical immobilization. Each captured animal was marked with a small hair cut in 

the right hind leg, to ensure that recaptures could be adequately identified. After 

handling, each animal was released at the capture site. A relative abundance index 

was calculated as the number of new individuals captured ·100 trapping-days-1 

(Watkins et al. 2009). 

Statistical analysis 

Detection records for each species were regarded as a random sample from the 

underlying continuous temporal distribution that describes the probability of a 

photograph being taken within any particular interval of the day (Ridout & Linkie 2009). 

The probability density function of this distribution (i.e. activity pattern; Linkie & Ridout 

2011) was estimated nonparametrically using kernel density estimates following the 

procedures described by Ridout & Linkie (2009). Following the estimation of the 

distribution function, pairwise comparisons of activity patterns between mammalian 

predators and prey species were performed by estimating the coefficient of overlap ∆1, 

as suggested by Ridout & Linkie (2009) and Linkie & Ridout (2011) for small sample 

sizes, whenever the number of records was <50 detections. The coefficient of overlap 

∆4 was used when sample size was more than 50 detections. The coefficient of overlap 

ranges from 0 (no overlap) to 1 (complete overlap) and is obtained taking the minimum 

of the density functions of the two species or species complexes (e.g. all 

mesocarnivores) being compared at each time point. The precision of this estimator 

was obtained through confidence intervals, as percentile intervals from 500 bootstrap 

samples (Linkie & Ridout 2011). Target species consisted of all carnivore species with 

mean body weight between 1.0 and 7.0 kg detected in the study areas: red fox (Vulpes 

vulpes); European wildcat (Felis silvestris); pine marten (Martes martes); stone marten 

(Martes foina); Eurasian badger (Meles meles); common genet (Genetta genetta); and 

Egyptian mongoose (Herpestes ichneumon). To evaluate the potential effect of 

mesocarnivore-mediated predation risk on prey activity rhythm, all carnivore data were 
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also pooled together and subjected to the same analysis. The reliability of kernel 

estimates was assessed using non-negative trigonometric sum distributions 

(Fernández-Durán 2004), which were also fitted to the same detection data. As 

estimates based on the trigonometric sums and kernel densities should be broadly 

similar (Ridout & Linkie 2009), whenever estimates’ difference was more than 0.2, we 

assumed that they were imprecise and were therefore discarded. 

Whereas the coefficient of overlap might provide useful information on the probability of 

two species being active at a given period of the day, alternative measures focusing on 

the degree of synchrony of peaks of activity may also be of ecological interest (Ridout 

& Linkie 2009). Therefore, Pearson’s correlations were estimated to evaluate the level 

of synchrony between prey and predator, using kernel probability estimates for 512 

equally spaced time points along the day, that is, a point at approximately each 2.8 

min. All statistic analyses were performed using R software (R Development Core 

Team 2008). The R code used to estimate overlap coefficients was adapted from that 

provided by Ridout & Linkie (2009). Night-time, daytime and twilight (defined as the 

period enclosed between one hour prior to one hour after sunrise and sunset, Lucherini 

et al. 2009) durations can vary between seasons and study areas and are also different 

among them within the 24-h day cycle. Therefore, we calculated a ‘density of 

detections’ for both predator and prey species, where the total number of detections in 

each of defined periods was divided by the duration (in hours) of that period per 100 

trap-days. The data on predator activity were interpreted as a predation risk proxy for 

each period of the day, as we assume that the density of detections relates to the 

probability of prey species encountering a mesocarnivore predator at a given time of 

the day. Data are presented as mean ± SE, unless explicitly stated. 

 

Results  

A total of 8346 trap-nights (1043 ± 47 trapping days · campaign-1) were obtained from 

all study sites and seasons. A total of 4911 detections were obtained, of which 1309 

were mesocarnivores (164 ± 52 detections · campaign-1), 758 were small mammals (95 

± 20 detections · campaign-1), and 2844 were European rabbits (356 ± 233 detections · 

campaign-1) (table 3.1.1).  
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Small mammals activity patterns and abundance 

Murid rodents were detected across all study areas and seasons (table 3.1.2). They 

consistently revealed nocturnal activity with a tendency for the onset to occur just after 

sunset and cessation just before sunrise (figure 3.1.2). Activity density functions 

suggest a unimodal pattern, occasionally with a slight reduction in activity between 

01:00 h and 04:00 h (figure 3.1.2). The density of detections was always higher during 

night-time (0.84 ± 0.17 detections·hour-1·100 trapping-days-1), followed by twilight (0.13 

± 0.04 detections·hour-1·100 trapping-days-1). Daytime detections were rare (only one 

detection obtained during daytime, at CNP during non-breeding season). Muridae 

species revealed similar abundance indexes in the Atlantic (6.00 ± 1.83 new 

captures·100 trapping-days-1) and Mediterranean (5.18 ± 0.80 new captures·100 

trapping-days-1) study areas (Kruskal–Wallis test, H = 0.02, p = 0.88). However, 

species compositions varied between ecoregions: in Mediterranean areas, 58% of all 

captured individuals were Algerian mice (Mus spretus), while in Atlantic areas, 97% of 

captures consisted of either wood or yellow- necked mouse (Apodemus sylvaticus and 

A. flavicollis). 

Table 3.1.1. Number of camera-trap detections and relative contributions of each species for mesocarnivore and prey 
community data structures. 

Species 

CNP GVNP PGNP MNR 

Non-
breeding Breeding Non-

breeding Breeding Non-
breeding Breeding Non-

breeding Breeding 

Small mammals 105 143 44 77 186 13 135 55 

European rabbit 48 15 1705 1074 2 0 0 0 

Red fox 259 (76.0%) 382 (86.2%) 40 (33.3%) 7 (5.11%) 22 (34.9%) 12 (16.4%) 6 (8.8%) 22 (34.4%) 

European wildcat 4 (1.2%) 7 (1.6%) 22 (18.3%) 19 (13.9%) 1 (1.6%) 7 (9.6%) 9 (13.2%) 7 (10.9%) 

Stone marten 42 (12.3%) 24 (5.4%) 16 (13.3%) 58 (42.3%) 3 (4.8%) 12 (16.4%) 1 (1.5%) 2 (3.1%) 

Pine marten 0 0 0 0 13 (20.6%) 27 (37.0%) 40 (58.8%) 27 (42.2%) 

Marten spp.* 0 0 0 0 12 (19.1%) 6 (8.2%) 4 (5.9%) 2 (3.1%) 

Eurasian badger 15 (4.4%) 8 (1.8%) 12 (10.0%) 5 (3.6%) 0 1 (1.4%) 1 (1.5%) 2 (3.1%) 

Common genet 21 (6.16%) 16 (3.6%) 8 (6.7%) 30 (21.9%) 12 (19.1%) 8 (11.0%) 7 (10.3%) 2 (3.1%) 

Egyptian 
mongoose 0 6 (1.4%) 22 (18.3%) 18 (13.1%) 0 0 0 0 

Mesocarnivore 
community 341 443 120 137 63 73 68 64 

* - Photographs in which it was impossible to distinguish between pine marten and stone marten. 
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CNP, Cabañeros National Park; GVNP, Guadiana Valley Natural Park; PGNP, Peneda-Gerês National Park; MNR, 
Muniellos Natural Reserve.  

 

European rabbit activity patterns and abundance 

European rabbits were mostly detected in the Mediterranean study areas. Only two 

rabbit detections were obtained from the Atlantic region, both from the PGNP in non-

breeding season (table 3.1.1). Activity was recorded at all hours of the day, but activity 

density functions revealed a strong bimodal activity pattern, with a major activity peak 

occurring at sunrise and throughout the morning. A second activity peak took place in 

late afternoon, dropping after sunset (figure 3.1.3). Activity was more intense during 

twilight hours (3.23 ± 2.22 detections·hour-1·100 trapping-days-1). The intensity of 

activity recorded during night-time and daytime was of 1.29 ± 0.91 and 1.40 ± 0.93 

detections · hour-1 · 100 trapping-days-1, respectively. However, no statistically 

significant differences were detected (Kruskal–Wallis test, H = 0.55, p =0.76). The 

European rabbit, when detected, revealed only residual abundances in the study areas 

from the Atlantic region (table 3.1.2). In the Mediterranean study areas, this lagomorph 

was over 10 times more abundant at GVNP (174.9 ± 31.5 pellets·100 d-1·m-2) than in 

CNP (11.5 ± 5.1 5 pellets·100 d-1·m-2).  

Table 3.1.2. Prey species relative abundance in the study areas. European rabbit - pellet production·100 days-1·m-2; 

Murinae spp. - Apodemus sp. and Mus sp. new captures·100 trapping days-1. Results presented as average ± standard 

error. Note that units are different for both prey types. 

Species 

CNP GVNP PGNP MNR 

Non-
breeding 

Breeding Non-breeding Breeding Non-breeding Breeding Non-
breeding 

Breeding 

European 
rabbit 6.7 ± 3.4 16.2 ± 6.8 179.5 ± 31.6 170.2 ± 31.4 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.0 

Murinae 
spp. 3.07 ± 0.95 5.15 ± 2.18 6.97 ± 1.97 5.52 ± 2.52 10.82 ± 2.35 2.23 ± 1.44 6.52 ± 2.23 4.42 ± 0.24 

CNP, Cabañeros National Park; GVNP, Guadiana Valley Natural Park; PGNP, Peneda-Gerês National Park; MNR, 

Muniellos Natural Reserve. 

Activity rhythm of mesocarnivores and temporal structure of predation risk  

Carnivore detections were obtained in 1309 occasions across all study areas and 

seasons, 58.4% of which belonged to red fox (N = 750, table 3.1.1, figure 3.1.4). The 

pine marten, stone marten and common genet were detected in 158 (12.3%), 107 
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(8.3%) and 104 (8.1%) occasions. The European wildcat accounted for 76 detections 

(5.9%) and the Eurasian badger and Egyptian mongoose for 44 (3.4%) and 46 (3.7%) 

detections, respectively. The proportional contribution of each species to the 

mesocarnivore detection data varied across sites and seasons (figure 3.1.4). The pine 

marten was only detected in study areas in the Atlantic region, while the Egyptian 

mongoose was only detected in the Mediterranean ones (figure 3.1.4, appendix 3.1). 

The remaining species had variable individual contributions across study areas and 

seasons. Predation risk imposed by mammalian mesocarnivores revealed a consistent 

tendency to be higher during night-time, although with variable degrees of diurnal 

intensity (figures 3.1.2 and 3.1.3). Concordantly, night-time was the period that 

accounted for more density of detections (1.06 ± 0.27 detections·hour-1·100 trapping-

days-1), followed by twilight (0.61 ± 0.19 detections·hour-1·100 trapping-days-1) and 

daytime (0.26 ± 0.12 detections·hour-1·100 trapping-days-1). Daytime activity in the 

Mediterranean areas was mostly due to red fox and Egyptian mongoose activities, 

which accounted for 71% and 25% of all diurnal detections in this region, respectively. 

The high proportion of red fox detections was responsible for the observed daytime 

activity of mesocarnivore community at CNP (appendix 3.1), while at GVNP, daytime 

activity was mainly due to the activity of Egyptian mongooses, which contributed with 

80% of all daytime detections. In the Atlantic ecoregion, daytime activity was only 

detected in three species: the red fox, the European wildcat and the pine marten. 

Considering detection rates, the chances of a prey species encountering a 

mesocarnivore during the night would be, on average, 1.9 ± 0.2 greater than during 

twilight and 5.2 ± 0.8 times greater than during daytime. Likewise, the chances of 

encounters with these predators during the twilight are, on average, 2.9 ± 0.4 times 

greater than during daytime. The rank of predation risk during these periods of the daily 

cycle was consistent across all study areas and seasons.  
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Figure 3.1.2. - Activity overlap between the mesocarnivore community (dashed line) and murid species (full line) in all 

study areas - Cabañeros National Park (CNP), Guadiana Valley Natural Park (GVNP), Muniellos Natural Reserve 

(MNR) and Peneda-Gerês National Park (PGNP)  - during non-breeding and breeding sampling campaigns, as 

determined by camera-trapping. Vertical dashed lines represent sunset and sunrise times, respectively. 
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Predator and prey activity overlap and synchrony 

The coefficient of overlap estimates obtained from ∆1 and ∆4 produced very similar 

results for study areas and seasons (mean difference = 0.017 ± 0.002). Therefore, the 

results will be reported only for ∆4. The mesocarnivore community revealed a diel 

activity pattern, which widely overlaps with the one observed for small mammals in all 

study areas and seasons. Mean coefficient of overlap ranged from 0.60 to 0.89 

(appendix 3.1). High synchrony was also observed between mesocarnivore species 

and small mammals’ activities, as mean Pearson’s correlation ranged from 0.74 to 0.94 

(appendix 3.1). The coefficient of overlap between mesocarnivore activity and small 

mammals was similar in Mediterranean and Atlantic areas (0.73 ± 0.05 vs. 0.78 ± 0.04; 

Kruskal–Wallis test, H = 0.53, p = 0.47). Activity synchrony values revealed the same 

pattern (0.85 ± 0.05 vs. 0.87 ± 0.04; Kruskal–Wallis test, H = 0.00, p = 1.00). 

Concordantly, in Mediterranean areas, where enough data on European rabbits 

allowed for an adequate evaluation of activity patterns, the overlap between the 

mesocarnivore community activity was higher with that of small mammals than with 

that of lagomorphs, with differences being almost significant (0.73 ± 0.05 vs. 0.52 ± 

0.08; Kruskal–Wallis test, H = 3.00, p = 0.08). Moreover, significant differences exist 

between the same pairs with respect to synchrony of activity (0.85 ± 0.05 vs. -0.20 ± 

0.23; Kruskal–Wallis test, H = 5.30, p = 0.02), suggesting that despite the existence of 

some overlap in the diel rhythms of rabbits and their mammalian predators, the former 

tend to intensify their activity at dawn and dusk (figure 3.1.3), when predation risk is 

lower (appendix 3.1). 
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Figure 3.1.3. Activity overlap between the mesocarnivore community (dashed line) and European rabbits (full line) in 

Mediterranean study areas - Cabañeros National Park (CNP) and Guadiana Valley Natural Park (GVNP) - during non-

breeding and breeding sampling campaigns, as determined by camera-trapping. Vertical dashed lines represent sunset 

and sunrise times, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.4. Relative contributions (percentage of total number of detections during a sampling campaign) of each 

species for mesocarnivore community data structures. (* - Photographs in which it was impossible to distinguish 

between pine marten and stone marten). 
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Discussion  

Activity rhythms of small mammals 

The rodent communities present in our study areas appear to be mostly composed by 

wood, yellow- necked and Algerian mice, which revealed to be nearly exclusively 

nocturnal. Generally, the onset of activity followed sunset, whereas offset preceded 

sunrise. Very few records of small mammal activity were collected after sunrise and 

before sunset, and only three (≈0.4%) were obtained in plain daytime. These results 

are consistent with findings of Roll et al. (2006) who, after a revision of the activity 

patterns of 1150 species of rodents, concluded that phylogeny constrains species’ 

activity patterns, and muridae are nocturnal species. However, the rigidness of the 

underlying endogenous circadian clock may be masked on an ecological timescale 

through the effect of adaptations to local environmental challenges, such as predation 

risk (Jedrzejewska & Jedrzejewski 1990; Halle 2000; Kronfeld-Schor & Dayan 2008). 

The Algerian mouse in the Iberian Peninsula has been described as mainly nocturnal 

except in winter, when it is multiphasic (Palomo et al. 2009). Similarly, the wood mouse 

has been described as predominantly nocturnal (Wolton 1983), even though some 

diurnal activity has also occasionally been registered (Flowerdew 2000). The diel 

pattern of predation risk imposed by mammalian mesocarnivores varies between the 

different ecoregions and study areas (appendix 3.1). However, predation risk does not 

come from only one group of predators (mammalian carnivores, considered in this 

work), but rather from a joint effect of several predator assemblages (e.g. including 

diurnal and nocturnal raptors; Halle 2000), which also vary between areas. In spite of 

these differences, the nocturnality of murid rodents in the Iberian Peninsula was 

consistent through study areas, suggesting that the environmental stressors found 

there are not severe enough to override the endogenous regulation of the circadian 

cycle. 

Activity rhythm of European rabbits 

The diel activity pattern of European rabbits revealed consistent crepuscular activity 

peaks in both Mediterranean study areas, with higher activity density at sunrise than at 

dusk (Villafuerte et al. 1993; Díez et al. 2005), especially in the non-breeding season. 

Despite possessing the general characteristics of nocturnal animals (Jilge & Hudson 

2001), the European rabbit possesses high plasticity, which allows it to display a 

variety of activity patterns (Moreno et al. 1996; Lombardi et al. 2003; Moseby et al. 
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2005). Under field conditions, rabbits have been found to respond to perceived 

nocturnal predation risk by increasing daytime foraging (Bakker et al. 2005) or to vary 

from crepuscular to nocturnal activity as a response to relative abundance of nocturnal 

vs. diurnal predators (Fernández-de-Simón et al. 2009). The plasticity in the diel 

pattern of European rabbits grants them adaptative advantages by being able to 

choose the activity period that reduces the probability of being predated. Predominant 

crepuscular activity has been suggested as a strategy of prey species to avoid both 

diurnal and nocturnal predators (Halle 2000), and the twilight period probably provides 

the best survival probabilities for European rabbits where predation pressure is high 

both by diurnal predators, such as avian raptors, and nocturnal mammalian carnivores. 

Our results revealed that predation risk by mesocarnivores is nearly twice during night-

time than during twilight. In spite of the lower predation risk by mammalian predators 

during daytime, diurnal raptors will most likely make this period of the day highly risky 

as both Mediterranean study areas harbour healthy populations of raptor predators 

(García-Canseco 1997; ICN 2006).  

A downside of our analysis is that it evaluates the activity patterns of rabbits as if it was 

similar across the entire landscape (irrespective to habitat structure). Previous work 

has suggested both rabbits and rodents can locally adapt their spatial and temporal 

strategies as a response to perceived predation risk (Moreno et al. 1996; Villafuerte & 

Moreno 1997; Fernández-de-Simón et al. 2009) in what has been described as ‘the 

ecology of fear’ (Brown et al. 1999; Ripple & Beschta 2004). Therefore, within each 

study area, both rabbits’ and murids’ behavioural responses could change at a micro 

scale as an adjusted response to locally implemented predation risk. However, even 

though we did not perform microhabitat analyses to detect these fine scale nuances of 

prey behaviour, we were able to characterize the circadian activity cycles that reflect 

the behavioural strategies of the studied populations.  

 

Predator and prey activity overlap and synchrony 

Optimal foraging theory predicts that an animal will display a foraging pattern that 

maximizes its caloric intake per time unit (MacArthur & Pianka 1966; Pyke et al. 1977). 

Therefore, taking into account that most species found in European mesocarnivore 

communities require prey to be active in order to detect and capture them, we would 

expect mesocarnivore activity patterns to be close to that of the most profitable 

available prey. Small mammals are the most preferred prey by European 
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mesocarnivores in the Atlantic region (Virgós et al. 1999; Lozano et al. 2006; Zhou et 

al. 2011; Díaz-Ruiz et al. 2013), while in the Mediterranean region, the European rabbit 

takes place as the most profitable prey because of its high energetic value (Malo et al. 

2004). However, our results reveal a high consistency in the synchrony and overlap 

between small mammals’ and mesocarnivores’ activity patterns, even in the 

Mediterranean study areas. In this region, where the European rabbit should emerge 

as preferred prey, only moderate values of activity overlap and low values of synchrony 

were found with mesocarnivores. The predation risk allocation hypothesis proposed by 

Lima & Bednekoff (1999) advocates that through a reasonably accurate perception of 

predation risk, prey species adapt their activity strategies to avoid being active in high-

risk periods. By allocating strong antipredator behaviours to such periods, they then 

compensate by focusing its feeding effort in low-risk situations. This theory is supported 

by Fenn & MacDonald (1995) who found that brown rats (Rattus norvegicus) shift their 

diel activity patterns when perceived predation risk by red foxes was removed. Low-risk 

feeding efforts may be particularly intense when high-risk periods are long or frequent 

(Lima & Bednekoff 1999; Sih & McCarthy 2002). This situation seems to apply to the 

case of the European rabbit in the Mediterranean region. The strong bimodal pattern of 

the rabbits diel activity is coherent with a strategy of antipredator behaviour during long 

periods of high predation risk, while an intensification of the feeding efforts is 

concentrated in periods when predation pressure relaxes. However, if we look at this 

system from the predators’ point of view, if the European rabbit is such an energetically 

profitable prey, why don’t predators completely overlap European rabbits’ daily 

rhythms? The predator–prey temporal relations vary between two extremes: first, the 

prey species completely manages to avoid predators by being active when they are 

not. This situation would obviously be disadvantageous for the predators, which would 

lose important energetic intake and probably reduce their populations up to the level of 

local extinction (specialist predator species; Ferrer & Negro 2004) or to a point where 

predation risk would stop being significant for the prey population (Halle 2000). In the 

other extreme, predators perfectly track prey in the temporal scale. In this case, 

predation success would probably be excessively high, leading to the depletion of the 

feeding resource (Sinclair et al. 1998) or driving prey into a predator pit (Trout & 

Tittensor 1989; Pech et al. 1992; Sinclair et al. 1998). Neither of these antagonist 

cases is beneficial for any of the species in the long run. Therefore, and assuming that 

unaccounted factors are not significantly influencing our results, we suggest that 
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predators only track prey activity so far, reaching a point when the trade-off between 

predation success and the energetic intake is sufficient to fulfil its biological needs, 

especially in the case when prey availability is not a limiting factor. This situation should 

hold for species that, like the European rabbit, have a wide option of temporal selection 

(i.e. are able to forage at different periods of the day) and that suffer from intensive 

stalking from predator species. Such a pattern was reported by Arias-Del Razo et al. 

(2011) with coyotes (Canis latrans) and lagomorphs in Mexico. They found that both 

predator and prey species exhibited bimodal diel activity, but only one of the activity 

peaks was synchronized between them, meaning that there was a part of the day when 

prey chose to be active when the predator was not. Similarly, Roth & Lima (2007) 

found that sharp-shinned hawks (Accipiter striatus) and their preferred prey activities 

only partially overlapped, contradicting predator–prey game theory (Kotler et al. 2002). 

The strong evolutionary imprint that binds the murid species to nocturnal activity (Roll 

et al. 2006) constrains their activity to the periods of the day with dim light conditions. 

According to the predation risk allocation hypothesis (Lima & Bednekoff 1999), if high-

risk periods are frequent or lengthy, then an animal has little choice but to feed under 

high risk. This means that murid rodents have no choice but to venture during the 

periods of high predation risk imposed by mesocarnivore activity. In this case, the 

probability of an individual of the prey species being killed by predation is lower when 

activity is synchronized among its community and span for a longer period of the day, 

instead of being concentrated in time (Halle 2000). This favours the observed unimodal 

and continuous pattern activity observed throughout the night-time of murid rodents in 

all studied areas.  

 

Conclusions  

The constant arms race that takes place between predators and prey, and how it 

shapes community structure and behaviour has been matter of intense study and 

controversy (e.g. Blumstein 2008; Dickman 2008; Gompper & Vanak 2008; Shanas et 

al. 2008; Shapira et al. 2008). It is, however, widely accepted that adaptations are 

bidirectional and take place over at least two dimensions: spatial and temporal (Lima & 

Bednekoff 1999; Lima 2002). Our work focuses on the temporal component, and 

provides some interesting insights into the structure of predator and prey adaptations. 

Contrary to our predictions, we found that in spite of the higher energetic input provided 

by preying on European rabbits (when compared to rodents), mesocarnivores do not 
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completely track its activity pattern. This observation is irrespective to European 

rabbit’s abundance. We found however, that mesocarnivores, as a community, tend to 

track small mammals activity irrespective to the ecoregion, and even though a 

preferred or more profitable prey is available. The somewhat constant and long period 

of activity of rodent prey may allow predators to explore this resource sequentially, thus 

avoiding agonistic encounters among intraguild competitors. Conversely, concentrating 

in the short period of time when European rabbits peak their activity would probably 

potentiate these encounters and consequently enhance competition stress. Further 

research should focus on the evaluation of the spatial variation of these temporal 

strategies in relation to microhabitat, as predation risk and prey vulnerability may differ 

over a small spatial scale, thus leading to an adjustment of the behaviours of both 

predator and prey species (Fenn & MacDonald 1995; Lima & Bednekoff 1999; Quinn & 

Cresswell 2004). 

 

Aknowledgements  

This work was partially supported by a PhD grant from the Fundação para a Ciência e 

a Tecnologia (FCT) to PM (SFRH/BD/37795/2007) and two research projects, one from 

the Spanish National Plan (project ref: CGL2009-10741) funded by the Spanish 

Ministry of Science and Innovation and EU-FEDER funds, and one from the Spanish 

Organismo Autónomo Parques Nacionales (project ref: OAPN 352/2011). We thank 

Ana Marta Serronha, Pedro Moreira, Ricardo Silva, Rafaela Carreira, Pedro Rebelo, 

Francisco Díaz-Ruiz and Jesus Caro for their assistance during the fieldwork. We 

acknowledge the staff from all the protected areas where field work was carried on, for 

their support during field samplings. The manuscript was highly improved by the helpful 

comments of two anonymous referees. 

 

 

 

 



186 

	
  

References  

Arias-Del Razo I, Hernández L, Laundré JW, Myers O (2011) Do predator and prey 

foraging activity patterns match? A study of coyotes (Canis latrans), and lagomorphs 

(Lepus californicus and Sylvilagus audobonii). J Arid Environ 75: 112-118. DOI: 

10.1016/j.jaridenv.2010.09.008  

Ashby K (1972) Patterns of daily activity in mammals. Mamm Rev 1: 171–185. DOI: 

10.1111/j.1365-2907.1972.tb00088.x 

Bakker ES, Reiffers RC, Olff H, Gleichman JM (2005) Experimental manipulation of 

predation risk and food quality: effect on grazing behaviour in a central-place foraging 

herbivore. Oecologia 146: 157–67. DOI: 10.1007/s00442-005-0180-7. 

Bartness TJ, Albers HE (2000) Activity Patterns and the Biological Clock in Mammals. 

In Halle S, Stenseth NC (eds) Activity Patterns in Small Mammals: An Ecological 

Approach. Springer, New York, pp. 23–47. 

Blanco JC (1998) Mamíferos de España. Planeta, Barcelona. 

Blumstein DT (2008) Does agriculture drive predator-mediated behavioral effects on 

prey? Anim Conserv 11: 9-10. DOI: 10.1111/j.1469-1795.2008.00158.x  

Brown JS, Laundre JW, Mahesh G (1999) The ecology of fear: optimal foraging, game 

theory, and trophic interactions. J Mammal 80: 385–399. DOI: 10.2307/1383287  

Carothers JH, Jaksić FM (1984) Time as a Niche Difference: The Role of Interference 

Competition. Oikos 42: 403–406. 

Carvalho JC, Gomes P (2004) Feeding resource partitioning among four sympatric 

carnivores in the Peneda-Gerês National Park (Portugal). J Zool 263: 275–283. DOI: 

10.1017/S0952836904005266  

Costa JC, Aguiar C, Capelo JH, Lousã M, Neto C (1998) Biogeografia de Portugal 

continental. Quercetea 0: 5–56. 



187 

	
  

Davis ML, Kelly MJ, Stauffer DF (2011) Carnivore co-existence and habitat use in the 

Mountain Pine Ridge Forest Reserve, Belize. Anim Conserv 14: 56–65. DOI: 

10.1111/j.1469-1795.2010.00389.x  

DeCoursey PJ (2004) Diversity of Function of SCN Pacemakers in Behavior and 

Ecology of Three Species of Sciurid Rodents. Biol Rhythm Res 35: 13–33. DOI: 

10.1080/09291010412331313214 

Delibes M, Aymerich M, Cuesta L (1984) Feeding habits of the Herpestes ichneumon 

or Egyptian mongoose in Spain. Acta Theriol 29: 205-218. 

Delibes M, Hiraldo F (1981) The rabbit as prey in the Iberian Mediterranean 

ecosystem. In Myers K, MacInnes CD (eds) Proceedings of the World Lagomorph 

Conference, University of Guelph, Ontario, pp. 614–622. 

Delibes-Mateos M, Delibes M, Ferreras P, Villafuerte, R. (2008a) Key role of European 

rabbits in the conservation of the Western Mediterranean basin hotspot. Conserv Biol 

22: 1106–17. DOI: 10.1111/j.1523-1739.2008.00993.x  

Delibes-Mateos M, Fernández-de-Simón J, Villafuerte R, Ferreras P (2008b) Feeding 

responses of the red fox (Vulpes vulpes) to different wild rabbit (Oryctolagus cuniculus) 

densities: a regional approach. Eur J  Wildl Res 54: 71–78. DOI: 10.1007/s10344-007-

0111-5  

Díaz-Ruiz F, Delibes-Mateos M, García-Moreno JL, López-Martin JM, Ferreira C, 

Ferreras P (2013) Biogeographical patterns in the diet of an opportunistic predator: the 

red fox Vulpes vulpes in the Iberian Peninsula. Mamm Rev  43: 59-70. DOI: 

10.1111/j.1365-2907.2011.00206.x  

Dickman CR (2008) Indirect interactions and conservation in human-modified 

environments. Anim Conserv 11: 11-12. DOI: 10.1111/j.1469-1795.2008.00159.x  

Díez C, Pérez JA, Prieto R, Alonso ME, Olmedo JA (2005) Activity patterns of wild 

rabbit (Oryctolagus cuniculus, L. 1758), under semi-freedom conditions, during Autumn 

and Winter. Wildl Biol Pract 1: 41-46. DOI: 10.2461/wbp.2005.1.6  



188 

	
  

Ebensperger L, Wallem P (2002) Grouping increases the ability of the social rodent, 

Octodon degus, to detect predators when using exposed microhabitats. Oikos 98: 490-

496. DOI: 10.1034/j.1600-0706.2002.980313.x 

Elton CS (2001) Animal Ecology. University of Chicago Press, Chicago. 

Eriksen A, Wabakken P, Zimmermann B, Andreassen HP, Arnemo JM, Gundersen H, 

Liberg O, Linnell J, Milner JM, Pedersen HC, Sand H, Solberg EJ, Storaas T (2011) 

Activity patterns of predator and prey: a simultaneous study of GPS-collared wolves 

and moose. Anim Behav 81: 423–431. DOI: 10.1016/j.anbehav.2010.11.011  

Fedriani JM, Palomares F, Delibes M (1999) Niche relations among three sympatric 

Mediterranean carnivores. Oecologia 121: 138-148.  DOI: 10.1007/s004420050915. 

Fenn MGP, MacDonald DW (1995) Use of middensby red foxes: risk reverses rhythms 

of rats. J Mammal 76:130-136. 

Fernández-de-Simón J, Díaz-Ruiz F, Cirilli F, Tortosa FS, Villafuerte R, Delibes-Mateos 

M, Ferreras P (2011) Towards a standardized index of European rabbit abundance in 

Iberian Mediterranean habitats. Eur J Wildl Res 57: 1091–1100. DOI: 10.1007/s10344-

011-0524-z  

Fernández-de-Simón J, Díaz-Ruiz F, Cirilli F, Tortosa FS, Villafuerte R, Ferreras P 

(2009) Relación entre la presión de depredación y los ritmos de actividad del conejo de 

monte: aplicación a las estimas de densidad.  IX SECEM Conference, Bilbao. [in 

spanish] 

Fernández-Durán JJ (2004) Circular Distributions Based on Nonnegative Trigonometric 

Sums. Biometrics 60: 499–503. DOI: 10.1111/j.0006-341X.2004.00195.x  

Ferrer M, Negro JJ (2004) The Near Extinction of Two Large European Predators: 

Super Specialists Pay a Price. Conserv Biol 18: 344-349. DOI: 10.1111/j.1523-

1739.2004.00096.x  

Flowerdew JR (2000) Wood Mice - Small Granivores/Insectivores with Seasonally 

Variable Patterns. In Halle S, Stenseth NC (eds) Activity Patterns in Small Mammals: 

An Ecological Approach. Springer, New York, pp. 177–189. 



