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Abstract
This review paper provides a synthetic yet critical overview of the key biomechanical principles of
human bipedal walking and their current implementation in robotic platforms.We describe the
functional role of human joints, addressing in particular the relevance of the compliant properties of
the different degrees of freedom throughout the gait cycle.We focused on three basic functional units
involved in locomotion, i.e. the ankle–foot complex, the knee, and the hip–pelvis complex, and their
relevance towhole-body performance.Wepresent an extensive review of the current implementations
of thesemechanisms into robotic platforms, discussing their potentialities and limitations from the
functional and energetic perspectives.We specifically targeted humanoid robots, but also revised
evidence from thefield of lower-limb prosthetics, which presents innovative solutions still
unexploited in the current humanoids. Finally, we identified themain critical aspects of the process of
translating human principles into actualmachines, providing a number of relevant challenges that
should be addressed in future research.

1. Introduction

Achieving stable and efficient walking is a crucial goal
in the design of humanoid robots. In humans, walking
emerges from the combination of severalmechanisms,
which include neural, mechanical and morphological
aspects. As a result, humans show very robust, versatile
and energy efficient functional abilities in a vast range
of locomotion conditions. The process of transferring
such principles into robotic platforms is not trivial,
since the complex interplay between the sensorimotor
mechanisms involved in human walking is still far
from being fully understood (Alexander 1992, Iida
et al 2008, Ijspeert 2014).

One of the key properties of human and biological
systems is biomechanical compliance. In mammals,
compliance results from the visco-elastic properties of
muscle fibers and the series-elastic tendon structures,
and can be modulated at the muscle and joint level
through the activation of the agonist and/or

antagonistic muscles (Sartori et al 2013, Gonzalez-
Vargas et al 2015). It is known that compliant behavior
is particularly relevant in locomotion in order to
achieve natural patterns, adapt to different terrains,
and lower energetic costs (Farley and González 1996,
Dickinson et al 2000, Endo and Herr 2014). Two
major and currently unclear points are how com-
pliance is modulated along the different joints of the
human body, and how this modulation affects the glo-
bal stability in different environmental conditions
(Qiao and Jindrich 2015). The answers to these ques-
tions are crucial for their effective implementation in
humanoid robotic systems, which could be particu-
larly beneficial for the robots operating in unstruc-
tured and unknown environments.

This paper aims to provide a complete, yet synth-
etic, review of the key biomechanical mechanisms of
human bipedal locomotion. It follows a translational
approach that integrates evidence from robotics with
the experimental analysis as well as biomechanical
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modeling and simulations of human locomotion.
Section 2 describes the functional role of human joints
throughout a gait cycle, focusing especially on the rele-
vance of the different degrees of freedom (DoFs) and
the compliant properties of muscle actions. Section 3
presents the current implementations of these
mechanisms into robotic platforms. We specifically
targeted whole-body humanoids, but also included
evidence from the prosthetic systems, when relevant.
In section 4 we discuss and compare the evidence col-
lected from both human and robotic scenarios, with
the aim of providing useful key principles for human-
like design. We conclude this review with a number of
relevant challenges that should be addressed in future
research in the field of compliant humanoids.

2.Human locomotion

In human walking, the gait cycle can be divided in two
main phases, i.e. the stance phase, in which the foot is
in contact with the ground, and the swing phase,
duringwhich the foot is airborne (see figure 1). Each of
these phases has a different functional goal. Stance
ensures body progression while maintaining upright
posture, whereas swing is used to advance the leg and
to prepare for the next step. The temporal distribution
of the two phases is approximately 60% for stance and
40% for swing. Considering the relative contact of the
two feet with the ground, the stance phase can be
further segmented into more specific sub-phases of
walking, which are: loading response, mid stance,
terminal stance, pre swing, initial swing, mid swing,
and terminal swing, defined based on specific kine-
matic events, as shown infigure 1.

Due to their intrinsic visco-elastic properties,
muscles produce a compliant behavior at the joint

level. Compliance, i.e. the flexibility of physical struc-
tures in response to an external force, is beneficial
under different conditions. Typical advantages of
compliance are the possibility of rapidly and efficiently
storing and releasing energy (e.g. bouncing motion),
or reacting instantaneously to sudden impacts, with
positive effects on stability and thereby safety. A recent
modeling study by (Geyer et al 2006) demonstrated the
importance of leg compliance for reproducing typical
human-like walking patterns and its corresponding
ground reaction forces. However, the extent of the
functional benefits of compliance during locomotion
is still an open question.

In this section we analyze the compliant properties
of human joints during locomotion, in order to iden-
tify how compliance is implemented across the differ-
ent DoFs, and how it affects the whole-body
performance. This issue is particularly relevant during
humanoid design, due to the direct implications to the
complexity of mechatronic hardware and control
paradigms. In order to facilitate the identification of
the relevant aspects, we have grouped the human
joints in three main ‘functional units’: the ankle–foot
complex, the knee, and the hip–pelvis complex, and
classified the biomechanical states of the joints into
four categories, characterized by the actions of the
internal forces produced by muscle activations (Zajac
et al 2002):

• Motive state, when the internal (muscle-tendon)
forces are used to accelerate the joint motion, thus
generating positive work. This is achieved in human
joints by concentric activity of agonistmuscles;

• Resistive state, when the internal forces are used to
decelerate the joint motion against external forces
or inertia, thus producing negative work. In

Figure 1.Phases of human locomotion and related biomechanical events. According to the reciprocal contact of one leg and the
ground, a gait cycle is composed by stance, where the foot is on the ground, and swing. Stance can be subdivided into four sub-phases:
(i) loading response, inwhich both limbs are in contact with the ground, (ii)mid stance, starting at contralateral toe off, (iii) terminal
stance, starting at heel rise and (iii) pre swing, inwhich, again, both limb are in contact with the ground.With respect to the timing, the
gross normal distribution of thefloor contact periods is 60% for stance and 40% for swing. Timing for the phases of stance is 10% for
each double stance interval (loading response and pre swing) and 40% for single limb support. The precise duration of these gait cycle
intervals varies with the person’s walking velocity: increasing velocity increases total stance and swing times, while lengthens single
stance and shortens the two double stance intervals. Information based on (Perry 1992).
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humans, this is achieved by eccentric contraction of
antagonistmuscles;

• Stabilizing state, when the internal forces are used to
counteract external forces in order to maintain the
joint in a fixed position, producing low levels of
work. This is achieved in humans by the isometric
contraction of agonist and/or antagonistmuscles;

• Passive state, when no internal forces are produced
as a result of neural recruitment, leaving the joint
free to move under the effect of inertial and
gravitational forces as well as intrinsic muscle fiber,
tendon, and ligament constraints. In this condition,
muscles are not activated.

