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 2 

Abstract 1 

 2 

The construction of microbial cell factories à la carte largely depends on specialized molecular biology 3 

and synthetic biology tools, needed to re-program bacteria for modifying their existing functions or for 4 

bestowing them with new-to-Nature tasks. In this protocol, we document the use of a series of broad-5 

host-range mini-Tn5 vectors for the delivery of gene(s) into the chromosome of Gram-negative bacteria 6 

and the generation of saturated, random mutagenesis libraries for studies of gene function. The 7 

application of these tailored mini-transposon vectors, which could be also used for chromosomal 8 

engineering of a wide variety of Gram-negative microorganisms, is demonstrated in the platform 9 

environmental bacterium Pseudomonas putida KT2440. 10 

 11 
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 3 

1. Introduction 1 

 2 

Mini-transposon vectors allow for the stable insertion of foreign DNA into the chromosome of many 3 

types of Gram-negative bacterial targets (1,2). Tn5-derived elements (3) present clear advantages over 4 

the use of their plasmid-based counterparts for the random interruption of gene(s), or for the 5 

introduction and expression of heterologous genes into several bacterial species. These features 6 

include, but are not limited to, (i) maintenance of the corresponding transgenes without antibiotic 7 

selective pressure, (ii) long-term stability of the constructs and re-usability of the functional DNA parts, 8 

and, furthermore, (iii) mini-Tn5–based vectors admit cloning and chromosomal delivery of considerably 9 

long DNA fragments (which would be cumbersome to manipulate in other DNA delivery tools). As the 10 

transposase gene tnpA is lost following each transposition event (4,5), one added value of mini-Tn5 11 

vectors is the possibility to use them recursively in the same microbial host, provided that they bear 12 

different selection markers. Since the TnpA transposase tends to act in cis (6), it promotes the insertion 13 

of DNA sequences borne by the plasmid irrespective of any previous DNA insertions in a given 14 

chromosome. These features allow for the delivery and integration of various DNA cargoes into the 15 

same target genome. However, the original layout of such mini-transposon vectors was not exempt of 16 

downsides. One of them is the unavoidable inheritance of long, non-functional DNA fragments 17 

stemming from the intricate cutting-and-pasting DNA methods available at the time when the original 18 

vectors were constructed. These procedures were also afflicted by the presence of an excessive and 19 

inconvenient number of non-useful restriction sites scattered along the plasmids, and the suboptimal 20 

transposition machinery encoded therein. 21 

 22 

Martínez-García et al. (7) thoroughly revisited the original mini-Tn5 transposon vector concept. The 23 

most attractive features of the mini-Tn5–aided mutagenesis procedure have been enhanced while 24 

each of its drawbacks [identified along >20 years of use in many independent laboratories worldwide 25 

(8)] has been eliminated. The functional modules that constitute the vector (including the mosaic 26 

elements, MEs) have been edited to minimize the length of the corresponding DNA fragments, 27 

improving their functionality and making them entirely modular and exchangeable. The final product 28 

was the entirely synthetic plasmid construct termed pBAM1 (born-again mini-transposon). This design 29 

was soon followed by a series of synthetic, modular broad-host-range mini-Tn5 plasmids derived from 30 

pBAM1. These vectors, termed pBAMDs vectors (9), enable the possibility of easy cloning and 31 
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subsequent chromosomal insertion of functional DNA cargoes with three different and interchangeable 1 

antibiotic resistance markers. Another set of pBAM1-derivative plasmids, termed pBELs and pBEXs 2 

vectors (10), were designed to exploit the possibility of delivering DNA cargoes under the control of 3 

regulated gene expression modules (i.e., LacIQ/Ptrc in pBELs vectors or XylS/Pm in pBEXs vectors). 4 

Furthermore, the antibiotic-resistance determinants in the mini-transposon modules of the pBELs and 5 

pBEXs vectors can be removed by means of the FLP recombinase from Saccharomyces cerevisiae 6 

(11). In all the cases presented above, the functional parts of the mini-transposon vectors can be easily 7 

swapped by digestion with the appropriate restriction enzymes, allowing for the easy shuffling of each 8 

DNA element as needed. Finally, the multiple cloning site of all the mini-transposon vectors share the 9 

same set of restriction sites, which eases the subcloning of DNA cargoes by making them compatible 10 

with plasmids from the Standard European Vector Architecture (SEVA) initiative (12,13). 11 

 12 

The expansion of the available mini-transposon tools is a step forward in our efforts to purposely 13 

engineer microbial cell factories, mainly based on environmental bacteria. Pseudomonas putida 14 

KT2440 is a robust host for strong oxidative bioreactions (14-16), it exhibits the GRAS (i.e., generally 15 

recognized as safe) status (17), and it has the inherent ability to grow on a wide range of (often, 16 

difficult-to-degrade) substrates (18-21). Re-wiring its extant genetic features to extend its metabolic 17 

potential –or even introducing new-to-Nature functions– is a task continuously undergoing in our 18 

laboratory. In the present protocol, we detail all the experimental steps needed to either (i) construct 19 

random mutant libraries by mini-Tn5 insertions to explore gene-function relationships, or (ii) deliver a 20 

DNA cargo into a target chromosome, with the option of FLP-catalyzed removal of the antibiotic 21 

resistance determinant. 22 

 23 

2. Materials 24 

 25 

2.1. Bacterial strains and plasmids 26 

 27 

The bacterial strains and plasmids and vectors used in this protocol are described in Table 1 and 2, 28 

respectively.  29 
  30 



 5 

2.2. Culture media and reagents preparation  1 

 2 

Unless otherwise stated, all the culture medium components and chemicals described below were 3 

purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). Whenever appropriate, please follow all 4 

waste disposal regulations when disposing waste materials. 5 

 6 

1.  LB medium is used as the nutrient-rich culture medium in routine cultivations of both P. putida and 7 

Escherichia coli. The components of LB medium (10 g of tryptone, 5 g of yeast extract, and 5 g of 8 

NaCl) were dissolved and brought up to 1 L with deionized H2O, and sterilized by autoclaving (20 9 

min at 121°C and 1.05 kg/cm2). This culture medium can be indefinitely stored at room 10 

temperature protected from light. 11 

2.  Nutritional selection is employed as a general strategy to counter-select for P. putida. M9 minimal 12 

medium, supplemented with sodium citrate at 0.2% (w/v) as the sole carbon source (see Note 1) 13 

and MgSO4 at 2 mM, is used for this purpose since E. coli cannot grow on citrate. A 10× stock of 14 