189 

	
  

García-Canseco V (1997) Parque Nacional de Cabañeros, 1st edn. Ecohábitat, Madrid. 

Germain E, Benhamou S, Poulle M-L (2008) Spatio-temporal sharing between the 

European wildcat, the domestic cat and their hybrids. J Zool 276: 195-203. 

DOI:10.1111/j.1469-7998.2008.00479.x  

Gompper ME, Vanak AT (2008) Subsidized predators, landscapes of fear and 

disarticulated carnivore communities. Anim Conserv 11: 13-14. DOI: 10.1111/j.1469-

1795.2008.00160.x  

Halle S (2000) Ecological Relevance of Daily Activity Patterns. In Halle S, Stenseth NC 

(eds) Activity Patterns in Small Mammals: An Ecological Approach. Springer, New 

York, pp. 67–90. 

Halle S, Stenseth NC (2000) Introduction. In Halle S, Stenseth NC (eds) Activity 

Patterns in Small Mammals: An Ecological Approach. Springer, New York, pp. 4–17. 

Hutchinson GE (1957) Concluding Remarks. Cold Spring Harb Symp Quant Biol 22: 

415–427. 

ICN - Instituto para a Conservação da Natureza (2006) Zona de Protecção Especial 

Vale do Guadiana. , 12. [in portuguese] 

Jacob J, Brown JS (2000) Microhabitat use, giving-up densities and temporal activity 

as short- and long-term anti-predator behaviors in common voles. Oikos 91: 131–138. 

DOI: 10.1034/j.1600-0706.2000.910112.x 

Jedrzejewska B, Jedrzejewski W (1990) Antipredatory behaviour of bank voles and 

prey choice of weasels - enclosure experiments. Ann Zool Fenn 27: 321–328.  

Jilge B, Hudson R (2001) Diversity and development of circadian rhythms in the 

European rabbit. Chronobiol Int 18: 1–26. DOI: 10.1081/CBI-100001275  

Kavanau JL and Ramos J (1975) Influences of Light on Activity and Phasing of 

Carnivores. Am Nat 109: 391-418. DOI: 10.1086/283009  

Kelly MJ, Holub EL (2008) Camera Trapping of Carnivores: Trap Success Among 

Camera Types and Across Species, and Habitat Selection by Species, on Salt Pond 



190 

	
  

Mountain, Giles County, Virginia. Northeast Nat 15: 249–262. DOI: 10.1656/1092-

6194(2008)15[249:CTOCTS]2.0.CO;2  

Kotler BP, Brown JS, Dall SRX, Gresser S, Ganey D, Bouskila A (2002) Foraging 

games between gerbils and their predators: temporal dynamics of resource depletion 

and apprehension in gerbils. Evol Ecol Res 4: 495–518. 

Kronfeld-Schor N, Dayan T (2003) Partitioning of time as an ecological resource. Annu. 

Rev. Ecol. Syst 34: 153–181. DOI: 10.1146/annurev.ecolsys.34.011802.132435  

Kronfeld-Schor N, Dayan T (2008) Activity patterns of rodents: the physiological 

ecology of biological rhythms. Biol Rhythm Res 39: 193–211. DOI: 

10.1080/09291010701683268  

Lima SL (2002) Putting predators back into behavioral predator–prey interactions. 

Trends Ecol Evol 17: 70–75. DOI: 10.1016/S0169-5347(01)02393-X  

Lima SL, Bednekoff PA (1999) Temporal Variation in Danger Drives Antipredator 

Behavior: The Predation Risk Allocation Hypothesis. Am Nat 153: 649-659. 

Linkie M, Ridout MS (2011) Assessing tiger-prey interactions in Sumatran rainforests. J 

Zool 284: 224–229. DOI: 10.1111/j.1469-7998.2011.00801.x  

Lombardi L, Fernández N, Moreno S, Villafuerte R (2003) habitat-related differences in 

rabbit (Oryctolagus cuniculus) abundance, distribution, and activity. J Mammal 84: 26–

36. DOI: 10.1644/1545-1542(2003)084<0026:HRDIRO>2.0.CO;2  

Lozano J, Moleón M, Virgós E (2006) Biogeographical patterns in the diet of the 

wildcat, Felis silvestris Schreber, in Eurasia: factors affecting the trophic diversity. J 

Biogeogr 33: 1076–1085. DOI: 10.1111/j.1365-2699.2006.01474.x  

Lucherini M, Reppucci J, Walker R., Villalba M, Wurstten A, Gallardo G, Iriarte A, 

Villalobos R, Perovic P (2009) Activity pattern segregation of carnivores in the high 

Andes. J Mammal 90: 1404–1409. DOI: 10.1644/09-MAMM-A-002R.1  

MacArthur RH, Pianka ER (1966) On the optimal use of a patchy environment. Am Nat 

100: 603-609. 



191 

	
  

Malo AF, Lozano J, Huertas DL, Virgós E (2004) A change of diet from rodents to 

rabbits (Oryctolagus cuniculus). Is the wildcat (Felis silvestris) a specialist predator? J 

Zool 263: 401–407. DOI: 10.1017/S0952836904005448  

Marinis A, Masseti M (1995) Feeding habits of the pine marten Martes martes L., 1758, 

in Europe: a review. Hystrix 7: 143-150. DOI: 10.4404/hystrix-7.1-2-4063  

Monterroso P, Alves PC, Ferreras P (2011) Evaluation of attractants for non-invasive 

studies of Iberian carnivore communities. Wildl Res 38: 446–454. DOI: 

10.1071/WR11060  

Moreno S, Delibes M, Villafuerte R (1996) Cover is safe during the day but dangerous 

at night: the use of vegetation by European wild rabbits. Can J Zool 74: 1656–1660. 

DOI: 10.1139/z96-183  

Moseby KE, De Jong S, Munro N, Pieck A (2005) Home range, activity and habitat use 

of European rabbits (Oryctolagus cuniculus) in arid Australia: implications for control. 

Wildl Res 32: 305–311. DOI: 10.1071/WR04013 

Palomares F, Delibes M (2000) Mongooses, Civets and Genets - Carnivores in 

Southern Latitudes. In Halle S, Stenseth NC (eds) Activity Patterns in Small Mammals: 

An Ecological Approach. Springer, New York, Pp: 119-130. 

Palomares F, Gaona P, Ferreras P, Delibes M (1995) Positive Effects on Game 

Species of Top Predators by Controlling Smaller Predator Populations: An Example 

with Lynx, Mongooses, and Rabbits. Conserv Biol 9: 295-305. DOI: 10.1046/j.1523-

1739.1995.9020295.x  

Palomares, F. (2001) Comparison of 3 methods to estimate rabbit abundance in a 

Mediterranean environment. Wildl Soc Bull 29: 578–585.  

Palomo LJ, Justo ER, Vargas JM (2009) Mus spretus (Rodentia: Muridae). Mammal 

Species 840: 1–10. DOI: 10.1644/840.1  

Pech RP, Sinclair ARE, Newsome AE, Catling PC (1992) Limits to predator regulation 

of rabbits in Australia: evidence from predator-removal experiments. Oecologia 89: 

102-112. DOI: 10.1007/BF00319021  



192 

	
  

Pierce B, Longland W, Jenkins S (1992) Rattlesnake Predation on Desert Rodents: 

Microhabitat and Species-Specific Effects on Risk. J Mammal 73: 859-865.  

Prieto JAF, Sánchez ÁB (1996) La Reserva Integral de Muniellos: Flora y Vegetación. 

Servicio central de publicaciones del Principado de Asturias, Oviedo. [in spanish] 

Pyke GH, Pulliam HR, Charnov EL (1977) Optimal Foraging: A Selective Review of 

Theory and Tests. Q Rev Biol 52: 137-154. 

Quinn JL, Cresswell W (2004) Predator hunting behaviour and prey vulnerability. J 

Anim Ecol 73: 143–154. DOI: 10.1046/j.0021-8790.2004.00787.x  

R Development Core Team. 2008. R: A language and environment for statistical 

computing. 

Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera 

trap data. J Agric Biol Environ Stat 14: 322–337. DOI: 10.1198/jabes.2009.08038  

Ripple WJ, Beschta RL (2004) Wolves and the Ecology of Fear: Can Predation Risk 

Structure Ecosystems? BioScience 54: 755-766. DOI: 10.1641/0006-

3568(2004)054[0755:WATEOF]2.0.CO;2  

Rivas-Martínez S (1981) Les étages bioclimatiques de la végétation de la Peninsule 

Iberique. Anales Jard. Bot. Madrid 37: 251–268. 

Rivas-Martínez S, Penas A, Díaz TE (2004) Mapa Bioclimático de Europa, Bioclimas, 

http://www.ucm.es/info/cif/form/maps.htm 

Roll U, Dayan T, Kronfeld-Schor N (2006) On the role of phylogeny in determining 

activity patterns of rodents. Evol Ecol 20. 479–490. DOI: 10.1007/s10682-006-0015-y  

Roth II TC, Lima SL (2007) The predatory behavior of wintering Accipiter hawks: 

temporal patterns in activity of predators and prey. Oecologia, 152: 169-178. DOI: 

10.1007/s00442-006-0638-2  

Schoener, T.W. (1974) Resource partitioning in ecological communities. Science 185: 

27–39. DOI: 10.1126/science.185.4145.27  



193 

	
  

Shanas U, Shapira I and Sultan H (2008) Behavioural alterations as part of an 

agricultural edge effect. Anim Conserv 11: 15-16. DOI: 10.1111/j.1469-

1795.2008.00161.x  

Shapira I, Sultan H and Shanas U (2008) Agricultural farming alters predator–prey 

interactions in nearby natural habitats. Anim Conserv 11: 1-8. DOI: 10.1111/j.1469-

1795.2007.00145.x  

Sih A, McCarthy T (2002) Prey responses to pulses of risk and safety: testing the risk 

allocation hypothesis. Anim Behav 63: 437-443. DOI: 10.1006/anbe.2001.1921  

Sinclair ARE, Pech RP, Dickman CR, Hik D, Mahon P, Newsome AE (1998) Predicting 

Effects of Predation on Conservation of Endangered Prey. Conserv Biol 12: 564-575. 

DOI: 10.1111/j.1523-1739.1998.97030.x  

Trout RC, Tittensor AM (1989) Can predators regulate wild Rabbit Oryctolagus 

cuniculus population density in England and Wales. Mammal Rev 19: 153-173. DOI: 

10.1111/j.1365-2907.1989.tb00409.x  

UNESCO. UNESCO - MAB Biosphere Reserve Directory, 

http://www.unesco.org/mabdb/br/brdir/directory/database.asp 

Villafuerte R, Kufner,MB, Delibes M, Moreno (1993) Environmental factors influencing 

the seasonal daily activity of the European rabbit (Oryctolagus cuniculus) in a 

Mediterranean area. Mammalia 57: 341-347. DOI: 10.1515/mamm.1993.57.3.341 

Villafuerte, R. and Moreno, S. (1997) Predation risk, cover type, and group size in 

European rabbits in Doñana (SW Spain).  Acta Theriol 42: 225-230. DOI: 

oai:rcin.org.pl:12688 

Virgós E,  Llorente M, Cortés Y (1999) Geographical variation in genet (Genetta 

genetta L.) diet: a literature review. Mammal Rev 29: 119-128.  DOI: 10.1046/j.1365-

2907.1999.00041.x   

Virgós E, Revilla E, Mangas JG, Barea-Azcón JM, Rosalino, ML, Marinis A (2005) 

Revisión de la dieta del Téjon (Meles meles) en la Península Ibérica: comparación con 

otras localidades de su área de distribución natural. In Virgós E, Mangas JG, Revilla E, 



194 

	
  

Roura X-D (eds) Ecología, distribución y estatus de conservación del tejón Ibérico. 

Sociedad Española para la Conservación y Estudio de los Mamíferos, Málaga. Pp 67-

80. 

Watkins AF, McWhirter JL, King CM (2009) Variable detectability in long-term 

population surveys of small mammals. Eur J Wildl Res 56: 261–274. DOI: 

10.1007/s10344-009-0308-x 

Weckel M, Giuliano W, Silver S (2006) Jaguar (Panthera onca) feeding ecology: 

distribution of predator and prey through time and space. J Zool  270: 25-30. 

DOI:10.1111/j.1469-7998.2006.00106.x. 

Wolton,BYRJ (1983) The Activity of Free-Ranging Wood Mice Apodemus sylvaticus. J 

Anim Ecol 52: 781–794.  

Zalewski A (2000) Factors affecting the duration of activity by pine martens (Martes 

martes) in the Bialowieza National Park, Poland. J Zool 251: 439-447. DOI: 

10.1111/j.1469-7998.2000.tb00799.x 

Zhou Y, Newman C, Xu W, Buesching CD, Zalewski A, Kaneko Y, Macdonald DW, Xie 

Z-Q (2011) Biogeographical variation in the diet of Holarctic martens (genus Martes, 

Mammalia: Carnivora: Mustelidae): adaptive foraging in generalists. J Biogeogr 38: 

137–147. DOI: 10.1111/j.1365-2699.2010.02396. 

 

Supporting information: Appendix 3.1 

Table 1 - Density of activity of each species and mesocarnivore community, for each 

period considered of day.  

Table 2 - Coefficient of overlap and Pearson correlation (activity synchrony) between 

terrestrial carnivores, small mammals and European rabbits. 
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3.2 Plasticity in activity patterns of 

mesocarnivores in Southwestern Europe: 

implications for species coexistence 

 

Abstract  

Limiting similarity theory predicts that competing species must segregate along one or 

more dimensions of their ecological niche in order to coexist. In predator communities, 

interspecific interactions are influenced by a diversity of factors; therefore the 

behavioural patterns of composing species will differ due to locally adapted 

interactions. 

We deployed 32 - 41 camera-traps in five study areas across the Iberian Peninsula to 

investigate the temporal relations between mesocarnivores in SW Europe. The 

selection for a period of the diel cycle and plasticity in activity patterns was evaluated 

using the Jacobs selection index (JSI) and the coefficient of activity overlap (∆1). 

Furthermore, we investigated whether temporal shifts can facilitate coexistence by 

reducing activity overlap.  

Seven species of mesocarnivores were detected and were assigned into one of three 

behaviourally distinct groups: diurnal (JSIday ≥ 0.8), strictly nocturnal (JSInight ≥ 0.8) or 

facultative nocturnal species (0.4 ≥ JSInight > 0.8). Most species exhibited substantial 

flexibility, which allowed them to locally adapt their foraging strategies (intraspecific ∆1 

= 0.70 - 0.77). Mean Δ1 from all interspecific pairwise comparisons was negatively 

correlated with the number of carnivore species with ≥ 10 detections (r = -0.76, p = 

0.02). Our results suggest that temporal segregation is likely to play an important role 

in facilitating mesocarnivore coexistence, especially with increasing community 

complexity, where most species’ activity peaks were asynchronous. These results 

contribute for understanding the dynamics and behavioural strategies of coexisting 

mesocarnivores, crucial for forecasting the possible outcomes of conservation or 

management actions. 
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Introduction 

A population of a given species can be ecologically described by its position along a 

set of dimensions ordering environmental variables (Schoener 1974), thus occupying a 

specific ecological niche (Hutchinson 1957). MacArthur and Levins’ (1967) limiting 

similarity theory predicts that there is a threshold of niche similarity between sympatric 

species under which stable coexistence is allowed. This means that competing species 

must segregate, at least partially, along one or more dimensions of their ecological 

niche (Hardin 1960; MacArthur and Levins 1967; Szabó and Meszeéna 2006). 

Alternatively to this kind of displacement, limiting theory predicts that depending on the 

competitive abilities of the species involved, competition would be reflected in their 

population numbers (Abrams 1983). Schoener (1974) found that the separation among 

species niches is generally multidimensional, and two is the most common number of 

dimensions separating species. Despite being regarded as the least important of the 

three main niche axes - spatial, temporal and resource exploitation - , the temporal 

niche axis is particularly relevant in the case of predator species as they often 

segregate across the diel cycle, promoting coexistence (e.g. Di Bitetti et al. 2009; 

Harrington et al. 2009; Wang and Fisher 2012). Further, the presence of competitors 

frequently influences activity patterns through interference competition, which is 

expected to be stronger whenever similarity in other niche dimensions and body mass 

are high (Schoener 1974; Linnell and Strand 2000; Donadio and Buskirk 2006; Ritchie 

and Johnson 2009). However, a species activity pattern along the diel cycle is not only 

regulated by competition. It is internally regulated by each specie’s endogenous clock 

(Kronfeld-Schor and Dayan 2003) and by external abiotic and biotic factors which, in 

the case of predator species, are strongly constrained by the accessibility to preys, that 

often have their own well defined activity patterns (Halle 2000; Arias-Del Razo et al. 

2011). Biological and ecological similitudes bind mesocarnivore species, making this 

group particularly interesting for addressing community functioning studies (Roemer et 

al. 2009). The ecological interactions within a carnivore community should vary as a 

result of several factors such as community structure, species plasticity and bottom-up 

and top-down control effects (Linnell and Strand 2000; Elmhagen and Rushton 2007; 

Ritchie and Johnson 2009; Elmhagen et al. 2010). A consequence of such complexity 

is that mesocarnivore communities with similar species composition may differ in their 

internal organization, niche relations and behavioural patterns relative to species 
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interactions. Different guild compositions and structures should result into different 

interspecific relations among its composing species, and potentially drive their positions 

along specific niche axes to change from one area to another. In the presence of 

competition for a position in a specific niche axis, a subordinate competitor is either 

plastic enough to displace its position along that axis or will change along some other 

axis to further reduce niche overlap. However, resource partitioning is a community 

wide phenomenon and the interactions involved are complex. Therefore, the analysis 

and interpretation of such interspecific relations require a holistic approach (Schoener 

1974; Ritchie and Johnson 2009). 

Southwestern (SW) European mesocarnivore communities include a total of seven 

species, which not all occur in sympatry or coexist spatially within their distribution 

areas by result of ecosystem disruption, habitat fragmentation, direct persecution or 

other historical factors  (Cabral et al. 2005; Palomo et al. 2007). For example, the pine 

marten (Martes martes) distribution is restricted to the northern fringe of the Iberian 

Peninsula (López-Martin 2007), and the Egyptian mongoose (Herpestes ichneumon) to 

the Mediterranean bioclimatic region (Palomares 2007). In SW European 

mesocarnivore communities, the potential for exploitation and/or interference 

competition exists among several species pairs along various niche dimensions due to 

above-mentioned high diversity of mesocarnivore community structures’ that can be 

found. 

Here, we analyze data on the diel activity of mesocarnivores of several areas and 

bioclimatic regions in SW Europe. We aimed to evaluate the level of plasticity of the 

species that compose these mesocarnivore communities in their activity patterns and 

whether ecological shifts along the temporal axis could promote coexistence by 

reducing the overlap in activity periods with competitors.  

 

Methods  

Study areas 

The Iberian Peninsula (IP) is included in two biogeographical regions: the 

Mediterranean region, which occupies roughly 2/3 of the southwestern IP; and the 



202 

	
  

Atlantic region, which is restricted to the northern fringe and extends towards the 

Pyrenees (European Environmental Agency 2012). In order to obtain data from the 

mesocarnivore communities of both bioclimatic regions, five study sites were selected, 

distributed across the IP (Fig. 3.2.1): the Guadiana Valley Natural Park (GVNP) and the 

Peneda-Gerês National Park (PGNP), located in Portugal; and the Cabañeros National 

Park (CNP), the Sierra de Andújar Natural Park (SANP) and the Muniellos Natural 

Reserve (MNR), located in Spain. GVNP, CNP and SANP are located in the 

Mediterranean region, and have a Mediterranean pluviseasonal continental bioclimate 

(Rivas-Martínez, Penas, and Díaz 2004). Scrublands are mainly associated with 

steeper slopes, elevation ridges and main water bodies, and are dominated by Pyro-

Quercetum rotundifoliae and Myrto communis–Querco rotundifoliae series and other 

subserial stages (Rivas-Martinez 1981; Costa et al. 1998). At CNP and GVNP, areas 

with gentler slopes are mainly occupied by cereal crops and a savannah-like system, 

with holm oak trees (Quercus rotundifolia) scattered within a grassland matrix (García-

Canseco 1997). At the SANP, areas with gentler slopes are rather dominated by Stone 

pine (Pinus pinea) and Maritime pine (Pinus pinaster) forests with and without 

understorey (Gil-Sánchez et al. 2006). Human access is highly restricted at CNP and 

SANP, for conservation purposes. However, at GVNP hunting activity is extremely 

important in this region and about 86% of the land is included in hunting estates. 

The PGNP and MNR are located in the Atlantic region, and have a temperate oceanic 

submediterranean bioclimate (Rivas-Martínez et al. 2004). The landscapes consist of 

mountainous agricultural–forest mosaic, where mountain tops are mostly dominated by 

scrublands with Ericaceae, Ulex sp. and Betulaceae habitats, and mountain slopes and 

valleys are essentially dominated by oligotrophic oak forests (dominated by Quercus 

sp., Betula sp. and Fagus sp.). Pastures, agricultural fields and small villages are found 

scattered through the landscape, mainly along valleys and lower altitude locations 

(Prieto and Sánchez 1996; Carvalho and Gomes 2004). High levels of tourist visitation 

(namely hikers) also characterize the PGNP study area, which are mainly focused in 

the warmer months and in the main valley. Human access is limited inside the integral 

reserve of MNR, and is restricted to 20 persons per day along a specific trail. The 

neighboring areas also included in the study area have relatively low disturbance 

(mainly hikers), which is mainly concentrated in the summer months.  
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A study area of approximately 6000ha within each of the study sites was selected, 

based on criteria of ecosystem conservation status and logistic factors. The only 

exception was the SANP study area, where we were only allowed to work in an area of 

2700ha.  

 

Figure 3.2.1 Location of the study areas: MNR - Muniellos Natural Reserve; PGNP - Peneda-Gerês National Park; 

GVNP - Guadiana Valley Natural Park; CNP - Cabañeros National Park; SANP - Sierra de Andújar Natural Park. 

Field sampling 

All study areas were sampled in two seasons: non-breeding (Jul-Oct), when the 

offspring of most medium-sized carnivores from that year become independent; and 

breeding season (Feb-Apr), during these species’ breeding season (Blanco 1998). 

CNP and GVNP were sampled in 2009/2010, PGNP and MNR in 2010/2011, and 

SANP in 2012. 

Data collection was obtained by camera-trapping methods, and followed the sampling 

scheme and trap sites selection described by Monterroso, Alves, and Ferreras (2011). 

Briefly, 32 to 41 cameras were uniformly spaced in each study area following a grid-
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sampling scheme, where distance between camera traps was approximately 1.4 km 

apart, promoting spatial independence. The exception was SANP, where only 20 

cameras were placed due the smaller size of this area. Two camera-trap models were 

used: Leaf River IR5 (LeafRiver OutDoor Products, Taylorsville, Mississippi, USA) and 

ScoutGuard SG550V (HCO OutDoor Products, Norcross, Georgia, USA), which have 

trigger times of 0.9 and 1.3 seconds, respectively. Cameras were mounted on trees 

approximately 0.5 – 1.0m off the ground and set to record time and date when 

triggered. We programmed cameras with the most sensitive sensor setting, to fire a 

burst of three photos when triggered and with the minimal delay time possible (<1 min), 

to maximize the number of photos taken per captured individual. Camera-traps were 

maintained in the field for a minimum period of 28 days and were inspected for battery 

and memory card replacement every 7 to 14 days. If there was evidence that a camera 

trap was not working during the entire sampling period, we considered the effective 

sampling period as the time frame between camera setting (or the previous inspection) 

and the date of the last photograph taken. A combination of carnivore attractants was 

used in order to incite animals’ curiosity and thus increase detection probabilities. The 

attractants used were Lynx urine, obtained from captive specimens of Eurasian lynx 

(Lynx lynx) and Iberian lynx (Lynx pardinus), and Valerian extract solution, as 

suggested by Monterroso et al. (2011) for Iberian carnivore sampling. Attractants were 

placed in the field at a distance of 2-3 m from the camera-traps, and were deployed in 

perforated separated containers (plastic or PVC), at a distance of 10-15 cm from each 

other and approximately 30 cm above the ground. Five to 10 mL of each attractant 

were sprayed into a cotton gaze, held inside each container. Attractants were re-baited 

every 7 to 14 days. When multiple photographs of the same species were taken within 

a 30-minute interval we considered them as a single capture event to ensure capture 

independence (unless animals were clearly individually distinguishable; Davis et al. 

2011). 

Target species consisted of all mammalian carnivore species with mean body weight 

between 1.0 and 7.0kg (i.e. all mesocarnivore species): the red fox (Vulpes vulpes), the 

European wildcat (Felis silvestris), the stone marten (Martes foina), the pine marten 

(Martes martes), the Eurasian badger (Meles meles), the common genet (Genetta 

genetta) and the Egyptian mongoose (Herpestes ichneumon). We also included the 

Iberian lynx because of its reported physical and spatial interactions with several 
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species of mesocarnivores (Palomares et al. 1996, 1998; Palomares and Caro 1999) 

(Table 1). 

Cats detected by camera trapping were identified as wildcats (F. s. silvestris) or 

domestic cats (F. s. catus) by the most diagnostic phenotypic traits, particularly tail 

shape and colour pattern, and lateral coat pattern (Ragni and Possenti 1996; Spassov 

et al. 1997; Kitchener et al. 2005). Whenever it was visible, the extent of the dorsal 

stripe was also used. Individuals that did not display these characteristics, considered 

diagnostic of wildcats, were considered domestic cats. Domestic cats were only 

detected in GVNP study area at only few sites, and with few detections. Furthermore 

the levels of admixture found in putative wildcats were low in GVNP (Oliveira et al. 

2007) providing further confidence in the genetic integrity of the detected wildcats. In 

areas of co-occurrence, the distinction between pine and stone martens was also 

assessed by evaluating several (not always all) morphological traits and coat patterns, 

namely leg size; over and undercoat color; bib shape, color and contour; ear size, color 

and shape (Blanco 1998, López-Martin 2007, Reig 2007, Wilson and 

Mittermeier, 2009). All photos of martens were subjected to a blind identification 

procedure by three experienced researchers (PM, PF and PCA). Identification to the 

species level was only considered when consensus was achieved. All remaining 

photos were only identified to the genus level.  

  

Assessment of diel activity patterns and species plasticity 

The independent detection records for each target species were regarded as a random 

sample from the underlying continuous temporal distribution that describes the 

probability of a photograph being taken within any particular interval of the day (Ridout 

and Linkie 2009). The probability density function of this distribution (i.e. activity 

pattern; Linkie and Ridout 2011) was estimated nonparametrically using kernel density 

(Ridout and Linkie, 2009) considering only cases with ≥10 detections.  

In order to evaluate the plasticity of the diel distribution function for each species, 

pairwise comparisons of activity patterns for all study areas and seasons combinations 

were performed by estimating the coefficient of overlap ∆1, as suggested by Ridout and 
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Linkie (2009) and Linkie and Ridout (2011) for small sample sizes. The coefficient of 

overlap ranges from 0 (no overlap) to 1 (complete overlap), and is obtained taking the 

minimum of the density functions of the two cycles being compared at each time point. 

The precision of this estimator was obtained by computing a standard deviation from 

500 bootstrap samples. These analyses were performed using R software (R 

Development Core Team 2008). The R code used to estimate overlap coefficients was 

that provided by Ridout and Linkie (2009). As we sampled all study areas around the 

equinoxes (autumn and spring), we assumed that daylight length would not change 

significantly and therefore no standardizations were performed with respect to sunrise 

and sunset times. The evaluation of ∆1 values, and consequent definition of “high” or 

“low” overlap between two distinct activity patterns is largely subjective. For that 

reason, within the scope of our analysis, we defined “low”, ”moderate” or “high” activity 

overlap values with respect to the overall pairwise comparisons performed. Hence, 

compared activity patterns with ∆1 values ≤ 50th percentile of our sample were 

considered as “low overlap values”. Activity patterns with 50th percentile < ∆1 ≤ 75th 

percentile were considered “moderate overlap values”, and ∆1 > 75th were defined as 

“high overlap values”. 

Because the coefficient of overlap is purely descriptive, i.e. does not provide a 

threshold value below which two activity patterns might be significantly different, we 

used the Mardia-Watson-Wheeler test (MWW test; Batschelet 1981) to compare the 

distribution of detections across the diel cycle for all sampling campaign pairs (Brook et 

al. 2012; Gerber et al. 2012). This test pools the samples together and sorts them into 

increasing angles. They are then evenly distributed around the diel cycle by calculating 

a uniform score (or circular rank). If the distributions of the samples are identical then 

the new uniform scores for the samples should be evenly interspersed around the diel 

cycle, and their resultant vector lengths R should be short and similar. Any significant 

difference between the Rs will lead to a large W test statistic and rejection of the null 

hypothesis of identical distributions (Kovach 2011). Only distributions with ≥10 

detections were considered (Gerber et al. 2012). These analyses were performed 

using the software Oriana v. 4.01 (Kovach 2011).  

In order to evaluate each species strength of selection for diel period, four periods of 

the diel cycle where considered: Day - defined as the period enclosed between 1h after 
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sunrise and 1h before sunset; Night - between 1h after sunset and 1h before sunrise; 

Dawn - between 1h prior and 1h after sunrise, and Dusk - between 1h prior and 1h 

after sunset (Lucherini et al. 2009; Gerber et al. 2012; Foster et al. 2013). Species 

selection for each period of the diel cycle was evaluated using the modified Ivlev’s 

selectivity index (Ivlev 1961), adapted by Jacobs (1974), hereafter JSI. This index is 

broadly applied in ecological studies to evaluate selection for various types of 

resources (e.g. Palomares et al. 2000; Blanco-Garrido et al. 2007; Monterroso et al. 

2011). Using bootstrap resampling (500 replicates) (Manly 1997) and recalculating the 

JSI for each bootstrap sample, we determined the average JSI index and 95% 

confidence intervals for each period and species. We then considered each diel period 

as positively (or negatively) selected whenever the 95% CI of the JSI was positive (or 

negative) and did not overlap zero (i.e. used as expected by chance). 

 

Temporal segregation among species 

For each sampling campaign (study area x season) the temporal segregation between 

coexisting mammalian carnivores was evaluated by comparing the distribution of their 

activity records along the diel cycle. This comparison was performed using the 

coefficient of overlap ∆1 (Ridout and Linkie 2009) between pairs of species, as 

described above. The significance of the differences in the diel activity patterns 

between coexisting pairs of mesocarnivores was evaluated using multiple comparison 

MWW tests (Batschelet 1981). Multiple comparison MWW tests were controlled for 

type I errors using the Bonferroni correction by adjusting the significance level (alpha): 

dividing the type I error (0.05) by the number of tests (McDonald 2009). Data are 

presented as mean ± SE, unless explicitly stated otherwise. 