2.1. The ankle–foot complex
The action of the ankle and foot, taken as a whole, has
been compared to the rolling mechanism of a wheel,
due to the relative motion of the center of pressure
(CoP) between the foot and the ground, which follows
a circular trajectory (see figure 2). This wheel-like
mechanism has been defined geometrically with the
so-called roll-over shapes (ROSs) (Hansen et al 2004).
Several efforts have been devoted in the literature to
determine the effective geometry (e.g. shape, length) of
the ROS. It was shown that the ROS is circular, with an
equivalent radius of 0.3 times the leg length
(McGeer 1990), and this is maintained across different
walking speeds and biomechanical conditions (Han-
sen et al 2004, Hansen and Childress 2005). It is
generally believed that the ROS reflects the mechan-
isms humans use in order to: (i) transform the passive
pendulumdynamics of lower limbs into body progres-
sion (McGeer 1990, Gard and Childress 2001); (ii)
smoothen the transitions between opposite stance legs
(Adamczyk et al 2006, Adamczyk and Kuo 2013), thus
having direct implications on energy expenditure. The
energetically optimal values of both length and radius
found in experimental trials were comparable to the
ROS parameters characterizing the human foot, con-
firming that a human is the golden standard for
bipedal walking efficiency (Hansen et al 2004).

This wheel-like mechanism results from the com-
pliant interaction between the foot–ankle complex
and the ground during the stance phase. This com-
pliant behavior can be explained by three pivotal
mechanisms: the heel rocker, the ankle rocker and the
forefoot rocker (see figure 3(B)). The heel rocker is the
mechanism by which the foot rolls around the heel
due to the momentum generated by the body falling.
This movement happens in the first 10% of the gait
cycle (loading response), just after the heel contact and
until the foot is in full plantar contact with the ground.
The activation of dorsiflexormuscles (e.g. tibialis ante-
rior, see figure 3(A)) creates a resistive momentum
that transforms the energy of falling into forward pro-
gression of the lower leg around the heel, at the same
time decelerating the plantar flexion to control the
lowering of the forefoot to the floor (Hansen
et al 2004). After plantar contact, the ankle rocker is the
mechanism by which the shank rotates around the
ankle, driven by the forward momentum, while the
plantar flexor muscles (soleus and gastrocnemius, see
figure 3(A)) act eccentrically to decelerate this move-
ment. This mechanism (figure 3) also contributes to
energy storing, which results from the stretching of the
Achilles tendon (Lichtwark and Wilson 2005). The
forefoot rocker is the mechanism by which the toes flex
under the forward momentum of the body
(figures 3(A) and (E)), occurring during terminal
stance. During this period, the body moves forward,
beyond the base of support, entering a brief free-fall-
ing phase. In this phase, the plantar flexors are acti-
vated isometrically to restrain the ankle joint against
the dorsiflexor torque of the ground reaction forces,
making the shank follow the body progression. At the
same time, the Achilles tendon is shortened, releasing
the energy previously stored. This energy storing-
releasing mechanism has been shown to improve the
energetic costs, during walking (Zelik et al 2014) and
running (Lichtwark and Wilson 2005). During the
pre-swing phase, the plantarflexors are activated in
order to accelerate the tibia forward (push off) while
the body weight is transferred to the contralateral side
(Perry 1992), triggering the start of the swing
movement.

Figure 2.Thewheel-likemechanismof the foot and the resulting roll-over shapes (ROS). The figure shows three snapshots of the
stance phase, as seen from an observer placed on the foot. The relativemotion of the ground and the foot follows a circular trajectory,
as it would be if the footwas substituted by awheel. (Data fromHansen andChildress 2005,Hansen et al 2004.)
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During stance, the rocker mechanisms previously
described are accompanied by the compliant action of
the foot (see figure 3(E)), which contributes to shock
absorption and arch stabilization during foot-ground
interaction. The human foot is a very complex struc-
ture composed of numerous bones, muscles, and liga-
ments. As a simplification, three main joints can be
identified: the subtalar, midtarsal and metatarsopha-
langeal joints (see figure 3(A)). During the loading
response phase, the transfer of the body weight onto
the heel produces subtalar pronation (McPoil and
Knecht 1985), which is decelerated by the activation of

the dorsiflexors (tibialis anterior). This actions repre-
sents the first shock absorptionmechanisms in the gait
cycle (Perry 1992). During mid-stance, the internal
foot muscles implement another shock absorption
mechanism represented by the flattening and recovery
of the foot arch, through the midtarsal joint (Ker
et al 1987). During terminal stance, the forefoot enters
in contact with the ground by means of themetatarso-
phalangeal joint, whose motion is then decelerated
by toe flexors in order to produce a stable weight-bear-
ing area during the forefoot rocker (Hughes
et al 1990). In this phase, the toe flexion also triggers

Figure 3. (A)Principal joints andmuscles of the ankle–foot complex (Data fromPerry 1992).Muscles with only one attachment point
shown in the picture are bi-articular. (B) and (E) Schematic view of the functional role of the ankle and foot. Black dotted arrows show
the direction ofmovement, while colored arrows indicate the direction of net joint torques (red, with a ‘+’ symbol, formotive; blue,
with a ‘−’ symbol, for resistive torques). Joints of interest are indicated aswell, where the red color indicates joint stabilization. (C)
Joint velocity profile andmuscle activations. The joint velocity (black line) gives an immediate indication on the direction of
movement, i.e. dorsiflexing (positive velocity) or plantarflexing (negative velocity). Activity of dorsiflexor and plantarflexormuscles is
depicted in the same graph (data taken fromWinter 1991). This information gives a qualitative indication on the internal joint torques
thatmay not be visible from external power (e.g. if co-contraction is present), therefore helping to distinguish between stabilizing and
passive role of the joint. (D) Joint power, obtained by the product between net torque (not shown) and velocity. It does not take into
account neither internal opposing force, or forces generated in absence ofmotion. The plots for velocity, power andmuscle activations
are given in arbitrary units.
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the windlass mechanism, which increases the rigidity
of the arch by locking the midtarsal joint (Caravaggi
et al 2009).

During the swing phase, the main goal of the foot–
ankle complex is to ensure foot clearance, avoiding
collision with the ground. To this aim, the tibialis
anterior muscles are activated to generate a dorsi-
flexion during initial and mid-swing, opposing the
plantarflexion moment due to gravity. The internal
foot joints do not participate actively during swing
phase, since no relevant forces are applied to the foot.

2.2. The knee
Among all the joints involved in locomotion, the knee
exhibits the highest range of motion (approx. 70°)
(Winter 2009). It represents a crucial site of action of

most biarticular leg muscles (see figure 4), and plays a
central role for the energy transfer between the knee
and hip and ankle. Sagittal knee motion is essential for
achieving the major bipedal functions, including
weight acceptance, weight support and forward pro-
pulsion. Furthermore, it is the main responsible for
foot clearance during leg swing and knee stability
during weight bearing (Winter 2009). Apart from
sagittal motion, also transversal and frontal knee
movements are present, but they have a minor role in
locomotion, compared to the sagittal motion
(Perry 1992). For this reason, in this review, we will
only focus on sagittal kneemotion.