M9 salts is prepared by dissolving 42.5 g of Na2HPO4·2H2O, 15 g of KH2PO4, 2.5 g of NaCl, and 5 15 

g of NH4Cl in deionized H2O up to a final volume of 500 mL. A 20% (w/v) sodium citrate solution is 16 

prepared by dissolving 20 g of anhydrous sodium citrate in deionized H2O up to 100 mL, and a 1 M 17 

MgSO4 solution is prepared by dissolving 12 g of anhydrous MgSO4 in deionized H2O up to 100 18 

mL. All these solutions are separately sterilized by autoclaving as indicated above, and can be 19 

indefinitely stored at room temperature. Components are mixed and diluted as appropriate with 20 

deionized H2O to prepare M9 minimal medium immediately prior to use. 21 

3.  To elaborate solid media [containing 1.5% (w/v) agar], add 15 g of bacteriological agar (e.g., 22 

BactoAgarTM; Becton-Dickinson Diagnostics Co., Sparks, MD, USA) to 1 L of LB medium and 23 

autoclave it as indicated above. In the case of M9 minimal medium plates, prepare a 1.6% (w/v) 24 

agar suspension in deionized H2O, autoclave it separately from the other medium stock solutions, 25 

and then mix an adequate amount of this suspension with the rest of the M9 minimal medium 26 

components to reach a final agar concentration of 1.4% (w/v). Antibiotics and other additives are 27 

added when the molten agarized medium reaches ca. 50°C. Distribute the agarized culture media 28 

in plastic Petri dishes (25 mL of molten culture medium per 90-mm Petri dish), and let the medium 29 

solidify at room temperature. Culture medium plates are prepared freshly immediately prior to use, 30 

but they can be stored at 4°C (ideally for no longer than 1 week, especially if antibiotics were 31 
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added to the agarized culture medium). 1 

4.  All the antibiotics needed for bacterial selection in this protocol are prepared as concentrated stock 2 

solutions in deionized H2O at the concentrations indicated, sterilized by filtration (0.45 µm), and 3 

stored at –20 ºC for several months (see Note 2). The concentration of the stock solutions is as 4 

follows: ampicillin (Ap), 150 mg/mL; kanamycin (Km), 50 mg/mL; streptomycin (Sm), 50 mg/mL; 5 

gentamicin (Gm), 10 mg/mL; and carbenicillin (Cb), 500 mg/mL. The chloramphenicol (Cm) stock 6 

solution is prepared at 30 mg/mL in 100% (v/v) ethanol. Unless indicated otherwise, all the 7 

antibiotic stock solutions are considered to be 1000× concentrated. 8 

5.  To prepare 1× phosphate-buffered saline (PBS; 8 mM Na2HPO4, 1.5 mM KH2PO4, 3 mM KCl, and 9 

137 mM NaCl, pH = 7.0), dissolve 1.44 g of Na2HPO4, 0.24 g of KH2PO4, 0.2 g of KCl, and 8 g of 10 

NaCl in 800 mL of deionized H2O, adjust the pH at 7.0 by dropwise addition of 6 N HCl, and bring 11 

the volume to 1 L with deionized H2O. Sterilize this buffer by autoclaving as indicated above, and 12 

store it at room temperature. 13 

6.  In order to obtain electrocompetent cells of P. putida, prepare a 300 mM sucrose solution by 14 

dissolving 10.27 g of sucrose in deionized H2O up to a final volume of 100 mL, sterilize by filtration 15 

(0.45 µm), and keep at room temperature. 16 

7.  To wash and prepare bacterial cells for mating, dilute the 1 M MgSO4 solution described above 17 

with sterile deionized H2O to obtain a 10 mM MgSO4 solution. 18 

8.  To maintain bacteria as frozen stocks, use 20% (v/v) glycerol in LB medium. Prepare this solution 19 

by adding 118 mL of 85% (v/v) glycerol to 382 mL of LB medium, sterilize by filtration (0.45 µm), 20 

and keep this solution at room temperature protected from light. 21 

 22 

2.3. DNA and general molecular biology techniques 23 

 24 

1.  To purify plasmids from bacteria, we normally use the QIAprep Spin MiniprepTM kit (Qiagen Inc., 25 

Valencia, CA, USA) by following the manufacturer's instructions. 26 

2.  Colony PCR is routinely used as the source of template DNA for amplifications. Fresh bacterial 27 

colonies (i.e., incubated for <24 h) are taken straight from the agar plate with a sterile toothpick 28 

and dispersed into the PCR reaction tube containing deionized H2O (see Note 3). 29 

3.  GoTaqTM Flexi DNA polymerase (Promega Corp., Madison, WI, USA) is routinely used for PCR 30 

amplifications; however, any other DNA polymerase can be used for this purpose by following the 31 
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specific manufacturer's indications. 1 

4.  Prepare a 10 mM stock solution of deoxynucleotide triphosphates (dNTPs) containing equimolar 2 

amounts of dATP, dCTP, dGTP, and dTTP in milliQ water (resistivity ≥18 MΩ/cm at 25°C); and 3 

store the solution at –20 ºC for up to 8-12 months. 4 

5.  The NucleoSpinTM Gel and PCR clean-up kit (Macherey-Nagel GmbH & Co. KG, Düren, Germany) 5 

or the ExoSAP-ITTM PCR product cleanup kit (USB Molecular Biology, Affymetrix Ltd., Santa Clara, 6 

CA, USA) are used for purification of PCR products. 7 

6. Agarose gel electrophoresis is routinely used to identify, quantify, and purify DNA fragments. Basic 8 

protocols are given elsewhere (22), and have to be adjusted for each specific purpose depending 9 

on the application. 10 

 11 

2.4. Primers used to localize and sequence the mini-transposon insertion point 12 

 13 

All the oligonucleotides needed for arbitrary PCR amplifications are indicated below, along with the 14 

mini-transposon vectors used for the chromosomal insertions. Primers are purchased from Sigma-15 

Aldrich Co., as desalted, lyophilized DNA, and resuspended in the appropriate volume of milliQ H2O to 16 

obtain 5 µM primer solutions. These solutions are aliquoted and stored at –20°C for several months. 17 

 18 

2.4.1. Primers for arbitrary PCR amplifications  19 

 20 

Common to all vectors (i) ARB6: 5'-GGC ACG CGT CGA CTA GTA CNN NNN NNN NNA CGC C-3'. 21 