 

Results 

Camera-trapping results and species detected 

A total of 1514 independent detections allowed species level identification of 

mammalian carnivores from 9955 effective trap-days (905 ± 75 trapping 
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days/campaign). Overall, we obtained 99 detections (24.8 ± 14.9 detections/campaign) 

of unidentified taxonomic origin, corresponding to 1.2% of all animal records. The 

range of target species detected in each study area and season did not vary greatly, 

especially within bioclimactic region. European wildcats, Eurasian badgers, stone 

martens and common genets were detected in all study areas. The Egyptian 

mongoose was only detected at CNP and GVNP, the Iberian lynx was only detected at 

SANP and the pine marten was only detected as PGNP and MNR. Reliable 

discrimination between stone and pine martens was not possible in nine (19.6%) and 

three (9.4%) of the detections in MNR, during nonbreeding and breeding seasons, 

respectively. Neither was it possible in 14 (46.7%) and eight (17.8%) marten detections 

for the same seasons at PGNP. In spite of some consistency in composition, 

community structure varied across sampling campaigns (Table 3.2.3, Appendix 3.2). 

Several target species were detected in the distinct sampling campaigns, but with 

insuficcient data for estimating their activity patterns: the red fox in MNR during 

nonbreeding season; the European wildcat in CNP, MNR, PGNP in both seasons and 

SANP during nonbreeding season; the stone marten in MNR in both season, in PGNP 

during nonbreeding season and in SANP during breeding season; the common genet 

in MNR and SANP in both seasons, in GVNP during nonbreeding season, and in 

PGNP during breeding season; the Eurasian badger in MNR in both seasons, in GVNP 

and PGNP during breeding season, and in SANP during nonbreeding season; the 

Egyptian mongoose at CNP during breeding season. The European wildcat was 

detected in all sampling campaigns except at SANP during breeding season, however 

sufficient number of records was only obtained at GVNP for both seasons.  

Domestic carnivores were rarely detected over the course of the sampling campaigns, 

and the low number of detections prevented the estimation of these species’ activity 

patterns. 

 In total, dogs (Canis familiaris) were detected six times. They were detected in all 

study areas, except in CNP, and only at one camera-trapping station per study area. 

Domestic cats were only detected at GVNP at three camera-trapping stations out of 32 

(9.4%) in only seven occasions out of 41: three during the non-breeding and four 

during the breeding season. 
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Species plasticity and selection for diel period 

Mean coefficients of overlap were similar across species: 0.70 ≤ ∆1 ≤ 0.77 (Table 3.2.1, 

Appendix 3.2). However, MWW tests revealed that the red fox was the only species 

that showed statistically different use of the diel cycle between several pairs of 

sampling campaigns (Table 3.2.1, Appendix 3.2). The Egyptian mongoose was only 

detected during daytime. Regardless, significant differences were detected in their 

patterns of activity between both seasons (Table 3.2.1). The remaining species 

revealed some consistency in their use of the diel periods between sampling 

campaigns, but displayed some plasticity in the way they used their preferred activity 

periods, as suggested by asynchronous peaks between sampling campaigns and 

some MWW tests, despite lack of statistical significance (Figs. 3.2.2 and 3.2.3; 

Appendix 3.2). 

Table 3.2.1. Description of target species, average bodymass (kg), described distribution and feeding specialization, 

and mean coefficient of overlap (∆1; mean ± SD) and Mardia-Watson-Wheeler (MWW) test between the activity patterns 

of each species across all sampling areas and seasons (only for cases when the number of detections was ≥10). N - 

Number of pairwise comparisons. 

Species 
Mean 
body 
mass 
(kg) 

European distribution Feeding 
specialization N ∆1 

MWW test 

W p 

Vulpes 
vulpes 

6.01 Pan-European Generalist9 36 0.73 ± 
0.08 

86.72** <0.01 

Felis 
silvestris 

4.7 3 Pan-European Facultative 
specialist11 

1 0.70 5.06 0.08 

Lynx 
pardinus 

10.5 2 South Iberian Peninsula Specialist10 1 0.73 0.59 0.74 

Martes foina 1.5 4 Pan-European, except 
Scandinavia and UK 

Generalist12 10 0.71 ± 
0.10 

13.15 0.11 

Martes 
martes 

1.1 5 Pan-European, except South 
Iberian Peninsula 

Generalist12,13 6 0.77 ± 
0.08 

6.66 0.35 

Meles meles 7.3 6 Pan-European Generalist14 6 0.73 ± 
0.08 

13.07 0.04 

Genetta 
genetta 

1.9 7 Iberian Peninsula and SW 
France 

Facultative 
specialist15 

6 0.75 ± 
0.11 

11.08 0.09 

Herpestes 
ichneumon 

2.88 South Iberian Peninsula Generalist16 1 0.75 6.04* <0.05 

1 - Gortázar (2007); 2 - Rodríguez (2007); 3 - García-Perea (2007); 4 - Reig (2007); 5 - López-Martin (2007); 6 - Revilla et al. 

(2007); 7 - Calzada (2007); 8 - Palomares (2007); 9 - Díaz-Ruiz et al. (2013); 10 - Gil-Sánchez et al. (2006); 11 - Lozano et 

al. (2006); 12 - Zhou et al. (2011); 13 - Marinis and Masseti (1995); 14 - Virgós et al. (2005); 15 - Virgós et al. (1999); 16 - 

Delibes et al. (1984). ** - Highly significant (p < 0.01);  * - Significant (p < 0.05) 
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Most carnivore species detected in Iberian communities revealed strong signals of 

preference for the nighttime period (Table 3.2.2, Appendix 3.2). Stone martens, genets 

and Eurasian badgers, revealed a particularly strong selection for the nighttime, with 

mean JSInight values ≥ 0.80 (Appendix 3.2). However, their preferred period at night 

varied between study areas and seasons, as suggested by the mean ∆1 values ≤ 0.75 

(Table 3.2.1). The activity of stone martens varied from bimodal (during breeding 

season) to unimodal pattern, with peaks at different periods of the nighttime (mainly 

during non-breeding season; Figs. 3.2.2 and 3.2.3). Similarly, the activity patterns of 

common genets varied from nearly constant during nighttime, to unimodal or bimodal 

pattern. The Eurasian badger varied from marked bimodal to a unimodal pattern with 

an activity peak occuring between 22h00 and 24h00 (at CNP, during breeding season). 

These species consistently avoided daytime (mean JSIday values ≤ -0.95), but their 

activity could be extended towards the periods of dim light, although with less intensity. 

Although preferring the nighttime, red foxes, European wildcats, pine martens and 

Iberian lynx, may also be active in the remaining periods of the diel cycle (Table 3.2.2, 

Appendix 3.2). A common pattern detected in red foxes, European wildcats and pine 

martens was an overall tendency for diurnal activity to be less pronounced in the non-

breeding season, as supported by and average strength of selection for daytime of -

0.85 ± 0.06 and -0.53 ± 0.08 for the non-breeding and the breeding season, 

respectively. However, Iberian lynx did not exhibit such a tendency (Table 3.2.1, 

Appendix 3.2). 

The Egyptian mongoose is the only species with marked diurnal behaviour (JSIday 

values ≥ 0.80), however its activity pattern differed between the non-breeding and 

breeding periods, as supported by the ∆1 ≈ 0.75 and significant MWW test (Appendix 

3.2). A detailed description of the temporal plasticity of each species can be found in 

the Appendix 3.2. 
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Table 3.2.2. Mean Jacobs Selectivity Index (JSI), for each of the defined periods of the diel cycle: Night, Dawn, Day and 

Dusk. Estimate [95% confidence interval]. 

Species JSInight JSIDawn JSIDay JSIDusk 

Vulpes 
vulpes 0.59 [0.41; 0.77]* -0.34 [-0.71; 0.04] -0.74 [-0.92; -0.56]* -0.14 [-0.43; 0.15] 

Felis 
silvestris 0.50 [-0.05; 1.00]  -0.25 [-0.51; 0.02] -0.70[-1.00; -0.29]* 0.04 [-0.84; 0.92] 

Lynx 
pardinus 0.53 [0.44; 0.61]* -0.12 [-0.54; 0.31] -0.67 [-0.67; -0.66]* -0.44 [-1.00; 0.66] 

Martes foina 0.88 [0.79; 0.96]* -0.75 [-1.00; -0.27]* -1.00 [-1.00; -1.00]* -0.48 [-0.98; 0.02] 

Martes 
martes 0.46 [0.28; 0.63]* 0.09 [-0.11; 0.28] -0.65 [-0.89; -0.41]* -0.24 [-0.75; 0.28] 

Meles 
meles 0.94 [0.82; 1.00]* -1.00 []-1.00; -1.00]* -0.95 [-1.00; -0.84]* -0.82 [-1.00; -0.47]* 

Genetta 
genetta 0.83 [0.74; 0.91]* -0.38 [-0.79; 0.03] -1.00 [-1.00; -1.00]* -0.47 [-0.87; 0.06] 

Herpestes 
ichneumon -1.00 [-1.00; -1.00]* -0.73 [-1.00; -0.19]* 0.88 [0.79; 0.96]* -0.42 [-0.50; -0.33]* 

* - Significant (p < 0.05) 

Temporal segregation among species 

Mean ∆1 values obtained in interspecific pairwise comparisons were of 0.61 ± 0.03 

(mean ± SE), and the 50 and 75 percentiles of that distribution were 0.66 and 0.76, 

respectively, being therefore considered as the thresholds between “low”, “moderate” 

and “high activity overlap. 

Several species pairs revealed significant segregation in their use of the diel cycle 

(Table 3.2.3). However, the degree of segregation of each species’ pair was not 

constant across study areas or seasons. The mean ∆1 values obtained from all 

pairwise comparisons in each sampling campaign was negatively correlated with the 

number of carnivore species with ≥ 10 detections (Spearman rank correlation: s=-0.76, 

n=9, p = 0.018), suggesting that the level of circadian segregation increases with 

community diversity. Excluding the strictly diurnal Egyptian mongoose, mean ∆1 values  

between coexisting mesocarnivores were significantly higher  (Wilcoxon test: V=112, 

n=32, p=0.02) in non-breeding season (∆1Non-breeding = 0.76 ± 0.02) than in breeding 
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season (∆1breeding = 0.66 ± 0.02). However, no significant differences were found 

between the mean ∆1 values between mesocarnivores’ diel activity in the 

Mediterranean vs. Atlantic region (Kruskal-Wallis test: W=88.5, n=34, p=0.86). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.2. Diel activity patterns of target mammalian carnivores in the Mediterranean region study areas: CNP - 

Cabañeros National Park; GVNP - Guadiana Valley Natural Park; SANP - Sierra de Andújar Natural Park. Red fox (solid 

line), European wildcat (dashed line), stone marten (dotted line), common genet (dotdash line), Eurasian badger (long 

dash line), Egyptian mongoose (long dotdash line) and Iberian lynx (grey dashed line). Vertical dashed lines represent 

sunrise and sunset times, respectively. 

The level of segregation between each species pairs was not constant across study 

areas. For instance, the diel activity patterns of red foxes and stone martens revealed 
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significant differences in 3 out of 5 (60%) pairwise comparisons, and mean ∆1 values 

were low: 0.65 ± 0.03 (Table 3.2.3). The mean activity overlap between red foxes and 

common genets was moderate (∆1 = 0.75 ± 0.06), and their patterns were only 

statistically different during breeding season, at CNP and GVNP (WCNP = 16.01, 

p<0.05; WGVNP = 7.77, p<0.05; Table 3.2.3). Despite the activity patterns of red foxes 

and badgers were significantly different during the non breeding season at CNP and 

GVNP, their activity was largely asynchronic, as supported by a mean ∆1 of 0.63 ± 

0.03.  

As expected from its diurnal behaviour, the activity pattern of the Egyptian mongoose 

was significantly different from that of all other carnivore species in both seasons 

(Table 3.2.3), and ∆1 values were very low (range ∆1Non-breeding = 0.07 - 0.20; range 

∆1Breeding =  0.09 - 0.41). Several other statistically different activity patterns were 

detected in other species pairs, although less consistently (see Table 3.2.3). 

Iberian lynx were only detected at SANP, and their activity patterns were not 

statistically different from that of red foxes in any of the seasons (WNon-breeding 

season=3.12, n=40, p=0.21; WBreeding season=0.56, n=37 ,p=0.76; Table 3). 

Similarly, no circadian segregation was detected between the Eurasian badger and 

neither of the other coexisting carnivores in breeding season (Table 3). Coefficients of 

activity overlap were always above or close to 0.70. The only species which provided 

enough detections for activity pattern analysis in MNR study area were the pine marten 

in both seasons and the red fox in spring. During spring season, the unimodal 

nocturnal pattern of red foxes contrasted with the slightly bimodal pattern of pine 

martens (Fig. 3). Regardless, no significant differences were detected by MWW test 

(WBreeding season =4.87, n=49, p=0.09) and the activity overlap ∆1 was 0.79 ± 0.09. 

Despite the preference of most species for the nightime period, a sequential use of the 

diel cycle was observed in several study areas and both seasons, as suggested by the 

observed asynchrony between the activity peaks of different coexisting mesocarnivores 

(Fig. 2). An area-by-area detailed description of the temporal segregation among 

species can be found in the Electronic Supplementary Information Text 2. 
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Figure 3.2.3. Diel activity patterns of target mammalian carnivores in the Atlantic region study areas: MNR - Muniellos 

Natural Reserve; PGNP - Peneda-Gerês Natural Park. Red fox (solid line), stone marten (dotted line), common genet 

(dotdash line), pine marten (long dotdash line). Vertical dashed lines represent sunrise and sunset times, respectively. 
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Discussion  

Species plasticity 

With the exception of the Egyptian mongoose, which strongly selected daytime, all 

studied mammalian carnivore species revealed preference for the nighttime period. 

However, in spite of this preference we could clearly define two groups of species from 

a behavioural point of view: strictly and facultative nocturnal species. The first group 

includes species that reveal particularly strong selection indices towards nighttime 

(JSInight > 0.80), with little activity during the twilight periods, and strong avoidance of 

daytime. The stone marten, common genet and Eurasian badger exhibited such activity 

patterns, irrespective of study area, season or bioclimatic region. Despite being 

described as mainly nocturnal (Posillico et al. 1995; Herr 2008; López-Martín et al. 

2008; Wilson and Mittermeier 2009), the stone marten has been reported to have 

occasional activity bouts during daytime or twilight (Posillico et al. 1995; Herr 2008; 

López-Martín et al. 2008). Similarly, common genets and Eurasian badgers have been 

reported to be predominantely (Camps 2008) or exclusively (Palomares and Delibes 

2000; Kowalczyk et al. 2003; Wilson and Mittermeier 2009) nocturnal, although some 

occasional exceptions can be found in the literature (e.g. Rodríguez et al., 1996). 

However, while strongly bound  to the nighttime, stone martens, common genets and 

Eurasian badgers exhibited some plasticity within this preferred period. Neither of these 

species showed a uniform activity pattern at night, nor was the activity pattern constant 

across study areas, seasons or bioclimatic regions. Other studies have found Eurasian 

badgers to uniformly use the nighttime period (Kowalczyk et al. 2003) or varying 

between continous and intermittent (Zabala et al. 2002; Goszczynski et al. 2003). 

Common genets have been found to have more intense activity in the first half of the 

night (Palomares and Delibes 2000; Camps 2008). The activity peak of stone martens 

occurred later in the night in Luxembourg (Herr 2008), while the activity of a 

radiotracked individual in NE Spain  peaked between 18h00 and 24h00, during non-

breeding season (López-Martín et al. 2008). Our results suggest that, in spite of the 

rigidness of the endogenous regulation of the nighttime/daytime activity, stone martens, 

common genets and Eurasian badgers can locally adapt their strategies in response to 

environmental cues, possibly to maximize foraging efficiency and reduce the chances 

for agonistic encounters.  
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The facultative nocturnal group included the red fox, European wildcat, pine marten 

and Iberian lynx. These species positively selected nighttime, but also use, in average, 

the twilight periods as expected by chance. Furthermore, while exploring daytime less 

than expected by chance these species do not strictly avoid it. Previous studies on red 

foxes have reported significant daytime activity (Sunquist 1989; Cavallini and Lovari 

1991, 1994; Travaini et al. 1993), suggesting some flexibility in their activity patterns, 

facilitating access to their their main prey (Ables 1969; Cavallini and Lovari 1991) or 

avoidance of the most risky periods of the day (Doncaster and Macdonald 1997; 

Adkins and Stott 1998). The European wildcat and the pine marten exhibit comparable 

plasticity in their diel activity structure. Overall, 21%  of all our wildcat detections were 

diurnal. This is in accordance with previous studies which found that European wildcats 

can be active over 20% of the daytime (Urra 2003; Monterroso 2006; Germain et al. 

2008). Equivalent activity patterns have been described for  both pine martens and 

Iberian lynx (Zielinski et al. 1983; Clevenger 1993; Beltrán and Delibes 1994; Fedriani 

et al. 1999; Zalewski 2000).  

No seasonal differences were detected in the pattern of daytime activity of Iberian lynx. 

This is in accordance with what has been observed in the Doñana population (Fedriani 

et al. 1999). However red foxes, European wildcats and pine martens revealed a 

tendency for diurnal activity to be less pronounced in the non-breeding season. This 

observation contrasts with previous studies which suggest that mesocarnivores are 

active for less time and are more nocturnal during the breeding season (Posillico et al. 

1995; Zalewski 2000; Zielinski 2000; Kowalczyk et al. 2003). Behavioural strategies are 

influenced by a combination of intrinsic and extrinsic factors, including ambient 

temperature (Liberek 1999; Zalewski 2000; Weir and Corbould 2007). The climate in 

the IP is charaterized by mild winters, even in the Atlantic region, where the average 

temperature ranges from 0.8 ± 3.5oC to 23.9 ± 2.5oC  (Hijmans et al. 2005). However, 

the ambient temperature often rises above 35oC in the Mediterranean region during 

the warmer seasons (Rivas-Martínez et al. 2004; Hijmans et al. 2005). This could lead 

to thermoregulatory stress, inhibiting activity during midday. This could help explain the 

reduction in activity at midday by Egyptian mongooses (at GVNP) and during daylight 

hours by most other mesocarnivores at the Mediterranean study sites in non-breeding 

season (Fig. 3.2.2).  
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The pine marten, which only occurs in the Atlantic region of Iberian Peninsula (López-

Martin 2007), is not affected by the severe summers of the continental Mediterranean 

climate. Therefore, it should be able to explore the daytime period during non-breeding 

season. However, this pattern was not observed (Fig. 3.2.3). The increased 

accessibility to small mammals could be related to the observed levels of  nocturnal 

activity (Monterroso et al. 2013). An analysis of the pine martens’ feeding ecology in 

PGNP and MNR has shown that they prey frequently on small mammals, especially 

during non-breeding season (FO = 90.80 ± 2.11; Rebelo 2013). Human disturbance 

also affects animals activity, and other studies have shown that predators exhibit 

behavioural responses to the patterns of human disturbance (Kitchen et al. 2000; 

Muhly et al. 2011; Kight and Swaddle 2011).  Although we could not test its effect, it is 

possible that seasonal differences in tourism-related human presence (namely by 

hikers, supported by park visitation rates), could also contribute to the more nocturnal 

pattern during non-breeding season.  

 

Temporal segregation 

According to the competitive exclusion  principle (Hardin 1960) we would expect that 

segregation along the temporal axis would be an effective behavioural response 

favouring coexistence among mammalian carnivores, especially when they are forced 

to overlap in other niche dimension (Lucherini et al. 2009; Di Bitetti et al. 2009; Gerber 

et al. 2012).  

Our results suggest that competition among mesocarnivores might be minimized by 

segregation along the diel cycle. At GVNP and CNP, where mesocarnivore 

communities appeared to be more complex, mean activity overlap was low  (mean ∆1 = 

0.57±0.04) when compared to the results obtained in other studies using similar 

methods (Ridout and Linkie 2009; Linkie and Ridout 2011; Wang and Fisher 2012; 

Foster et al. 2013), even when excluding the strictly diurnal Egyptian mongoose (mean 

∆1 = 0.63±0.04). Moreover, nearly 60% of all possible pairwise comparisons revealed 

significant differences in activity patterns (Table 3.2.3). Additionally, the activity peaks 

of most coexisting mesocarnivores in these study areas were, at least partially 

asynchronous. In Southwestern Europe European rabbits, which are more abundant in 
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the Mediterranean region, are among the most profitable prey for mammalian 

mesocarnivores (Malo et al. 2004; Díaz-Ruiz et al. 2013). Whenever rabbit abundance 

is low (mainly in the Atlantic region), rodents take its place as the preferred prey of 

many mammalian mesocarnivores (Lozano et al. 2006; Zhou et al. 2011). In our study 

areas, European rabbits exhibit peaks of activity on the twilight periods while rodents 

were mainly nocturnal (Monterroso et al. 2013). The combined activity patterns of 

rodents and rabbits provide continuous mammalian prey availability from before sunset 

to after sunrise, potentially allowing mesocarnivores to segregate within a relatively 

long period while maintaining access to prey (Monterroso et al. 2013).  

In cases when asymmetrical competition occurs, the subordinate species adjusts its 

behaviour to minimize agonistic encounters with the superior competitor (Palomares et 

al. 1996; Azlan and Sharma 2006; Harrington et al. 2009). Where Iberian lynx occur, 

they have the ability to structure mesocarnivore communities through top-down 

regulation of subordinate competitors (Palomares et al. 1996; Fedriani et al. 1999), 

which often takes the form of intraguild predation (Palomares and Caro 1999). 

Historically Iberian lynx was widespread in SW Iberia, but it is currently absent from 

most of its historical range, which includes GVNP and CNP (Sarmento et al. 2009; Gil-

Sánchez and McCain 2011). However, it is the dominant competitor within the 

carnivore community at SANP. There, in spite of the high risks that encounters with 

Iberian lynx pose to the integrity of red foxes, no significant differences were observed 

between the activity patterns of these two species. This could be related to a spatial 

avoidance of red foxes of those areas with higher probability of lynx encounter, as 

seems to be supported by camera-trapping results (Monterroso 2013). Similar findings 

were described by Fedriani et al. (1999) who suggested that red foxes avoided lynx 

predation by habitat segregation during activity periods. In other systems, coexistence 

between a superior and subordinate competitors have been sustained by spatio-

temporal adjustments in the behaviour of the latter (Azlan and Sharma 2006; 

Harrington et al. 2009; Brook et al. 2012).    

The outcome of agonistic encounters in mutual reciprocal interactions is less certain 

(Donadio and Buskirk 2006). In those cases, the most flexible species should more 

easily shift their behavioural patterns promoting coexistence (Di Bitetti et al. 2010). 

Along the temporal dimension, cathemerality could provide enough plasticity for the 
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adjustment of a species activity patterns to local conditions to increase its fitness and 

reduce competition (Di Bitetti et al. 2009; Lucherini et al. 2009; Gerber et al. 2012). Our 

results support that the Iberian lynx, red fox, pine marten and European wildcat exhibit 

such characteristics, and suggest that temporal segregation plays an important role in 

facilitating mesocarnivore coexistence, especially with increasing community 

complexity. 

Overall, we obtained low detection rates in both Atlantic study areas, especially at MNR 

where meaningful activity was only recorded for pine martens and red foxes. In these 

areas, European rabbits are very scarce (Monterroso et al. 2013), therefore 

mammalian prey is mostly restricted to rodent species, which are phylogenetically 

bound to nocturnal activity (Roll et al. 2006). However, in these study areas a variety of 

alternative food resources, such as fruits and invertebrates are seasonally widely 

available (Prieto and Sánchez 1996; Carvalho and Gomes 2004). It has been 

suggested that the strength of the interactions between competing species is linked to 

the availability of a shared resource (Valeix et al. 2007). Most mesocarnivores with 

significant activity detected by camera-trapping in this ecoregion are feeding 

generalists (Table 3.2.1), but with significant consumption of rodents (Marinis and 

Masseti 1995; Virgós et al. 1999; Zhou et al. 2011; Díaz-Ruiz et al. 2013), which is 

reflected by the high synchrony between their activity and that of rodents (Monterroso 

et al. 2013). However, the activity strategies of each mesocarnivore species varied 

between sampling campaigns, especially at PGNP where activity overlap decreased 

from the non-breeding (mean ∆1 = 0.89±0.00) to the breeding season (mean ∆1 = 

0.57±0.04). This could be related with access to feeding resources, which are highly 

available during the non-breeding season, and of limited access during the breeding 

season (Humphries et al. 1996; Fedriani and Delibes 2009; Monterroso et al. 2013).   

 

Conclusions 

Interspecific relations between mesopredators are not constant, resulting in non-

equilibrium, where changing resource availability might cause shifts in the relative 

fortunes of the species concerned (Linnell and Strand 2000). With this work we provide 

an insight into the temporal functioning of mesocarnivore communities in SW European 
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ecosystems. We identified three clear groups of species among Iberian 

mesocarnivores: strictly norturnal, facultative nocturnal and diurnal animals, with the 

latter group consisting of only one species, the Egyptian mongoose. In spite of the 

constraints imposed by their endogenous regulation on when to be active, all species 

exhibited substantial flexibility within their preferred activity periods. This fact facilitates 

segregation within their own endogenous boundaries enabling them to concentrate 

activity bouts on the most beneficial periods, maximizing resource acquisition 

(Monterroso et al. 2013, Rebelo 2013). Spatial interference as well as exploitative 

competition for shared resources, have been already advocated in several species 

pairs in southern European mesocarnivore communities (Palomares et al. 1996; 

Fedriani et al. 1999; Barrientos and Virgós 2006; Zabala et al. 2009). Our results 

suggest that temporal partitioning is likely to play an important role in facilitating 

mesocarnivore coexistence, especially with increasing community complexity. 

However, and given that interspecific interactions between species and within guilds 

are multidimensional, further work simultaneously evaluating the interspecific relations 

along several niche axes among Iberian mesocarnivores could provide vital information 

for conservation planning and for the undestanding of the full implications of predators 

interspecific interactions.    

 

Aknowledgements  

This work was partially supported by a PhD grant from the Fundação para a Ciência e 

a Tecnologia (FCT) to P.M. (SFRH/BD/37795/2007) and two research projects, one 

from the Spanish National Plan (project ref: CGL2009-10741) funded by the Spanish 

Ministry of Science and Innovation and EU-FEDER funds, and another one from the 

Spanish Organismo Autónomo Parques Nacionales (project ref: OAPN 352/2011). We 

thank Pedro Rebelo, Ana Serronha, António Rebelo, António Lages, Pedro Moreira, 

Ricardo Silva, Rafaela Carreira, Jesus Caro, Francisco Díaz-Ruiz for their assistance 

during the fieldwork. We acknowledge the staff from Cabañeros National Park, 

especially Angel Gómez, the staff from Vale do Guadiana Natural Park, Peneda-Gerês 

National Park and Muniellos Natural Reserve for their support during data collection. 

We also thank the Iberian lynx Life project team: Miguel Ángel Simón, José María Gil-



222 

	
  

Sanchéz, German Garrote for all their help and information supplied on Sierra de 

Andújar Natural Park. 

 

References  

Ables ED (1969) Activity Studies of Red Foxes in Southern Wisconsin. J Wildlife 

Manage 33:145–153 

Abrams P (1983) The theory of limiting similarity. Annu Rev Ecol Syst 14:359–376 

Adkins CA, Stott P (1998) Home ranges, movements and habitat associations of red 

foxes Vulpes vulpes in suburban Toronto, Ontario, Canada. J Zool 244:335–346 

Arias-Del Razo I, Hernández L, Laundré JW, Myers O (2011) Do predator and prey 

foraging activity patterns match? A study of coyotes (Canis latrans), and lagomorphs 

(Lepus californicus and Sylvilagus audobonii) 

Azlan JM, Sharma DSK (2006) The diversity and activity patterns of wild felids in a 

secondary forest in Peninsular Malaysia. Oryx 40:36-41 

Barrientos R, Virgós E (2006) Reduction of potential food interference in two sympatric 

carnivores by sequential use of shared resources. Acta Oecol 30:107–116 

Batschelet E (1981) Circular Statistics in Ecology. Academic Press, London 

Beltrán JF, Delibes M (1994) Environmental determinants of circadian activity of free-

ranging Iberian lynxes. J Mammal 75:382–393 

Di Bitetti MS, De Angelo CD, Di Blanco YE, Paviolo A (2010) Niche partitioning and 

species coexistence in a Neotropical felid assemblage. Acta Oecol 36:403–412 

Di Bitetti MS, Di Blanco YE, Pereira JA, Paviolo A, Pérez IJ (2009) Time partitioning 

favors the coexistence of sympatric crab-eating foxes (Cerdocyon thous) and Pampas 

foxes (Lycalopex gymnocercus). J Mammal 90:479–490 

 Blanco JC (1998) Mamíferos de España. Planeta, Barcelona 



223 

	
  

Blanco-Garrido F, Prenda J, Narvaez M, (2007) Eurasian otter (Lutra lutra) diet and 

prey selection in Mediterranean streams invaded by centrarchid fishes. Biol Invasions 

10:641–648 

Brook LA, Johnson CN, Ritchie EG (2012) Effects of predator control on behaviour of 

an apex predator and indirect consequences for mesopredator suppression. J Appl 

Ecol 49:1278-1286 

Cabral MJ, Almeida J, Almeida PR, Dellinger T, Ferrand de Almeida N et al. (2005) 

Livro Vermelho dos Vertebrados de Portugal, 2nd ed. Instituto da Conservação da 

Natureza/Assírio Alvim, Lisbon 

Calzada J (2007) Genetta genetta. In:Palomo LJ, Gisbert J, Blanco JC (eds) Atlas y 

libro rojo de los mamíferos terrestres de España. Dirección General para la 

Biodiversidad – SECEM – SECEMU, Madrid, pp 330–332 

Camps D (2008) Activity patterns of adult common genets Genetta genetta (Linnaeus, 

1758) in northeastern Spain. Galemys 20:47–60 

Carvalho JC, Gomes P (2004) Feeding resource partitioning among four sympatric 

carnivores in the Peneda-Gerês National Park (Portugal). J Zool 263:275–283 

Cavallini P, Lovari S (1991) Environmental factors influencing the use of habitat in the 

red fox, Vulpes vulpes. J Zool 223:323–339 

Cavallini P, Lovari S (1994) Home range, habitat selection and activity of the red fox in 

a Mediterranean coastal ecotone. Acta Theriol 39:279–287. 

Clevenger AP (1993) Pine marten (Martes martes L.) home ranges and activity 

patterns of the island of Minorca, Spain. Z Säugetierkd 58:137–143 

Costa JC, Aguiar C, Capelo JH, Lousã M, Neto C (1998) Biogeografia de Portugal 

continental. Quercetea 0:5–56 

Davis ML, Kelly MJ, Stauffer DF (2011) Carnivore co-existence and habitat use in the 

Mountain Pine Ridge Forest Reserve, Belize. Anim Conserv 14:56–65 



224 

	
  

Delibes M, Aymerich M, Cuesta L (1984) Feeding habits of the Herpestes ichneumon 

or Egyptian mongoose in Spain. Acta Theriol 29:205–218 

Delibes-Mateos M, Delibes M, Ferreras P, Villafuerte R (2008) Key role of European 

rabbits in the conservation of the Western Mediterranean basin hotspot. Conserv Biol 

22:1106–1117 

Díaz-Ruiz F, Delibes-Mateos M, García-Moreno JL, López-Martín JM, Ferreira C, 

Ferreras P (2013) Biogeographical patterns in the diet of an opportunistic predator:the 

red fox Vulpes vulpes in the Iberian Peninsula. Mammal Rev 43:59–70 

Donadio E, Buskirk SW (2006) Diet, morphology, and interspecific killing in carnivora. 