The human knee assumes different states through-
out the gait cycle. A motive state is present during mid
stance (see figures 4(C) and (D)), when the quadriceps

Figure 4. (A)Principal joints andmuscles of the knee.Muscles with only one attachment point shown in the picture are bi-articular.
(B) Schematic view of the functional role of the knee. Black dotted arrows show the direction ofmovement, whereas colored arrows
indicate the direction of net joint torques (red, with a ‘+’ symbol, formotive; blue, with a ‘−’ symbol, for resistive torques). Joints of
interest are indicated aswell, where the red color indicates joint stabilization. (C) Joint velocity profile andmuscle activations. The
joint velocity (black line) gives an immediate indication on the direction ofmovement, i.e. extending (positive velocity) orflexing
(negative velocity). Activity of knee flexors and extensorsmuscles is given in the same graph (data taken fromWinter 1991). This
information gives a qualitative indication on the internal joint torques thatmay not be visible from external power (e.g. if co-
contraction is present), therefore helping to distinguish between stabilizing and passive role of the joint. (D) Joint power, obtained by
the product between net torque (not shown) and velocity. It does not take into account neither internal opposing forces, or forces
generated in absence ofmotion. The plots for velocity, power andmuscle activations are given in arbitrary units.
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muscles (biceps femoris and vasti) are activated to
extend the knee against gravity. The resistive action of
the kneemuscles is present in several phases of the gait
cycle, confirming the important role of the knee as
energy dissipater (Perry 1992): (i) in the loading
response phase, the eccentric activity of knee extensors
decelerates the knee flexion generated by the ground
reaction forces, (ii) in terminal stance, the knee flexors
decelerate the knee extension produced by the pre-
vious motive mid-stance, (iii) in the pre-swing phase,
the knee extensors (rectus femoris) decelerate the
otherwise uncontrolled knee flexion generated indir-
ectly by the residual activity of the ankle plantarflexors
combined with the loss of weight bearing, (iv) in initial
swing, the knee extensor are used to counteract the
rapid knee flexion caused indirectly by hip flexion (see
also figure 5(B)), and (v) in terminal swing, the knee
flexors decelerate the extension of the knee. A passive
role of the knee is observed during mid-swing. In this
phase, especially in the first half, the muscles spanning
the knee reduce the joint stiffness to very low values,
enabling the leg to accelerate under the effect of gravity
and inertia.

2.3. The hip–pelvis complex
The role of the pelvis is twofold, i.e. maintaining the
trunk (more precisely the HAT, i.e. head–arms–trunk
complex) in the upright position, and ensuring the
movement of the lower limbs for body progression
(Perry 1992). The pelvis is connected with the lower
limbs through the hip joints, and with the HAT
through the spine, comprising multiple vertebral
joints (see figure 5(A)). During walking the pelvis
shows a complex three-dimensional continuous
motion (Saunders et al 2005).

In order to maintain the HAT in the upright posi-
tion, the pelvis contributes with two actions. During
the loading response phase, a resistive action of hip
abductors during the downwardmovement of approx.
4°, called hip drop, is used to dampen the impact of
weight loading (Perry 1992) (see figure 5(E)). During
the stance phase, the pelvis shows an anterior rotation
of 4°. In order to facilitate the lower limb motion, the
pelvis contributes with a transversal rotation of 10°
enhancing the leg swing movements. Pelvic rotation
and frontal plane tilt contribute to the control of the
trajectory of the center of mass (COM) of the whole
body. According to the ‘six determinants of gaits’ the-
ory (Saunders et al 1953), these pelvic movements,
together with other mechanisms at knee, foot and hip,
appear to be themain responsible for reducing the ver-
tical excursions of the COM. Whether this flattening
of the COM trajectory is adopted to reduce metabolic
costs is still controversial (Kuo andDonelan 2010).

Hip sagittal movement is characterized by the sec-
ond largest range of motion across human joints dur-
ing walking (approx. 40°) (Eng and Winter 1995). In
this plane, the hip assumes a motive state during pre-

and initial swing (see figures 5(B) and (C)), when the
hip flexors contract concentrically to pull the swinging
limb upwards and forwards (Winter 1991). A resistive
action is observed during terminal swing, when the hip
extensors decelerate the limb forward momentum to
prepare for ground contact (Kepple et al 1997). A pas-
sive role is prevalent during mid stance and mid-
swing, in which the hip is passively extended under the
gravitational and inertial forces, accelerating the thigh,
with no relevant muscle contribution (Perry 1992).
The hip assumes a stabilizing role during loading
response, when the co-activation of extensors and
flexors stiffen the joint to ensure postural stability dur-
ing bodyweight transfer (Perry 1992).

The hip frontal movement has been related to bal-
ance and posture stability during walking, which is
obtained through the control of the lateral foot place-
ment by hip abductor/adductormuscles during swing
(MacKinnon and Winter 1993, Winter et al 1993).
This action is important to maintain the COM within
the lateral borders of the base of support
(Shimba 1984, Winter 1995). The frontal movement
of the hip is also used to control the movements of the
pelvis, representing a relevant mechanisms for balan-
cing the HAT in response to perturbations
(Winter 1995).

3. Bipedal robots locomotion

The design of bipedal robots that can mimic human
locomotion has been the focus of scientific research
for nearly half a century. The 2015 DARPA robotics
challenge showed the current capability of the most
advanced humanoid robots in natural disaster situa-
tions (DeDonato et al 2015, Murphy 2015), but other
platforms have been developed to take into account
more biomimetic approaches. Two different
approaches can be distinguished. Traditional methods
have focused on mimicking the human body morph-
ology by realizing complex humanoid structures that
include high number of joints and DoF. These robots
have been usually controlled by classic paradigms such
as the zero-moment point (ZMP), a well-known
method for the synthesis of prescribed joint trajec-
tories by means of continuous tracking of stable foot-
ground contact (Vukobratovic ́ 1975, Vukobratović
and Borovac 2004). This approach demonstrated good
stability in vast range of condition (Kaneko
et al 2008, 2011, Galdeano and Chemori 2013, Yu
et al 2014). Nevertheless, several functional and
topological shortcomings can be observed, such as
unnatural motions, high-energy costs, high computa-
tional demands, dependence on dynamic model, and
rigidity.

As opposed to this approach, there are the so-
called ‘passive dynamic walkers’, exhibiting human-
like behavior without any actuator or control strategy.
These approaches have focused mainly on exploiting
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the inherent dynamics of the limbs and the gravity pull
in order to obtain very efficient and natural locomo-
tion (McGeer 1990, Hobbelen and Wisse 2005, Wisse
et al 2006). Contrary to ZMP-based humanoids, these
bipeds maintained a very simple kinematic complex-
ity, resulting in a low number of DoFs. Despite their
efficiency, passive walkers are not versatile and of little
practical use. Most of them are constrained to walk

along an inclined sagittal plane and they are rather sen-
sitive to external perturbations. Collins et al (2005)
added simple actuation mechanisms to the passive
dynamic walkers to overcome their dependency to
gravity pull.