   This primer is used in arbitrary PCR, round 1 (23). In this sequence, N  22 

   represents any nucleotide. 23 

   (ii) ARB2: 5'-GGC ACG CGT CGA CTA GTA C-3'. This primer is used in  24 

   arbitrary PCR, round 2 (23).  25 

 26 

2.4.2. Primers specific to the ME-O end of each mini-transposon 27 

 28 

pBAMD1-2  (i) ME-O-Km-Ext-F: 5'-CGT CTG TTT CAG AAA TAT GGC AT-3'. This primer 29 

   is used  in arbitrary PCR, round 1 (9). 30 

   (ii) ME-O-Km-Int-F: 5'-ATC TGA TGC TGG ATG AAT TTT TC-3'. This primer 31 
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   is used  in arbitrary PCR, round 2, and for sequencing to map the integration 1 

   point (9). 2 

 3 

pBAMD1-4  (i) ME-O-Sm-Ext-F: 5'-CTT GGC CTC GCG CGC AGA TCA G-3'. This primer 4 

   is used  in arbitrary PCR, round 1 (9). 5 

   (ii) ME-O-Sm-Int-F: 5'-CAC CAA GGT AGT CGG CAA AT-3'. This primer is 6 

   used in  arbitrary PCR, round 2, and for sequencing to map the integration 7 

   point (9). 8 

 9 

pBAMD1-6  (i) ME-O-Gm-Ext-F: 5'-GCA CTT TGA TAT CGA CCC AAG T-3'. This primer 10 

   is used in arbitrary PCR, round 1 (9). 11 

   (ii) ME-O-Gm-Int-F: 5'-TCC CGG CCG CGG AGT TGT TCG G-3'. This primer 12 

   is used  in arbitrary PCR, round 2, and for sequencing to map the integration 13 

   point (9). 14 

 15 

pBELG and pBELK (i) pBEL-ME-O-Ext-F: 5'-CTG CGA CAT CGT ATA ACG TTA CTG GTT TC-3'. 16 

   This primer is used in arbitrary PCR, round 1 (10). 17 

   (ii) pBEL-ME-O-Int-F: 5'-GGG CGC TAT CAT GCC ATA CCG-3'. This primer 18 

   is used in arbitrary PCR, round 2 (10). 19 

 20 

pBEXG and pBEXK (i) pBEX-ME-O-Ext-F: 5'-CTT CTT ACA TTT GGG ACG CTT CGC TG-3'.  21 

   This primer is used in arbitrary PCR, round 1 (10). 22 

   (ii) pBEX-ME-O-Int-F: 5'-CCT TCC GAC ACC CTG CGT CAA TG-3'. This  23 

   primer is used in arbitrary PCR, round 2 (10). 24 

 25 

2.5.3. Primers specific to the ME-I end of each mini-transposon 26 

 27 

pBAMD1-2  (i) pBAM-ME-I-Ext-R: 5'-CTC GTT TCA CGC TGA ATA TGG CTC-3'. This 28 

   primer is used in arbitrary PCR, round 1 (7). 29 

   (ii) pBAM-ME-I-Int-R: 5'-CAG TTT TAT TGT TCA TGA TGA TAT A-3'. This 30 

   primer is used in arbitrary PCR, round 2, and for sequencing to map the  31 



 9 

   integration point (7). 1 

 2 

pBAMD1-4  (i) ME-I-Sm-Ext-R: 5'-ATG ACG CCA ACT ACC TCT GAT A-3'. This primer 3 

   is used in arbitrary PCR, round 1 (9). 4 

   (ii) ME-I-Sm-Int-R: 5'-TCA CCG CTT CCC TCA TGA TGT T-3'. This primer 5 

   is used in arbitrary PCR, round 2, and for sequencing to map the integration 6 

   point (9). 7 

 8 

pBAMD1-6  (i) ME-I-Gm-Ext-R: 5'-GTT CTG GAC CAG TTG CGT GAG-3'. This primer 9 

   is used in arbitrary PCR, round 1 (9). 10 

   (ii) ME-I-Gm-Int-R: 5'-GAA CCG AAC AGG CTT ATG TCA-3'. This primer  11 

   used in arbitrary PCR, round 2, and for sequencing to map the integration  12 

   point (9). 13 

 14 

2.4.4. Primers specific to the mini-transposon vector backbone 15 

 16 

Oligonucleotides annealing to specific sequences in SEVA vectors (12,13) are routinely used to detect 17 

the presence of the Tn5-bearing mini-transposon vector backbone in transconjugant cells. If the 18 

plasmid is present in such cells, a PCR amplification using primers PS4 [5'-CCA GCC TCG CAG AGC 19 

AGG-3'] and PS5 [5'-CCC TGC TTC GGG GTC ATT-3'] generates a DNA amplicon of 225 bp. 20 

 21 

2.4.5. Primers to confirm elimination of antibiotic resistances by ectopic expression of the FLP 22 

recombinase 23 

 24 

When employing the specialized pBELs or pBEXs mini-Tn5 vectors (10), the presence or the absence 25 

of antibiotic resistance genes can be easily assessed by colony PCR with primers cFRT-Ab-R (5'-GAG 26 

AAT AGG AAC TTC GGA ATA GG-3') in combination with either cKm-F (5'-CGG AAT GCT ATG CAG 27 

ACG-3', when using pBELK or pBEXK) or cGm-F (5'-CCC GTA TGC CCA ACT TTG-3', when using 28 

pBELG or pBEXG). The corresponding expected amplicon lengths are 736 bp (for pBELG and pBEXG) 29 

and 535 bp (for pBELK and pBEXK). 30 

 31 



 10 

2.5. Other laboratory material and equipment and standard procedures 1 

 2 

1.  Bacteria are routinely grown aerobically in 10-mL plastic test tubes (e.g., 16×100 mm, round 3 

bottom tubes; E&K Scientific Products Inc., Santa Clara, CA, USA) containing 3 mL of the 4 

corresponding liquid culture medium. P. putida KT2440 is incubated at 30°C and E. coli strains are 5 

incubated at 37°C with rotary agitation at 170 rpm. 6 

2.  For electroporation, 2-mm gap width cuvettes (e.g., Gene PulserTM/Micropulser™ electroporation 7 

cuvettes; Bio-Rad Laboratories Inc., Hercules, CA, USA) and a bacterial electroporation system 8 

(e.g., MicroPulser™; Bio-Rad Laboratories Inc.) are used. 9 

3.  For filter-assisted bacterial matings, we recommend the use of mixed cellulose esters filter disks of 10 

0.45-µm pore-size and 25-mm diameter (EMD Millipore Corp., Billerica, MA, USA), Millipore 11 