Am Nat 167:524–36 

Doncaster CP, Macdonald DW (1997) Activity patterns and interactions of red foxes 

(Vulpes vulpes) in Oxford city. J Zool 241:73–87 

Elmhagen B, Ludwig G, Rushton SP, Helle P, Lindén H (2010) Top predators, 

mesopredators and their prey: interference ecosystems along bioclimatic productivity 

gradients. J Anim Ecol 79:785–794 

Elmhagen B, Rushton SP (2007) Trophic control of mesopredators in terrestrial 

ecosystems: top-down or bottom-up? Ecol Lett 10:197–206 

European Environmental Agency (2012) Biogeographic regions in Europe, 

http://www.eea.europa.eu/data-and-maps/figures/biogeographical-regions-in-europe 

Fedriani JM, Delibes M (2009) Seed Dispersal in the Iberian Pear, Pyrus bourgaeana: 

A Role for Infrequent Mutualists. Ecoscience 16:311–321 

Fedriani JM, Palomares F, Delibes M (1999) Niche relations among three sympatric 

Mediterranean carnivores. Oecologia 121:138–148 

Foster VC, Sarmento P, Sollmann R, Tôrres N, Jácomo ATA, Negrões N, Fonseca C, 

Silveira L (2013) Jaguar and puma activity patterns and predator-prey interactions in 

four brazilian biomes. Biotropica 45:373-379 



225 

	
  

García-Canseco V (1997) Parque Nacional De Cabañeros, 1st edition. Ecohábitat, 

Madrid 

García-Perea R (2007) Felis silvestris. In: Palomo LJ, Gisbert J, Blanco JC (eds) Atlas 

y libro rojo de los mamíferos terrestres de España. Dirección General para la 

Biodiversidad – SECEM – SECEMU, Madrid, pp 333–338 

Gerber BD, Karpanty SM, Randrianantenaina J (2012) Activity patterns of carnivores in 

the rain forests of Madagascar: implications for species coexistence. J Mammal 

93:667–676 

Germain E, Benhamou S, Poulle M-L (2008) Spatio-temporal sharing between the 

European wildcat, the domestic cat and their hybrids. J Zool 276:195–203 

Gil-Sánchez JM, Ballesteros-Duperón E, Bueno-Segura J (2006) Feeding ecology of 

the Iberian lynx Lynx pardinus in eastern Sierra Morena (Southern Spain). Acta Theriol 

51:1–6 

Gil-Sánchez JM, McCain EB (2011) Former range and decline of the Iberian lynx (Lynx 

pardinus) reconstructed using verified records. J Mammal 92:1081–1090 

Gittleman JL, Harvey PH (1982) Carnivore home-range size, metabolic needs and 

ecology. Behav Ecol Sociobiol 10:57–63 

Gortázar C (2007) Vulpes vulpes. In: Palomo LJ, Gisbert J, Blanco JC (eds) Atlas y 

libro rojo de los mamíferos terrestres de España. Dirección General para la 

Biodiversidad – SECEM – SECEMU, Madrid, pp 277–279. 

Goszczynski J, Juszko S, Pacia A, Skoczynska J (2003) Activity of badgers (Meles 

meles) in Central Poland. Mamm Biol 70:1–11 

Halle S (2000) Ecological relevance of daily activity patterns. In: Halle S, Stenseth NC 

(eds) Activity patterns in small mammals: an ecological approach. Springer, New York, 

pp 67–90 

Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297 



226 

	
  

Harrington LA, Harrington AL, Yamaguchi N, Thom MD, Ferreras P, Windham TR, 

Macdonald DW (2009) The impact of native competitors on an alien invasive: temporal 

niche shifts to avoid interspecific aggression? Ecology 90:1207–1216 

Herr J (2008) Ecology and behaviour of urban Stone Martens (Martes Foina) in 

Luxembourg. University of Sussex, Brighton 

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution 

interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978  

Humphries CJ, Press JR, Sutton DA (1996) Árvores de Portugal e da Europa. FAPAS, 

Fundo para a Protecção dos Animais Selvagens & Camara Municipal do Porto, Porto 

Hutchinson GE (1957) Concluding Remarks. Cold Spring Harb Sym on Quantitative 

Biology 22:415–427 

Ivlev VS (1961) Experimental ecology of the feeding of fishes. Yale University Press, 

New Haven 

Jacobs J (1974) Quantitative measurement of food selection. A modification of the 

forage ratio and Ivlev’s electivity index. Oecologia 14:413–417 

Kight CR, Swaddle JP (2011) How and why environmental noise impacts animals: an 

integrative, mechanistic review. Ecol Lett 14:1052–1061 

Kitchen AM, Gese EM, Schauster ER (2000) Changes in coyote activity patterns due to 

reduced exposure to human persecution. Can J Zool 78:853–857  

Kitchener AC, Yamaguchi N, Ward JM, Macdonald DW (2005) A diagnosis for the 

Scottish wildcat (Felis silvestris): a tool for conservation action for a critically-

endangered felid. Anim Conserv 8:223-237 

Kovach WL (2011) Oriana – Circular Statistics for Windows. Kovach Computing 

Services, Pentraeth, UK 

Kowalczyk R, Jedrzejewska B, Zalewski A (2003) Annual and circadian activity 

patterns of badgers (Meles meles) in Białowieza Primeval Forest (Eastern Poland) 

compared with other Palaearctic populations. J Biogeogr 30:463–472 



227 

	
  

Kronfeld-Schor N, Dayan T (2003) Partitioning of time as an ecological resource. Annu 

Rev Ecol Evol S 34:153–181 

Liberek M (1999) Eco-ethologie du chat sauvage Felis s. silvestris, Schreber 1777 

dans le Jura Vaudois (Suisse): Influence de la couverture neigeuse. Université de 

Neuchatel, Neuchatel 

Linkie M, Ridout MS (2011) Assessing tiger-prey interactions in Sumatran rainforests. J 

Zool 284:224–229 

Linnell JDC, Strand O (2000) Interference interactions, co-existence and conservation 

of mammalian carnivores. Divers Distrib 6:169–176 

López-Martin JM (2007) Martes martes. In: Palomo LJ, Gisbert J, Blanco JC (eds) 

Atlas y libro rojo de los mamíferos terrestres de España. Dirección General para la 

Biodiversidad – SECEM – SECEMU, Madrid, pp 302–304 

López-Martin JM, Ruiz-Olmo J, Cahill S (2008) Autumn home range and activity of a 

stone marten (Martes foina Erxleben, 1777) in Northeastern Spain. Miscellan Zool 

16:258–260 

Lozano J, Moleón M, Virgós E (2006) Biogeographical patterns in the diet of the 

wildcat, Felis silvestris Schreber, in Eurasia: factors affecting the trophic diversity. J 

Biogeogr 33:1076–1085 

Lucherini M, Reppucci J, Walker R, Villalba M, Wurstten A, Gallardo G, Iriarte A, 

Villalobos R, Perovic P (2009) Activity pattern segregation of carnivores in the high 

Andes. J Mammal 90:1404–1409 

MacArthur R, Levins R (1967) The Limiting Similarity, Convergence, and Divergence of 

Coexisting Species. Am Nat 101:377–385 

Malo AF, Lozano J, Huertas DL,Virgós E (2004) A change of diet from rodents to 

rabbits (Oryctolagus cuniculus). Is the wildcat (Felis silvestris) a specialist predator? J 

Zool 263:401–407 



228 

	
  

Manly BFJ (1997) Randomization, bootstrap and monte carlo methods in biology, 2nd 

edn. Chapman and Hall, Boca Raton 

Marinis AM, Masseti M (1995) Feeding habits of the pine marten Martes martes L., 

1758, in Europe: a review. Hystrix 7:143–150 

McDonald JH (2009) Handbook of biological statistics, 2nd edn. Sparky House 

Publishing, Baltimore 

Mermod C, Liberek M (2002) The role of snowcover for European wildcat in 

Switzerland. Z Jagdwiss 48:17–24 

Monterroso P (2006) Distribuição, selecção de habitat e actividade do Gato-bravo 

(Felis silvestris) no Parque Natural do Vale Do Guadiana. MSc thesis, University of 

Porto, Porto 

Monterroso P (2013) Ecological interactions and species coexistence in Iberian 

mesocarnivore communities. PhD thesis, University of Porto, Porto 

Monterroso P, Alves PC, Ferreras P (2011) Evaluation of attractants for non-invasive 

studies of Iberian carnivore communities. Wildlife Res 38:446–454 

Monterroso P, Alves PC, Ferreras P (2013) Catch me if you can: Diel activity patterns 

of mammalian prey and predators. Ethology 119:1044-1056 

Muhly TB, Semeniuk C, Massolo A, Hickman L, Musiani M (2011) Human activity helps 

prey win the predator-prey space race. PloS ONE 6:e17050 

Oliveira R, Godinho R, Randi E, Ferrand N, Alves PC (2007) Molecular analysis of 

hybridisation between wild and domestic cats (Felis silvestris) in Portugal: implications 

for conservation. Conserv Genet 9:1-11 

Palomares F (2007) Herpestes ichneumon. In: Palomo LJ, Gisbert J, Blanco JC (eds) 

Atlas y libro rojo de los mamíferos terrestres de España. Dirección General para la 

Biodiversidad – SECEM – SECEMU, Madrid, pp 327–329. 

Palomares F, Caro TM (1999) Interspecific killing among mammalian carnivores. Am 

Nat 153:492–508 



229 

	
  

Palomares F, Delibes M (2000) Mongooses, civets and genets - carnivores in southern 

latitudes. In: Halle S, Stenseth NC (eds) Activity patterns in small mammals: an 

ecological approach. Springer, New York, pp 119–130 

Palomares F, Delibes M, Ferreras P, Fedriani JM, Calzada J, Revilla E (2000) Iberian 

lynx in a fragmented landscape: predispersal, dispersal, and postdispersal habitats. 

Conserv Biol 14:809–818 

Palomares F, Ferreras P, Fedriani JM, Delibes M (1996) Spatial relationships between 

Iberian lynx and other carnivores in an area of south-western Spain. J Appl Ecol 33:5–

13 

Palomares F, Ferreras P, Travaini A, Delibes M (1998) Co-existence between Iberian 

lynx and Egyptian mongooses: estimating interaction strength by structural equation 

modelling and testing by an observational study. J Anim Ecol 67:967–978 

Palomo LJ, Gisbert J, Blanco JC (2007) Atlas y libro rojo de los mamíferos terrestres 

de España, Dirección General para la Biodiversidad – SECEM – SECEMU, Madrid 

Posillico M, Serafini P, Lovari S (1995) Activity patterns of the stone marten Martes 

foina Erxleben, 1777, in relation to some environmental factors. Hystrix 7:79–97 

Prieto JAF, Sánchez ÁB (1996) La reserva integral de muniellos: flora y vegetación. 

Servicio central de publicaciones del Principado de Asturias, Oviedo 

R Development Core Team (2008) R: A language and environment for statistical 

computing. 

Ragni B, Possenti M (1996) Variability of coat-colour and markings system in Felis 

silvestris. Ital J Zool 63:285-292 

Rebelo P (2013) An insight into the trophic ecology of the pine marten (Martes martes) 

in Northwestern Iberian Peninsula. MSc thesis, University of Porto, Porto 

Reig S (2007) Martes foina. Palomo LJ, Gisbert J, Blanco JC (eds) Atlas y libro rojo de 

los mamíferos terrestres de España. Dirección General para la Biodiversidad – 

SECEM – SECEMU, Madrid, pp 305–307 



230 

	
  

Revilla E, Casanovas JG, Virgós E (2007) Meles meles. Palomo LJ, Gisbert J, Blanco 

JC (eds) Atlas y libro rojo de los mamíferos terrestres de España. Dirección General 

para la Biodiversidad – SECEM – SECEMU, Madrid, pp 308–311 

Ridout M, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap 

data. J Agric Biol Envir S 14:322–337 

Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and 

biodiversity conservation. Ecol Lett 12:982–998 

Rivas-Martinez S (1981) Les étages bioclimatiques de la végétation de la Peninsule 

Iberique. An Jard Bot Madr 37:251–268 

Rivas-Martínez S, Penas A, Díaz TE (2004) Mapa Bioclimático de Europa, Bioclimas. 

http://www.ucm.es/info/cif/form/maps.htm 

Rodríguez A (2007) Lynx pardinus. Palomo LJ, Gisbert J, Blanco JC (eds) Atlas y libro 

rojo de los mamíferos terrestres de España. Dirección General para la Biodiversidad – 

SECEM – SECEMU, Madrid, pp 342–347 

Rodríguez A, Franquelo RM, Delibes M (1996) Space use and activity in a 

Mediterranean population of badgers Meles meles. Acta Theriol 41:59–72 

Roemer GW, Gompper ME, Valkenburgh BV (2009) The ecological role of the 

mammalian mesocarnivore. Bioscience 59:165–173 

Roll U, Dayan T, Kronfeld-Schor N (2006) On the role of phylogeny in determining 

activity patterns of rodents. Evol Ecol 20:479–490 

Rosalino L, Macdonald D, Santos-Reis M (2005) Activity rhythms, movements and 

patterns of sett use by badgers, Meles meles, in a Mediterranean woodland. Mammalia 

69:395–408 

Sarmento P, Cruz J, Monterroso P, Tarroso P, Ferreira C, Negrões N, Eira C (2009) 

Status survey of the critically endangered Iberian lynx Lynx pardinus in Portugal. Euro 

J Wildlife Res 55:247–253 



231 

	
  

Schoener TW (1974) Resource partitioning in ecological communities. Science 

185:27–39 

Spassov N, Simeonovski V, Spiridonov G (1997) The wild cat (Felis silvestris Schr.) 

and the feral domestic cat: problems of the morphology, taxonomy, identification of the 

hybrids and purity of the wild population. Hist Nat Bulg 8:101–120 

Sunquist M (1989) Comparison of spatial and temporal activity of red foxes and gray 

foxes in North-Central Florida. Fla Field Nat 17:11–18 

Szabó P, Meszeéna G (2006) Limiting similarity revisited. Oikos 112:612–619 

Travaini A, Aldama J, Laffitte R, Delibes M (1993) Home range and activity patterns of 

red fox Vulpes vulpes breeding females. Acta Theriol 38:427–434 

Urra F (2003) El gato montés en Navarra: Distribución, ecología y conservación. 

Universidad Autónoma de Madrid, Madrid 

Valeix M, Chamaillé-Jammes S, Fritz H, (2007) Interference competition and temporal 

niche shifts: elephants and herbivore communities at waterholes. Oecologia 153:739–

748 

Virgós E., Llorente M, Cortés Y (1999) Geographical variation in genet (Genetta 

genetta L.) diet: a literature review. Mammal Rev 29:119–128 

Virgós E, Revilla E, Mangas JG, Barea-Azcón JM, Miguel L, Marinis A (2005) Revisión 

de la dieta del Téjon (Meles meles) en la Península Ibérica: comparación con otras 

localidades de su área de distribución natural. In: Virgós E, Mangas JG, Revilla E, 

Roura X-D (eds) Ecología, distribución y estatus de conservación del tejón Ibérico. 

Sociedad Española para la Conservación y Estudio de los Mamíferos, Málaga, pp 67–

80 

Wang Y, Fisher D (2012) Dingoes affect activity of feral cats, but do not exclude them 

from the habitat of an endangered macropod. Wildlife Res 39:611–620 

Weir RD, Corbould FB (2007) Factors affecting diurnal activity of fishers in north-

central British Columbia. J Mammal 88:1508–1514 



232 

	
  

Wilson DE, Mittermeier RA (2009) Handbook of the Carnivores of the World. Vol. I - 

Carnivores. Lynx editions, Barcelona 

Zabala J, Zuberogoitia I, Garín I, Aihartza JR (2002) Seasonal activity patterns of 

badgers (Meles meles) related to food availability and requirements. Estud Mus Cienc 

Nat Álava 17:201–207 

Zabala J, Zuberogoitia I, Martínez-climent JA (2009) Testing for niche segregation 

between two abundant carnivores using presence-only data. Folia Zool 58:385–395 

Zalewski A (2000) Factors affecting the duration of activity by pine martens (Martes 

martes) in the Bialowieza National Park, Poland. J Zool 251:439–447 

Zhou Y, Newman C, Xu W, Buesching CD, Zalewski A, Kaneko Y, Macdonald DW, Xie, 

Z-Q (2011) Biogeographical variation in the diet of Holarctic martens (genus Martes, 

Mammalia: Carnivora: Mustelidae): adaptive foraging in generalists. J Biogeogr 

38:137–147 

Zielinski WJ (2000) Weasels and martens - carnivores in northern latitudes. In: Halle S, 

Stenseth NC (eds) Activity patterns in small mammals: an ecological approach. 

Springer, New York, pp 95–118 

Zielinski WJ, Spencer WD, Barrett RH (1983) Relationship between food habits and 

activity patterns of pine martens. J Mammal 64:387–396 

 

Supporting information: Appendix 3.2  

Table 1 - Coefficient of overlap (∆1) and Mardia-Watson-Wheeler test (W) of diel activity 

data on mesocarnivores in all sampling campaigns. 

Table 2 - Mean Jacobs Selectivity Index (JSI), based on 500 bootstrap replicates, for 

each of the defined periods of the diel cycle: Night, Dawn, Day and Dusk.  

Text 1 - Detailed description of diel period selection and species plasticity results.  

Text 2 - Detailed description of temporal segregation among species results. 



233 

	
  

Ta
bl

e 
 A

.3
.2

.1
. C

oe
ffi

ci
en

t o
f o

ve
rla

p 
(∆

1, 
in

 b
ol

d)
 a

nd
 M

ar
di

a-
W

at
so

n-
W

he
el

er
 te

st
 (W

) o
f d

ie
l a

ct
iv

ity
 d

at
a 

on
 m

es
oc

ar
ni

vo
re

s 
in

 a
ll 

sa
m

pl
in

g 
ca

m
pa

ig
ns

. 
 

Appendix 3.2 



234 

	
  
Ta

bl
e 

 A
.3

.2
.2

. M
ea

n 
Ja

co
bs

 S
el

ec
tiv

ity
 In

de
x 

(J
S

I),
 b

as
ed

 o
n 

50
0 

bo
ot

st
ra

p 
re

pl
ic

at
es

, f
or

 e
ac

h 
of

 th
e 

de
fin

ed
 p

er
io

ds
 o

f t
he

 d
ie

l c
yc

le
: N

ig
ht

, D
aw

n,
 D

ay
 a

nd
 D

us
k.

 
(m

ea
n 

± 
S

D
). 

 

 



235 

	
  

Text 1 - Detailed description of diel period selection and species 

plasticity results 

The red fox consistentely displayed a predominantly nocturnal behaviour (mean JSInight 

= 0.59 ± 0.27). Nonetheless, in spite of generaly avoiding daytime (mean JSIday = -0.74 

± 0.28; table 3.2.2), daytime activity was consistently detected (Figure 3.2.2 and 3.2.3, 

Appendix 3.2 Table 2). The distribution of red fox detections across the diel cycle was 

statistically different between several pairs of sampling campaigns (MWW tests, table 

3.2.1; Appendix 3.2. Table 2), and an overall tendency to use dawn and dusk in lesser 

proportion than expected by chance, suggests some degree of plasticity in its activity 

pattern selection. 

Only at GVNP enough data (≥10 detections) was collected on the European wildcats to 

allow a proper analysis of activity patterns and diel period selection. They significantly 

avoided being active during daytime, and used both twilight periods as expected by 

chance in both seasons (Appendix 3.2 Table 2). Nightime was only significantly 

selected in the non-breeding season (JSInight = 0.78 ± 0.11). Although not significant, 

signals of differencial use of the diel cycle  between both seasons were detected  (W = 

5.06, p = 0.08; Appendix 3.2 Table 2). These results, and the record of several 

detections during daytime in other study areas (CNP, MNR and PGNP), suggest that 

wildcats can be plastic in the selection of activity patterns.  

The stone marten revealed a strictly nocturnal and crepuscular activity pattern (table 

3.2.2; Appendix 3.2 Table 2). No significant differences were detected across study 

areas and seasons (MWW test, table 3.2.1). The nighttime period was significantly 

selected (mean JSInight = 0.88 ± 0.10) and daytime avoided (JSIday = -1.00 ± 0.00). 

Although not significant, the stone marten revealed a tendency towards negative 

selection of the dawn and dusk periods (table 3.2.2; Appendix 3.2 Table 2).  

Despite being detected only at four sampling seasons (2 seasons * 2 study areas), pine 

martens showed the most consistent activity patterns among all studied species (mean 

∆1 = 0.77 ± 0.08, table 3.2.1; Appendix 3.2 Table 1), and activity records across the diel 

cycle were not significantly different between study areas and seasons (W = 6.66, p = 

0.35; Appendix 3.2 Table 1). Significant positive and negative selections were detected 

for the nightime and daytime periods, respectively (mean JSInight = 0.46 ± 0.18; mean 
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JSIday = -0.65 ± 0.25), showing a clear nocturnal behaviour. Both twilight periods were 

generally used as would be expected by chance (Appendix 3.2 Table 2). 

The common genet also showed high consistency in its activity patterns (mean ∆1 = 

0.75 ± 0.11, multiple comparison tests W = 11.09, p = 0.09; table 3.2.1). The positive 

selection for nighttime and avoidance of daytime reveals a nocturnal behaviour (table 

3.3.2). In general, a negative selection of the twilight periods was detected, although 

not statistically significant (table 3.2.2; Appendix 3.2 Table 2). Pairwise comparisons 

revealed differences between the GVNP and CNP during breeding season (Appendix 

3.2 Table 1) and a tendency for differencial use of the diel cycle between CNP in non-

breeding season and GVNP in breeding season (Appendix 3.2 Table 1).  

Similarly, the Eurasian badger consistentely revealed nocturnal behaviour (mean 

JSInight = 0.94 ± 0.12), with only one daytime detection obtained amongst all study 

areas. All the periods of the diel cycle other than nighttime were significantly avoided 

(table 3.2.2; Appendix 3.2 Table 2). Despite the strong selection for the nighttime 

period, the Eurasian badger is still able to use different phases within the period, as 

suggested by a mean ∆1 of 0.73 ± 0.08, and significant differences detected in MWW 

tests in several pairwise comparions (table 3.2.1; Appendix 3.2 Table 1). 

The Egyptian mongoose revealed highy consistent activity pattern (∆1 = 0.75), being 

the only target species that was preferentialy active during daytime (JSIday = 0.88 ± 

0.06) and avoided nightime (JSInight = -1.00 ± 0.00), although the former was explored 

differencially in both seasons (W=6.04; p = 0.05; Appendix 3.2 Table 2). Although 

generally not significant, the Egyptian mongoose revealed a tendency towards negative 

selection of the dawn and dusk periods (table 3.2.2; Appendix 3.2 Table 2).  

The Iberian lynx was only present at SANP where no statistically significant differences 

were detected between periods of study (W=0.59; p = 0.74, table 3.2.1; Appendix 3.2 

Table 1). This species exhibited significant selection and avoidance for the nightime 

and daytime periods, respectively (mean JSInight = 0.52 ± 0.06; mean JSIday = -0.67 ± 

0.01; table 3.3.2). In general, no statistically significant selection was detected for any 

of the twilight periods, however, the tendency was towards a negative usage of these 

periods (table 3.2.2; Appendix 3.2 Table 2). 
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Text 2 - Detailed description of temporal segregation among species 

results 

At CNP, during non-breeding season campaign, the use of the diel cycle by red foxes 

and stone martens was significantly different (W=34.42, P<0.01). This asynchrony in 

activity patterns was supported by a ∆1 of 0.63 ± 0.05. The red fox displayed stronger 

intensity of activity in the early night while the activity of the stone marten peaked after 

the decrease of  the former (Figure 3.2.2). Altought not significant, marked differences 

between the activity patterns of the red fox and common genet were detected (W=5.71; 

p=0.06). The common genet increased activity early in the night, partially overlapping 

the period of intense activity with that of the red fox (Figure 3.2.2), as supported by a ∆1 

of 0.79 ± 0.06. Despite some sequential use of the nighttime period between the stone 

marten, common genet and Eurasian badger, suported by moderate ∆1 values (table 

3.3.3), MWW tests did not reveal significant differences.  

Breeding season provided clearer evidences of diel activity segregation between 

mesocarnivores at CNP. Highly significant differences in activiy patterns were observed 

between red fox and all coexisting carnivore species (table 3.3.3). In spite of the 

presence of a small peak of intensity after sunset, the red fox displayed a cathemeral 

pattern of activity, which contrasted with the strictly nocturnal patterns of the remaing 

evaluated mesocarnivores, as supported ∆1 values always under 0.66 (table 3.3.3). 

MWW tests also produced significant differences between stone marten and Eurasian 

badger activity patterns (W=7.84, p=0.02). While the former displayed a nocturnal 

bimodal pattern of activity with higher use of the late night, the Eurasian badger had a 

major peak in the early night (around 23h), after which activity decreased for the 

remainder of the night (Figure 3.2.2). As for the non-breeding period, the nighttime 

period was sequentially used by the stone marten, common genet and Eurasian 

badger, as supported by dominating low ∆1 values (table 3.3.3, Figure 3.2.2). 

 

Several cases of temporal segregation were observed at GVNP (table 3.3.3). The 

diurnal activity pattern of the Egyptian mongoose was significantly different from that of 

all other carnivores species in both seasons (table 3.3.3), and ∆1 values were very low 

(0.07 - 0.20  in autum and 0.09 - 0.41 in breeding season). In non-breeding season the 

red fox displayed an activity pattern that differed significantly from that of the stone 
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marten (∆1=0.68 ± 0.08; W=7.87, p=0.02) and of the Eurasian badger (∆1=0.57 ± 0.10; 

W=12.86; p<0.01). These differences were mainly related to differential intensity of 

activity of these species pairs during the nighttime and dawn period: while the activity 

of the stone marten and Eurasian badger peaked during nighttime and diminished 

towards dawn, the red fox displayed an inverse pattern  (Figure 3.2.2). Significant 

differences were also detected between the activity patterns of European wildcats and 

Eurasian badgers (∆1=0.71 ± 0.13; W=6.88; p=0.03), which should be related with the 

strong unimodal pattern exhibited by the latter, which contrasted with a slight bimodal 

pattern of the wildcat, that peaked after sunset and before sunrise (Figure 3.2.2).  

In breeding season the activity pattern of the red fox significantly differed from that of 

the common genet (∆1=0.66 ± 0.08; W=7.77; p=0.02) and, although not significant, 

revealed a tendency towards temporal segregation with the European wildcat (∆1=0.62 

± 0.09; W=4.91; p=0.09). Other species pairs that displayed statistically different 

activity patterns were the European wildcat vs. stone marten (∆1=0.65 ± 0.09), and the 

stone marten vs. common genet (∆1=0.64 ± 0.08; table 3.3.3). In this season, the 

common genet displayed a nocturnal, but strongly marked bimodal pattern (Figure 

3.2.2), with activity peaks just after sunset and before sunset. This strategy contrasted 

with that of the red fox and stone marten, which intensified their activity in the middle of 

the night. The European wildcat displayed a smoother activity pattern, with a tendency 

for cathemerality, which contrasted with the marked nocturnal behavior of the stone 

marten and red fox (Figure 3.2.2). 

The SANP was the only study area with confirmed presence of the Iberian lynx. 

Despite the presence of several carnivore species such as the European wildcat, stone 

marten and common genet, their relative abundances were very low (authors, 

unpublished data). As a result, activity pattern analyses were only possible for the 

Iberian lynx, red fox in both seasons and additionaly for the Eurasian badger in 

breeding season. The activity patterns of Iberian lynxes and red foxes were not 

statistically different in any of the seasons (WNon-Breeding=3.12; p=0.21; WSpring=0.56; 

p=0.76). Similarly, no circadian segregation was detected between the Eurasian 

badger and neither of the other coexisting carnivores in breeding season (table 3.3.3). 

Coefficients of activity overlap were always above or close to 0.70. Regardless of being 

active through the entire diel cycle, the Iberian lynx displayed a predominant bimodal 

activity pattern in both seasons, with peaks around sunrise and sunset (Figure 3.2.2). 
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The sunset activity peak was synchronous with that o the red fox in non-breeding 

season which, in turn, only displayed crespuscular and nocturnal activity. During 

breeding season, the red fox had smoother and more continuous activity during the diel 

cycle, but the sunset peak was consistent with that displayed in non-breeding season, 

and synchronous with that of the Iberian lynx (Figure 3.2.2). The Eurasian badger 

displayed an exclusively nocturnal bimodal pattern, somewhat consistent whith that of 

the other target species.  

The only species which provided enough detections for activity pattern analysis in MNR 

study area were the pine marten in both seasons and the red fox in breeding season. 

During spring season, the red fox displayed a mainly unimodal nocturnal activity 

pattern, which contrasted with slightly bimodal pattern of the pine marten, intenser 

during the early night and dawn (Figure 3.2.3). Altough no significant differences were 

detected by MWW test (W=4.87; p=0.09), these contrasts resulted in a ∆1, of 0.79 ± 

0.09. 

The red fox, pine marten and common genet were the mesocarnivores with higher 

detection rates at PGNP during the non-breeding season. These three species 

displayed highly overlaped activity patterns, as sustained by ∆1 values above 0.85, and 

no significant differences by MWW tests in any of the pairwise comparisons (table 

3.3.3). The unimodal pattern of the common genet actvity contrasted with the slightly 

bimodal one exhibited by the pine marten and the red fox (Figure 3.2.3). However, all 

patterns were tipically nocturnal and broadly synchronous. In the spring season, only 

the red fox, pine marten and stone marten produced enough data for analysis. The 

coefficients of activity overlap between all species were lower than those observed in 

non-breeding season, ranging from 0.49 ± 0.09 to 0.64 ± 0.12 (table 3.3.3). Despite the 

low values of actvity overlap, MWW tests failed to detect significant differences 

between their activity patterns in all pairwise comparisons. The pine marten displayed a 

smooth pattern of activity across the diel cycle, with a peak around sunset (Figure 

3.2.3). This pattern contrasted with the strong bimodal nocturnal pattern of the stone 

marten, which displayed activity peaks after sunset and before sunrise (Figure 3.2.3). 

The red fox, also displayed a nocturnal pattern, but with peak of activity around 0:00 h, 

after which its intensity decreased until the morning (Figure 3.2.3). 
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3.3 Spatial interactions in mesocarnivore 

communities in Southwestern Europe 

 

Introduction 

Ecological integrity is maintained by a complex web of inter and intra-specific relations 

upheld by coexisting species. Typically, in a predator community, mesopredators’ 

biomass largely exceeds that of apex predators. Moreover, community structure of 

mesopredators is complex and results from a multidimensional web of interactions 

such a top-down regulation employed from apex predators, bottom-up regulation 

imposed by accessibility to feeding resources (prey), intraguild interactions by 

coexisting competitors or habitat quality. Further, the entanglement of interactions 

should increase with system complexity, as each of the species involved must adjust its 

position along possible positions in each niche axis so as to optimize survival and 

reproductive chances, and maximize resource acquisition following optimal foraging 

theory. Several cases of ecosystem deregulation (e.g. demographic explosion of 

predation-released prey species; or predation driven predator-pit control of prey 

populations) have been reported worldwide as a result of changes in mesocarnivore 

communities. Interspecific relations between mesopredators are not constant, resulting 

in non-equilibrium, where changing resource availability might cause shifts in the 

relative fortunes of the species concerned (Linnell and Strand 2000). Temporal 

partitioning and exploitative competition for shared resources, have been advocated as 

playing an important role in sustaining mesocarnivore coexistence and diversity, 

especially with increasing community complexity between several species pairs in 

Southern European mesocarnivore communities (e.g. Barrientos and Virgós, 2006; 

Fedriani et al., 1999, Monterroso et al., submitted). However, (Schoener 1974)found 

that the separation among species niches is generally multidimensional, and two is the 

most common number of dimensions separating species. Furthermore, the two niche 

axis over which segregation between species occurs consist of spatial use and 

resource selection (Schoener 1974). Spatial interference has been described as an 

important factor shaping mesocarnivore communities (Palomares et al. 1996; Zabala et 
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al. 2009; Rauset et al. 2012). When clear asymmetrical competition occurs, the 

subordinate species adjusts its behaviour to minimize agonistic encounters with the 

superior competitor (Palomares et al. 1996; Azlan and Sharma 2006; Harrington et al. 