Recently, variable compliant actuation has been
used to improve passive walking, showing good poten-
tial for generating stable and efficient locomotion

Figure 5. (A)Principal joints andmuscles of the hip and pelvis.Muscles with only one attachment point shown in the picture are bi-
articular. (B) and (E) Schematic view of the functional role of the hip and pelvis. Black dotted arrows show the direction ofmovement,
while colored arrows indicate the direction of net joint torques (red, with a ‘+’ symbol, formotive; blue, with a ‘−’ symbol, for resistive
torques). Joints of interest are indicated aswell, where the red color indicates joint stabilization. (C) Joint velocity profile andmuscle
activations of sagittal hip. The joint velocity (black line) gives an immediate indication on the direction ofmovement, i.e. extending
(positive velocity) orflexing (negative velocity). Activity of hipflexors and extensorsmuscles is given in the same graph (data taken
fromWinter 1991). This information gives a qualitative indication on the internal joint torques thatmay not be visible from external
power (e.g. if co-contraction is present), therefore helping to distinguish between stabilizing and passive role of the joint. (D) Joint
power, obtained by the product between net torque (not shown) and velocity. It does not take into account neither internal opposing
forces, or forces generated in absence ofmotion. The plots for velocity, power andmuscle activations are given in arbitrary units.
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across different speeds, in simulated (Geyer et al 2006,
Owaki et al 2008, Wang et al 2010) and real-life
(Huang et al 2013) bipeds. Based on stiffness modula-
tion, compliant bipeds can allow for more variety of
motion, while maintaining low energy costs
(Geng 2006, Ham et al 2006, Kerscher et al 2006, Hob-
belen et al 2008, Hosoda et al 2008, Hurst and
Rizzi 2008, Vanderborght et al 2008b, Braun et al 2012,
Lim et al 2012, Tsagarakis et al 2013). From a techno-
logical point of view, different kind of compliant
actuators have been proposed. The basic principle is to
include spring or damping elements in series with stiff
actuators (for a recent review see (Vanderborght
et al 2013). These elements can include fixed intrinsic
stiffness (series elastic actuators, SEA), or variable stiff-
ness (variable stiffness actuators, VSA). Compliant
actuators can store and release energy with no band-
width limits, improving energy efficiency and stability
during contacts with the environment. A similar
approach is the use of parallel compliance, which
allows for a less complex control design compared to
series compliance while maintaining good energetic
efficiency during walking (Yang et al 2007, 2008). An
alternative solution to these mechanisms is the use of
pneumatic (Hosoda et al 2008, Vanderborght
et al 2008a, Narioka et al 2012) or hydraulic (Kim
et al 2007, Nelson et al 2012) actuation, since they have
the advantage of having an intrinsic compliance. In
addition, such actuators can be used in an antagonistic
setup,mimicking biologicalmuscles.

Table 1 shows a summary of the most relevant
robotic solutions that have included human-inspired
compliant properties into their actuation systems. In
order to facilitate a direct comparison with humans,
we will refer to the three functional units presented in
the previous section, namely ankle–foot complex,
knee, and hip–pelvis complex.

3.1. The ankle–foot complex
The foot structure of humanoid robots has been a
major topic of research in the past years, resulting in
different approaches. The best performing and robust
humanoid robots nowadays, e.g. Honda’s Asimo
(Hirose and Ogawa 2007) or some of the robots that
participated at the DARPA challenge (DeDonato
et al 2015, Murphy 2015), use a flat foot. Beside their
good general performance, these robots produce
walking patterns that deviate considerably from
humans. In order to improve stability, adaptability to
different surfaces, and obtain natural walking patterns,
researchers have been trying to implement more
human-like ankle–foot systems. In humanoids, the
ankle joint is mostly actively controlled using a stiff
actuator, and does not constitute a major issue in the
ankle–foot complex. However, new robots have been
exploring the usage of SEA actuators at the ankle. For
example, the THOR (Hopkins et al 2015), ESCHER
(Knabe et al 2015), Valkyrie (Radford et al 2015) robot

makes use of two parallel linear SEA at the ankles to
cope with unstructured and unstable terrain and
improve stability. Contrarily, in the prosthetic sce-
nario, compliant ankle is gaining relevance (Svensson
and Holmberg 2006, Eilenberg et al 2010, Mancinelli
et al 2011, Cherelle et al 2013). In these systems, the
ankle compliance modulation is realized by active
actuation in combination with quasi-passive mechan-
isms. Quasi-passive mechanisms do not apply a direct
motive force (Herr and Wilkenfeld 2003) but use
controllable compliant elements such as variable
dampers, springs, and clutches to change the stiffness
of the joint. The use of quasi-passive devices in leg
prostheses have led to lightweight and efficient designs
(Endo et al 2006, Lapre 2014).

As discussed in section 2.1, the human ankle–foot
mechanism follows circular ROS. This is a character-
istic that has been exploited in passive and limit cycle
walkers (Hobbelen and Wisse 2008, Bhounsule
et al 2014). These bipeds usually have arc-shaped feet
attached to the shank since this allows the COP to
evolve from the heel to the ankle, resulting in
improved energy efficiency and more human-like
walking characteristics (Wisse et al 2006, Yamane and
Trutoiu 2009). However, the main disadvantage of
arc-shaped feet is the instability on uneven terrain, the
reduced friction in the transversal plane, and the fact
that the biped cannot stand still in an upright position
(Wisse et al 2006).

In order to combine the stability of the flat foot
with the efficiency of the circular ROS, new foot struc-
tures including movable parts, such as toes, have been
investigated. The presence of toes is a critical issue in
most of ZMP-based robots, since during the forefoot
rocker the contact point is reduced substantially,
resulting in increased complexity in the control.
Nevertheless, different solutions, actuated and non-
actuated, have been proposed in the literature. Non-
actuated toe-joints have been tested on a few robots,
such as the HRP-2 (Sellaouti et al 2006), and the
WABIAN-2R (Ogura et al 2006, Kondo et al 2008).
These solutions have showed improvements in step
length and walking speeds. The robot MARLO (Buss
et al 2014), which is a variation of the ATRIAS robot
(Grimes and Hurst 2012), makes use of non-actuated
prosthetic feet for stability and versatility during walk-
ing. Several solutions based on actuated toe motion
have also been proposed (Ahn et al 2003, Nishiwaki
et al 2007, Wang et al 2006, Guihard and Gorce 2004,
Tajima et al 2009, Buschmann et al 2009, Kaneko
et al 2011, Zhang et al 2010). These implementations
have demonstrated that actuation at toe-joint can
reduce the maximum speed of knee joints, and
increase walking speed and step length. Toes also con-
tributes to more natural human-like walking and
might also contribute to reductions in the energy con-
sumption (Takahashi and Kawamura 2002, Ouezdou
et al 2005).
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Table 1. Schematic summary of themost relevant walking bipeds in literature.

Lower limb actuation

Foot
Ankle

Knee
Hip Waist

Plateform References TotalDOF Sagittal (toes) Sagittal Frontal Transv Sagittal Sagittal Frontal Transv Sagittal Frontal Transv Actuator base technology Controlmethod

RunBot Geng (2006) 4 — — — — S S — — — — — Servo Reflexive Controller

Veronica Ham et al (2006) 6 — VSA — — VSA VSA — — — — — MACCEPA CPW

ERNIE Yang et al (2007, 2008) 6 — — — — PEA PEA — PEA — — — Servo HZD

Lucy Verrelst (2005), Van-
derborght et al

(2008b)

6 — PN — — PN PN — — — — — Pleated pneumatic artifi-

cialmuscles

ZMP

JenaWalker II Seyfarth et al (2009) 6 — PE — — PE SEA+PE — — — — — Servo+mono—and bi

—articualar PE

elements

Sinusoidal

Oscillators

MARLO Buss et al (2014) 8 P — — — SLP SLP S — — — — Servo SIMBICONcontrol

Flame Hobbelen et al (2008) 9 — SEA PE — SEA SEA S (coupled) — — — — Servo LC

Pneumat-BR Hosoda et al (2008) 10 — PN PN — PN PN PN — — — — McKibben (mono- and

bi articular elements)
Ballistic control

Pneumat-BB Narioka et al (2012) 10 PN (2DoF) PN — — PN PN — — — — — McKibben+Servo
(mono- and bi articu-

lar elements)

Limit-Cycle

controller

SHERPA Galdeano andChe-

mori (2013)
12 — S S — S S S S — — — Servo ZMP

CREST Okada et al (2003) 21 — S S — S S S S — — — Servo 3 stage switch feed-

back control

WABIAN-2R Ogura et al

(2006a, 2006b),
Kondo et al (2008)
Hashimoto

et al (2010)

23 PE S S — S S S — — S S Servo Hip-compen-

sated ZMP

Lola Buschmann et al (2009) 25 PE (heel
and toe)

S S — S S S S — S S Servo ZMP

COMAN Tsagarakis et al (2013) 25 — SEA S — SEA SEA S S — — — Servo (Custom
made SEA)

CoMState

Controller

ATLAS Dedonato (2015) 28 PE H H — H H H H H H H Hydraulic ?

