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From the Thiele equation to the phase oscillator model

We here provide some more details on the derivation of the Kuramoto model starting from

the coupled Thiele equation:

G(ez × Ẋ1,2)− k(X1,2)X1,2 −D1,2Ẋ1,2 − FSTT1,2 − Fint(X2,1) = 0. (S1)

Here, G = −2πpMsh/γ is the gyroconstant, p is the core polarity, γ is the gyromagnetic ratio,

Ms is the saturation magnetization and h is the thickness of the ferromagnetic layer. The

confining force is given by k(X1,2) = ω01,2G
(

1 + a
X2

1,2
R1,2

)
[1, 2], where R1,2 are the disc radii

and the gyrotropic frequency for disc 1, 2 is ω01,2 = 20
9 γMsh/R1,2. The damping coeficcient

−D1,2 = αη1,2G, where η1,2 = 1
2 ln

(
R1,2
2le

)
+ 3

8 . Here, le =
√

A
2πMs

is the exchange length given

by the exchange stiffness A and the saturation magnetization Ms. Assuming a uniform

perpendicularly magnetized polarizer layer, FSTT = πγaJMsh(X1,2 × ez) = κ(X1,2 × ez)

[3], where the spin torque coefficient is given by aJ = ~pzJ/(2|e|hMs), ~ is the Planck‘s

constant, J is the current density and e is the elementary charge. The interaction between the

neighboring vortices is summarized by a dipolar coupling term given by Fint = −µ(d)X2,1,

where µ(d) describes the interaction strength as a function of the separation d between the

STO. A study of the dipolar interaction between neighboring vortices has been performed

by Araujo et al. [4]. Starting from a macrodipole approximation for the dipolar energy

between two magnetic dipoles µ1 and µ2, they show that the average interaction energy can

be written as 〈Wint〉 = µeffC1C2X1X2. Here, Ci and Xi are the chirality and gyration radius

respectively and µeff is given by:

µeff = 3π
2χ2R2h2

2d3 , (S2)

where χ = 2/3, R is the disc radius, h the thickness and d is the inter-disc spacing. In polar

coordinates (X1,2 cos θ1,2, X1,2 sin θ1,2), the coupled equations for two neighboring vortices

from Eq. (S1) can be written as:

Ẋ1

X1
= αη1θ̇1 −

κ
G

+ µX2

GX1
sin(θ1 − θ2) (S3)
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θ̇1 = −k(X1)
G
− αη1

Ẋ1

X1
− µX2

GX1
cos(θ1 − θ2) (S4)

Ẋ2

X2
= αη2θ̇2 −

κ
G
− µX1

GX2
sin(θ1 − θ2) (S5)

θ̇2 = −k(X2)
G
− αη2

Ẋ2

X2
− µX1

GX2
cos(θ1 − θ2) (S6)

One can then show that after a few approximations, the set of equations reduce to that

of two coupled phase oscillators. We assume the same gyration radius for both vortices,

X2 = X1, and that the steady state vortex gyrotropic radius is close to its mean value, X0.

This means that Eq. (S3) can be set to zero, as Ẋ1 = 0, and we obtain:

θ̇1 = κ
αη1G

− µ

αη1G
sin(θ1 − θ2) (S7)

Setting Ẋ1 = 0 and X2 = X1 also in Eq. (S4):

θ̇1 = −k(X1)
G
− µ

G
cos(θ1 − θ2) (S8)

We then add Eqs. (S7) and (S8) to obtain:

θ̇1 = κ − αη1k(X1)
2αη1G

− µ

2αη1G
[sin(θ1 − θ2) + αη1 cos(θ1 − θ2)] . (S9)

Following the same procedure for vortex nr. 2 and assuming low damping, αη << 1, we

obtain the equations for two coupled phase oscillators θ1 and θ2:

θ̇1 = ω1 + λ sin(θ2 − θ1), (S10)

θ̇2 = ω2 + λ sin(θ1 − θ2), (S11)

Where ω1,2 = κ−αη1,2k(X1,2)
2αη1,2G

and λ = µ
2αη1,2G

. The functional form of Eqs. (S10)-(S11) is the

same as that of the well known Kuramoto model, which is a generalization for the case of an

ensemble of weakly coupled phase oscillators. Considering the interaction between several

STO, determined by the interaction strength λij between oscillators θi and θj, we obtain a
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Kuramoto model for a population of N interacting oscillators:

dθi
dt

= ωi +
∑
j 6=i

λij sin(θj − θi). (S12)

Vortex annihilation processes

Starting from a disordered initial condition, a number of vortices with n = ±1 is created

initially, depending on the array size. Thermal fluctuations of sufficient amplitude could

give rise to vortex unbinding, where free vortices proliferate due to thermal fluctuations. As

we do not consider thermal effects, such vortex unbinding is not observed this in our model.

Since a vortex is topological, it exists until it meets and annihilates with a vortex of opposite

polarity, and the transition from disordered to a synchronized state is governed by vortex

annihilation processes.
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FIG. S1. a) Order parameter ρ vs. time for an interaction strength of λ = 25 MHz for a system of 50× 50
oscillators, starting from a disordered initial state. b) Snapshots of phase and correlation maps at various
timesteps (increasing time from left to right), showing the vortex annihilation processes.
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In Fig. S1a we show the order parameter ρ vs. time, starting from a disordered initial state

for a system of 50 × 50 oscillators using the Kuramoto model. The observed jumps in the

order parameter correspond to the annihilation of vortices of charge ±1. This process is also

illustrated in the panels of Fig. S1b, where we show snapshots of the phase map θi and local

correlation βi at various timesteps (with time increasing from left to right). The location

and polarity (n = ±1) of the vortices can be seen in the phase maps in the upper panels.

The position of the vortex core is identified by areas of low correlation (β → 0) between

neighboring oscillators, seen as the black spots in the lower panels. As time progress the

vortices annihilate, resulting in a globally synchronized and phase coherent state.

Correlation function and correlation length

The spatial correlation function is given asymptotically by: 〈θ(r) ·θ(R)〉 ∝ e−|r−R|/ξ/|r−R|η.

The brackets indicate the correlation between oscillators at positions r and R, and the

correlation length ξ is obtained by averaging over all positions r and R in the array. An

example of the decay of spatial correlations is shown in Fig. S2 for a system of 50 ×

50 oscillators using the Kuramoto model, showing a dominating exponential decay in the

correlations for increasing distances between the oscillators. The spacing |r − R| is here

expressed in terms of the number of lattice spacings between the oscillators. From the decay

of the correlation function, we can then extract the correlation length ξ.
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FIG. S2. Correlation as a function of oscillator spacing, |r−R| for a system of 50× 50 oscillators using the
Kuramoto model.
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