2009). However, when asymmetry is not so clear (as in the case of mesocarnivore 

communities), the outcome of agonistic encounters is less certain (Donadio and 

Buskirk 2006), and the dominant-subordinate relation may not be so clear. 

Southwestern (SW) European mesocarnivore communities include a total of seven 

species (six native and one introduced) which, due to historical and antropogenic 

causes not always occur in sympatry or coexist spatially within their distribution areas 

(Cabral et al. 2005; Palomo et al. 2007). While most species are widespread, others 

have restricted ranges. The pine marten (Martes martes) distribution is restricted to the 

northern fringe of the Iberian Peninsula (López-Martin 2007), the Egyptian mongoose 

(Herpestes ichneumon) to the SW Iberian Peninsula (Palomares 2007; Balmori and 

Carbonell 2012), and the Iberian lynx (Lynx pardinus) to two unconnected populations 

in the south of Spain (Sarmento et al. 2009; Gil-Sánchez and McCain 2011). As a 

consequence mesocarnivore communities vary in composition and structure across the 

SW Europe, potentially compelling interspecific relations between the same species 

pairs to change from one area to another. Within the SW European mesocarnivore 

communities, the potential for exploitation and/or interference competition exists among 

several species pairs along various niche dimensions (table 1). However, resource 

partitioning is a community wide phenomenon and the interactions involved are 

complex. Therefore, the analysis and interpretation of such interspecific relations 

require a holistic approach (Schoener 1974; Ritchie and Johnson 2009).   

In this work, we analyse camera trapping data on mesocarnivores across several areas 

in SW Europe to investigate their co-occurrence patterns. We aimed to address three 

main biological questions: a) Are there relations of spatial avoidance or association 

among species in SW mesocarnivore communities?; b) Is the occurrence of 

subordinate species conditional on the presence of superior competitors?; c)  Does the 

presence of a superior competitor influence subordinate species detectability? 
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Methods  

Study areas 

The Iberian Peninsula (IP) is mostly included in two biogeographical regions: the 

Mediterranean region, which occupies roughly 2/3 of the IP; and the Atlantic region, 

which is restricted to the northern fringe and extends towards the Pyrenees (European 

Environmental Agency 2012). In order to obtain data from the mesocarnivore 

communities of both biogeographical regions, five study sites distributed across the IP 

were selected (figure 3.3.1): the Guadiana Valley Natural Park (GVNP) and the 

Peneda-Gerês National Park (PGNP), located in Portugal; and the Cabañeros National 

Park (CNP), the Sierra de Andújar Natural Park (SANP) and the Muniellos Natural 

Reserve (MNR), located in Spain. GVNP, CNP and SANP are located in the 

Mediterranean region, and have a Mediterranean pluviseasonal continental bioclimate 

(Rivas-Martínez et al. 2004). Scrublands are mainly associated with steeper slopes, 

elevation ridges and main water bodies, and are dominated by Pyro-Quercetum 

rotundifoliae and Myrto communis–Querco rotundifoliae series and other subserial 

stages (Costa et al. 1998; Rivas-Martinez 1981). In CNP and GVNP, areas with gentler 

slopes are mainly occupied by cereal crops and a savannah-like system, with holm oak 

trees (Quercus rotundifolia) scattered within a grassland matrix (García-Canseco 

1997). In SANP, areas with gentler slopes are rather dominated by Stone pine (Pinus 

pinea) and Maritime pine (Pinus pinaster) forests with and without understorey (Gil-

Sánchez et al. 2006).  

The PGNP and MNR are located in the Atlantic region, and have a temperate oceanic 

submediterranean bioclimate (Rivas-Martínez et al. 2004). The landscapes consist of 

mountainous agricultural–forest mosaic, where mountaintops are mostly dominated by 

scrublands with Ericaceae, Ulex sp. and Betulaceae habitats, and mountain slopes and 

valleys are essentially covered by oligotrophic oak forests (dominated by Quercus sp., 

Betula sp. and Fagus sp.). Pastures, agricultural fields and small villages are found 

scattered through the landscape, mainly along valleys and lower altitude locations 

(Carvalho and Gomes 2004; Prieto and Sánchez 1996).  

A study area of approximately 6000ha within each of the study sites was selected, 

based on criteria of ecosystem conservation status and logistic factors. The only 
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exception was the SANP study area, where we were only allowed to work in an area of 

2700ha.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3.1 Location of the study areas: MNR - Muniellos Natural Reserve; PGNP - Peneda-Gerês National Park; 

GVNP - Guadiana Valley Natural Park; CNP - Cabañeros National Park; SANP - Sierra de Andújar Natural Park. 

 

Field sampling 

All study areas were sampled in two seasons: Non-breeding (July-October), when the 

offspring of most medium-sized carnivores from that year become independent; and 

Breeding (February-April), during these species’ breeding season (Blanco 1998). 

Data collection was obtained by camera-trapping methods, and followed the sampling 

scheme and trap sites selection described by Monterroso et al. (2011; 2013). Briefly, 

32 to 41 cameras were uniformly spaced in each study area following a grid-sampling 

scheme in approximately 1.4km intervals. However, at SANP only 20 cameras were 

placed due to the smaller size of this study area. Overall, our sampling consisted of 

173 camera-trapping stations. Two camera-trap models were used: Leaf River IR5 

(LeafRiver OutDoor Products, Taylorsville, Mississippi, USA) and ScoutGuard (HCO 

OutDoor Products, Norcross, Georgia, USA). Cameras were mounted on trees 
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approximately 0.5 – 1.0m off the ground and set to record time and date when 

triggered. We programmed cameras with the minimum time delay between consecutive 

photos to maximize the number of photos taken per captured individual. Camera-traps 

were maintained in the field for a minimum period of 28 days and were inspected for 

battery or card replacement every 7 to 14 days. A combination of Lynx urine and 

Valerian extract solution were used as attractants to incite animals’ curiosity and thus 

increase detection probabilities (Monterroso et al. 2011). Five to 10 mL of each 

attractant were sprayed into a cotton gaze, held inside perforated separated containers 

(plastic or PVC), at a distance of 10-15 cm from each other ~30 cm off the ground. 

Attractants were re-baited every 7 to 14 days. Target species consisted of three of the 

most common mesocarnivore species present in Iberian communities: the red fox 

(Vulpes vulpes), the stone marten (Martes foina) and the common genet (Genetta 

genetta). 

 

Statistical analysis  

Spatial co-occurrence patterns between each of the species pairs were evaluated by 

likelihood-based occupancy modeling, developed in the software PRESENCE 6.0 

(Hines and Mackenzie 2013; Mackenzie et al. 2006; MacKenzie et al. 2002). We 

divided our survey periods into 1-week sampling occasions during which the 

detection/non-detection data on each target species was recorded. Then, we created 

species-specific detection histories, allowing us to assess factors that may affect 

occupancy and detection probabilities, as well as species co-occurrence and 

detectability patterns. As co-occurrence models can easily become very complex due 

to the increase of model parameters (Fauteux et al. 2013), we assumed that 

mesocarnivore occupancy remained unchanged across seasons, but allowed detection 

probabilities to vary. 

To account for potential heterogeneity in the probabilities of occupancy, detection (p) 

and interspecific interactions we assessed several covariates: distance to water, the 

proportion of each habitat in home range (HR), European rabbit (Oryctolagus 

cuniculus) abundance, rodents (order Rodentia) abundance (both potential prey for 

mesocarnivores), season and study area (table 3.3.1). Study area was included as a 

proxy covariate for unaccounted local effects (e.g. level of human 
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protection/disturbance). We estimated distance to water by measuring the linear 

distance from the sampling site to the nearest water source.  We reclassified original 

vegetation maps of each of the study areas into five dominant habitat types: oak 

autochthonous woodlands, coniferous woodlands, mixed woodlands, scrublands and 

open areas. We then estimated the proportion of each habitat type in an 800m radius 

circular buffer (≈ 2.0 km2) around camera trapping sites. This buffer size was selected 

because it approximately represents the home range size for mesocarnivores species 

in Europe (Monterroso et al. 2009; Santos-Reis et al. 2005; Travaini et al. 1993; 

Zalewski and Jędrzejewski 2006). Rodent and European rabbit (Oryctolagus cuniculus) 

abundance was assessed for each camera station and period by calculating their 

trapping success (TS). TS estimation followed the methods described by the previous 

studies, and consisted of the number of independent detections per 100 trap days 

(Davis et al. 2011; Kelly and Holub 2008). Independence among carnivore records was 

assumed when photographs of the same species were taken at least 30-min apart, 

unless animals were clearly individually distinguishable (Davis et al. 2011; Kelly and 

Holub 2008). Regional effects of habitat type and prey availability were evaluated by 

considering the interaction between these covariates and the bioclimatic region 

(Atlantic vs. Mediterranean). All continuous covariates were transformed to z-scores 

(Mackenzie et al. 2006). 
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Table 3.3.1. Covariates used to model target species occupancy, co-occurrence and detection probabilities. 	
  

Type Covariate Scale Values Model which 
included 
covariate 

Season [SS] 
Non-breeding - Reference p 

Breeding - Bin p 

Global [RGN] 
Atlantic [Atl] - Reference p 

Mediterranean 
[Mdt] - Bin  

Study area [SA] 

Cabañeros 
National Park 
[CNP] 

- Reference  

Guadiana Valley 
Natural Park 
[GVNP] 

- Bin  

Peneda-Gerês 
National Park 
[PGNP] 

- Bin  

Habitat 

Oak Woodlands 
[BRL] Local / HR Bin / Cont p /  

Coniferous 
Woodlands [CNF] Local / HR Bin / Cont p /  

Mixed Woodlands 
[MXD] Local / HR Bin / Cont p /  

Scrublands [SCR] Local / HR Bin / Cont p /  

Open areas [OPN] Local / HR Reference / Cont p /  

Distance to water 
[WTR] HR Continuous  

Prey 

Rodent 
abundance [ROD] Local Continuous  

Rabbit abundance 
[RBT] Local Continuous  

Local - habitat or prey abundance where camera station was located; HR - Proportion occupied by a given habitat at the 
home-range scale (800m buffer surrounding camera station); Bin - Binary variable (presence/absence); Cont. - 
Continuous variable; Reference - covariate used as reference in the occupancy models. 

 

The evaluation of the spatial interactions of each of the species pairs followed a two-

step procedure. First, we used single season singles species occupancy models to 

evaluate the best detection models and the informative covariates for each species 
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individually (Richmond et al. 2010; Steen et al. 2013). Then, we modeled first order 

spatial interactions between target species by using the psiBa parameterization 

(Richmond et al. 2010), where the probability of detection and occupancy of the 

subordinate species is modeled as conditional on the occupancy of the dominant 

species. 

We assumed the red fox competitive dominance over stone martens and common 

genets based on average bodyweight differences (Blanco 1998). The close body sizes 

of stone martens and common genets precluded us from defining an unambiguous 

dominant species (López-Martin 2003). Therefore we used a criterion of ‘indigenously’, 

where we assumed that, as stone martens are indigenous of the Iberian Peninsula and 

common genets are an introduced species from Africa (Gaubert et al. 2011), the former 

is expected to have some competitive advantages as it should be better adapted to the 

Iberian ecosystems. Hence, we defined stone martens as the dominant species in the 

stone marten vs. common genets co-occurrence models.    

For each target species, we developed single season occupancy models. We first held 

occupancy constant and proceeded to find the best detection model (Richmond et al. 

2010; Sarmento et al. 2010). Following the recommendations of Arnold (2010) for 

exploratory approaches that involve many variables, we used a sequential modeling 

approach to find the best detection model set and discard uninformative variables. 

Therefore, we started by building a full effects detection model and performed a 

backward-stepwise model selection to sequentially eliminate the covariate with the 

weaker effect size (β/SE). This process was kept until the deletion of an additional 

covariate led to an increase in AICc (Pagano and Arnold 2009). After finding the best 

detection model, we held it constant and evaluated the individual effect of all covariates 

and covariate interactions in the occupancy probabilities by building single covariates’ 

models. We selected as informative covariates for inference if 85% confidence intervals 

did not include zero (Arnold 2010). Then we built a full effects occupancy model using 

only informative covariates. The final step of single species models consisted in a 

backward-stepwise procedure, similar to that above described for the detection model. 

For each of the species’ final model set, we selected as informative covariates for 

inference those that were in models within 2 AICc units of the top-supported model and 

whose 85% confidence intervals did not include zero (Arnold 2010). 
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The best detection models encountered for each of the target species were used, and 

held them constant in across our entire co-occurrence model panel. Then, we built the 

most complete occupancy models for each of the target species (defined in the singles 

species occupancy modeling step) and performed a backward-stepwise model 

selection to sequentially eliminate the covariate with the weaker effect size (β/SE), in a 

similar fashion as that described for single species model selection. 

Co-occurrence models followed the following parameterization (adapted from 

Richmond et al., 2010):  denotes the unconditional probability of occupancy of 

species A (dominant),  denotes the conditional probability of occupancy for species 

B (subordinate), given species A is present;  denotes the conditional probability of 

occupancy for species B, given species A is absent; 𝑝! denotes the unconditional 

detection probability of species A; 𝑝! denotes the unconditional detection probability of 

species B; 𝑟! denotes the conditional detection probability of species A, given that both 

species are present;   𝑟! denotes the conditional detection probability of species B, 

given that both species are present. As we wanted to assess the effect of a dominant 

species (species A) occupancy in the occupancy and detection probabilities of the 

subordinate species (species B), we started from the same (full effects) models 

considering conditional ( ) and unconditional ( ) occupancy 

probabilities, and subordinate species detection probabilities as conditional ( ) 

or unconditional (𝑝! = 𝑟!) on the presence of the dominant species.  

A species interaction factor ( ) was calculated (Richmond et al. 2010). If  <1, 

suggests that there is evidence of avoidance, whereas  > 1 reflects species 

aggregation (i.e. species A and species B tend to co-occur). Only species/study area 

combinations where the combined proportion of positive sampling occasions was ≥ 5% 

were included in the analysis. 

We used Spearman’s rank correlation (rs) to test for collinearity among the landscape 

variables; if variables were correlated (rs  > 0.70) we kept the variable with the greatest 

univariate effect size  (β/SE) as a potential covariate for the probability of detection (Zar 

2005). We evaluated the candidate models using Akaike’s Information Criterion 

corrected for small sample size (AICc; Burnham and Anderson 2002). Because no 

goodness-of-fit test exists for co-occurrence models (Steen et al. 2013), we could not 
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correct them for overdispersion. If no single model accounted for >90% of the total 

model weights, then we used model averaging.  We model averaged by extracting the 

top 95% model confidence set and recalculating model weights (Burnham and 

Anderson 2002). We calculated model-averaged estimates using the spreadsheet 

developed by B. Mitchell (http://www.uvm.edu/%7Ebmitchel/software.html). 

 

Results 

Camera-trapping results  

Red foxes, stone martens and common genets were the most common species 

detected in all study areas over a total of 1296 sampling occasions (259.2 ± 33.7 

sampling occasions/study area). Red foxes were detected in 300 sampling occasions 

(60.0 ± 35.4 sampling occasions/area), while stone martens and common genets were 

detected in 111 (22.2 ± 9.6 sampling occasions/area) and 75 (15.0 ± 4.4 sampling 

occasions/area), respectively (table 3.3.2). European wildcats and Eurasian badgers 

were detected in all study areas in 62 (12.2 ± 5.1 sampling occasions/area) and 58 

(11.6 ± 4.2 sampling occasions/area) sampling occasions, respectively. Pine martens 

were only detected at MNR and PGNP, in 43 and 27 sampling occasion, respectively. 

Egyptian mongooses were detected in 5 sampling occasions at CNP and in 33 

sampling occasions at GVNP. The Iberian lynx was only detected at SANP, in 20 

sampling occasions. The high variability in the proportions of positive occasions for 

each species across study areas prevents broad evaluations of all species pairs. For 

this reason, further analyses of co-occurrence patterns were assessed only for the 

three most common species: the red fox, stone marten and common genet. The 

proportions of stone marten and common genet positive sampling occasions at SANP 

and MNR were always below 3.0% of all valid occasions. For this reason, these study 

areas were discarded from further analysis. The joint proportion of positive sampling 

occasions for the red fox/stone marten, red fox/common genet and stone 

marten/common genet complexes at the CNP, GVNP and PGNP study areas was 

always superior to 10.0%, and were therefore considered. 
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Table 3.3.2. Number of positive 1-week sampling occasions and respective proportion (in brackets) over all sampling 
occasions for mesocarnivores in each of the study areas.  

 Red fox Stone 
marten 

Common 
genet 

European 
wildcat 

Pine marten Eurasian 
badger 

Egyptian 
mongoose 

Iberian lynx 

CNP 201 (65.0%) 47 (15.1%) 29 (9.3%) 11 (3.4%) 0 (0.0%) 23 (7.0%) 5 (1.5%) 0 (0.0%) 

GVNP 36 (15.3%) 44 (18.6%) 16 (6.8%) 31 (12.1%) 0 (0.0%) 15 (5.9%) 33 (12.9%) 0 (0.0%) 

SANP 23 (16.5%) 2 (1.4%) 3 (2.2%) 1 (0.1%) 0 (0.0%) 16 (10.0%) 0 (0.0%) 20 (12.5%) 

MNR 17 (5.2%) 7 (2.2%) 9 (2.8%) 13 (3.8%) 43 (12.6%) 3 (0.1%) 0 (0.0%) 0 (0.0%) 

PNGP 23 (8.1%) 11 (3.9%) 18 (6.3%) 6 (2.1%) 27 (9.4%) 1 (0.0%) 0 (0.0%) 0 (0.0%) 

 

CNP - Cabañeros National Park; GVNP - Guadiana Valley Natural Park; SANP - Sierra de Andújar Natural Park; 
Peneda-Gerês National Park; MNR - Muniellos Natural Reserve. 

 

Single species occupancy models and informative covariates 

The best detection model for the red fox included regional and habitat effects. Red fox 

detectability was higher in the Mediterranean region ( ). Regarding 

habitat type, detectability was higher at oak ( ) and lowest at coniferous 

woodlands ( ).  

The proportions of open areas, coniferous and oak woodlands at the home range 

scale, as well as the abundance of rodents influenced red fox occupancy probability. 

The proportion of open areas had a positive effect on occupancy probability (

) and exhibited regional effects, as it was more informative 

at the Mediterranean region ( ) than in the Atlantic region (

). Coniferous woodlands had a negative effect (

), which was stronger in the Mediterranean region (

). Although with lower weight of evidence ( ), oak 

woodlands negatively affected the probability of red fox occupancy in the 

Mediterranean region ( ). Distance to water revealed positive effect (

), but also with small weight of evidence ( ). We found no 

evidence supporting that mammalian prey abundance influences the probability of red 

fox occupancy. 
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We identified seasonal effects on stone marten, with detection probabilities being 

slightly higher in non-breeding season. In the Mediterranean region stone marten 

detectability was 1.43 ± 0.62 higher than in the Atlantic study area. Habitat type also 

influenced detection probability, and was higher in oak woodlands ( ) 

and lowest in open areas (reference habitat). Univariate contributions revealed that 

probability of stone marten occupancy was positively affected by the proportion of oak 

woodlands ( ), especially in the Mediterranean region (

), and negatively affected by the proportion of scrublands (

) and distance to water ( ). 

Stone marten occupancy also exhibited regional differences in the responses to these 

covariates, which were stronger in Mediterranean. Interestingly, rodent abundance 

exhibited a negative influence on the probability of stone marten occupancy. However, 

while it was informative, this covariate’s strength was small and had little weight of 

evidence ( ). 

The detectability of common genets was not influenced by biogeographical region nor 

season. However, it was significantly affected by habitat type, and detectability was 

higher at oak woodlands ( ), mixed woodlands ( ) and 

scrublands ( ) than at open habitat (reference habitat). Informative 

covariates in common genets occupancy models were the proportion of open areas, 

scrublands, oak and coniferous woodlands in the home range. While the proportion of 

open areas had a negative relation with the probability of genets’ occupancy (

), scrubland coverage showed the inverse pattern, 

although with a less precise estimate ( ). Oak woodlands 

were positively associated with common genets’ occupancy (

), especially in the Atlantic study area (

), and coniferous woodlands in the Mediterranean areas 

were negatively associated with it ( ). However, these latter 

had little influence, as reflected by their low weight of evidence ( ). 
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Table 3.3.3. Single species single season occupancy models for the red fox, stone marten and common genet, within 

the top ranked < 2 AIC units. 

 

Species  Detection model Occupancy model AICc AICc K  

Red fox p(RGN,BRL,CNF,SCR) 

 (SA,OPN*Mdt) 767.68 0 9 0.120 

 (SA,CNF) 767.77 0.09 9 0.114 

 (SA,CNF,WTR) 767.96 0.28 10 0.104 

 (SA,CNF*Mdt) 768.09 0.41 9 0.098 

 (SA,OPN*Mdt,CNF,WTR) 769.39 1.71 11 0.051 

 (SA) 769.48 1.80 8 0.049 

 (SA,OPN) 769.60 1.92 9 0.046 

Stone 
marten p(SS,RGN,BRL,CNF,MXD,SCR) 

 (SA,BRL*Mdt,WTR,ROD) 573.39 0 13 0.134 

 (SA,BRL*Mdt,ROD) 573.40 0.01 12 0.134 

 (SA,BRL*Mdt) 573.91 0.52 11 0.104 

 (SA,BRL) 574.23 0.84 11 0.088 

 (SA,WTR) 574.41 1.02 11 0.081 

 (SA,WTR*Mdt) 574.70 1.31 11 0.70 

 
(SA,BRL*Mdt,WTR,SCR,ROD) 574.79 1.4 14 0.067 

Common 
genet p(BRL,CNF,MXD) 

(SA,OPN,SCR) 419.10 0 9 0.263 

(SA,OPN) 420.13 1.03 8 0.160 

(SA,OPN,CNF*Mdt) 420.30 1.20 9 0.140 

(SA,SCR) 420.99 1.89 8 0.102 

SS - Season; SA - Study areas; OPN - Open areas; BRL - Oak woodlands; CNF - Coniferous woodlands; SCR - 
Scrublands; WTR - Distance to water; ROD - Rodent abundance; ‘X’*Mdt - A given ‘X’ habitat in the Mediterranean 
region; RGN - Biogeographical region. 

 

Spatial relations among coexisting mesocarnivores 

Our models of co-occurrence suggest that the detection patterns of stone martens is 

most likely conditional on the presence of red foxes, as supported by cumulative 

Aikaike weights:  vs.  (tables 4 and 5). 
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Although with low precision, model averaged estimates revealed that stone marten 

detectability is lower when red foxes occur, especially during breeding season: 

  𝑝! = 0.05  [0.02 − 0.15] vs.   𝑟!" = 0.04  [0.00 − 0.33]. However, we found no evidence 

of spatial interaction between these species, as models considering stone martens’ 

occupancy unconditional of the presence of red foxes have greater support:

 vs.  (table 3.3.4).  

Our models provided stronger support for unconditional detection (

vs. ) and occupancy probabilities (

vs. ) between red foxes and common genets 

(tables 4 and 5). This suggests that common genets do not exhibit any spatially explicit 

behavioural response to the presence of red foxes in our study areas. 

Table 3.3.4. Relative support for the different formulations of two-species interaction models, given by the summed 

Aikaike weights for all models sharing a given model structure. Occupancy ( ) and detection (p) of the subordinate 
species is either conditional or unconditional on the dominant species. 

Species pair Occupancy 
Detection  

Conditional Unconditional Total 

Red fox / Stone marten 

Conditional 0.129 0.128 0.257 

Unconditional 0.743 0.001 0.744 

Total 0.872 0.128 - 

Red fox / Common genet 

Conditional 0.112 0.182 0.294 

Unconditional 0.174 0.531 0.705 

Total 0.286 0.713 - 

Stone marten / Common genet 

Conditional 0.462 0.300 0.762 

Unconditional 0.230 0.008 0.238 

Total 0.692 0.308 - 

 

The stone marten vs. common genet models provided stronger support for conditional 

detection ( vs. ) and occupancy probabilities 

( vs. ; table 3.3.4). These species basal 

interaction factor ( ) was 1.30, suggesting that they tend to co-occur. However, this 

co-occurrence pattern is minor at GVNP, where these species tend to occur 
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independently ( ). The proportion of scrublands in their home range mediates 

the strength of the interaction between stone martens and common genets, as they 

strongly co-occur in landscapes with lower scrubland coverage and tend to be 

distributed independently at higher scrubland coverage values (table 3.3.2). Also, 

common genets detection probability is higher when they co-occur with stone martens: 

  𝑝! = 0.04  [0.00 − 0.99] vs.   𝑟!" = 0.34  [0.05 − 0.79]. However, given the strong 

association between these to species, both the estimates of occupancy ( ) and 

detection (pB) probabilities in the absence of stone martens were largely imprecise: 

; pB = 0.01 [0.00 - 1.00]. 

Table 3.3.5. Co-occurrence single season occupancy models within the top ranked < 2 AIC units. 

Species 
pair Occupancy model Detection 

model AICc AICc K  

Red fox / 
Common 
genet 

 (CNF),  (OPN) pApB 1189.78 0 11 0.239 

 (CNF,WTR),  (OPN) pApB 1190.44 0.66 12 0.172 

 (CNF),  (OPN) pApB 1191.75 1.97 12 0.089 

Red fox / 
Stone 
marten 

 (SA),  (GVNP) pApBrB 1358.01 0 14 0.212 

 (SA),  (SA) pApBrB 1358.20 0.19 14 0.192 

 (SA,CNF),  (SA) pApBrB 1358.82 0.81 15 0.141 

 (SA,CNF),  (SA,ROD) pApBrB 1359.07 1.06 16 0.125 

Stone 
marten / 
Common 
genet 

 (GVNP,BRL*Mdt),  (GVNP) pApBrB 968.29 0 14 0.2364 

 (GVNP,BRL*Mdt,WTR),  
(GVNP,SCR) 

pApB 
968.56 0.27 15 0.2066 

 (GVNP,BRL*Mdt,WTR),  
(GVNP,OPN) 

pApBrB 
969.24 0.95 15 0.147 

 (GVNP,BRL*Mdt),  (GVNP,OPN) pApBrB 969.62 1.33 15 0.1216 

SA - Study areas; GVNP - Guadiana Valley Natural Park; OPN - Open areas; BRL - Oak woodlands; CNF - Coniferous 
woodlands; SCR - Scrublands; WTR - Distance to water;  ROD - Rodent abundance; ‘X’*Mdt - A given ‘X’ habitat in the 
Mediterranean region;  Rgn - Bioclimatic region. 
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Figure 3.3.2. Species interaction factor ( ) for stone martens and common genets as a function of the proportion of 

scrublands in their home-range. 

Discussion 

In several instances, competitive exclusion has been advocated as the main reason 

explaining of the unexpected distributional or habitat usage patterns in mesocarnivore 

communities, even in the absence of apex predators (Pereira et al. 2012; Zabala et al. 

2009). However, we found no evidence of competitive exclusion in neither of the 

analized species pairs. Moreover, we found no evidence supporting that the presence 

of a potentially dominant competitor would have any kind of negative influence in the 

probability of the subordinate species’ occupancy. 

 

All covariates tested in our single species models for red fox occupancy had low weight 

of evidence. This is in accordance with tred foxes’ generalistic behavior (Larivière and 

Pasitschniak-arts 1996). Singles species models for stone martens revealed a positive 

association with the proportion of oak woodlands in their home range and a negative 

effect of the distance to water sources, especially in the Mediterranean region. This is 

concurrent with previous findings of other authors, who suggest that stone martens are 

drawn to areas with vegetative cover of high structural complexity, where they can find 

shelter as well as benefit from a diversity of feeding resources such as fruits and 
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berries, rodents and birds (Mortelliti and Boitani 2008; Sarmento et al. 2010; Virgós et 

al. 2010; Virgós and García 2002). The negative effect of the abundance of rodents 

was an unexpected result, even though this effect was small. Despite the generalistic 

feeding behaviour of stone martens, (Genovesi et al. 1996; Rödel and Stubbe 2006), 

rodents are always an important food item (López-martín 2006; Zhou et al. 2011). In 

spite of the low rodent consumption at GVNP (0.7% of ingested biomass; unpublished 

data), probably due to the high abundance of European rabbits (Oryctolagus cuniculus) 

at CNP and PGNP (Monterroso et al. 2013), rodents consisted of 9.2 and 30.3% of the 

overall ingested biomass, respectively (Monterroso et al., in prep; unpublished data). 

Therefore, we believe that the avoidance of areas with high rodent density might be an 

artefact that results from the interference of confounding effects of unaccounted 

covariates. At GVNP, European rabbits constitute 86.2% of all ingested biomass, 

whereas at CNP and PGNP fruits provide the greatest contribution for stone martens 

diet, consisting of 53.6 and 60.5% of ingested biomass (unpublished data). Its is 

possible that stone martens are mainly attracted to feeding hotspots, where the energy 

expenditure employed to acquire food is minimized, which might not coincide with the 

spatial distribution of rodents’ abundance. 

We assumed the red fox to be a dominant competitor over the other studied species 

(Pereira et al. 2012). However, the only interaction supported by our models between 

red foxes and any of the other target species was the lower detectability of stone 

martens in the areas occupied by red foxes. This suggests that, while not being able to 

competitively exclude stone martens, red foxes may impose a landscape of fear 

(Brown et al. 1999; Laundré et al. 2001), compelling stone martens to adjust their 

behaviour in the areas of co-occurrence, becoming less conspicuous. However, given 

the close relationship between abundance and detectability (McCarthy et al. 2013), it is 

also possible that the lower detection detection rates of stone martens in areas of co-

occurrence could be the reflection of localized lower abundances. If this is the case, 

then a suppressive effect of red foxes over stone martens occurs, even if its not 

“captured” by occupancy probabilities. The trophic ecology of these two species may 

be involved in the observed patterns. Both species are feeding generalists, which 

exhibit preferencial consumption of the most available feeding resources (Díaz-Ruiz et 

al. 2013; Genovesi et al. 1996; Larivière and Pasitschniak-arts 1996; López-martín 

2006). In our study areas, as in much of their Iberian range, the red fox and the stone 
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marten feed mainly on fruits during autumn, complementing it with other feeding 

resources, such as rodents, lagomorphs and arthropods (Guzmán 1997; Rosalino and 

Santos-Reis 2009). In winter and spring, their diets tend to converge due to the lower 

availability of feeding resources (Carvalho and Gomes 2004; Díaz-Ruiz et al. 2013; 

Guzmán 1997). The exception would be GVNP, where both prey heavily on European 

rabbits (Monterroso et al. 2006; unplublished data). This suggest that, in these areas of 

sympatry, they are most likely drawn to feeding resources’ hotspots, which will increase 

the chances of direct encounters. Ecological theory suggests that, if a shared resource 

is not limiting, the competitive stress between co-existing species relaxes enabling long 

term co-existence  (Linnell and Strand 2000; Ritchie and Johnson 2009). However, this 

coexistence might be facilittated by the avoidance of direct encounters (Fedriani et al. 