PETMAN Nelson et al (2012) 29 PE H H — H H H H — — — Hydraulic
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Table 1. (Continued.)

Lower limb actuation

Foot
Ankle

Knee
Hip Waist

Plateform References TotalDOF Sagittal (toes) Sagittal Frontal Transv Sagittal Sagittal Frontal Transv Sagittal Frontal Transv Actuator base technology Controlmethod

Hybrid hierarchical

control

architecture

H7 Nishiwaki 30 S S S — S S S S — — — Servo ZMP

BHR-5 Yu et al (2014) 30 — S S — S S S S S — S Servo ZMP

SARCOS Kim et al (2007) 34 PE H H H H H H H H H H Hydraulic ZMP

HRP-4 Kaneko et al (2011) 34 — S S — S S S — S — S Servo ZMP

THOR Hopkins et al (2015) 34 — SEA SEA — SEA SEA SEA SEA SEA — — Servo Position-Torque

hybrid control

ESCHER Knabe et al (2015) 38 — SEA SEA — SEA SEA SEA SEA SEA — — Servo Position-Torque

hybrid control

HUBO2 Kim et al (2008),
Park (2007)

40 — S S — S S S S — — S Servo ZMP

Roboray Lim et al (2012) 40 — SEA S — SEA SEA S S — — S Servo StateMachineCon-

trol with Adaptive

StepMotion

Planning

HRP-2 Sellaouti et al (2006) 42 — S S — S S S — S — S Servo ZMP

HRP-3 Kaneko et al (2008) 42 — S S — S S S — S — S Servo ZMP

HRP-4C Kaneko et al

(2009, 2011),Miura

et al (2011)

43 S S S — S S S — S S S Servo ZMP

Valkyrie Radford (2015) 44 — SEA SEA — SEA SEA SEA — SEA SEA SEA Servo Torque control

ASIMO Hirose and

Ogawa (2007)
57 — S S S S S S S — — S Servo ZMP

‘−’ : Not available; ‘?’: not published data available; PE: non-actuated (passive) element; S: servo stiff actuator; SEA: series elastic actuator; VSA: variable stiffness actuator;

PEA: parallel elastic actuator; PN: pneumatic actuator;McK:McKibben actuator; ZMP: zero-moment point;HDZ: hybrid zero dynamic; LC: limit cycle; CPW: controlled passive walker.
*http://asimo.honda.com/asimo-specs/
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A study comparing different types of foot structure
was performed by Ouezdou et al (2005). In this study
they calculated the total energy consumption and nor-
mal contact force of four different simulated foot
structures: (i) flat, (ii) non-actuated toe-joint, (iii)
actuated toe-joint, and (iv) a hybrid design between
non-actuated and actuated toe-joint (figure 6), called
the ‘flexible active foot’. It included an actuated toe-
joint and two non-actuated compliant joints, one at
the heel and one at the tip of the toe. The results of the
simulation showed that a non-actuated toe-joint was
characterized by a human-like ‘M’ profile of ground
reaction forces, which was not present during flat and
rigidly actuated toe-joint configurations. On the other
hand, the active toe-joint and the hybrid design struc-
ture reduced the energy consumption 25% compared
to the flat structure, whereas the passive toe-joint only
reduced the energy consumption 10%. Finally, the
flexible active configuration was able to exploit the
advantages of both the non-actuated and actuated toe-
joints, by reducing the energy consumption and
improving the shape of the ground reaction force.

Some studies have integrated actuated toe-motion
solutions into more complex foot systems. Davis and
Caldwell (2010) developed a foot with under-actuated
toes, hind, mid and fore foot sections. Also, silicone
was used to mimic the properties of the biological tis-
sue. With this structure they were able to adapt to dif-
ferent ground configurations, to absorb impact and
store and release energy. However, this foot was tested
in isolation, without considering how the rest of the
body would affect its operation. Narioka et al (2012)
developed a novel robotic foot with deformable arch
for the pneumatic-based biped Pneumat-BB. This foot
structure includes two actuated joints, one controlling
the deformation of the foot arch and one for the toe-
joint. It also contains pressure sensors on the hind,
mid and the fore foot. They were able to replicate to
some extent the truss and windlass mechanism found
in humanwalking (see section 2.1). However the robot
was constrained to move only in the sagittal plane.
Hashimoto et al (2010) improved the feet design of the
WABIAN-2R. By mimicking the change in the elasti-
city of the medial longitudinal arch they were able to
realize shock absorption function, windlass mech-
anism, and push-off function.

Other research focused on the compliant behavior
of the entire foot, proposing more complex designs.

Most of them have been tested only in simulation,
showing encouraging results. Kwon and Park (2012)
proposed a foot based on 5 pillars (3 on the toes and 2
on the heel) that use springs to absorb the initial
impact and to improve stability in all directions.
Owaki et al (2011) proposed a non-actuated deform-
able foot using torsional springs on the toe, the foot
arch and the ankle. Seo and Yi (2009) modeled a bio-
mimetic foot using springs, mimicking the intrinsic
foot muscles and tendons in order to automatically
adapt to uneven terrain. Minakata et al (2008) pro-
posed a shoe-like foot containing a simple array of
springs at the bottom in order to save kinetic energy by
allowing lateral motions. Li et al (2008) fabricated a
sensor-integrated flexible foot with rubber pads and
brushes to absorb the ground impact force.

3.2. The knee
During normal walking humans extend the knee joint
during the mid and terminal stance phase. However,
this is difficult to achieve on humanoids that use the
ZMP method to control locomotion, since knee
extension leads to a singular inverse kinematic solu-
tion (Okada et al 2003, Kurazume et al 2005, Ogura
et al 2006, Handharu 2008). This is one of the main
reasons why most humanoid robots walk with their
knees flexed. Also, by maintaining the flexed knee the
center of gravity (CoG) is easier to control, and thus
the overall stability of the biped while walking is
improved. The problem is that this strategy requires
high-energy consumption and results in a gait pattern
that is not human-like.

Researchers have tested several solutions in order
to overcome the singularity problem. Adding extra
pelvis movement has been proposed by Ogura et al
(2006a, 2006b), who included a 2-DoF waist joint to
the WABIAN-2 robot, and by Miura et al (2011) who
changed the height of the waist within the HRP-4C
robot. Kurazume et al (2005) proposed a method to
realize walking with proper knee extension by control-
ling the CoG according to the state of the ZMP con-
troller. The knee was extended only when the ZMP
was almost achieved and there was no need to control
the ZMP position precisely. This approach has been
tested in simulations and on the HOAP-1 robot plat-
form. Handharu (2008) and Yoon et al (2010) demon-
strated that adding a heel joint to the robot enabled a
walking patternwith extended knees. They argued that

Figure 6. Foot structures compared byOuezdou et al [5].
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this is a simpler solution compared to using the waist
motion. With their method they were able to increase
the support area during the double support phase, and
achieve better performance than other robots in terms
of joint torque and energy consumption.