SX0002500 SwinnexTM Syringae filter holders for 25-mm diameter filters, 20-mL Luer-lockTM tip 12 

syringes (Becton-Dickinson Diagnostics Co.), and blunt-end filter forceps (e.g., XX6200006P 13 

forceps; EMD Millipore Corp.) to manipulate the filter discs. 14 

4.  Thermocycler (e.g., T100TM Thermal Cycler; Bio-Rad Laboratories Inc.). 15 

5.  Sterile, round plastic Petri dishes (e.g., NuncTM Lab-TekTM Petri dishes; Thermo Fisher Scientific 16 

Inc., Waltham, MA, USA), either of regular size (i.e., diameter = 90 mm) or bigger plates (i.e., 17 

diameter = 140 mm), for screening of colonies or during the generation of random mutant libraries. 18 

6.  To spread bacteria onto agar plates, use 5-10 sterile 3-mm diameter glass beads (VWR 19 

International, Radnor, PA, USA). Once glass beads are used, immediately dispose them off into a 20 

flask with 70% (v/v) ethanol. To recover the glass beads for subsequent use, rinse them twice with 21 

deionized H2O, let them dry overnight at room temperature, and sterilize the beads by autoclaving. 22 

 23 

3. Methods 24 

 25 

The mini-transposon vectors described in the present protocol have two principal uses: (i) the 26 

generation of libraries of random mutants to correlate a particular and observable phenotype to a 27 

specific gene (1,7,8,24); or (ii) the introduction of heterologous gene(s) randomly into the chromosome 28 

of a target Gram-negative bacterium (2,9,10). In the first application, a typical random mutagenesis 29 

protocol involves three steps: (i) delivery of the non-replicative plasmid bearing the mini-transposon 30 

into a recipient strain, (ii) selection of transconjugants carrying the transposon, and (iii) storing the 31 
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library for future uses or directly identifying the insertion point of the mini-transposon in the genome of 1 

selected recipient cells. In the second case, when the objective is to introduce heterologous DNA into a 2 

bacterial genome, a previous step is included in which the gene (or genes) of interest has to be cloned 3 

into the multiple cloning site of the mini-Tn5 delivery plasmid. Steps (i), (ii), and (iii) are then followed 4 

as described in the specific procedure below. Finally, when using any of the pBELs or pBEXs mini-Tn5 5 

plasmids (10) to deliver a DNA cargo under a controlled expression system, a final extra step is added 6 

ad libitum to remove the antibiotic marker of the mini-Tn5 cassette. 7 

 8 

The first step of the protocol (i.e., introduction of the mini-transposon plasmid into the recipient strain), 9 

could be done either by mating or electroporation. Specific protocols to perform either delivery 10 

technique are described below, and a specific application example, in which plasmid pBAMD1-2 (9) 11 

was employed to generate a library of random insertion mutants of P. putida KT2440, is discussed. 12 

The main steps of the protocol are summarized in Fig. 1. 13 

 14 

3.1. Mini-Tn5 delivery into P. putida by conjugation 15 

 16 

Whenever possible, we recommend to use this delivery method since it is more efficient than 17 

electroporation of plasmids. Conjugation requires cell contact to transfer DNA from a donor cell to a 18 

recipient strain. To establish such intimate contact, donor bacteria produce the conjugative pilus (i.e., a 19 

type IV secretion system) that ultimately retracts, bringing both cells together. A number of proteins of 20 

the donor bacterial cell form a bridge between both donor and recipient cells forming a mating pair (i.e., 21 

Mpf proteins, for mating pair formation). Then, the relaxosome (i.e., a complex formed by a relaxase 22 

and auxiliary proteins) recognizes the origin of transfer (oriT) sequence and move one strand of the 23 

target DNA to the recipient cell [for a review on the biology behind this process, please see Zechner et 24 

al. (25) and Ilangovan et al. (26) and references therein]. 25 

 26 

To perform a conjugation experiment, one just needs to bring together the donor cell (i.e., bearing the 27 

mini-transposon plasmid), the recipient cell (i.e., the target bacterium), and a helper bacterial strain to 28 

assist and catalyze the mating process. The mating helper is an E. coli strain that provides the 29 

conjugation machinery. Typically, this molecular machinery is derived from the IncPα plasmid RP4 30 

(also known as RK2 or RP1), and involves the mobilization (mob) and transfer (tra) functions (27,28), 31 
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supplied in trans. There are two basic types of helper strains, which express the mob/tra functions 1 

either (i) in a plasmid (e.g., E. coli HB101 carrying plasmid pRK600; Table 1 and 2), or (ii) integrated in 2 

the genome (e.g., E. coli S17-1 λpir, E. coli SM10 λpir, or E. coli MFD λpir; Table 1). When using the 3 

former type of helper E. coli strain, the user needs to include three bacterial strains in the mating 4 

process (i.e., setting up a triparental mating). A triparental mating offers the possibility of changing the 5 

donor E. coli strain (which should contain the pir gene as a λpir lysogen, e.g., E. coli CC118 λpir or 6 

DH5α λpir) in order to favor counter selection of transconjugants as needed. In the case of performing 7 

a biparental mating, the protocol is exactly the same as per the triparental mating procedure, but using 8 

only two bacterial strains in the mixture (i.e., the recipient strain and the mobilizing donor cell, that in 9 

addition to the mini-Tn5 plasmid also has the mob/tra functions integrated in the genome). 10 

 11 

As indicated above, in the present protocol we describe a triparental mating using P. putida KT2440 as 12 

the recipient strain and pBAMD1-2 as the mini-Tn5 delivery plasmid (9). In order to properly generate a 13 

random mutagenesis library when working with other recipient bacterial species, it is important to 14 

perform several previous tests to determine the optimal experimental conditions for successful DNA 15 

transfer, since the expected number of transconjugant colonies depends on several factors such as the 16 

nature of the recipient species, the initial amount of recipient cells, the mixing ratio of recipient to donor 17 

cells, and the mating incubation time. With the help of these prior experiments, the user should be able 18 

to set the appropriate experimental conditions and to estimate the number of plates needed to obtain a 19 

saturated library. 20 

 21 

1.  To prepare the mating mixture, grow the following strains overnight as indicated:  22 

 (i) Donor: E. coli CC118 λpir (carrying plasmid pBAMD1-2) grown in LB medium added with Ap at 23 