1999; Linnell and Strand 2000), which may be dangerous given that the body weight 

ratio between red foxes and stone martens (4.0; Blanco 1998) falls within the interval 

where intraguild predation events are most frequent: 2.0 - 5.4 (Donadio and Buskirk 

2006).   

Our common genets’ singles species occupancy models supported that occupancy 

rates were negatively affected by the amount of open habitats (i.e. pastures, 

agricultural fields or meadows) in their home range. The common genet has been 

described as habitat generalist, but always requiring vegetative cover and benefiting 

from habitats with a developed vertical component (i.e. woodlands and forests) (Camps 

2011; Matos et al. 2008; Santos-Reis et al. 2005; Sarmento et al. 2010; Sarmento et al. 

2009). Regarding their trophic ecology, common genets are mainly rodent consumers 

(López-Martín 2006; Virgós et al. 1999). Our results are coherent with these assertions 

as this species exploited woodlands and scrublands in our study areas, where 

vegetation cover can provide shelter and denning places, as well as their staple prey, 

i.e. rodents (Calzada 2007; Pereira et al. 2012; Virgós et al. 1999; Zabala et al. 2009). 

Foxes, however, may explore all kinds of habitats, namely areas with scarce 

vegetation, as it was observed in our study areas. This hability for the exploitation of 

distinct habitats and prey, may be sufficient to allow them to co-occur with an alleviated 

competitive stress. In fact, several studies in SW Europe have reported the co-

existence of red foxes and common genets with no suggestion of any kind of 

competitive stress (Matos et al. 2008; Sarmento et al. 2010). Further, the arboreal 

behaviour of common genets allows them to thoroughly explore the vertical component 
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of forested habitats, fact that has been suggested as a behavioural trait that aids their 

co-existence with red foxes (Pereira et al. 2012). 

The stone marten and common genet have very similar ecological requirements, which 

means that they often overlap extensively their ecological niches when in sympatry 

(López-martín 2006; Ruiz-Olmo and López-Martín 2001; Sarmento et al. 2010; Zabala 

et al. 2009). They are habitat generalists that rarely venture into open areas  (Mangas 

et al. 2007; Virgós et al. 2002); although genets are more strictly dependent on 

rodents, both significantly consume these prey (López-martín 2006; Santos-Reis et al. 

2005); and both species have strictly nocturnal activity (Monterroso et al., accepted). 

Previous work focusing on the spatial patterns of these species simultaneously provide 

contrasting results. Zabala et al. (2009) invoke the competitive exclusion principle 

(Hardin 1960) to explain these species spatial segregation in the Bask country (N 

Spain). These authors suggest that common genets drive stone martens to sub-optimal 

habitats. Pereira et al. (2012) found contrasting results in central Portugal. These 

authors found that stone martens occupy the most densely vegetated authotonous 

woodland, which had a greater abundance of rodents, whereas common genets used a 

sub-optimal habitat (Eucaliptus forests), presumably to avoid competition with red 

foxes. However, Sarmento et al. (2010) failed to detect any effect of competitior 

abundance in the probability of mesocarnivores’ occupancy in Serra da Malcata 

Natural Reserve (central Portugal), and detected high degrees of overlap in the spatial 

distributions of stone martens and common genets. Our results do not support any kind 

of spatially segregated distribution between stone martens and common genets. In 

fact, we found common genets be more conspicuous in the areas of co-occurrence. 

We suggest two potential explanations for this pattern, which may act alone or 

simultaneously. First, areas of co-occurrence are likely to be areas with good 

conditions (i.e. good habitat and feeding resources availability) for both species, where 

genets can reach higher densities, consequently increasing detection probabilities 

(McCarthy et al. 2013). Secondly, given the ecological similarity between stone 

martens and genets, it is possible that they coincide in prey hotspots, especially if prey 

is spatially clustered. López-Martin (2003) suggested that behavioural adjustments in 

these two species along other niche axes (eg. temporal niche) or at finer scales could 

facilitate coexistence. Indeed, Monterroso et al. (accepted) found nocturnal 

mesocarnivores to exhibit asynchronous activity peaks in the diel cycle. Barrientos and 
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Virgós (2006), found stone martens and genets to reduce their exploitative competition 

by sequentially using the available feeding resources. Moreover, some indications of 

fine scale spatial avoidance between these two mesocarnivores have been proposed 

(Pereira et al. 2012; Santos-Reis et al. 2005). We found the strength of association 

between these species to be mediated by the amount of scrublands in their home-

range. Given their preference for this habitat type, especially in Mediterranean 

ecosystems (Mangas et al. 2007), its reduction in availability would force them to 

coincide in the existing patches (Virgós et al. 2002; Virgós and García 2002), especially 

if feeding resources are locally abundant (Mortelliti and Boitani 2008). 

 

Conclusions 

The competitive stress between sympatric carnivores is largely mediated by the 

availability of a shared resource (Donadio and Buskirk 2006; Linnell and Strand 2000), 

and coexistence may be promoted through behavioural adjustments that reduce the 

probability of agonistic encounters (Carothers and Jaksić 1984; Ritchie and Johnson 

2009; Wilson et al. 2010). In SW European carnivore communities, as in much of the 

rest of the world, apex predators have been largely extirpated releasing 

mesocarnivores from top-down regulation and unbalancing interspecific relations 

(Estes et al. 2011; Prugh et al. 2009). Our results do not support the existence of 

competitive exclusion among the three studie mesocarnivores (red fox, stone marten 

and common genet) , at least along the spatial niche axis. However some evidence of 

interference between red foxes and stone martens was observed, translated by 

reduced conspicuity of the latter species in areas of co-occurrence, suggesting a 

landscape of fear effect. No evidence of spatial avoidance exists between the 

ecologically similar stone martens and common genets, but rather a tendency for co-

occurrence mediated by the availabilty of favorable habitat. We suggest that further 

research on mesocarnivores’ community-wide ecological relations should be carried 

out to allow a better understanding of how habitat structure and prey availability affects 

fine-scale interactions and what mechanisms act in promoting their co-existence. 
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3.4 Niche partitioning at the edge of the range: 

a multidimensional analysis with sympatric 

martens 

 

Abstract 

The structure of mesopredators’ communities is complex and results from a 

multidimensional web of interactions. The pine marten (Martes martes) and the stone 

marten (Martes foina) have overlapping ecological traits and distributions over their 

European range. The absence of stone martens from potentially adequate areas has 

been advocated as the result of competitive exclusion by pine martens. However, their 

elusive behavior and the morphological similarity of their scats often precluded the 

evaluation of their ecological traits in areas of co-occurrence.  

Using camera trapping and genetically identified scats, we evaluated the ecological 

relations between pine and stone martens in the South-western limit of their range 

along three main ecological niches: spatial, trophic and temporal; under a hypothesis of 

competitive dominance of pine martens. 

We found no spatial segregation and that coexistence was facilitated by seasonally 

adjusted shifts along the trophic and temporal axes. While both species often co-

occurred spatially, during the season of low food resources pine martens exploited the 

less profitable feeding resource, and displayed an activity pattern that while reducing 

the probabilities of encounters with stone martens, constrained their access to rodents. 

We suggest that the relative dominance position has changed in favor of the stone 

marten in our study area, probably as a result of factors such as habitat quality, human 

disturbance and range edge effects. These findings support the relative instability of 

interspecific interactions among similar sized species, which should be evaluated using 

multidimensional approaches in order to provide adequate baseline information in 

conservation and management actions. 
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Introduction 

According to the concept of limiting similarity, “complete competitors cannot coexist” 

(Hardin 1960). This idea seems appealing and reasonably straightforward, however the 

patterns found in nature indicate that coexistence rather than exclusion of closely 

related species is the rule (den Boer 1986), because sympatric organisms must adapt 

to the same environment (Grant 1972). The limiting similarity theory (MacArthur and 

Levins 1967) attempts to incorporate the effects of these simultaneous forces, 

suggesting a threshold of niche similarity under which stable coexistence is allowed. 

Hence, competing species must segregate, at least partially, along one or more 

dimensions of their ecological niche (Hardin 1960, MacArthur and Levins 1967, Szabó 

and Meszeéna 2006).  

In recent years, particularly boosted by modern technological advances in field 

techniques and noninvasive sampling (Long et al. 2008), several studies have focused 

on the coexistence patterns and competition between sympatric carnivore species. 

Carnivores provide particularly interesting organisms to study such patterns because of 

their disproportional impact in the ecosystems. Futhermore, carnivores are particularly 

prone to aggressive interspecific interactions, which are largely mediated by the 

availability of a shared resource and by their relative body sizes (Palomares and Caro 

1999, Arim and Marquet 2004, Donadio and Buskirk 2006, Ritchie and Johnson 2009).  

Among carnivores, the greater range overlap is observed between sister species that 

differ in morphological traits related to resource use and that occupy similar ecological 

niches (Davies et al. 2007). However, cases of sister species with overlapping 

ecological requirements are frequently found among carnivores in several terrestrial 

ecosystems (Wilson and Mittermeier 2009). The pine marten (Martes martes) and the 

stone marten (Martes foina) are two closely related medium-sized mustelids that have 

extensively overlapping distributions, particularly in their European ranges (Figure 

3.4.1) (Proulx et al. 2005, Kranz et al. 2008, Tikhonov et al. 2008). Although displaying 

a high distributional overlap and having similar body sizes (Blanco 1998), some 

morphometric traits allow the discrimination of these species (Loy et al. 2004, Gasilin 

and Kosintsev 2013). Particularly, their cranial morphology suggests that the stone 



275 

	
  

marten should be better adapted to hypercarnivory, while the pine marten’s skull is 

suggestive of more diverse feeding habits (Loy et al. 2004).  

In spite of this apparent divergence in chewing apparatus, the pine and stone marten 

often have overlapping diets (López-Martin 2003, Posluszny et al. 2007, Zhou et al. 

2011) and habitat requirements (Ruiz-Olmo and López-Martín 2001, Proulx et al. 2005, 

Wilson and Mittermeier 2009), fact that should potentiate the competitive stress 

between them. Accordingly, the competitive exclusion principle has been invoqued to 

justify the absence of stone martens from otherwise adequate areas within their 

distribution range (Balestrieri et al. 2010a; Rosellini et al. 2008b). Therefore, whenever 

they co-occur a high potential for competitive interactions is expected. However, given 

their secretive behaviour and the impossibility to distinguish their scats based on 

morphological characteristics (Rosellini et al. 2008b), there is a considerable lack of 

studies where both species’ ecological traits are simultaneously addressed (Balestrieri 

et al. 2010b; Goszczyński 1976; Posluszny et al. 2007). Non-invasive molecular 

methods provide a valuable tool for determining the species presence using scats 

collected in the field, allowing for unambiguous studies on these two closely related co-

occurring mesocarnivores (Broquet et al. 2006, Ruiz-González et al. 2007, Beja-

Pereira et al. 2009). 

In the Iberian Peninsula (Southwest Europe), the stone marten is widespread (Reig 

2007, Tikhonov et al. 2008) while the pine marten is restricted to the northern fringe, 

comprising the South-western limit of its European range (Proulx et al. 2005, López-

Martin 2007). In this region, stone and pine martens potentially coexist, therefore 

providing a good opportunity to study the strategies of these two sympatric species in 

the South-western most limit of their distribution range.  

In this study we evaluated the three main niche dimensions - spatial, trophic and 

temporal - of pine and stone martens. Particularly we wanted to evaluate if the 

previously reported competitive dominance of pine martens over stone martens would 

hold in the limit of the former’s range. If pine martens outcompete stone martens, we 

expected this dominance to be expressed over one or more of the main ecological 

niche dimensions: (1) spatially, by excluding or reducing the probability of stone 

martens occurrence in the most beneficial habitats; (2) trophically, by reducing stone 

martens’ access to the most beneficial feeding resources; or (3) temporally, by forcing 
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stone martens to adjust their activity patterns so that they reduce the probability of 

interspecific encounters. Therefore we predicted that pine martens would be present in 

their preferred habitats (mature oak woodlands) and stone martens would be present 

only in sub-optimal habitats, such as scrublands and fragmented areas. Further, we 

predicted that pine martens would preferably explore rodents as their main prey, and 

that stone martens would shift prey towards other feeding resources (such as fruits, 

arthopods or carrion). Finally, we anticipated that if these species do not segregate 

over these dimensions (spatial and trophic), temporal partitioining should play a 

particularly significant role in separating their ecological niches. 

 

Methods 

Study area 

This work was conducted at Peneda-Gerês National Park (PGNP, Portugal; Figure 

3.4.1), which is a part of the Cantabrian-Atlantic subprovince, Juresian-Queixensean 

Sector and Amarela-Gerês district, and is included in the montane bioclimatic level with 

a hyper-humid and ultra-hyper-humid ombroclimate (Costa et al. 1998; Honrado 2003; 

Rivas-Martínez et al. 2002). Diverse types of granitic soils and a great topographic 

complexity result in a diversification of ecological conditions, which are reflected in the 

presence of several climacic forests, particularly, mature forests of European oak 

(Quercus robur) (Honrado 2003). The vegetation is dominated by Luzula henriquesii- 

Quercus robur, Betula celtibérica-Sorbus aucuparia, Quercus pyrenaica- Q. x 

andegavensis, Myrtillo-Quercetum roboris and Rusco-Quercetum roboris subas. 

prunetosum lusitanicae series. At higher altitudes, there is a prevalence of Cytiso 

striati-Genistetum polygaliphyllae, Carici asturicae-Ericetum aragonensis and 

Juniperus communis subsp. alpina e Erica australis subsp. aragonensis series 

(Honrado 2003). Pastures, agricultural fields and small villages are found scattered 

through the landscape, mainly along valleys and lower altitude locations (Carvalho and 

Gomes 2004). A study area of approximately 6000ha was selected, based on criteria of 

ecosystem conservation status and logistic factors.  
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Figure 3.4.1 Small inset: European range of pine and stone martens, adapted from IUCN Red List of Threatened 

Species, Version 2013.2. (www.iucnredlist.org). Large inset:  Spatial representation of habitat composition, camera-trap 

placement and genetically confirmed marten scats at Peneda-Gerês National Park (PGNP, Portugal). 

 

Field sampling 

The study area was sampled in two seasons: non-breeding (Oct-Nov), when the 

offspring of most medium-sized carnivores from that year become independent; and 

breeding (Apr-May), during most mesocarnivores’ breeding season (Blanco 1998). 

Data were obtained using exclusively non-invasive methods, including camera trapping 

and diet analysis based on genetically identified scats. The camera trapping sampling 

design and trap sites selection were those described in Monterroso et al. (2011; 2013). 

Briefly, 36 cameras were uniformly spaced in the study area following a grid-sampling 

scheme, with an inter-camera distance of ≈1.4km. Two camera-trap models were used: 

Leaf River IR5 (LeafRiver OutDoor Products, Taylorsville, Mississippi, USA) and 

ScoutGuard SG550V (HCO OutDoor Products, Norcross, Georgia, USA), which have 
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triggering times of 0.9 and 1.3 seconds, respectively. Cameras were mounted on trees 

approximately 0.5 – 1.0m off the ground and set to record time and date when 

triggered. We programmed cameras to fire a burst of three photos when triggered, with 

the minimal delay time possible (< 1min). Camera-traps were maintained in the field for 

a period of 28 to 31 days and were inspected for battery or card replacement every two 

weeks. We used a combination of Lynx urine and Valerian extract solution as lures to 

incite target species’ curiosity and thus increase detection probabilities (Monterroso et 

al. 2011, Garrote et al. 2012). Attractants were placed in the field at a distance of 2-3 m 

from the camera-traps, and were deployed in perforated separated PVC containers, at 

a distance of 10-15 cm from each other and approximately 30 cm above the ground. 

Five to 10 mL of each attractant were sprayed into a cotton gaze, held inside each 

container. Attractants were re-baited every two weeks.  

 

Ten 3-km long transects, were defined along unimproved roads or trails for active 

searching of marten scats. Each transect was sampled twice per season: at the 

beginning of the sampling campaign and after approximately 20 days. Transects were 

spatially distributed in order to adequately sample all main habitats. Transects were 

surveyed on foot by trained field technicians who collected all carnivore scats within a 

bandwidth of 2 m to each side of the transect line. Scats were initially identified in the 

field based on their location, morphology, dimensions, color and odor, with the aid of 

specific field guides (Bang et al. 2007, Iglesias and España 2010) and were collected 

taking all precautions to prevent contamination from the collector or cross-

contamination from other samples. All scats not exhibiting external characteristics of 

being fresh (wetness, shine, dark color) were discarded. Selected samples pre-

identified as belonging to marten species were preserved in plastic vials in ethanol 

(96%) until DNA extraction. Additional opportunistically collected scats (for instance, at 

camera-trap locations) were also included in this study.  

 

Genetic Analysis 

All scats collected during fieldwork were submitted for genetic analysis. DNA 

extractions were performed with the Qiagen QIAamp DNAStool Mini Kit (Qiagen, 

Hilden, Germany) according to manufacturer’s instructions in a separate and 
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autonomous facility, under sterile conditions. Species assignment was performed using 

two diagnostic methods: the interphotoreceptor retinoid-binding protein (IRBP) 

fragment (Oliveira et al. 2010); and the domain 1 of the control region (CR) (Palomares 

et al. 2002). Amplifications were performed in a final volume of 10 µL using 5 µL of 

Qiagen PCR MasterMix, 0.2 µM of each primer and 2 µL of DNA extraction (c. 10 ng of 

genomic DNA). Thermocycling conditions for both frag- ments were as follows: 95°C 

for 15 min, followed by 40 cycles at 95°C for 30 s, 60°C (IRBP) or 58°C (CR) for 20 s 

and 72°C for 20 s, with a final extension step at 72°C for 5 min (IRBP) or 60°C for 10 

min (CR). Polymerase chain reaction (PCR) amplifications were carried out in a 

thermocycler MyCycler (Bio-Rad, Hercules, CA, USA). Successful amplifications were 

purified using the enzymes exonuclease I and shrimp alkaline phosphatise, and 

sequenced for both strands with BigDye chemistry (Applied Biosystems, Carlsbad, CA, 

USA). Sequencing products were separated in a 3130 XL Genetic Analyzer (Applied 

Biosystems). Pre- and post-PCR manipulations were conducted in physically separated 

rooms. Sequence alignment was performed using Clustal W (Thompson et al. 1994) 

implemented in BioEdit software (Hall 1999) and was manually checked and 

reassessed for any discrepancy. Aligned CR sequences were compared with the 

corresponding region of the mitochondrial genome from target species in the GenBank. 

Both markers were consistently used to increase identification confidence. 

 

Diet Analysis  

All samples genetically confirmed as belonging to either pine or stone martens were 

used for diet analysis. Scats were dried at 60ºC for a 48h, weighted with a digital scale 

(precision of 0,001g) and soaked in water with some drops of lye during 24h before 

analysis to facilitate the separation of its components. The soaked material was then 

rinsed in 0.5mm and 0.25mm sieves under a slight stream of tap water. All the 

undigested food remains where then carefully inspected and separated by food items 

and type of remains. 

The undigested contents were identified using a magnifier (Zeiss Stemi 2000-C 10x/27-

5x). Mammalian prey were identified by their teeth, mandibles and hair structure. Hair 

samples were identified under an optic microscopic (Leitz HM-LUX 3 10x100), using 

the cross-section technique (Teerink 1991), and species identification was assessed 

using hair identification manuals (Debrot et al. 1982, Teerink 1991). Teeth and 
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mandibles were identified with the aid of reference keys (Gállego Castejón and López 

1982, Dueñas Santero and Peris Alvarez 1985). Birds were classified to the Order level 

according to the feathers with the aid of reference keys (Day 1966). After triage, all 

food remains were dried at 60ºC for 48 hours. Their dry weight was then assessed, 

using a digital scale (precision of 0.001g). 

 

Statistical analysis: spatial partitioning  

Spatial co-occurrence patterns between pine and stone martens were evaluated by 

likelihood-based occupancy modeling (MacKenzie et al. 2002, Mackenzie et al. 2006) 

using single-season occupancy models in the software PRESENCE 6.0 (Hines and 

Mackenzie 2013). We divided our survey periods into 1-week sampling occasions 

during which the detection/non-detection data of each target species was recorded. 

Then, we created species-specific detection histories, allowing us to assess factors that 

may affect species-specific occupancy and detection.  

Mackenzie et al. (2004) proposed an occupancy model for estimating species co-

occurrence patterns. However, they reported problems in the numerical convergence of 

model parameters when covariates were included (Mackenzie et al. 2004, 2006). To 

deal with this problem, Richmond et al. (2010) proposed the psiBa parameterization, 

where the probability of occupancy of the subordinate species is conditional on the 

occupancy of the dominant species. Despite the robustness of this parameterization, 

convergence problems can also arise (Steen et al. 2013). We also found convergence 

problems with co-occurrence occupancy models for our pine and stone marten dataset 

using both the above mentioned parameterizations. Therefore, by assuming pine 

marten to be the dominant species (López-Martin 2003, Balestrieri et al. 2010a), we 

estimated its occupancy  (𝜓!) unconditional of stone martens’ presence. To account 

for potential heterogeneity in the probabilities of occupancy (ψ) and detection (p) we 

tested the effect of covariates: distance to water, habitat availability, prey (rodents, 

order Rodentia) abundance, and season. We estimated distance to water by 

measuring the linear distance from the sampling site to the nearest water source. 

Rodent availability was assessed for each camera station and period by calculating 

trap success (TS). TS estimation followed the methods described by previous studies 

(Kelly and Holub 2008, Davis et al. 2011) and consisted of the mean number of 

detections of a given species per 100 trap days. When multiple photographs of the 
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same species were taken within a 30-minute interval we considered them to be 

dependent, and therefore regarded them as a single capture event to ensure capture 

independence (unless animals were clearly individually distinguishable) (Davis et al. 

2011). We reclassified original vegetation maps obtained for PGNP into four dominant 

habitat types: broadleaf autochthonous woodlands, coniferous woodlands, scrublands 

and open areas. Then, following Long et al. (2011) we assessed the proportion of each 

habitat type around each camera at two different scales using two analysis windows: 

0.0079km2 and 2.01km2. These areas respectively corresponded with 50m and 800m 

radius circles centered on the camera trap locations (hereafter referred to as local and 

home range scales). This home range buffer size was selected because it 

approximately represents the home range size for marten species in Europe (Santos-

Reis et al. 2004, Zalewski and Jędrzejewski 2006). All continuous covariates 

(proportion of habitat in HR, Distance to water and rodent TS) were transformed to z-

scores (Mackenzie et al. 2006). 

Our final covariate set was defined following a Spearman’s rank correlation (rs) to test 

for collinearity among variables; if variables were correlated (rs>0.70) we kept the 

variable with the greatest univariate effect size (β/SE) (Zar 2005).  

Following the recommendations of Arnold (2010) for exploratory approaches that 

involve many variables, we used a sequential modeling approach to find the best 

model set and discard uninformative variables. We started by building a main-effects 

model, including all variables. We then used a backward-stepwise selection to 

sequentially eliminate the covariate with the weaker effect size (β/SE). This process 

was kept until the deletion of an additional covariate led to an increase in AIC (Pagano 

and Arnold 2009). We considered as informative covariates those that were in models 

within 2 AIC units of the top-supported model and whose 85% confidence intervals did 

not include zero (Arnold 2010). 

We then modeled the probability of stone martens’ occupancy by including the 

conditional probability of pine marten occupancy (𝜓!), given its detection history, as a 

potential covariate. We evaluated species interactions by comparing models with and 

without 𝜓!, using habitat and prey variables as covariates of occupancy (Steen et al. 

2013). We also investigated the effect of pine martens’ presence on stone martens’ 

detectability by evaluating models with and without 𝜓! as a covariate for detection 

(Steen et al. 2013).   
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We evaluated the candidate models using Akaike’s Information Criterion (AIC) 

(Burnham and Anderson 2002), and model fit was assessed through the calculation of 

the overdispersion parameter (𝑐) using the most parameterized model (Burnham and 

Anderson 2002). We then used 𝑐 to correct AIC for small sample size (AICc) and for 

overdispersion (QIACc) (Burnham and Anderson 2002).  

While a species’ trap success may be a biased proxy of its abundance (Sollmann et al. 

2013), it provides information regarding the intensity of use of a given area. Therefore, 

we calculated the Spearman rank correlation between pine and stone martens’ TS to 

evaluate if areas intensively used by one species would be less used by the other.  

To further evaluate the spatial relations between the two congeneric species, we 

evaluated the spatial patterns of the detected scats. Hence, for each season, we 

evaluated if the mean distance between nearest scats of the same species was 

significantly different from the mean distance between nearest scats of different 

species using the paired Wilcoxon test. We then used the Fisher’s exact test to 

compare the number of scats of each species collected in each habitat type. 

 

Statistical analysis: trophic ecology 

We assessed the martens’ diet by estimating the frequency of occurrence (FO; # of 

scats containing a particular item/ total analyzed scats) and ingested biomass (g) of 

each considered food item (Nilsen et al. 2012). The ingested biomass was estimated 

by measuring the dry mass of each food item (Reynolds and Aebischer 1991), and 

then the ingested biomass of that food item (Klare et al. 2011) was estimated using 

correction factors developed for pine martens (Lockie 1961, Balharry 1993) and for 

polecat, Mustela putorius (Roger et al. 1991), in order to cover all the dietary spectrum 

of the target species. The seasonal trophic niche overlap between pine and stone 

martens was assessed using Pianka’s index (α) (Pianka 1974). Interspecific differences 

in the frequency of occurrence of each food item were evaluated using chi-square tests 

on built contingency tables. Differences in the mean ingested biomass per scat were 

assessed using a one-way analysis of variance (ANOVA) on log-transformed ingested 

biomass values (Loveridge and Macdonald 2003). These analyses were performed in 

R (R Development Core Team 2008) using the SPecies Association Analysis package 

(Zhang 2013). 
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Statistical analysis: temporal partitioning  

Temporal segregation between the two marten species was assessed using camera-

trapping data. The independent detection records were regarded as a random sample 

from the underlying continuous temporal distribution that describes the probability of a 

photograph being taken within any particular interval of the day (Ridout and Linkie 

2009). The probability density function of this distribution (i.e. activity pattern) was 

estimated nonparametrically using kernel density (Ridout and Linkie 2009, Linkie and 

Ridout 2011).  

The temporal segregation between pine and stone martens in each sampling season 

was evaluated by pairwise comparisons of their activity patterns, performed by 

estimating the coefficient of overlap ∆1, as suggested for small sample sizes (Ridout 

and Linkie 2009, Linkie and Ridout 2011). The coefficient of overlap ranges from 0 (no 

overlap) to 1 (complete overlap), and is obtained taking the minimum of the density 

functions of the two cycles being compared at each time point. The precision of this 

estimator was obtained by computing a standard deviation from 500 bootstrap samples 

in the software R (R Development Core Team 2008). The R code used to estimate 

overlap coefficients was that provided by (Ridout and Linkie 2009). Additionally, we 

used the Mardia-Watson-Wheeler test (Batschelet 1981) to compare the distribution of 

detections across the diel cycle between both species. This test pools the samples 

together and sorts them into increasing angles. They are then evenly distributed 

around the diel cycle by calculating a uniform score (or circular rank). If the distributions 

of the samples are identical then the new uniform scores should be evenly interspersed 

around the diel cycle, and their resultant vector lengths (R) should be short and similar. 

Any significant difference between the R’s will lead to a large W test statistic and 

rejection of the null hypothesis of identical distributions (Kovach 2011). These analyses 

were performed using the software Oriana v. 4.01 (Kovach 2011). Only distributions 

with ≥10 detections were considered (Gerber et al. 2012). 

Because martens are active rodent predators (Zalewski 2005, Zhou et al. 2011), the 

coefficient of activity overlap between the pine and stone marten with rodents was also 

assessed. Rodent data were obtained from the same camera traps, and following the 

same procedures as data from martens. However, to evaluate the synchrony between 

prey and predator activities we estimated a Pearson’s correlation using kernel 
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probability estimates for 512 equally spaced time points along the day, that is, a point 

at approximately each 2.8 min (Monterroso et al. 2013). 

 

Results 

Spatial interactions  

We recorded 13 and 26 independent pine marten detections in camera-traps during the 

non-breeding and breeding seasons, respectivey. Stone martens accounted for three 

and 11 independent detections in the same seasons.  

All of the best models for pine marten included the effect of season (table 3.4.1), 

revealing a higher probability of site occupancy during breeding than during non-

breeding season (85% conf. interval excluded zero). Rodent trap success and the 

presence of authoctonous broadleaf woodlands also exhibited positive effects on pine 

marten occupancy probabilities and were included in two and one of the top supported 

models, respectively (table 3.4.1). Although being included in one of the top supported 

models, the distance to roads was considered uninformative given the low precision of 

its estimate (85% confidence interval overlapped zero).  

Four models had substancial level of empirical support of being the best models for 

stone marten occupancy. Three of these models included the conditional probability of 

pine marten presence, which had a significant positive effect on the probability of stone 

marten occupancy (table 3.4.1). Although being included in some of the top-supported 

models, rodent trap success and the proportion of open areas at the home range scale 

were uninformative in the estimation of the probability of stone martens’ occupancy 

(table 3.3.1).  

The seasonal evaluation of pine and stone marten traps successes revealed a positive 

but not significant correlation (rnonbreeding = 0.23; p = 0.19; rbreeding = 0.49; p = 0.20). 

However, the correlation between these two species trap success for the pooled data 

was positive and highly significant (r = 0.42; p < 0.01).  

The spatial patterns of the target species’ scats were coherent with those obtained 

from the camera-trapping data. The mean distance between a given stone marten scat 

to the nearest pine marten scat was 474.3 ± 167.7m and 114.9 ± 20.3m in the non-
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breeding and breeding seasons, respectively, and differences between the interspecific 

and intraspecific nearest neighbor distances were not statistically different for any of 

the seasons evaluated (Wnonbreeding = 174; p = 0.98; Wbreeding = 610; p = 0.40).  

Table 3.4.1. Top-supported models (∆QAICc ≤ 2.0) and covariate estimates (𝛽) used to evaluate occupancy patterns 

and interspecific interactions between pine martens (Martes martes) and stone martens (Martes foina) in Peneda Gerês 

National Park (PGNP), during the non-breeding season of 2010 and breeding season of 2011. 