For most of the above-mentioned robots stiff
actuation was the preferred control choice. This
requires high-energy consumption, since the actua-
tors have to be actively energized formoving. An inter-
esting approach was presented by Okada et al (2003),
who developed a backlash clutch that is integrated in
the knee of the humanoid robot. This allowed the
robot to block the output of the motor and swing the
leg passively due to the leg’s inertia and gravity pull.

Compliant mechanisms have been also built for
the knee. For example in the JenaWalker II biped (Sey-
farth et al 2009) each leg consists of three segments
with a passive knee and ankle, and four linear tension
springs, representing muscles. Three of the four mus-
cles are bi-articular and span the knee joint. However,
due to limitations of the servomotor’s torque, extend-
ing the knee could be realized only during jogging.
Another example of a compliant knee mechanism is
the COMAN robot (Tsagarakis et al 2013). Using this
robotic platform researchers have tested the stabiliza-
tion of the robot exploiting the intrinsic and con-
trolled compliance (Li et al 2012). Also this platform
was used to investigate the reduction of energy con-
sumption during walking (Kormushev et al 2011).
Furthermore, the MABEL (Grizzle et al 2009) and
MARLO (Buss et al 2014) robots make use of a large
spring attached to the actuator with the purpose of
improving energy efficiency and agility during
dynamic locomotion.

3.3. The hip–pelvis complex
Research in robotics has also investigated the advan-
tages of increasing the mobility of the pelvis, as
observed in humans. By adding an additional DoF at
the waist joint, the pelvis couldmove in the frontal and
transversal planes independently from trunk position.
One clear advantage of implementing this movement
is that it avoids the singularity due to the extended
knee, as mentioned before. This strategy has been
successfully applied in the humanoid WABIAN-2
(Ogura et al 2006a, 2006b) and HRP-4C, improving
the human likeness of the whole-body motion
(Kaneko et al 2009,Miura et al 2011).

The robot Lola was designed with 3DoFs at the hip
and 2 DoFs at the waist. This setting represents a
redundant structure that contributes to more agility
and reduces joint loads while walking (Buschmann
et al 2009). The robot BHR (Xu et al 2010) was devel-
oped with 2 DoFs at the waist in order to keep balance
by regulating the ZMP using waist motions. They
show that the margin of stability for the ZMP trajec-
tory was larger when using a waist joint, producing a
smoother movement. Okada et al (2003) developed a

double spherical joint mechanism that realizes the
functions of the hip and waist joints without increas-
ing the number of actuators. Ellenberg et al (2013)
proposed a skewed-rotation-plane waist joint for the
humanoid robot HUBO2 (Park et al 2007, Kim
et al 2008). Their objective was to increase the range of
motion of the waist, motivated by the fact that most of
the humanoids designs so far used only orthogonal
joints, limiting the range of motion. However, it was
not clarified how this configuration affects locomo-
tion. In a different approach Liang and Ceccarelli in
(2012) proposed a novel waist–trunk system using 2
parallel structures connected together in a serial chain.
This system allows for a full 6 DoFs at the trunk and 3
DoFs at the pelvis. Simulations show that, besides high
DoFs, this structure offers flexibility and high payload
capacity. Okada et al (2003) developed a double sphe-
rical joint for the hip joint so that the robot does not
have toflex the knee joint to balance the upper body.

All the aforementioned solutions use stiff actua-
tion and do not consider the advantages of having
compliant mechanisms at the hip–pelvis complex.
The COMAN (Dallali et al 2012, Li et al 2013), THOR
(Hopkins et al 2015), ESCHER (Knabe et al 2015), and
Valkyrie (Radford et al 2015) robots contains 3 DoF
compliant actuators at the hip–pelvis complex. This
allows the robot to havemore flexibility and better dis-
turbance rejection, but clear evidences on how com-
pliance at the hip–pelvis complex affects walking and
balance has not been discussed yet. The compliant
structure of the hip joints of the JenaWalker and Jena-
Walker II are actuated by means of simple sinusoidal
oscillations (Iida et al 2008, Seyfarth et al 2009). Simu-
lated and experimental results showed that the basic
hip motor oscillation signals induce the human-like
whole body dynamics, and that the system stabilized
itself into periodic gait cycles, for both walking and
running. From the experience obtained with the Jena-
Walkers, a new robot called BioBiped was developed
(Radkhah et al 2012, Sharbafi et al 2014). This biped
has three-segmented legs with three biarticular struc-
tures and five monoarticular structures. The hip’s roll
and pitch action are driven by bidirectional SEA’s or
bionic drives, with fixed elastic elements, but adjus-
table quasi-stiffness through active compliance. This
mechanismwas tested for hopping and running (Shar-
bafi et al 2014).

4.Discussion

Figure 7 reports a summary of the analysis performed
in the human and humanoid scenarios. In addition to
the schematic functions of human joints, we have
highlighted in yellow the phases where humans exhibit
compliant behavior. This is mostly observed when the
joints assume ‘resistive’ and ‘passive’ roles. In both
cases, compliance of the joint is expressed with
deviations of joint position under the action of
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external forces or inertia. In the ‘stabilizing’ state,
instead, the joint acts to minimize such deviations,
maintaining the joint in a constant position in
presence of external forces. In the ‘motive’ state,
compliance is not visibly expressed, because muscle
activations are used to generate motive torques rather
than reacting to an external force or inertia.

Within each of the compliant phases highlighted
in yellow, figure 7 reports the current state of the art of

robotic implementations, using an hourglass icon,
which represents the ‘human-to-robot’ transference
process. We have identified three status levels in this
process: (i) the human-like compliant principle is well
represented and implemented in a real-life humanoid
(indicated with a completed hourglass), (ii) the com-
pliant principle has been implemented in a stand-
alone prototype, but still not included and tested in a
whole biped (hourglass in halfway position), and (iii)

Figure 7.Role of the joints in human locomotion, and corresponding compliant implementation in robots. The phases in which
compliant actuation is needed are highlighted in yellow, and correspond to the resistive and passive states of the joint. An hourglass
icon is used to identify the current state of the ‘human-to-robot’ process, whose goal is to transfer the human-like compliant
mechanisms into humanoid robots. An empty hourglass indicates that no robotic implementation has been proposed yet. A halfway
hourglass indicates that robotic prototypes exist, but they have not been included in full humanoids yet. A completed hourglass
indicates that the compliant principle has been already implemented in a humanoid platform.
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the compliant principle has still not been imple-
mented in any real-life robotic solution (indicated
with an empty hourglass).

Our analysis presents some limitations. First,
excluding the motive and stabilizing states from the
compliant group represents a simplification of the
actual biological actuation system, which is instead
always characterized by intrinsic viscoelastic proper-
ties of muscle-tendon structures (see section 4.4 for
details). Nevertheless, we consider that, from a robotic
design perspective, focusing on resistive and passive
states may help identifying where and when com-
pliance is more relevant and useful in a bipedal
machine.