150 µg/ml. Incubate for 18 h at 37ºC with rotary agitation. These cells bear the mobilizable and 24 

non-replicative plasmid with the Tn5 mini-transposon (see Note 4). 25 

 (ii) Mating helper: E. coli HB101 (carrying plasmid pRK600) grown in LB medium added with Cm 26 

at 30 µg/ml. Incubate for 18 h at 37ºC with rotary agitation. This bacterium provides the plasmid 27 

with the mobilization (mob) and transfer (tra) functions, encoded in plasmid pRK600. 28 

 (iii) Recipient: P. putida KT2440 grown in LB medium at 30ºC with rotary agitation (see Note 5). 29 

2.  Measure the optical density at 600 nm (OD600) of the bacterial cultures and adjust the bacterial 30 

suspensions to an OD600 of 1 with PBS in a final volume of 1 mL in a 1.5-mL Eppendorf tube. 31 
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3.  Centrifuge the cultures at 7200×g for 2 min at room temperature, discard the supernatant, and re-1 

suspend the sediment in 1 mL of 10 mM MgSO4 to wash the cells. 2 

4.  Mix the three bacterial suspensions in a 1:1:1 ratio (i.e., 150 µL of each suspension) in a test tube 3 

containing 4.55 mL of 10 mM MgSO4. The final OD600 should be ≈ 0.03 (see Note 6). 4 

5.  Pass the 5-mL cell suspension through a filter disk (0.45-µm pore-size, 25-mm diameter) using a 5 

20-mL sterile syringe (see Note 7). Discard the flow-through and laid the filter, in sterile conditions, 6 

onto an LB medium agar plate (cells facing up). Incubate the plate containing the filter (lid facing 7 

up) at 30 ºC during the desired mating time (4 h, 6 h, or even 24 h) (see Note 8). 8 

6. Gently take the filter from the agar plate with tweezers [blunt-end filter forceps, previously sterilized 9 

by quickly dipping them in 70% (v/v) ethanol and flaming] and place it in a 10-mL test tube 10 

containing 5 mL of 10 mM MgSO4. 11 

7.  Re-suspend the cells in the mating mixture from the filter by vigorous vortexing (at least for 1 min) 12 

and plate appropriate dilutions (see Note 9) onto M9 minimal medium plus citrate at 0.2% (w/v) 13 

and Km at 50 µg/mL (i.e., selective culture medium for transconjugant P. putida cells harboring the 14 

mini-transposon) (see Notes 10 and 11). 15 

 16 

3.2. Mini-Tn5 delivery into P. putida by electroporation 17 

 18 

If no other choice is available (or just for cases when a DNA cargo is to be integrated into a target 19 

genome, where higher frequencies are not that important as they are for the construction of mutant 20 

libraries) then electrotransformation is the preferred alternative, mainly due to the fastness and 21 

simplicity of the protocol thereof. This technique is based in the transient permeabilization of the cell 22 

membrane, that allows for the entry of DNA after applying a high electric field (24,29,30). 23 

 24 

1.  Inoculate a 100-mL Erlenmeyer flask containing 20 mL of LB medium with P. putida KT2440 from 25 

a fresh LB medium agar plate (or directly from a frozen stock, by scrapping the surface of the stock 26 

with a sterile toothpick). Let the cells grow overnight (e.g., 18-24 h) aerobically (170 rpm) at 30ºC.  27 

2.  Transfer the saturated culture to a 50-mL Falcon tube and centrifuge it at 3220×g for 10 min at 28 

room temperature. 29 

3.  Discard the supernatant, add 10 mL of 300 mM sucrose and softly resuspend the cell sediment; 30 

then, centrifuge the suspension at 3220×g for 10 min at room temperature. 31 
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4.  Remove the supernatant and add 1 mL of 300 mM sucrose, resuspend the cells, and transfer the 1 

suspension to a 2-mL sterile Eppendorf tube. Centrifuge at 7200×g for 3 min at room temperature. 2 

5.  Remove the supernatant, add 800 µL of 300 mM sucrose, resuspend the cells, and centrifuge the 3 

suspension at 7200×g for 3 min at room temperature. Repeat this washing step once more. 4 

6.  Remove the supernatant and add 500 µL of 300 mM sucrose to resuspend the sediment and to 5 

obtain a concentrated cell suspension (after the final resuspension step, the concentration of 6 

electrocompetent bacteria should be ≈ 5×1010 cells/mL). 7 

8.  Transfer 100 µL of the electrocompetent cell suspension to a 1.5-mL sterile Eppendorf tube and 8 

add ≈ 500 ng of plasmid pBAMD1-2 (in < 10 µL). Pipet the plasmid DNA-cell suspension mix to a 9 

2-mm gap width electroporation cuvette. Care has to be taken to avoid the formation of bubbles at 10 

this step, which would reduce the overall efficiency of the electroporation process. 11 

9.  Place the cuvette in the MicroPulserTM apparatus, set the electroporation program to EC2, and 12 

proceed to electroporate. With these working conditions and using an optimum electric pulse (a 13 

single pulse of 2.5 kV with a field strength of 12.5 kV/cm), a time constant (τ) between 4 and 5 ms 14 

should be obtained. 15 

10.  Immediately after the electric shock, add 900 µL of LB medium to the cuvette and then transfer the 16 

cells to a sterile 1.5-mL Eppendorf tube. Incubate the cells aerobically for 3 h at 30 ºC. 17 

11.  Spread dilutions of the cell suspension obtained in the step above onto LB medium agar plates 18 

containing Km at 50 µg/mL. Since no E. coli cells are used in this procedure, there is no need for 19 

nutritional selection as performed in mating experiments. 20 

 21 

3.3. Isolation and mapping the mini-transposon genomic insertion landing sites 22 

 23 

1. If specifically looking for particular phenotypes, select interesting colonies based on a trait (e.g., 24 

morphology or color) different from that observed in the wild-type cells, and streak them with a 25 

sterile toothpick onto both (i) M9 minimal medium plates containing 0.2% (w/v) citrate and 50 26 

µg/mL Km, and (ii) M9 minimal medium plates containing 0.2% (w/v) citrate and 500 µg/mL Ap. 27 

This process is aimed to differentiate between genuine transposition events (i.e., KmR colonies) 28 

from spurious mini-Tn5 plasmid co-integration incidents (i.e., KmR and ApR colonies). Incubate the 29 

plates overnight at 30ºC. 30 

2. Select KmR and ApS clones. Also, use colony PCR amplifications with oligonucleotides PS4 and 31 
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PS5 to confirm the absence of the delivery plasmid backbone. 1 