Pine marten QAICc ∆QAICc 𝝎𝒊 k 

Covariate estimates (𝛽) 

Season Rodent Brd Distance to 
roads 

 𝜓 𝑠𝑒𝑎𝑠𝑜𝑛 + 𝑟𝑑𝑡 , p(. ) 122.52 0 0.240 4 2.17 ± 
1.13* 

2.20 ± 
2.03* 

- - 

 𝜓 𝑠𝑒𝑎𝑠𝑜𝑛 , p(. ) 123.34 0.82 0.160 3 1.62 ± 
1.20* 

- - - 

 𝜓 . , p(. ) 123.42 0.90 0.153 2 - - - - 

𝜓 𝑠𝑒𝑎𝑠𝑜𝑛 + brd , p(. ) 123.90 1.38 0.120 4 1.56 ± 
0.97* 

- 1.70 ± 
1.38* 

- 

𝜓 𝑠𝑒𝑎𝑠𝑜𝑛
+ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑡𝑜  𝑟𝑜𝑎𝑑𝑠
+ 𝑟𝑑𝑡 , p(. ) 

124.25 1.73 0.101 5 2.43 ± 
1.51* 

1.90 ± 
1.62* 

- -0.58 ± 0.73 

Stone marten QAICc ∆QAICc 𝝎𝒊 k Pmarten Rodent Opn_H
R 

 

 𝜓 𝑃𝑚𝑎𝑟𝑡𝑒𝑛 , p(𝐵𝑟𝑑 +
𝑀𝑥𝑑) 

62.90 0 0.338 5 3.88 ± 
2.33* 

- - - 

 
𝜓 𝑃𝑚𝑎𝑟𝑡𝑒𝑛 +
𝑟𝑑𝑡 , p(𝐵𝑟𝑑 +𝑀𝑥𝑑) 

63.07 0.17 0.310 6 4.93 ± 
2.63* 

-1.71 ± 
1.76 

- - 

 𝜓 . , p(𝐵𝑟𝑑 +𝑀𝑥𝑑) 64.84 1.94 0.128 4 - - - - 

 𝜓 𝑃𝑚𝑎𝑟𝑡𝑒𝑛 + 𝑟𝑑𝑡 +
𝑂𝑝𝑛!" , p(𝐵𝑟𝑑 +𝑀𝑥𝑑) 

64.86 1.96 0.127 7 5.92 ± 
3.36* 

-2.22 ± 
2.29 

-0.56 ± 
1.10 

- 

Model parameters: ‘𝜓’ - Occupancy probability; ‘p’ - Detection probability;  

Model covariates: ‘.’ - Constant (i.e. no covariates); ‘Season’ - Seasonal effects (non-breeding vs. breeding season); 
‘Rodent’ - Rodent trap-success (detections/100 trapping-nights); ‘Brd’ - Broadleaf woodland; ‘Mxd’ - Mixed woodland; 
‘Opn_HR’ - Proportion of open areas at the home-range scale; ‘Distance to roads’ - Linear distance to nearest road 
(meters); ‘Pmarten’ - Conditional probability of pine marten occupancy, given the detection history. 

‘*’ - Informative covariate (i.e. 85% confidence interval not overlapping zero) 

 

Significant differences in the proportion of scats collected per habitat type were 

detected during the non-breeding season (Fisher’s exact test: p = 0.02). During this 

season, most pine marten scats were collected on broadleaf woodlands (50%), 

coniferous woodlands (26%) and scrublands (19%), while stone martens’ were mostly 

detected on broadleaf woodlands (69%), scrublands (12%) and open areas (8%). Such 

significant differences were not detected during breeding season (Fisher’s exact test: p 
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= 0.07). During this season scats were collected in the same habitats in comparable 

proportions:  47% and 48% in broadleaf woodlands, 24% and 33% in scrublands, and 

20% and 13% in open areas for pine and stone martens, respectively. 

 

Trophic ecology 

A total of 97 scats were genetically identified as pine martens’ scats, with 67 from non-

breeding season and 30 from breeding season. The sample of stone marten scats 

consisted of 27 from non-breeding season and 46 from breeding season. Rodents and 

fruits dominated the diet of both species (table 3.4.2), ≥ 70% of all ingested biomass in 

each season.  

Overall, no significant differences were observed in the frequency of occurrence of food 

items during the non-breeding season (table 3.4.2). However, there was a tendency for 

stone martens to ingest fruits more frequently than did pine martens, and  for pine 

martens to consume rodents, insectivores and birds more frequently than stone 

martens during this season (table 3.4.2). The estimates of ingested biomass per food 

item were coherent with frequency of occurrence results, revealing a higher intake of 

fruits by stone martens, and of small mammals and birds by pine martens, although 

without significant differences during non-breeding season (table 3.4.2).  During this 

season the diets of pine and stone marten were very similar, as supported by a 

Pianka’s index (𝛼) of 0.92 and 0.97 for the occurrence and ingested biomass, 

respectively (Table 3). However, while the pine marten maintained fairly constant diet 

across seasons (𝛼!" = 0.89; 𝛼!"#$%&& = 0.97), stone martens’ dietary niche changed 

(𝛼!" = 0.65; 𝛼!"#$%&& = 0.42). During breeding season, stone martens reduced the use 

of fruits, which were significanlty less consumed than by pine martens both in terms of 

frequency and biomass (table 3.4.2). During this season, stone martens also explored 

carrion (artiodactyla) significantly more frequently than pine martens. While the 

frequency of occurrence and mean ingested biomass per scat of rodents was not 

significantly different between stone and pine martens, the overall contribution of this 

food resource (percent ingested biomass) indicates higher intake by stone martens 

during breeding season (table 3.4.2). This component consisted of 20 and 60% of the 

ingested biomass by pine and stone martes, respectively. An analogous situation was 

found in the consumption of arthropods, however, their contribution for the total 
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ingested biomass was smaller (table 3.4.2). This dietary shift of the stone marten 

between seasons resulted in a lower niche overlap during breeding season: 𝛼!" =

0.80; 𝛼!"#$%&& = 0.51  (table 3.4.3). 

During the non-breeding season, both species displayed a high consumption of fruits, 

especially Iberian pears (Pyrus bourgaeana). During this season, rodents (especially 

the wood mouse, Apodemus sylvaticus) consisted the second most consumed 

resource type, with a contribution of 21.98% and 31.97% of all ingested biomass by 

stone martens and pine martens, respectively (table 3.4.2). During the breeding 

season, stone martens drastically reduced the consumption of fruits, and rodents took 

place as the main feeding resource, accouting for nearly 60% of all ingested biomass 

(table 3.4.2). Pine martens, however, continued to rely mainly on fruits, particularly 

common ivy (Helix hedera), primarely complemented by rodents and insectivores 

(Table 3.4.2). 

During the non-breeding season, both martens species displayed a high consumption 

of fruits, especially Iberian pears (Pyrus bourgaeana). During this season, rodents 

(especially the wood mouse, Apodemus sylvaticus) consisted the second most 

consumed resource type, with a contribution of 16.44 and 23.42% of all ingested 

biomass by stone martens and pine martens, respectively (table 3.4.2). During the 

breeding season, stone martens drastically reduced the consumption of fruits, and 

rodents took place as the main feeding resource, accouting for nearly 60% of all 

ingested biomass (table 3.4.2). During this season, pine martens continued to rely 

mainly on fruits, particularly common ivy (Helix hedera), primarely complemented by 

rodents and insectivores (table 3.4.2). The feeding strategies of these congeneric 

species are reflected by an almost complete overlap of feeding niches during the non-

breeding season, supported by a Pianka’s index 𝛼 = 0.99; and a substantial 

segregation during the breeding season (𝛼 = 0.35). 
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Table 3.4.3. Overlap in the diets of pine martens (Martes martes) and stone martens (Martes foina) in Peneda Gerês 
National Park (PGNP), during the non-breeding season 2010 and the breeding season 2011, calculated using the 
Piankas’ index for both the relative frequency of occurrence and percent ingested biomass. 

Species Season Frequency of 
occurrence 

Percent ingested 
biomass 

M. martes / M foina 
Non-Breeding  0.92 0.97 

Breeding  0.80 0.51 

    
M. martes 

Non-breeding / Breeding 
0.89 0.97 

M. foina 0.65 0.42 

 

 

Temporal partitioning 

The pine marten revealed a mainly nocturnal activity pattern, with a tendency for 

bimodality in the non-breeding season (figure 3.4.2).  It displayed a first activity peak 

around sunset and a second and higher peak between 04h00 and 06h00. During this 

season, pine martens’ activity overlapped with rodents’ (∆1 = 0.83 ± 0.10), and was 

highly synchronized with these prey (Pearson correlation = 0.91; p <0.001). We only 

obtained three stone marten detections during the non-breeding season, which 

prevented an adequated analysis of its activity pattern.  

During the breeding season, the pine marten displayed a smooth pattern of activity 

across the diel cycle, with a peak around sunset (figure 3.4.2). This pattern contrasted 

with the strong bimodal nocturnal pattern of the stone marten, which displayed activity 

peaks after sunset and before sunrise (figure 3.4.2). These differences were supported 

by a low coefficient of overlap: ∆1 = 0.49 ± 0.09 However, the Mardia-Watson-Wheeler 

test failed to detect significant differences between the structures of the activity 

patterns of the two marten species (W = 2.12; p = 0.35).  

During this season the activity overlap between pine martens and rodents dropped by 

22% (∆1 = 0.61 ± 0.09), and their activity patterns also reduced in synchrony (Pearson 

correlation = 0.40; p <0.001). While exhibiting little time overlap with the pine martens’, 

the stone marten revealed an akin pattern of overlap and synchrony with rodents (∆1 = 

0.60 ± 0.11; Pearson correlation = 0.57; p <0.001). 
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Figure 3.4.2. Diel activity patterns of pine martens (solid line) and stone martens (dashed line) at Peneda-Gerês Natural 

Park (PGNP), in: a) non-breeding season 2010; and b) breeding season 2011. Vertical dashed lines represent sunset 

and sunrise times, respectively. A low detection sample (n=3) for the stone marten prevented the analysis of its activity 

pattern during the non-breeding season. 
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Discussion 

Spatial interactions 

Our results do not support the hypothesis of stone martens’ competitive exclusion from 

the most beneficial habitats, observed elsewhere (Ruiz-Olmo and López-Martín 2001, 

Rosellini et al. 2008a, Balestrieri et al. 2010a). In fact, the occupancy models suggest 

that the two congeneric species tend to co-occur in our study area.  

The only covariate that significantly affected stone martens’ occupancy probability was 

the unconditional probability of pine marten occupancy, which had a positive effect. 

This was a surprising result given the widely reported dominance of pine martens over 

stone martens, often driving the latter to sub-optimal areas, or even to the complete 

exclusion from a given area (Ruiz-Olmo and López-Martín 2001, Rosellini et al. 2008a, 

Balestrieri et al. 2010a). This absence of spatial segregation is not only supported by 

our occupancy modelling approaches, but also by the correlation between both species 

trap success and the high proximity of sites where scats from both species were 

collected (Figure 3.4.1). Our results diverge from the prediction of spatial segregation 

between pine and stone martens, or avoidance of the latter of sites occupied by pine 

martens in our study area. In fact, we found the opposite pattern, where both species 

tend to co-occur.  

These findings are coherent with the widely held assumption that fitness decreases 

towards the edge of a species distribution range (Sexton et al. 2009). Although this 

assumption cannot be generalized, Sexton et al. (2009) found support that at least one 

of the fitness components was lower at the range edge when compared to its centre in 

67% of the examined studies. Our study was performed at the Southwestern edge of 

the pine martens’ distribution range (Proulx et al. 2005, Kranz et al. 2008), which is 

coincident with the transition from the Atlantic to the Mediterranean biogeographic 

region, whereas the core of its distribution is located in Atlantic to Continental regions 

(European Environmental Agency 2011). Although our data does not allow testing of 

the ‘abundant centre hypothesis’ (Sagarin and Gaines 2002), it is possible that, at this 

edge of its range, a reduction in pine martens’ fitness could result in a downgrading 

from its competitive superiority over the stone marten. Alongside, according to the 

limiting similarity principle (MacArthur and Levins 1967), if pine and stone martens are 
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able to segregate along other niche axes, their competitive stress along the spatial axis 

may be alleviated, allowing them to co-occur. The trophic niche is particularly important 

in mediating the strength of interactions between coexisting carnivores (Donadio and 

Buskirk 2006, Ritchie and Johnson 2009). Therefore, the trophic relations between the 

pine and stone martens in our study area could be involved in the observed pattern of 

co-occurrence.  

The limited influence of other landscape covariates on stone martens’ occupancy is in 

accordance with the reported ecological flexibility (Rondinini and Boitani 2002, López-

Martin 2003, Tikhonov et al. 2008, Herr et al. 2009, 2010, Virgós et al. 2010). The 

spatial patterns of pine martens however, were mostly linked to the availability of 

feeding resources while habitat structure appears to have little effect. The close relation 

between pine marten occupancy and rodent availability is not surprising, as these prey 

are always noticeably consumed by pine marten in Europe (Marinis and Masseti 1995, 

Helldin 2000, Zalewski 2005, Posluszny et al. 2007, Rosellini et al. 2008b, Balestrieri et 

al. 2010b). The inclusion of rodent availability in the best-supported models suggests 

that rodents are also of high importance for pine martens in our study area. The 

seasonal pattern, nevertheless, appears to be counterintuitive as warmer temperatures 

and the recruitment of yearly cubs should increase the spatial patterns of land use 

during the non-breeding season. However, this season provides a period of higher food 

availability (Humphries et al. 1996, Rosellini et al. 2008b, Fedriani and Delibes 2009, 

Monterroso et al. 2013). Conversely, the reduced abundance of rodents and other 

alternative feeding resources during breeding season may impel martens to forage 

through wider areas in order to fulfil their energetic demands (Gittleman and Harvey 

1982). Our study was conducted in the wider continuous potential area for pine 

martens regionally, and presents an overall adequacy for its presence (Álvares and 

Brito 2006). However, we found no effect of habitat composition in the probability of 

pine marten occurrence. While it has been widely described as a species dependent on 

mature woodlands (López-Martin 2003, Álvares and Brito 2006, Zalewski and 

Jędrzejewski 2006, Larivière and Jennings 2009), some authors have reported an 

independence of forest cover (Pereboom et al. 2008, Balestrieri et al. 2010a).  
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Feeding ecology 

The feeding ecology of pine and stone martens highly overlaped during the non-

breeding season, but diverged during the breeding season in our study area. Given the 

similar morphology of pine and stone marten scats, its identification is deemed 

impossible without the resort to molecular techniques (Pilot et al. 2007, Ruiz-González 

et al. 2007). Consequently, very little information exists regarding their feeding ecology 

in areas of co-occurrence. In central Poland, Posluszny et al. (2007) found that small 

rodents and birds were more often consumed by pine martens, whereas the stone 

marten fed more frequently on fruits and insects, and that the similarity between their 

diets was the highest in summer. In the same protected area where we performed this 

study, Carvalho and Gomes (2004) found that mesocarnivore trophic niche converges 

in the breeding season, due to lower resource availability. We found the opposite 

pattern between congeneric martens, which diverge in their trophic niche axis in the 

presence of limiting resource availability - breeding season - congruently with a 

hypothesis of competition (MacArthur and Levins 1967, Schoener 1983). In spite of 

presenting the overall general feeding patterns of the genus Martes (Zhou et al. 2011), 

the stone martens generally appear to be highly flexible in the selection of their feeding 

resources (Genovesi et al. 1996, López-Martín 2006). This flexibility should provide a 

higher adaptation capacity to local conditions and hence, under competitive stress, 

allow stone martens to explore different feeding resources, and reduce exploitative 

competition with co-occurring pine martens (López-Martin 2003). However, and 

coherently with our findings from the spatial analysis, our results conflict with our 

prediction of the pine martens’ competitive dominance over stone martens. If there was 

a clear competitive dominance of pine martens in our study area, as reported 

elsewhere, stone martens should shift to less profitable resources under exploitative 

stress (Ruiz-Olmo and López-Martín 2001, Posluszny et al. 2007, Rosellini et al. 

2008a, Balestrieri et al. 2010a). However, we found that pine martens reduced the 

consumption of their staple prey (rodents) in the period of least availability. Although 

our data on the seasonality of trophic niche similarity concurs with that obtained by 

Posluszny et al. (2007), it contradicts theirs regarding the trophic niche composition in 

the season of least similarity, suggesting a competitive superiority of the stone marten 

in our study area. 
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Activity patterns 

We found pine martens to be mostly nocturnal, with a more pronounced daytime 

activity during the breeding than during the non-breeding season. During breeding 

season, stone martens exhibited a strongly bimodal nocturnal pattern, coherent with its 

strictly nocturnal behaviour described in the Iberian Peninsula (Monterroso et al. in 

press). Still, by concentrating their activity in two short periods of the night, they 

manage to maintain access to rodent prey (60% frequency of occurrence in scats; 

Table 3.4.2), while reducing the activity overlap with pine martens, as supported by the 

low ∆1 values obtained for this season (∆1 = 0.49 ± 0.09), when compared to other 

studies on coexisting carnivores using this metric: 0.63 ± 0.04 (Ridout and Linkie 

2009); 0.64 ± 0.05 (Lynam et al. 2013); 0.61 ± 0.03 (Monterroso et al. in press).  

Given a likely increase in competitive stress between these twin species in the 

breeding season promoted by food shortage, and that temporal avoidance is a 

mechanism that promotes mesocarnivore coexistence by alleviating the likelihood of 

direct agonistic encounters (Halle 2000, Lucherini et al. 2009, Di Bitetti et al. 2009), it is 

plausible to consider pine and stone martens may relieve interspecific competition by 

expanding their activity periods to daytime hours. However, if our predictions of pine 

martens’ competitive superiority held in our study area, they would benefit the most by 

tracking the circadian patterns of activity of rodents, maximizing accessibility to this 

prey (Zalewski 2005, Monterroso et al. 2013). However, we found a reduced activity 

overlap between pine and stone martens during the period of limiting resource 

availability, where none of this species maximized access to this shared resource. 

Apart from interspecific relations, other factors could also influence the observed 

activity patterns. Although our study area is located in the South-western edge of pine 

martens range (Figure 3.4.1), were environmental temperature is not likely to be a 

limiting factor for adults, it may be for young cubs. A shift in the main activity peak from 

dawn to earlier in the night has also been registered by Zalewski (2001), which 

attributed the decrease in activity in female activity during the coldest part of the night 

(04h00-08h00) to care for their young. Furthermore, mice of the genus Apodemus 

constitute the main rodent prey of pine martens in the Mediterranean region (Zalewski 

2005), as they are in our study area. However, following the reduction in the 

consumption of this prey in the breeding season, martens also reduce their activity 

pattern overlap and synchrony with that of their rodent prey. The more pronounced 
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daytime activity during the breeding could also be related to overall feeding resources 

availability or anthropogenic disturbance. During the breeding season, feeding 

resources become scarcer (Carvalho and Gomes 2004, Monterroso et al. 2013). 

Therefore, martens may have to venture for longer distances and for longer periods to 

fulfil their metabolic demands (Gittleman and Harvey 1982). Additionally, pine martens 

appear to react cautiously to signs of human activity in forests (Goszczyński et al. 

2007), developing high levels of physiological stress associated with human presence 

(Barja et al. 2007, Piñeiro et al. 2012). Although we could not test its effect, it is 

possible that seasonal differences in tourism-related human presence could also act by 

limiting pine martens’ ability to explore most of the daytime period.  

Regardless of the potential effect of other factors in the observed activity patterns of 

martens in our study area, we observed an abnormally low overlap and synchrony in 

their activity patterns during the breeding season. Therefore, we suggest that in the 

food shortage period of our study area, both pine and stone martens may use the 

temporal axis of their ecological niche to reduce their competitive stress.        

 

Integrating the spatial, temporal and trophic niche dimensions  

Three main dimensions of the ecological niche are usually involved in interspecific 

competitive relations - spatial, trophic and temporal (Schoener 1974). We evaluated 

these three dimensions, and demonstrate that the coexistence between two 

ecologically similar species may be mediated by adjustments over more than one of 

these axes. Furthermore, we found that these adjustments may vary seasonally, 

suggesting that the relationships among coexisting species are not static, but rather a 

dynamic process. The well-developed complexity of temperate forests could facilitate 

the coexistence between the pine and stone marten in northern Europe, as pine 

martens make more intense use of the three-dimensional space than stone martens 

(Jedrzejewski et al. 1993, Goszczyński et al. 2007). A higher diversity of rodents in this 

region (Mitchell-Jones et al. 1999) could also be involved in facilitating coexistence, by 

allowing both species to explore different prey (Posluszny et al. 2007). Furthermore, 

the stone martens’ synanthropic behaviour (Reig 2007, Goszczyński et al. 2007, Herr 

et al. 2009, 2010) and their plasticity in habitat selection (Rödel and Stubbe 2006, Reig 

2007, Pereira et al. 2012) may further support their coexistence.  
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In Southern Europe, the competitive exclusion principle has been advocated as the 

main reason for the absence stone martens in areas of sympatry with pine martens 

(López-Martin 2003, Rosellini et al. 2008a, Balestrieri et al. 2010a). However, our 

results do not support such pattern in our study area. Although we did not observe 

segregation along the spatial niche axis, we found that under unfavourable conditions 

(i.e., limiting resources), pine martens adjusted their position along the trophic axis by 

exploring less profitable resources, leading to niche divergence with stone martens. 

Further divergence was obtained by mutual adjustments along the temporal niche axis.  

Among carnivore species, habitat composition and the availability of feeding resources 

may influence the relative dominance position in mutual reciprocal relations (Donadio 

and Buskirk 2006, Ritchie and Johnson 2009). Furthermore, if the abundant centre 

hypothesis (Sagarin and Gaines 2002) holds, species abundance and fitness should 

decline towards the edge of its range (Sexton et al. 2009). Although having a generalist 

diet, rodents are the staple prey of pine martens all over its European range 

(Jedrzejewski et al. 1993, Marinis and Masseti 1995, Zalewski 2005). Moreover, pine 

martens exhibit numerical responses to the abundance of forest rodents (Zalewski and 

Jędrzejewski 2006), which is inversely related to latitude in the Palearctic region 

following a gradient of net productivity of ground vegetation (Jędrzejewski and 

Jędrzejewska 1996). However, their preferred rodent prey consists of bank voles, and 

a functional response by pine martens is exhibited following the abundance of this 

species (Jedrzejewski et al. 1993, Helldin 2000, Zalewski 2005). Mice (Apodemus spp.) 

however, consist of alternative prey, as they are preyed upon less than could be 

expected by its proportion in the biomass of forest rodents (Jedrzejewski et al. 1993). 

However, mice are roughly the only available rodent prey available in our study area 

(Monterroso et al. 2013), suggesting that the Peneda-Gerês National Park may not 

provide optimum feeding resources for the pine marten. Furthermore, from a 

biogeographical standpoint, our study area is affected by Mediterranean influence 

(Rivas-Martínez et al. 2004, European Environmental Agency 2011), a bioclimatic 

transition which roughly coincides with the southern distribution range of the pine 

marten in the Iberian Peninsula (López-Martin 2007, Kranz et al. 2008). This fact also 

suggests a suboptimal suitability of this rim for the pine marten. Recent studies have 

shown that although requiring a certain level of forest cover, pine martens are not 

strictly dependent on mature woodlands as previously thought (Pereboom et al. 2008, 
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Balestrieri et al. 2010a). However the coexistence and relative abundance of both 

marten species may depend on woodland complexity and management (Goszczyński 

et al. 2007). Despite the reasonable fragmentation of the landscape in our study area, 

the well-developed patches of deciduous woodlands (Álvares and Brito 2006) may 

facilitate the spatial coexistence of the two marten species, while providing hotspots of 

rodent and fruit availability. Being spatially clustered, there are higher chances for 

interspecific encounters, which appear to be minimized by some degree of mutual 

segregation across the diel cycle, at least during the breeding season. Because stone 

martens are bound to dim light periods, only exceptionally foraging under daylight 

conditions (Posillico et al. 1995, López-Martín et al. 2008, Monterroso et al. in press), 

this segregation may be facilitated by the nycthemeral abilities of the pine marten 

(Clevenger 1993, Zielinski 2000, Zalewski 2001, Monterroso et al. in press).  

We suggest that in the Southwestern edge of pine martens range, their ecological 

interactions with stone martens need not to involve spatial exclusion, as reported over 

some other areas of its southern range (Rosellini et al. 2008a, Balestrieri et al. 2010a), 

but rather by seasonally adjusted changes in feeding resource consumption (trophic 

axis) and circadian activity patterns (temporal axis). We found that at the edge of its 

range and under food shortage conditions, the pine marten changes to alternative and 

less profitable feeding resources, contradicting its natural preference of rodent 

predation (Jedrzejewski et al. 1993, Zalewski 2005), suggesting a local competitive 

dominance of stone martens. 

Our study is an example of how further research on the interspecific relations among 

coexisting mesocarnivores should be evaluated using multidimensional approaches 

and across wider scales, encompassing the core and edges of their respective ranges, 

in order to provide a more comprehensive understanding of how these species adjust 

their ecological niches to facilitate coexistence, and thus produce reliable information 

for adequate conservation and management plans. 
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4  General Discussion 

Predators, namely mammalian carnivores play a crucial role in structured ecosystems, 

namely by enforcing top-down regulation, increasing resilience against introduced 

species, controlling the impact of diseases and promoting seed dispersal (Carlsson et 

al. 2009; Estes et al. 2011; Prugh et al. 2009; Rosalino and Santos-Reis 2009; Salo et 

al. 2008). Interactions among mammalian carnivores are complex and it has been 

suggested that lasting coexistence can only be sustained through ecological 

divergence (Hardin 1960; MacArthur and Levins 1967; Schoener 1974). However, 

current knowledge regarding the mechanisms that promote and sustain carnivore 

coexistence in terrestrial systems is still largely deficient. The coexistence of terrestrial 

carnivores appears to be often promoted by behavioral adjustments in intervening 

species. The behavioral effects most frequently reported consist in the limitation of 

accessibility for the most favorable habitats, prey and period of the day (Di Bitetti et al. 

2009; Cupples et al. 2011; Harrington and Macdonald 2008; Moreno et al. 2006; 

Palomares et al. 1996). We predicted that, in Iberian carnivore communities, spatial 

segregation would be frequent in asymmetrical interactions. However, it would be less 

frequent between similar sized species, and that the trophic and temporal dimensions 

should be more important in the ecological separation of these coexisting species. 

Particularly, when coexisting carnivores share a specific prey, they should segregate 

spatially when prey availability is widely distributed in the landscape, or segregate 

temporally when prey distribution is clustered. However, if at least one of the species is 

not specialized in a particular prey, and alternative feeding resources are available, 

then trophic niche segregation could be preferred to reduce competitive stress.  

In this work we develop non-invasive methods for surveying mammalian carnivores in 

southwestern Europe, and use these methods for assessing the interactions among the 

carnivore community in the two main Iberian bioclimatic regions. Overall, our results 

were in agreement with our predictions. Where clear asymmetrical relations existed, in 

SANP, spatial segregation was detected between the Iberian lynx (apex predator) and 

subordinate species. In this case, there was no evidence of segregation in the activity 

patterns (chapter 3.2). However, among similar sized mesocarnivores, we found no 

support of ecological separation along the spatial dimension (chapters 3.3 and 3.4). 

Our results also suggest that circadian segregation may facilitate carnivores’ 
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coexistence (chapter 3.3), while allowing access to preferred prey (chapter 3.1). 

Furthermore, trophic segregation may also be involved in the reduction of competitive 

stress when feeding resources become limiting (chapter 3.4).  

In the following sections, the results obtained in the distinct chapters are integrated and 

discussed in light of our initial predictions.     

 

4.1 Refinements in noninvasive methods for surveying European mesocarnivores 

 

The extensive use of noninvasive sampling methods in the study of mammalian 

carnivores arises from recent revolutionary advances in technology, statistics and 

modeling approaches (Kelly et al. 2012; Long et al. 2008). Advantages of noninvasive 

methods include the possibility of producing large sample sizes, with consequent 

reduction in bias and increase in precision, while expanding the spectrum of research 

topics (Kelly et al. 2012). However, the novelty of such methods requires testing and 

comparative analysis. The contemporary noninvasive field sampling methods most 

commonly employed for surveying carnivore populations are scat-searching methods, 

hair collection and camera trapping (Kelly et al. 2012; Long et al. 2008; McCallum 

2013). While the current employment of the two former methods are nearly exclusively 

in combination with molecular genetics (Heinemeyer et al. 2008; Kendall and Mckelvey 

2008), the two latter require animals to encounter the detections stations (hair 

collection of camera-trapping) (Kays and Slauson 2008; Kelly et al. 2012; Kendall and 

Mckelvey 2008; O’Connell et al. 2011). 

The use of attractants have been reported to increase detection probabilities in 

mammalian carnivore studies (Hunt et al. 2007; Schlexer 2008; Thorn et al. 2009). 

While attracting animals to the detection stations may overestimate abundance, several 

authors report consistent results produced by baited and unbaited stations, although 

with increased accuracy of the former (Garrote et al. 2012; Mccoy et al. 2011). 

Regardless, if the research objectives are species, for example, inventories or analysis 

of occupancy patterns, enhancing detectability will ameliorate the quality of the 

obtained results (Bailey et al. 2007).  
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Our results suggest that, no single attractant among those tested provides a high 

performance in eliciting investigative response for all carnivore species. However, the 

combination of two of them, the lynx urine and the valerian extract solution, provided 

good results in attracting most mesocarnivores present in SW European communities. 

Although lynxes (Eurasian and Iberian lynxes) have been reported to reduce fox 

populations and kill other smaller mammalian carnivores (Palomares et al. 1996; 

Palomares and Caro 1999; Pasanen-Mortensen et al. 2013), our results show that their 

urine does not inhibit the investigative or even rubbing response of mesocarnivores in 

our study areas. In fact, even in the study area where Iberian lynxes coexist with red 

foxes, Eurasian badgers, stone martens and genets (chapter 3.2), and intraguild 

predation has been observed (Gil-Sánchez, personal communication), all detected 

mesocarnivores showed curiosity towards the lynx scent at camera stations. Whether 

this response is motivated by territoriality or by fear, allowing for the employment of 

adequate behavioral strategies for coexistence as a response to a landscape of fear 

effect (Laundré et al. 2010; Wilson et al. 2010), the fact remains that the animals are 

attracted to the devices, most likely enhancing detection probabilities and providing the 

possibility to recover hair samples. Valerian extract complemented the effect of the lynx 

urine for the species that exhibited less strong attraction behaviors towards the 

stations, facilitating community-wide surveys. 

When combined, lynx urine and valerian extract elicited rubbing behavior in European 

wildcats, red foxes, common genets and Eurasian badgers in our enclosure tests, and 

elicited interactive responses in all mesocarnivores during our field trials. However, 

these behaviors were not reflected in the detection probabilities of mesocarnivores by 

hair snaring stations. Where the hair snares’ were tested (CNP and GVNP), they 

detected only half (N=3) of the mesocarnivore species than did camera traps (N=6), 

and detection probabilities were 6.7 ± 1.1 lower. Hair snares detection probabilities 

were always lower than 0.10 per week, except for the red foxes at CNP. Although red 

fox density, assessed by distance sampling, at CNP was estimated to be 0.65 ± 0.16 

individuals/km2, which is in within the average for most Spanish territory (0.11 to 3.7 

individuals/km2) (Ferreras et al. 2011), its relative abundance based on camera-

trapping rates was much higher than all other mesocarnivore species (chapter 3.1 and 

3.2). This pattern allows us to draw two inferences: first, that detectability is closely 

related to abundance, as previously suggested (McCarthy et al. 2013; Tempel and 
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Gutiérrez 2013); and second, that given the detectability of red foxes in a situation of 

midrank density, scented hair snare might be effective for studies of red fox population 

occupancy throughout the Iberian Peninsula (Bailey et al. 2007). Regardless, the low 

detection rates obtained for other carnivore species suggest that the response 

exhibited by the target species was not strong enough to cause hair to be plugged from 

the animal, the hair snare structure did not efficiently plugged the animals’ hair, or the 

time between station revisits was too long and the collected hair was not efficiently 

seized in the hair snaring structure.  Hair snaring rub-pads applied to carnivore surveys 

provide contrasting results (Burki et al. 2010; Castro-Arellano et al. 2008; Comer et al. 

2011; Downey et al. 2007; Long et al. 2007; Steyer et al. 2012), however the potential 

information encapsulated in such biological samples motivates the continuous 

refinements in this sampling method. 