Second, the four-level classification of joint states
categories is based on single-joint perspective, and
therefore has limited ability to classify how the energy
transfer mechanisms occurs across gait phases or
joints. For instance, the positive work produced in the
motive state can result from the energy previously
stored in resistive state (e.g. in stance through the
Achilles tendon stretching–shortening mechanisms)
or be generated entirely frommetabolic energy.

Third, our analysis is limited to the unperturbed
scenario, and therefore not able to report the relevance
of compliance in perturbed conditions. Actually, com-
pliance of biological structures is thought to be parti-
cularly beneficial in an unconstrained environment
(Ijspeert 2014), such as unstable terrains, pushes or
viscous mediums. Nevertheless, the limited literature
on human walking in such conditions does not permit
to provide an extensive review on this topic, which we
consider a promising area of research in both human
and roboticsfields.

In the following subsections we report a critical
analysis on how human mechanisms have been trans-
ferred into actual robotic implementations, following
the joint-to-joint analysis approach so far used.
Within each section, we also propose a number of key
aspects and challenges that may be relevant for future
research. We conclude the discussion by presenting
some key principles based on amore in-depth analysis
on how compliance is achieved physiologically atmus-
cle-tendon level, and how this can be translated into
truly biomimetic actuator designs.

4.1. Ankle–foot complex
Based on the compliant properties of human foot–
ankle complex, some key principles for biologically
motivated humanoid design can be identified, in
particular when efficiency and robustness under
perturbations are targeted. The desirable robotic foot
should: (i) have a flexible heel to facilitate shock
absorption during heel rocker (loading response); (ii)
have metatarsophalangeal motion (toes flexion) to
allow the forefoot rocker (terminal stance); (iii) have a
flexible arch to ensure shock absorption and energy
harvesting during single stance phase, and also possess

the possibility of being stiffened in terminal stance
phase, mimicking the windlass mechanism of human
foot. As for the ankle, the desirable solution should
store energy in the first part of the stance phase
(loading response and mid stance) and then release it
during terminal stance to generate motive plantar
flexion, therefore improving the energy efficiency of
the forefoot rocker.

Due to their technical complexity, all these
human-like properties are still not available in one sin-
gle ankle–foot solution. As for the ankle, most of cur-
rent humanoids still implement a very basic stiff ankle
actuation, with no compliant properties. The most
interesting implementations lie in the prosthetic field,
in which the inclusion of quasi-passive elements with
variable behavior permits to mimic the modulation of
joint stiffness observed in humans (Svensson and
Holmberg 2006, Eilenberg et al 2010, Mancinelli
et al 2011, Cherelle et al 2013, Herr and Wilk-
enfeld 2003, Endo et al 2006, Lapre 2014). These solu-
tions demonstrated good performance and efficiency
in amputee walking, but their implementation into
humanoids is still not available. We also noticed that
the mechanism of heel rocker has not been explicitly
considered in the reviewed solutions. This will likely
be a challenging step since it requires controlled rota-
tion about a small area of support (heel). With respect
to the foot, in section 3.1 we reported several interest-
ing ideas and implementations that have been pro-
posed in the humanoid field. Most of them focused on
actuated (Ahn et al 2003, Guihard and Gorce 2004,
Wang et al 2006, Nishiwaki et al 2007, Buschmann
et al 2009, Tajima et al 2009, Zhang et al 2010, Kaneko
et al 2011) and compliant, non-actuated (Ogura
et al 2006, Sellaouti et al 2006, Kondo et al 2008, Buss
et al 2014) toemotion. Others are based onmore com-
plex solutions mimicking the compliant structure of
the whole foot (Ouezdou et al 2005, Li et al 2008, Min-
akata et al 2008, Seo and Yi 2009, Davis and Cald-
well 2010, Hashimoto et al 2010, Owaki et al 2011,
Kwon and Park 2012, Narioka et al 2012). The strong
interest in the field is a clear indication that a properly
designed foot is expected to produce improvement in
robotic performance. On the other side, the foot struc-
ture complexity should be carefully considered, since
making the foot closer to the human’s counterpart
does not guarantee a better human-like gait (Yamane
and Trutoiu 2009, Hashimoto et al 2010). Different
combinations of actuated and non-actuated mechan-
isms for ankle and foot can result in similar overall
compliant behavior of the foot–ankle complex. For
this reason, foot and ankle should not be designed
separately, but as one functional entity. One aspect
that should be taken into account is the tight relation
between the structure of the foot and the control algo-
rithm used to control the gait. For example, ZMP
based algorithms have difficulties to handle the rolling
of the foot since the contact surface is very small, and
thus they have better performance with flat-foot
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structures (Erbatur and Kurt 2009, Miura et al 2011).
Algorithms based on limit cycle or reflexive CPG have
better performance with non-flat foot shapes, but are
less robust to disturbances and during still standing
(Yamane and Trutoiu 2009, Owaki et al 2011, Narioka
et al 2012).

4.2. The knee
The knee entails several crucial biomechanical proper-
ties for the achievement of human-like behavior,
which can be summarized as follows: (i) dissipating
the energy of the shocks due to heel-strike at the start
of loading response, (ii) assuming a passive role during
the swing phase to improve efficiency, (iii) being able
to extend during the stance phase to allow energy
efficient inverted-pendulum dynamics, and (iv)
assuming a resistive role for energy storage during the
loading response and terminal swing phase. The
correct implementation of all these mechanisms in
one bipedal robot is very challenging. Specific solu-
tions addressing some of the above properties have
been proposed. As for the shock absorption and energy
storage mechanisms, research on prosthetics has
generated the most interesting implementations using
elastic mechanisms to store energy, improving effi-
ciency, and reducing motor power requirements
(Martinez-Villalpando et al 2008) (Geeroms
et al 2013, 2014). With respect to the passive behavior
during swing, the most effective implementation has
been presented in passive dynamic walkers, which
however lack the stability properties of current huma-
noids. One of the key mechanisms that may allow
including all these human-like properties in one
solution is the complex action of the biarticular
muscles. A valuable implementation in this respect has
been done in the JenaWalker and the BioBiped (Iida
et al 2008, Radkhah et al 2012, Sharbafi et al 2014)
robots. These bipeds implement most of the biarticu-
lar mechanisms of the knee, showing interesting and
promising results. Nevertheless, stable walking has not
been achieved yet.

4.3. The hip–pelvis complex
Experiments in healthy and pathological humans
demonstrate that pelvis movements, even if not easily
perceivable, might be crucial for human-like locomo-
tion (Saunders et al 1953, Perry 1992, MacKinnon and
Winter 1993). The inclusion of pelvis motion in a
robotic biped should produce the following functional
benefits: (i) additional forward progression in the
terminal stance and pre-swing phases by means of
transverse pelvis rotation, which should also enhance
the natural look of motion; (ii) improved shock
absorption during loading response phase bymeans of
lateral pelvis drop. This movement is also expected to
produce smoother weight shift from one side to the
other during double support phase; (iii) minimized
vertical excursions of the CoM bymeans of the sagittal

tilt and frontal rotation of the pelvis, which will also
result in reduced energy consumption and shocks.