3. Re-streak selected colonies several times onto M9 minimal medium plates containing 0.2% (w/v) 2 

citrate and 50 µg/mL Km to make sure of working with pure isolated clones.  3 

5. Make a frozen stock in 20% (v/v) glycerol in LB medium of the selected mutants and store the 4 

resulting stocks at –80 ºC. Bacterial frozen stocks can be prepared by growing the cells of interest 5 

onto LB medium plates (with the appropriate antibiotics as necessary) overnight, and adding 2 mL 6 

of 20% (v/v) glycerol in LB medium thereafter. Cells are gently scrapped from the surface by using 7 

a sterile glass rod (i.e., a Drigalski spatula). One mL of the resulting suspension is then transferred 8 

into a cryotube (e.g., a 1.8-mL NuncTM CryoTubesTM cryogenic vial, round bottom). Cells can be 9 

stored at –80°C under these conditions for several years without significant loose of viability, 10 

provided that the bacterial stock is not repeatedly frozen and thawed. 11 

6. Take mutant clones from the frozen stock and streak the cells onto LB medium agar plates 12 

containing 50 µg/mL Km. Grow the cells overnight at 30°C. 13 

7. In order to genetically analyze the transconjugants, firstly choose one of the mini-transposon ends 14 

(i.e., ME-I or ME-O) to determine its insertion place in the genome and then perform arbitrarily-15 

primed colony PCR (31). The DNA sequence of the primers needed to perform arbitrarily primed 16 

PCR amplifications when using the different mini-Tn5 plasmids is described in Section 2.4. (see 17 

Note 12). 18 

8. Prepare a PCR reaction mix on ice as per the following recipe. Note that most of the components 19 

indicated in the recipe are provided along with the commercial Taq DNA polymerase. Thoroughly 20 

vortex each concentrated solution before pipetting into the PCR reaction mix. 21 

 - 5 µL of 5× Green or Colorless GoTaqTM reaction buffer 22 

 - 1.5 µL of 25 mM MgCl2 23 

 - 0.5 µL dNTPs (10 mM) 24 

 - 0.5 µL of dimethyl sulfoxide (when performing amplifications from high G+C DNA templates) 25 

 - 1 µL of 5 µM arbitrary primer 26 

 - 1 µL of 5 µM mini-transposon primer (i.e., ME-I or ME-O) 27 

 - 0.2 µL of 5 U/µL GoTaqTM Flexi DNA polymerase 28 

9. Aliquot 15.3 µL of sterile deionized H2O into each PCR tube. 29 

10. Transfer fresh colonies from agar plates directly into the PCR reaction tube with a sterile toothpick. 30 

11. Distribute 9.7 µL of the PCR reaction mix into each PCR tube. 31 
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12. The primers needed for round 1 of the arbitrarily primed PCR amplification are ARB6 together with 1 

the external ME-I or ME-O primers (i.e., either ME-I-Ext or ME-O-Ext). 2 

13. The settings for round 1 of the arbitrarily primed PCR amplification are as follows:  3 

 - 5 min at 95ºC 4 

 - 30 s at 95ºC, 30 s at 30ºC, and 1.5 min at 72ºC (6×) 5 

 - 30 s at 95ºC, 30 s at 45ºC, and 1.5 min at 72ºC (30×) 6 

14.  Directly take 1 µL of the PCR after running round 1 (i.e., no need to check for positive 7 

amplifications in an agarose gel) and use it as the template for round 2 of arbitrary PCR. In this 8 

round, use primer ARB2 together with the internal ME-I or ME-O primers (i.e., either ME-I-Int or 9 

ME-O-Int) (see Note 13). Prepare the PCR reaction mix for round 2 as indicated in step 8 above. 10 

15. The settings for round 2 of the arbitrarily primed PCR amplification are as follows: 11 

 - 1 min at 95ºC 12 

 - 30 s at 95ºC, 30 s at 52ºC, and 1.5 min at 72ºC (30×) 13 

 - 4 min at 72ºC 14 

16.  Clean up the PCR product from the second round of the arbitrary PCR amplification using either 15 

the NucleoSpinTM Gel and PCR clean-up kit or the ExoSAP-ITTM PCR product cleanup kit. 16 

17.  Send the DNA product to sequence (32,33) with the ME internal primer used in round 2 of the 17 

arbitrary PCR. 18 

18. Analyze the sequencing results. Start by identifying the DNA sequence of the mini-transposon end 19 

(i.e., either ME-I or ME-O) (see Note 14), and then trim that part and select the rest of the DNA 20 

sequence. Use the BlastN program (34), available on-line at www.pseudomonas.com/blast/set 21 

(35), to map the precise genomic coordinates of the mini-transposon insertion (see Note 15). 22 

19. Once an interesting mutant is spotted, in which the phenotype-gene has been identified, it is 23 

always recommended to complement that mutant back with the identified gene(s) to rule out the 24 

occurrence of polar effects, since mini-Tn5 insertions are known to alter the expression of 25 

neighbouring genes (36,37). 26 

 27 

3.4. Eliminating the antibiotic resistance marker of specialized mini-Tn5 vectors 28 

 29 

When using any of the pBELs or pBEXs mini-Tn5 vectors (Table 2) to introduce heterologous DNA 30 

under the control of an expression system (i.e., LacIQ/Ptrc or XylS/Pm) (10), the genes conferring 31 

http://www.pseudomonas.com/�
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resistance to Km (aphA) or Gm (aacC1) in these transposons can be removed as they are flanked by 1 

FLP recombinase target (FRT) sequences (38). This layout offers the possibility to the user of 2 

eliminating that marker by means of ectopic expression of the FLP recombinase from Saccharomyces 3 

cerevisiae using plasmid pFLP2 (Table 2). The expression of the FLP recombinase in plasmid pFLP2 4 

is driven by the strong, rightward λ promoter (located within the FLP-cI857 intergenic region) and is 5 

regulated by the temperature-sensitive, cI857-encoded λ repressor (39). 6 

 7 

1. Select a transconjugant P. putida clone in which the insertion place of the mini-transposon has 8 

been successfully localized. 9 

2. Introduce plasmid pFLP2 (see Note 16) into this selected clone by either mating or electroporation 10 

as described above. 11 

3. Plate the cells on M9 minimal medium plates added with sodium citrate at 0.2% (w/v) and Cb at 12 

500 µg/mL. Incubate the plates overnight at 30ºC. If no discernible colonies are observed after this 13 

incubation period, try lowering the Cb concentration to 350 µg/mL. 14 

4. Select two or three independent colonies and re-streak them on M9 minimal medium plates added 15 

with sodium citrate at 0.2% (w/v) and Cb at 500 µg/mL. Incubate the plates overnight at 30ºC. 16 