Searching, identifying, mapping and analyzing the contents of carnivore scats are the 

main steps of one of the most commonly used noninvasive traditional methods 

(Heinemeyer et al. 2008; Kelly et al. 2012; Wilson and Delahay 2001). Extensive scat-

based research studies have been published on European carnivore species 

describing their distributional and abundance patterns (Barea-Azcón et al. 2006; 

Cavallini 1994; Sadlier et al. 2004), habitat selection (Lozano et al. 2003; Virgós et al. 

2002) and feeding ecology (Barrientos and Virgós 2006; Carvalho and Gomes 2004; 

Delibes-Mateos et al. 2008a; Malo et al. 2004). However, while species identification 

based on scat morphology and situation is sometimes accurate (Prugh and Ritland 

2005), other studies have shown that the misidentifications often occur (Davison et al. 

2002; Harrington et al. 2010). We observed high variability in the accuracy of species 

assignment to mesocarnivore scats. The low variability explained by our models (25%) 

suggests that accuracy rates are most likely context-specific. This was further 

supported by the covariates included in the top-ranked models of scat accuracy, which 

were the scats’ morphological characteristics, season and study area (chapter 2.2). It 

has been argued that scats' misidentification rates increase when target species are 

rare or when scats are difficult to detect (Bulinski and McArthur 2000; Harrington et al. 

2010; Prugh and Ritland 2005). In general, a meta-analysis of the accuracy patterns of 

mesocarnivore scats’ species assignment over the entire study period with respect to 

target species abundance, as determined by camera-trap success rates (see chapter 

2.2), supported this pattern. Overall, 1490 carnivore scats were analyzed by genetic 



317 

	
  

methods, and 1086 produced adequate species identification (72.8%). A Spearman 

rank correlation between mesocarnivores’ trap success and the proportion of correctly 

assigned species to collected scat revealed a highly significant relationship between 

abundance and species assignment accuracy (𝑟 = 0.75; 𝑝 < 0.001; table 4.1). These 

results further support that target species abundance and conspicuity are major factors 

influencing observers’ accuracy in the identification of their scats. 

 

Table 4.1. Overall camera-trapping success (TS; detections/100 trapping-days) and accuracy (AC; percent of accurately 

identified scats) in mesocarnivore scats across study areas. CNP - Cabañeros National Park; GVNP - Guadiana Valley 

Natural Park; SANP - Serra de Andújar Natural Park; PGNP - Peneda-Gerês National Park; MNR - Muniellos Natural 

Reserve. 

Study 
area 

Vulpes vulpes Lynx 
pardinus 

Felis sp. Martes sp. Meles meles Genetta 
genetta 

Herpestes 
ichneumon 

TS AC TS AC TS AC TS AC TS AC TS AC TS AC 

CNP 28.93 0.83 0.00 NA 0.50 0.00 2.98 0.74 1.04 0.0 1.67 NA 0.27 0.0 

GVNP 3.20 0.89 0.00 NA 2.30 0.10 4.21 0.83 0.96 NA 2.13 0.0 2.25 0.0 

SANP 4.49 0.94 2.72 0.64 0.19 0.00 0.19 0.0 1.59 0.80 0.37 NA 0.00 NA 

PGNP 1.71 0.30 0.00 NA 0.40 0.40 3.77 0.95 0.05 0.0 1.01 0.0 0.00 NA 

MNR 1.24 0.47 0.00 NA 0.71 0.85 3.47 0.93 0.13 NA 0.40 NA 0.00 NA 

 

 

The severity of bias associated with misidentifications of carnivore scats may have 

serious consequences for the management of threatened species, especially if the data 

leads to unrealistic estimates of species’ distribution and conservation status (Birks et 

al. 2005; Miller et al. 2011). A practical example applied to the Iberian Peninsula 

concerns the European wildcat. This species’ populations in Iberia have declined over 

the last years, which justified scaling it to the “vulnerable” conservation status in 

Portugal (Cabral et al. 2005) and “near threatened” status in Spain (García-Perea 

2007). Furthermore, a severe lack of information on this species prevents an adequate 

assessment of its distribution (Cabral et al. 2005; García-Perea 2007). Nevertheless, 

most research on this small felid’s ecology in the Iberian Peninsula is mainly based in 

morphologically identified scats (e.g. Lozano 2010; Lozano et al. 2003; Malo et al. 

2004). Our results indicate a high variability in the accuracy of wildcats’ scats, which 
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ranges from zero to 85% (table 4.1). Furthermore, the lowest identification rates were 

obtained in the Mediterranean study areas (CNP, GVNP and SANP). Disregarding 

these potential biases could lead to severe overestimations of wildcat populations, 

especially in the Mediterranean region of the Iberian Peninsula, with subsequent 

drastically unadjusted conservation plans.   

Noninvasively collected biological samples such as hairs and scats could support 

studies on carnivore occupancy, abundance, movement, genetic variation, gene flow, 

social structure and mating system, or the impact of environmental stressors (Kelly et 

al. 2012; Schwartz and Monfort 2008). For instance, while the discrimination between 

sympatric pine and stone marten scats is impossible by morphological characteristics 

alone (Rosellini et al. 2008; Ruiz-González et al. 2007), using molecular methods 

Posluszny et al. (2007) were able to evaluate their diets in areas of co-occurrence and 

Balestrieri et al. (2010a) were able to document the expansion of pine martens in NW 

Italy, and document their diet (Balestrieri et al. 2010b). Noninvasive methods can also 

be used to evaluate patterns of species interactions and infer about interspecific 

competitive interactions. Using genetically identified scats, Dalen et al. (2004) were 

able to detect constraints in the spatial niche of arctic foxes (Alopex lagopus) imposed 

by competitive interactions with the dominant red fox. Although we did not explore hair 

samples to address any biological question, we were able to use genetically identified 

scats from sympatric pine and stone martens to evaluate their trophic and spatial niche 

relations (chapter 3.4). This evaluation, only possible with the advent of genetic species 

identification, provided original information that defies the assumption of pine martens 

competitive dominance over stone martens (Balestrieri et al. 2010a; López-Martin 

2003; Ruiz-Olmo and López-Martín 2001) and that seasonally adjustments in the 

formers’ trophic niche could be involved in maintaining species coexistence.  

The observed relatively low genetic identification success of hair samples when 

compared to scats - 25.2% vs. 78.8% (chapter 2.2) or 72.8% (from all analyzed scats) - 

suggests that while scat-based studies could promptly be used for large-scale studies 

of Iberian carnivore species and to address specific biological hypothesis concerning 

co-occurring species (Broquet et al. 2006; Dalen et al. 2004; Janečka et al. 2011; 

Schwartz and Monfort 2008), hair-snares are a promising tool that requires further 

developments to increase efficiency. Specifically, better quality DNA must be collected 
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and hair capture rates need to be improved in order to achieve adequate detection 

probability for less common species.  

 

4.2 Ecological interactions among sympatric mesorcarnivores in SW European 

communities 

 

The ecological traits exhibited by mammalian carnivores are strongly influenced by the 

abundance and accessibility to feeding resources, habitat structure, human disturbance 

and by the relations with other intraguild species (Carter and Shrestha 2012; Gittleman 

and Harvey 1982; Hebblewhite et al. 2005; Ritchie et al. 2012; Ritchie and Johnson 

2009; Schoener 1974). Furthermore, availability (i.e. abundance and accessibility) of 

prey may be a determinant factor shaping carnivore interspecific relations (Estes et al. 

2011; Prugh et al. 2009; Ritchie and Johnson 2009), as competitive stress among 

sympatric species when a shared resource becomes limiting (Donadio and Buskirk 

2006; Palomares and Caro 1999). While spatial dimension of the ecological niche is 

the most frequently used by competing species to reduce competitive stress (Schoener 

1974), recent research has demonstrated that the temporal segregation is often used 

among terrestrial carnivores to promote coexistence (Di Bitetti et al. 2009; Gerber et al. 

2012; Lucherini et al. 2009; Rasmussen and Macdonald 2012). 

The spatial dimension  

We evaluated the spatial interactions between three sympatric mesocarnivores (the red 

fox, stone marten and common genet) with a trophic generalist behavior and found no 

evidence of competitive exclusion in neither of the analyzed species pairs (chapter 

3.3). Furthermore, although high competitive relation has been reported between pine 

and stone martens, often leading to competitive exclusion of the latter (Balestrieri et al. 

2010a; López-Martin 2003; Rosellini et al. 2008; Ruiz-Olmo and López-Martín 2001), 

our occupancy models suggest that these two congeneric mustelids often co-occur at 

the PGNP study area (chapter 3.4). Among the two-species occupancy models only in 

stone martens and common genets did we detect responses due to interspecific 

interactions. Stone martens displayed higher detectability in areas of co-occurrence 

with pine martens in PGNP, and lower detectability in the areas occupied by red foxes. 

While the higher detectability of stone martens in areas with pine martens may be 



320 

	
  

related to a higher abundance achieved by the former in these areas (see chapter 3.4), 

it suggests that the behavior (translated by its conspicuity) of stone martens is not 

affected by the presence of the congeneric competitor. Notwithstanding, red foxes 

seem to impose a landscape of fear (Brown et al. 1999; Laundré et al. 2001) over 

stone martens, compelling to become more inconspicuous in the areas of co-

occurrence. The behavioral pattern observed between stone martens and common 

genets across our study areas was comparable to what we observed between stone 

and pine martens at PGNP. While we did not find spatially segregated distributions 

between stone martens and common genets, our results suggest that the common 

genet is more conspicuous in the areas of co-occurrence. 

Previous studies focusing on the spatial relations among European mesocarnivores 

have reported contrasting results (Pereira et al. 2012; Ruiz-González et al. 2007; 

Sarmento et al. 2010; Trewby et al. 2008; Zabala et al. 2009). Globally, our analyses of 

the spatial relations among coexisting generalist mesocarnivores in the Iberian 

Peninsula suggest that competitive exclusion among mesocarnivores is unlikely in their 

southwestern distribution in Europe. Moreover, species that share habitat preferences, 

such as the pine marten, stone marten and common genet, all preferentially forest 

dwelling species, become more conspicuous in areas of co-occurrence. Their similar 

body size, habitat and preference for small mammals as staple prey (López-martín 

2006; Zhou et al. 2011) deemed these species as potential competitors (Barrientos and 

Virgós 2006; López-Martin 2003; Ruiz-Olmo and López-Martín 2001; Zabala et al. 

2009). However, we found that spatial segregation was not a common strategy. Our 

case study on pine and stone martens’ niche relations at PGNP revealed that seasonal 

trophic segregation most likely mediates the strength of interspecific competitive 

interactions between these two species. Adjustments in the trophic niche have already 

been reported as reducing the competitive interactions between sympatric carnivores, 

such as American minks and Eurasian otters (Harrington et al. 2009), pumas and 

bobcats (Hass 2009) or between jaguars and pumas (Moreno et al. 2006). However, 

when predators share prey species, then spatial adjustments may be unavoidable 

(Fedriani et al. 2000; Fedriani et al. 1999; Lovari et al. 2013; Mitchell and Banks 2005; 

Wilson et al. 2010).  
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The trophic dimension 

The stone martens’ feeding ecology, evaluated by analyzing genetically identified scats 

collected at CNP, GVNP and PGNP (table 4.2), shows the plasticity in this species 

feeding behavior and, most importantly, allows us to speculate on the strategies for 

coexistence with other species. Since the staple prey of common genets are rodents in 

it’s European range (López-martín 2006; Virgós et al. 1999), rodents are expected to 

be the main drivers of competitive interactions. Our analyses of the spatial interactions 

revealed that stone martens and genets tended to be spatially associated at PGNP and 

CNP. At CNP, where rodents constitute less than 10% of ingested biomass of the 

stone marten, its diet is mostly based on fruits and seeds (table 4.2). However, at 

PGNP, stone martens have to cope with two potentially competing species: the pine 

marten and common genets. Interactions with pine martens are dealt with by trophic 

and temporal adjustments (chapter 3.4). Competitive stress with common genets might 

be mitigated by similar responses. However, we don’t have data available that could 

provide us such information. At GVNP, the spatial occupancy pattern of stone martens 

and common genets appears to be independent (chapter 3.3). In this study area, where 

European rabbits are very abundant and widely distributed (chapter 3.1; Monterroso et 

al. 2009), they constitute over 80% of all ingested biomass by stone martens (table 

4.2). However, given the extensive availability of this highly profitable feeding resource 

(Aldama et al. 1991; Malo et al. 2004) competitive stress can be reduced even if both 

species share the same prey (Heithaus 2001). 
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Table 4.2. Percent ingested biomass of each considered food item by stone martens (Martes foina) in Peneda Gerês 

National Park (PGNP), Cabañeros National Park (CNP) and Guadiana Valley Natural Park (GVNP), during the non-

breeding (NB) and the breeding (B) seasons.  

 PGNP CNP GVNP 

NB B Total NB B Total NB B Total 

Unidentified mammals 0.00 0.02 0.00 0.52 0.03 0.35 0.00 0.00 0.00 

Rodentia 16.44 59.09 30.32 9.92 7.99 9.24 0.93 0.53 0.70 

Unidentified rodents 0.00 0.00 0.00 0.17 0.00 0.11 0.25 0.00 0.10 

Apodemus sylvaticus 10.92 44.74 21.92 0.00 0.73 0.26 0.00 0.00 0.00 

Mus sp. 0.00 1.19 0.39 0.00 0.00 0.00 0.00 0.00 0.00 

Microtus sp. 5.52 13.16 8.01 9.75 7.26 8.87 0.68 0.53 0.59 

Insectivora 0.00 1.90 0.62 0.00 0.00 0.00 4.24 0.00 1.75 

Talpidae. 0.00 1.90 0.62 0.00 0.00 0.00 4.24 0.00 1.75 

Lagomorpha 0.00 0.00 0.00 13.74 0.17 8.92 70.77 97.08 86.22 

Unidentified leporids 0.00 0.00 0.00 0.07 0.17 0.10 0.26 1.57 1.03 

Lepus granatensis 0.00 0.00 0.00 8.49 0.00 5.48 0.00 3.96 2.33 

Oryctolagus cuniculus 0.00 0.00 0.00 5.18 0.00 3.34 70.51 91.55 82.86 

Artiodactyla (carrion) 0.08 2.08 0.73 18.94 0.61 12.44 0.00 0.07 0.04 

Suidae 0.00 0.00 0.00 18.94 0.33 12.34 0.00 0.05 0.03 

Cervidae 0.00 1.04 0.34 0.00 0.28 0.10 0.00 0.02 0.01 

Bovidae 0.08 1.04 0.39 0.00 0.00 0.00 0.00 0.00 0.00 

Aves 0.01 3.22 1.06 0.03 16.77 5.97 0.73 0.69 0.71 

Unidentified birds 0.00 0.02 0.01 0.03 0.01 0.02 0.01 0.07 0.04 

Columbiforme 0.00 0.14 0.05 0.00 0.00 0.00 0.39 0.00 0.16 

Passeriforme 0.01 3.06 1.00 0.00 16.76 5.95 0.34 0.00 0.14 

Galiforme 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.37 

Ralliforme 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Reptilia 0.00 1.84 0.60 0.10 0.03 0.08 0.04 0.00 0.02 

Unidentified reptiles 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.00 

Lacertidae 0.00 0.73 0.24 0.03 0.00 0.02 0.00 0.00 0.00 

Colubridae 0.00 1.10 0.36 0.07 0.00 0.05 0.04 0.00 0.01 

Amphibia 0.00 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

Gastropoda 0.01 0.20 0.07 0.00 0.00 0.00 0.00 0.00 0.00 

Arthropoda 0.19 4.99 1.75 2.42 3.48 2.80 0.35 0.01 0.15 

Fruits/Seeds 83.01 13.91 60.53 52.13 55.60 53.36 19.19 0.00 7.92 

Vegetal matter 0.25 12.69 4.30 2.20 14.52 6.57 2.26 1.57 1.86 

Eggs 0.00 0.00 0.00 0.00 0.06 0.02 0.76 0.03 0.33 

Mushrooms 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.02 

Unidentified material 0.00 0.00 0.00 0.00 0.71 0.25 0.72 0.00 0.30 
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The temporal dimension  

Behavioral adjustments along the temporal niche have been reported to be an 

important strategy for sustaining coexistence among sympatric carnivores (Azlan and 

Sharma 2006; Di Bitetti et al. 2010; Di Bitetti et al. 2009; Gerber et al. 2012; Harrington 

et al. 2009; Rasmussen and Macdonald 2012; Wang and Fisher 2012).   

According to the optimal foraging theory, animals should forage so that they can 

maximize their caloric intake per time unit (MacArthur and Pianka 1966; Pyke et al. 

1977). We found that mammalian mesocarnivores, as a community, synchronize their 

activity patterns with that of rodents and partially with European rabbits (chapter 3.1), 

which are the preferred preys among most European mesocarnivores (Díaz-Ruiz et al. 

2013; López-martín 2006; Lozano et al. 2006; Zhou et al. 2011). Alternative items 

significantly consumed by European mesocarnivores are fruits (Rosalino and Santos-

Reis 2009), which are available throughout the entire diel cycle during their 

fructification period, and consequently not requiring any specific adjustment in 

predators daily behavior. However, as previously stated, varying availability of feeding 

resources and community structure, should lead to differences in the competitive stress 

among intervening species (Heithaus 2001; Linnell and Strand 2000; Roemer et al. 

2009; Wilson et al. 2010). Accordingly, we found that the activity patterns of most 

mesocarnivores were not constant between study areas or seasons, suggesting 

behavioral adjustments to local conditions. The significant decrease of the mean 

interspecific activity overlap with increasing community diversity (chapter 3.2) further 

suggests that these shifts in activity patterns could consist of behavioral responses to 

the presence of competing species. Particularly, low overlap in activity patterns and 

high asynchrony in activity peaks were obtained at GVNP, where community evenness 

was the highest (chapter 3.1) and where most species exploit a common and widely 

abundant prey, the European rabbit (table, 4.2; Monterroso et al. 2006; Monterroso 

2006).  

While circadian separation among coexisting species should be rapidly exhausted with 

increasing diversity (Schoener 1974), phylogenetic constrains in the regulation of 

species endogenous clocks may additionally confine the exhibited activity patterns 

(Kronfeld-Schor et al. 2001; Roll et al. 2006). Nevertheless, we found that strictly 

nocturnal species (chapter 3.2) were able to have activity shifts contained within their 

preferred part of the diel cycle (Kronfeld-Schor and Dayan 2003), and that temporal 
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segregation is effectively used at a community level, probably to minimize the 

probability of agonistic encounters (Gerber et al. 2012; Linnell and Strand 2000; 

Palomares and Caro 1999), while maintaining access to main prey (chapter 3.1). 

The SANP was the only study area in the Mediterranean region that included an apex 

predator. Iberian lynxes are extant in this study area, which includes five female home 

ranges (Gil-Sánchez, personal communication). The mammalian carnivore community 

in this study area is simplified, and there is consistent presence of lynxes, red foxes 

and Eurasian badgers. This kind of community structure was expected as Iberian 

lynxes have already been reported to suppress the populations of smaller 

mesocarnivores, often killing them (Palomares et al. 1996; Palomares et al. 1995; 

Palomares and Caro 1999). Given that human disturbance is low in this study area due 

to its limited access, no human induced constrains are imposed in the diel activity of 

occurring animals. However, in spite of the high risks that encounters with Iberian 

lynxes pose to the integrity of red foxes, no significant differences were observed 

between the activity patterns of these two species. However, using data from cameras 

where at least one of the species was detected, we found a statistically significant 

negative correlation between the trapping-success rates of red foxes and Iberian 

lynxes, in the non-breeding season (𝑟 = −0.86, 𝑝 < 0.001, 𝑛 = 13). A similar tendency 

was detected in the breeding season, however it was not significant (𝑟 = −0.38, 𝑝 <

0.178, 𝑛 = 14). These findings are in accordance with previous research on these two 

species, which suggests that red foxes are able to avoid competition with Iberian 

lynxes through fine-scale adaptations (Fedriani et al. 1999; Palomares et al. 1996). 

Nonetheless, a detailed analysis of these species trophic niche could provide deeper 

insights into the strategies that mediate their coexistence. The contrasting results 

obtained from the Iberian lynx / red fox pair at SANP with those obtained from the pine 

marten / stone marten at PGNP make some hypotheses inevitable to postulate. First, 

the interactions among coexisting species are dynamic both in asymmetrical and 

mutual reciprocal competitive relations, and the strength of these interactions may vary 

according to season, probably mediated by feeding resources availability (Donadio and 

Buskirk 2006; Linnell and Strand 2000; Palomares and Caro 1999; Ritchie and 

Johnson 2009). Secondly, spatial segregation appears to be more effective in 

asymmetrical relationships, but trophic and activity pattern adjustments may be 

preferred among similar sized species. Finally, our results from the PGNP (chapter 3.4) 
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suggest that the relative dominance between similar-sized species may not be constant 

across study areas, and it may change according to site-specific conditions. The 

interactions among predators and with their prey are dynamic and multidimensional 

(Linnell and Strand 2000; Schoener 1974), and the complexity of carnivore community 

functioning can only be grasped with holistic approaches that simultaneously evaluate 

the three main dimensions of the ecological niche (Fedriani et al. 2000; Fedriani et al. 

1999; Scognamillo et al. 2003).     
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5 Conclusions 
 

With this wok we provided relevant contributions for the understanding of the carnivore 

communities in southwestern Europe from a methodological and ecological level. The 

following main conclusions could be drawn from the work developed throughout this 

thesis: 

 

1. Although several attractants may be used for species-specific studies in 

European carnivore communities, Lynx (Lynx lynx or Lynx pardinus) urine 

showed the most efficient results for community-wide surveys. Furthermore, 

lynx urine and Valerian extract provide complementary effectiveness in the 

attraction of European mammalian carnivores, and elicit investigative behavior 

and rubbing responses in Iberian wolves, European wildcats, Eurasian badgers, 

polecats and red foxes.  

2. While eliciting rubbing behavior in enclosure trials, the low detectability of hair-

snares when compared to camera traps suggest that this behavior must not be 

strong under natural conditions. Consequently, this method may not be efficient 

for short-term occupancy studies of target populations. Neverheless,  hair 

collection structures may enable long-term monitoring of mammalian carnivores 

using a combination of adequate sampling designs and molecular analyses of 

DNA extracted from the collected biological samples. Particularly, the 

detectability rates of red foxes in midrank density situations suggest that hair 

snares could be useful for monitoring of red fox populations.  

3. Our results highlight the potential errors of traditional scat-based sampling 

methods. The accuracy of species assignment of scats based on their 

morphology is highly variable (ranging from 0 to 95%) and depends on the 

abundance of target and other ecologically similar species, and on context-

specific circumstances. Such variability prevents extrapolation of accuracy rates 

over areas, and stresses the importance of using genetic methods for assigning 

species identifications to scats in order to adequately draw inferences from the 

patterns observed in nature. 
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4. Mammalian mesocarnivores in the Iberian Peninsula are predominantly 

nocturnal, displaying a high overlap with the activity patterns of murid rodents 

and partially with European rabbits. The high overlap between the activity 

patterns of mammalian mesocarnivores and their prey is in accordance with 

optimal foraging theory, suggesting that predators forage when they can 

maximize accessibility to the most profitable prey.  

5. Mammalian mesocarnivores, as a community, exhibit a high activity overlap 

with that of murid rodents, even when a more profitable prey (the European 

rabbit) is available. This fact appears to be linked either to temporal restrictions 

imposed by intraguild competitors, or to a balance between an adequate access 

to European rabbits during a suboptimal period and accessibility to rodent prey.    

6. Three distinct groups of Iberian mesocarnivores could be identified regarding 

their activity patterns: strictly nocturnal, facultative nocturnal and strictly diurnal 

species. The first group includes the stone marten, Eurasian badger and 

common genet, and consists of species that reveal particularly strong selection 

indices towards nighttime, with little activity during the twilight periods, and 

strongly avoid being active during daytime. The second group includes the red 

fox, European wildcat, pine marten and Iberian lynx, and consists of species 

that positively select nighttime, but also use the twilight periods as expected by 

chance. Daytime is used less than expected by chance, but is not strictly 

avoided. The Egyptian mongoose was the only strictly diurnal species.  

7. Activity patterns exhibited by mesocarnivores are not constant among study 

areas or seasons, suggesting behavioral adjustments to local conditions, 

probably facilitating coexistence. However, the activity shifts observed were 

contained within the preferred parts each species’ daily cycle, supporting an 

endogenous regulation of their diel activities. This regulation appears to be 

particularly constraining in stone martens, common genets and Eurasian 

badgers. 

8. Segregation along the temporal niche constitutes a recurrent strategy among 

co-occurring Iberian mesocarnivores. This behavior appears to facilitate 

carnivores’ coexistence and is more pronounced in more complex communities. 
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9. Adjustments along the spatial dimension of the ecological niche are not a 

frequent strategy among co-occurring similar sized mesocarnivores in the 

Iberian Peninsula. Such adjustments only occur in asymmetrical competitive 

relations, where the dominant species is clearly defined, as is the case of the 

Iberian lynx and the red fox.  

10. We found no evidence that similar sized mesocarnivores segregate spatially in 

mesocarnivore-dominated communities. However, behavioral responses take 

place in areas of co-occurrence, where subordinate species may adopt a more 

elusive behavior. In these situations, potentially stressful interactions are 

preferably handled by displacements along the temporal and trophic niche 

dimensions, allowing sympatric intraguild competitors to spatially co-occur. 

11. In the study area where we were able to evaluate the niche relations between 

the two marten species (PGNP), the stone marten appears to be the dominant 

competitor over the pine marten, contrasting to what has been reported in other 

areas of sympatry. This observation suggests that, in similar sized competitors, 

the relative dominance position is not constant and may change due to context-

specific factors.  

12. The interactions between co-occurring Iberian terrestrial carnivores are 

dynamic, and their strength and direction may vary seasonally and 

geographically, fact that should be taken into account in community-wide 

studies. 

13. Intraguild interspecific interactions significantly influence the spatial, temporal 

and trophic expression of a species ecological niche, and therefore must be 

accounted for in species-specific studies. 
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6 Future directions 
 

In the last decades years several outbreaks of primary consumers have been reported 

in the Iberian Peninsula. For example, an outbreak of common voles (Microtus arvalis) 

in central Spain in 2007 has produced extensive damages in agricultural fields. More 

recently, in 2012, European rabbit outbreaks have affected extensive areas in central 

and south Spain, destroying large areas of cultivated fields and altering the hunting 

economy at a regional level. Although it has been argued that these disproportional 

irruptions were related to changes in land use, these human-altered ecosystems lack 

structured predator assemblages which could buffer its effects. Furthermore, the high 

economic value of European rabbits (Ferreira et al. 2013) motivates the generalized 

employment of predator control in the Iberian Peninsula, depressing predator 

populations and reducing diversity (Beja et al. 2008; Casanovas et al. 2012). However, 

the effectiveness such methods in releasing rabbits from top-down control enforced by 

predators is currently dependent on humans (Beja et al. 2008; Delibes-Mateos et al. 

2008b), because the otherwise overgrowth of generalist predators often drives rabbits 

into a predator-pit effect (Pech et al. 1992; Pech and Hood 1998). Restoration of apex 

predators has been argued as an effective and less costly tool to release primary prey 

from mesocarnivore enforced top-down control, while stabilizing its populations (Estes 

et al. 2011; Ritchie et al. 2012). However, the complex web of interactions that link 

coexisting carnivores is still largely unknown. With this work, we have given one step 

further towards the understanding of interspecific interactions within mammalian 

carnivore communities in terrestrial ecosystems of the Iberian Peninsula. However, 

there is still a long road ahead. Revolutionary advances in noninvasive methods are 

rapidly widening the research possibilities, enabling us to pursue previously 

unthinkable hypothesis (Kelly et al. 2012; Long et al. 2008). However, the success of 

such research is only possible through a symbiotic relationship between effective field 

sampling methods and evolving disciplines such as conservation genetics (Avise and 

Hamrick 1996) and conservation physiology (Wikelski and Cooke 2006). Noninvasive 

endocrine tools are rapidly emerging, and provide information of the physiologic 

responses of animals to the environment (Kelly et al. 2012; Schwartz and Monfort 

2008). Particularly, the concentration of glucorticoids (stress hormones) in noninvasive 

samples (such as scats, hair or urine) can be used to evaluate stress levels, and 
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identify environmentally induced chronic or acute stressors that can ultimately affect 

fitness or survival (Wikelski and Cooke 2006). The assessment of the physiological 

status could provide valuable insights in identifying and quantifying competitive 

relations between coexisting competitors, especially when the behavioral expression of 

such effects is particularly subtle.  

Our results suggest that interspecific interactions are dynamic, and may produce 

adjustments over several dimensions of the ecological niche. Furthermore, these 

responses appear to be subtle in mesocarnivore-dominated communities, where most 

species are similar sized. However, we found strong signals suggesting that the 

ultimate expression of mesocarnivores’ ecological traits is influenced by competitive 

interspecific interactions. Therefore, we suggest that future research on carnivore 

conservation should be integrative and multidimensional, simultaneously evaluating the 

niche relations along the three main dimensions: spatial, trophic and temporal. 

However, because symmetrical interspecific interactions among carnivores are 

exceptionally challenging to identify and quantify (Pereira et al. 2012; Šálek et al. 2013; 

Sarmento et al. 2010), higher efforts should be employed to increase methods’ 

sensitivity.  

 

In light of our findings, we stress that methodological refinements focused in increasing 

detectability are still required for hair-snaring methods, as the combined use of efficient 

hair snares and camera traps in mixed stations could provide complementary 

information. Particularly we suggest that future research focusing in interspecific 

interactions between terrestrial carnivores should be based on: 

• Long term studies - Interspecific relations dynamic. Therefore, long term monitoring 

programs may allow the identification of the factors that might cause shifts in the 

relative stability of such relations; 

• Landscape scale - The spatial responses of interacting species could be expressed 

at the landscape scale, by evident exclusion from certain habitats, or at fine scale, 

such as avoidance of the competitors’ core areas. Therefore, the sampling methods 

should provide suitable information across an adequate spatial scale, which is 

dependent on the target species home-range (Maffei and Noss 2008); 



331 

	
  

• Multidimensional approaches - Behavioral responses to the presence of intraguild 

competitors can be expressed over several dimensions of the ecological niche. 

Therefore, multidimensional approaches that simultaneously evaluate the spatial, 

trophic and temporal dimensions are required to provide “the full picture”, and thus 

preventing misinterpretations about the patterns of coexistence between potential 

competitors. 

• Multiple sites - The strength and relative dominance position between competing 

species is context-dependent, especially in symmetrical relations. Multiple-sites 

approaches dilute site-specific effects and allow the predominant patterns to 

emerge.  

• Multidisciplinary methodologies - No single method can provide the required 

information to evaluate interspecific relations. However, a better grasp of this 

subject in carnivore communities can be achieved using complementing disciplines. 

Camera trapping provides valuable data on occupancy and activity, however 

biological samples are required for deeper insights. Conservation genetics and 

physiology applied to noninvasively collected samples offer means to reduce bias 

(e.g. through species, gender or individual identification), increase sample sizes 

and evaluate animals’ responses (e.g. trophic or stress) to the environment.   

 

In the current context of climate change and habitat degradation, it is crucial to 

efficiently determine the effect of carnivores in the ecosystems and how they shift with 

community structure, to adequately forecast the impact of species loss (extinction) or 

gain (recolonization) to maintain biodiversity and foster adjusted management plans. 

Therefore, continuous and deeper research on the functioning of terrestrial carnivore 

communities is still largely required, particularly focusing in mesocarnivore-dominated 

ecosystems and in developing cutting-edge noninvasive disciplines. 
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