In the humanoid implementations realized so far,
the motion of the waist allows the robot to achieve a
straight leg configuration by changing the height of the
waist and improve the cadence by moving the waist in
the transversal plane. This improves the human-like-
ness of the walking pattern even when using the classi-
cal ZMP control approach. However, most of the
mechanisms used are based on stiff motors and little
attention has been paid on how the waist joint would
impact on the other control approaches and the use of
compliantmechanisms.

4.4. Key aspects for truly biomimetic actuation
Compliant actuator technology is still at an early stage
of research and development (Vanderborght
et al 2013). Current technology is still far from
emulating the impressive performance of biological
actuation system. Nevertheless, recent studies in
human kinesiology and modeling are shading some
light on the basic mechanisms of biological compliant
behavior, which may be used in future
implementations.

In humans, joint compliance is achieved through
the visco-elastic properties of muscles and series-elas-
tic tendons (Sartori et al 2015), which are flexibly
modulated during motion according to the task
demands (Zajac 2002, Sartori et al 2016). The resulting
resistive forces produced by these mechanisms can be
quantitatively expressed by means of stiffness and
damping characteristics. In human locomotion stu-
dies, the term ‘quasi-stiffness’ is referred to as the rela-
tionship between joint angle and torque (Shamaei
et al 2013). This relation has been used to design com-
pliant actuators that replicate the net human joint tor-
que by the action of a spring across specific sub-phases
of walking (Vanderborght et al 2008b, Eilenberg
et al 2010). Nevertheless, quasi-stiffness does not
properly reflect actual stiffness of biological joints, i.e.
the ‘position-dependent component that stores (and
releases) mechanical energy’ (Latash and Zat-
siorsky 1993, Sartori et al 2015). The distinction
between the two is crucial for the development of truly
biomimetic actuators (Rouse et al 2013).

Human joint stiffness is composed of two compo-
nents, one represented by the series elasticity ofmuscle
fibers and tendons, and the other resulting frommus-
cle activation and contraction velocity (Sartori
et al 2015). In passive conditions, when no muscle
activity is present, intrinsic stiffness equals quasi-stiff-
ness. During the motive state, the muscle activation
component becomes predominant, making the net
joint stiffness to differ considerably from the quasi-
stiffness. A similar distinction between stiffness and
quasi-stiffness can be drawn for compliant actuators,
as demonstrated by (Rouse et al 2013). In a system
composed of a motor attached to the equilibrium
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point of a series spring, multiple combinations of stiff-
ness and equilibrium positions can produce a given
quasi-stiffness profile, with two boundary conditions:
(i) stiff actuation, where no spring, or spring with infi-
nite stiffness, is present, and (ii) passive actuation,
where no motor, or a motor blocked in a fixed posi-
tion, is present. In this last case, the quasi-stiffness
equals the stiffness of the spring. To solve this redun-
dancy problem, the value of stiffness should be chosen
carefully based on the application goals, e.g. improved
efficiency, movement accuracy, or a particular com-
pliant response to external disturbance (Vanderborght
et al 2013). In humans, this is naturally accomplished
by the interplay of several mechanisms, as reported in
the section 2.

Therefore, when the goal is human-like walking
behavior, biomimetic actuators should replicate not
only the human quasi-stiffness profiles, but also
reproduce physiological joint stiffness. While quasi-
stiffness can be easily measured in humans through
inverse dynamics, physiological stiffness profiles are
more difficult to obtain experimentally, due to the
complex system identification techniques needed
(Andersen and Sinkjaer 1995, Ludvig and Per-
reault 2011, 2012, Plocharski and Plocharski 2013).
Model-based methods have been proposed to allow
estimating stiffness across joints and locomotion
modes that are difficult to approach experimentally.
These methods provide quantitative information on
how the stiffness is modulated from the muscle-level
all the way up to the joint-level (Sartori et al 2015). In
our opinion, the estimation of physiological joint stiff-
ness gathered with these approaches and its correct
combination with quasi-stiffness profiles will be a cru-
cial point for future biomimetic robotic designs. This
will be an important step towards truly mimicking the
functions of their biological counterparts (Eilenberg
et al 2010,Markowitz et al 2011, Pfeifer et al 2015).

5. Conclusions

The human body includes a number of compliant
mechanisms distributed throughout the musculoske-
letal system, whose complex and dynamical interplay
is at the basis of human-like behavior (Iida et al 2008).
Strong efforts have been devoted to understand these
mechanisms and include them in humanoid design. In
this review we focused on the role of three functional
units of human locomotion, i.e. foot–ankle complex,
knee, and hip–pelvis complex. We reported the key
principles of human biomechanics and the most
relevant implementations of these principles into
walkingmachines.

Among the reviewed works, we have found that
many relevant human mechanisms have a corresp-
onding implementation in wearable assistive devices
such as prostheses. However, in the humanoid field,
only a few solutions specifically addressed and tested

human-like mechanisms into whole-body platforms.
Below we summarize the major human-like mechan-
isms currently missing in state of the art bipedal
humanoids and future research directions for filling
the current gap between human andhumanoids.

Concerning the ankle–foot complex, one of the
aspects that should be clarified is how the different
foot structures (i.e., rigid, flexible, actuated or non-
actuated) affect the global walking performance of a
biped robot in real-life conditions. This analysis
should go beyond the unperturbed scenario, i.e., walk-
ing over a flat and smooth surface, and consider per-
turbations that affect foot-ground interaction, such as
uneven surfaces, slopes, and soft terrain. As for the
ankle and knee mechanisms, the most effective com-
pliant implementations have been proposed in the
prosthetic field, where the quasi-passive solutions
have produced promising results. The implementa-
tion of these solutions into whole-body humanoids
would be particularly interesting in order to test the
potential advantages and stability under biomechani-
cal and control perspectives. The role of biarticular
actuation around the knee is another very relevant
topic that has been largely disregarded in the huma-
noids community, probably due to lack of knowledge
on the human side, but which is now gaining more
relevance. As for the pelvis motion, future research
should cope with the comparison between stiff and
compliant actuation, and in particular how each of the
DoFs in the waist—i.e. pitch, roll and jaw—affect the
whole-body performance of the robot. Also here, it
will be essential to consider perturbed conditions, in
particular those affecting trunk–pelvis coordination,
e.g. pushes or variable walking speeds.

A relevant further step in the direction of improv-
ing human likeness of biped robot locomotion would
be to investigate the effective stiffness of the human
joints, and make this information available for its
replication in robotic control. In this respect, crucial
research challenges include the development of neuro-
muscular modeling methods for the real-time predic-
tion of physiological instantaneous joint stiffness that
can be translated to the technology level as well as the
design and development of fast and efficient variable
compliant actuators that can mimic human-like com-
pliant joints.

In general, most of the research has focused on the
sagittal plane only. We consider that the frontal and
the transversal planes should also be considered, in
particular in those DoFs related the lateral balance,
which appears to be a fundamental component of
walking, in unperturbed and perturbed conditions
(Tang et al 1998, Bauby andKuo 2000).

As a concluding remark, there is a lack of estab-
lished set of quantitative benchmarks to evaluate and
compare the human-like performance, and in part-
icular compliant behavior, of current robotic solu-
tions (Torricelli et al 2014, 2015). A well-established
benchmarking framework, in which humans and
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robots are directly compared on quantitative basis,
would be beneficial not only to improve the robotic
performance, but also to gain new insights on human
behavior.
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