5. Pick single colonies and check for Km or Gm sensitivity and Cb resistance in LB medium plates 17 

containing these antibiotics. Double check for the removal of the antibiotic gene by colony PCR 18 

using the primers described in Section 2.4.5. (i.e., cFRT-Ab-R and either cKm-F or cGm-F). Such 19 

PCR should give no amplification. If possible, use primers annealing within the gene(s) delivered in 20 

the mini-transposon cassette to conduct a colony PCR of the antibiotic-sensitive clone to make 21 

sure that the gene(s) of interest have been stably inserted into the target chromosome. 22 

6. Cure plasmid pFLP2 from the selected clone by performing several (at least three) cycles of 23 

growth in LB medium without any antibiotic. 24 

7. Plate cells onto M9 minimal medium plates added with 0.2% (w/v) sodium citrate. 25 

8. Pick single colonies and double re-streak onto M9 minimal medium plates added with 0.2% (w/v) 26 

sodium citrate plus Cb at 500 µg/mL. 27 

9. Select Cb-sensitive clones and store them as frozen stocks at –80ºC.  28 
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3.5. Preparing and storing a mutant library of mini-Tn5 insertions in P. putida 1 

 2 

After obtaining a random mutagenesis library, it is always useful to save it for later analyses. The steps 3 

below indicate the procedure to store the library after introduction of plasmid pBAMD1-2 in strain 4 

KT2440 as explained in the preceding sections. 5 

 6 

1. Spread dilutions of the triparental mating mixture onto selective agar plates in order to obtain an 7 

approximate number of ≈  3000 transconjugant colonies per plate in a regularly sized (i.e., 90 mm) 8 

Petri dish. Estimate the number of plates needed to obtain a non-saturated mutant library as 9 

indicated by Liberati et al. (37). 10 

2. Add 2.5 mL of LB medium containing 20% (v/v) glycerol to each overnight-incubated plate and, 11 

with the aid of an inoculation loop or a Drigalski spatula gently scrap the cells from the agar 12 

surface. Tilt the plate and collect 1-mL of the bacterial suspension with a micropipet (see Note 17). 13 

3. Mix the liquid content collected from all the plates, aliquot the resulting suspension in several 14 

cryotube vials, and store the library as a series of frozen stocks at –80ºC. 15 

 16 

4. Notes and troubleshooting 17 

 18 

1.  The appropriate culture medium composition has to be defined to select against E. coli 19 

donor/mating helper cells when using other bacterial species as the target strain. As a general rule, 20 

try to make use of specific carbon sources in which only the recipient strain grows or take 21 

advantage of the auxotrophies of the E. coli donor/mating helper cells [e.g., most of the laboratory 22 

E. coli strains need thiamine·HCl to grow (40)]. 23 

2.  Avoid repeated freezing and thawing of antibiotic solutions as they may lose effectiveness. We 24 

routinely distribute the stock solutions in 0.5-mL working aliquots that are used just a couple of 25 

times before discarding them. 26 

3.  If no amplification is obtained through colony PCR, genomic DNA can be isolated with a 27 

commercial kit (e.g., UltraCleanTM Microbial DNA isolation kit; MoBio Laboratories Inc., Carlsbad, 28 

CA, USA) and used as the template for amplifications. 29 

4.  It is very important to grow the donor bacterial strain in the presence of the antibiotic for which the 30 

plasmid backbone carries a resistance gene (e.g., Ap) to avoid inadvertent selection of transposed 31 
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donor cells. Note that there is a vector derived from pBAM1 which carries a promoterless gfp gene 1 

(plasmid pBAM1-GFP), which allows for the visual inspection of successful gene::gfp fusions after 2 

the transposition event. 3 

5.  In some cases, incubating the recipient strain at high temperatures (40ºC-42ºC) for a few hours 4 

before mating is known to increase the efficiency of the process by inactivating its endogenous 5 

DNA restriction machinery. 6 

6.  Different ratios of the bacterial strains to be included in the triparental mating could also be tested if 7 

needed (e.g., by increasing the amount of donor cells). To do this, simply adjust the volume of 8 

each bacterial suspension appropriately with 10 mM MgSO4 to bring the final volume to 5 mL, and 9 

proceed as indicated. In the case of integrating DNA cargoes into the bacterial genome, where 10 

there is no need of the high numbers of transconjugant colonies usually required for random 11 

mutant libraries, one can use just 100 µL of each overnight cultures (i.e., without adjusting the 12 

OD600 of the individual cultures). 13 

7.  If a filter system for bacterial matings is not available, one can simply mix the three bacterial strains 14 

in a 1.5-mL Eppendorf tube (e.g., 150 µL of each bacterial suspension adjusted at OD600 = 1), 15 

centrifuge the cells at 7200×g, discard the supernatant, and resuspend the sediment in 25 µL of 10 16 

mM MgSO4 (i.e., a small buffer volume to maximize cell contact). The 25-µL mating mix can be 17 

laid onto a 0.45-µm filter disc onto an LB medium plate, or be directly spotted onto the surface of 18 

an LB medium plate. In the later case, cells can easily recovered using an inoculation loop and 19 

resuspended in 10 mM MgSO4 before plating on a selective culture medium. 20 

8.  When creating non-saturated random mutant libraries it is better to use shorter incubation times to 21 

maintain cell divisions of transconjugants to a minimum. 22 

9.  Depending on the purpose of the experiment, different Petri dishes sizes could be used to recover 23 

more transconjugant cells per plate. Adjust the plating volume accordingly. 24 

10.  It is also important to plate (i) the donor strain, (ii) the mating helper, and (iii) the recipient strain 25 

onto the selective culture medium used to recover transconjugants. These three bacterial strains 26 

should not grow in the selective culture medium (i.e., they are used as negative controls). 27 

11. Take into account that different mini-Tn5–bearing plasmids need other antibiotics (e.g., Sm at 80 28 

µg/mL or Gm at 10 µg/mL in the case of plasmids pBAMD1-4 and pBAMD1-6, respectively) to 29 

select for positive transconjugants. 30 

12. Note that the specific ME primers have to be chosen depending on the mini-Tn5 plasmid used for 31 
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insertions and on the selected ME-end. 1 

13. Clean-up the PCR products obtained after the first round of arbitrarily primed PCR with a 2 

commercial kit to eliminate unbound primers in the case of experiencing problems (e.g., no 3 

amplification in the second round of arbitrarily primed PCR). 4 

14. If the insertion of transposon cannot been unequivocally mapped using the protocol and primers 5 

suggested here, select other set of arbitrary primers, such as primer ARB1 (23) or even others as 6 

described by Das et al. (31). Alternatively, a new custom arbitrary primer could be designed by 7 

changing the five nucleotides at the 3'-end of the oligonucleotide sequence to match the G+C 8 

content of the recipient bacterial strain, thereby increasing the frequency of appearance of that 9 

motif in the target genome. 10 

15. For other target bacterial species, use the BlastN tool against the genome of the desired recipient 11 

strain. If the complete genome sequence of your favorite microorganism is not available, perform a 12 

more general BlastN search in order to identify homologous genes or sequences in related 13 

species. Specific primers could then be designed on the basis of these results to sequence the 14 

exact locus in which the mini-Tn5 insertion has occurred. 15 

16. Other plasmids can be used for the ectopic expression of the FLP recombinase, such as plasmid 16 

pBBFLP (41). The procedure to be followed in this case is essentially the same as the one 17 

described in the main protocol, but using tetracycline (at 15 µg/mL) instead of Cb to select for the 18 

presence of the pBBFLP helper plasmid. If the insertion of pBELs or pBEXs vectors is carried out 19 

in E. coli, plasmid pCP20 (38) is recommended for the FLP-dependent removal of antibiotic-20 

resistance determinants after transposition. 21 

17. It is a good procedure to perform several independent matings in order to yield a representative 22 

random mutant library. 23 

 24 
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Table 1. Bacterial strains used in this protocol. 1 

 2 

Bacterial strain Description and genotype Relevant 

characteristicsa 

Reference 

Escherichia coli 

CC118 λpir 

 

Cloning host for plasmids containing an R6K 

origin of replication; ∆(ara-leu) araD 

∆lacX174 galE galK phoA20 thi-1 rpsE rpoB 

argE-(Am) recA1, λpir lysogen 

SpR, RifR, Thi–, 

Leu– 

(42) 

 

SM10 λpir Cloning and mobilizing host for plasmids 

containing an R6K origin of replication; F– 

thi-1 thr leu tonA lacY glnV recA::RP4-2-

Tc::Mu, λpir lysogen 

KmR, Thi–, Thr–, 

Leu– 

(43) 

S17-1 λpir Cloning and mobilizing host for plasmids 

containing an R6K origin of replication; F– 

recA1 endA1 thiE1 pro-82 creC510 hsdR17 

RP4-2-Tc::Mu-Km::Tn7, λpir lysogen 

SmR/SpR, TpR, 

Thi–, Pro– 

(44) 

MFD λpir 

 

Cloning and mobilizing Mu-free host for 

plasmids containing an R6K origin of 

replication; F– λ– ilvG rfb-50 rph-1 RP4-2-

Tc::[∆Mu1::aac(3)IV ∆aphA ∆nic35 

∆Mu2::zeo] ∆dapA::(erm-pir) ∆recA 

ApraR, ZeoR, 

ErmR, DAP– 

(45) 

HB101 

 

Mating helper strain; F– λ– hsdS20(rB– mB–) 

recA13 leuB6(Am) araC14 ∆(gpt-proA)62 

lacY1 galK2(Oc) xyl-5 mtl-1 thiE1 rpsL20 

glnX44(AS)  

SmR, Thi–, Leu–, 

Pro– 

(46) 

 

Pseudomonas putida 

KT2440 Wild-type strain; derivative of strain mt-2 (47) 

cured of the TOL plasmid pWW0 

Prototroph (48) 

 3 
a  Antibiotic and auxotrophy markers: Apra, apramycin; Erm, erythromycin; Km, kanamycin; Rif, 4 
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rifampicin; Sp, spectinomycin; Sm, streptomycin; Tp, trimethropim; Zeo: zeocin; DAP, 1 

diaminopimelic acid; Leu, leucine; Thi, thiamine (vitamin B1); Thr, threonine; and Pro, proline. 2 

Please note that not all these features are used in the experiments described in the present 3 

protocol.  4 
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Table 2. Plasmids used in this protocol. 1 

 2 

Plasmid Description and relevant characteristicsa Reference 

pRK600 

 

Helper plasmid used for conjugation; oriV(ColE1), RK2(mob+ 

tra+); derivative of plasmid pRK2013 (49); CmR 

(50) 

pBAMD1-2 Mini-Tn5 delivery plasmid; oriV(R6K), oriT; ApR, KmR (9) 

pBAMD1-4 Mini-Tn5 delivery plasmid; oriV(R6K), oriT; ApR, SmR/SpR (9) 

pBAMD1-6 Mini-Tn5 delivery plasmid; oriV(R6K), oriT; ApR, GmR (9) 

pBAM1 Mini-Tn5 delivery plasmid; oriV(R6K), oriT; ApR, KmR (7) 

pBAM1-GFP 

 

Mini-Tn5 delivery plasmid to create random gene::gfp fusions 

by insertion; oriV(R6K), oriT; ApR, KmR 

(7) 

pBELK 

 

Mini-Tn5 delivery plasmid for inserting a DNA cargo under the 

control of the LacIQ/Ptrc expression system; oriV(R6K), oriT; 

ApR, KmR 

(10) 

pBELG 

 

Mini-Tn5 delivery plasmid for inserting a DNA cargo under the 

control of the LacIQ/Ptrc expression system; oriV(R6K), oriT; 

ApR, GmR 

(10) 

pBEXK 

 

Mini-Tn5 delivery plasmid for inserting a DNA cargo under the 

control of the XylS/Pm expression system; oriV(R6K), oriT; 

ApR, KmR 

(10) 

pBEXG 

 

Mini-Tn5 delivery plasmid for inserting a DNA cargo under the 

control of the XylS/Pm expression system; oriV(R6K), oriT; 

ApR, GmR 

(10) 

pFLP2 

 

Helper plasmid used to eliminate antibiotic markers flanked by 

FRT sequences; oriV(pRO1600), RK2(mob+ tra+), oriT, 

λPR::FLP, λcI857, sacB; CbR 

(39) 

 3 
a  Antibiotic markers: Ap, ampicillin; Km, kanamycin; Cm, chloramphenicol; Sm, streptomycin; Sp, 4 

spectinomycin; Gm, gentamicin; Cb, carbenicillin. 5 
6 
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Figure  1 

 2 

FIG. 1. Outline of the procedure described in this protocol.  3 

 4 

 5 
 6 

Mini-transposon vectors can be used for delivering gene(s) into a target chromosome in virtually any 7 

Gram-negative bacterium, as well as to obtain random mutant libraries. AbR, antibiotic resistance. 8 
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