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Summary 

 Polyploidization is a significant evolutionary force in plants which involves major 

genomic and genetic changes, frequently regulated by epigenetic factors. We 

explored whether natural polyploidization in Dianthus broteri complex resulted in 

substantial changes in global DNA cytosine methylation associated to ploidy. 

 Global cytosine methylation was estimated by HPLC in 12 monocytotypic 

populations with different ploidies (2x, 4x, 6x, 12x) broadly distributed within D. 

broteri distribution range. The effects of ploidy level and local variation on 

methylation were assessed by GLMM.  

 Dianthus broteri exhibited a higher methylation percent (~33%) than expected by its 

monoploid genome size and a large variation among study populations (range: 29.3 

- 35.3%). Global methylation tended to increase with ploidy but did not significantly 

differ across levels due to increased variation within the highest-order polyploidy 

categories. Methylation varied more among hexaploid and dodecaploid populations, 

despite such cytotypes show more restricted geographic location and increased 

genetic relatedness than diploids and tetraploids.  

 In this study, we demonstrate the usefulness of an HPLC method in providing 

precise and genome reference-free global measure of DNA cytosine methylation, 

suitable to advance current knowledge of the roles of this epigenetic mechanism in 

polyploidization processes.  

Key-words: autopolyploidy, DNA methylation, endemism, genome size, genomic 

shock, HPLC, whole-genome duplication, 5-methyl-cytosine. 
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Introduction 

The potential contributions of epigenetics to plant adaptation and evolution have 

been thoroughly outlined, but their impact on natural populations remains understudied 

(e.g., Grant-Downton and Dickinson 2006; Jablonka and Raz 2009; Hirsch et al. 2013; 

Kilvitis et al. 2014). Polyploidization, i.e. the possession of at least three complete sets 

of chromosomes, has long been recognized as a major evolutionary force in plants. 

Whole genome duplication events, frequently associated to hybridization, have occurred 

extensively in plants and have been related to phenotypic innovation and speciation 

(Soltis et al. 2014; Vanneste et al. 2015). The proximate molecular mechanisms by 

which polyploidy becomes feasible are far from being completely understood (Soltis et 

al. 2010). Nevertheless, successful polyploidization most likely involves both structural 

and functional alterations, which are intimately associated to epigenetic regulation of 

the activity of transposable elements (TE) and silencing of redundant genes (Osborn et 

al. 2003; Soltis et al. 2010; Hegarty et al. 2011; Madlung & Wendel 2013; Tayalé & 

Parisod 2013; Song & Chen 2015).  

At the molecular level, epigenetic processes comprise interdependent DNA and 

histone reversible covalent chemical modifications, which concurrently alter chromatin 

structure and may affect genome stability and individual phenotype without 

modifications of the nucleotide sequence (see e.g., Hirsch et al. 2013 for a review). In 

plants, DNA cytosine methylation is an important epigenetic mechanism required for 

normal individual development, involved in responses to environmental factors, and 

with potential for transgeneration persistence (Finnegan 2010; Hirsch et al. 2013). 

Methylated cytosines can be found in different sequence contexts (CG, CHG, CHH; 

where H can be any nucleotide except G), each associated to different genomic 

positions (gene bodies, promoters, TEs, etc), and involving the action of different 

demethylase and methyltransferase families and small non-coding RNAs (Finnegan 

2010; Hirsch et al. 2013). Relative relevance of cytosine methylation at different 

nucleotide contexts varied across species, likely associated to important differences in 

genome features among them (Alonso et al. 2016; Springer et al. 2016).  

Several methods have been developed to analyze global cytosine methylation 

level and compare cytosine methylation patterns across samples (see e.g., Laird 2010; 

Kim et al. 2014 for a review). The simultaneous quantification and location of cytosine 

methylation allows detailed interpretation of molecular processes related to gene 
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expression and TE activity in genomes differing in complexity (Diez et al. 2014; 

Springer et al. 2016). However, this requires a high-quality annotated reference 

sequence for whole-genome scanning (BC-seq and WGSBS), which is not readily 

available for most nonmodel plants (Laird 2010; Schrey et al. 2013; Kim et al. 2014). 

Thus, less thorough molecular analyses applied to a wider number of plant species have 

been instrumental to unraveling the magnitude of intraspecific variation in DNA 

methylation patterns of wild growing plants, its relationship with functional and 

fecundity-related plant phenotypic traits and its role in ecological adaptation to 

contrasting environmental conditions (e.g., reviewed in Schrey et al. 2013; Medrano et 

al. 2014; Verhoeven et al. 2016). Methods based on high-performance liquid 

chromatography (HPLC) provide a global estimation of the percentage of total genomic 

cytosines that are methylated and do not require any previous knowledge of the species 

genomic features (Fraga & Esteller 2002; Lisanti et al. 2013; Alonso et al. 2015, 2016). 

Such quantitative methods do not reveal patterns of methylation variation at specific 

sequence contexts or positions, do not differentiate between coding and noncoding 

sequences and do not detect subtle differences in the methylation status of individual 

genes. However, they are recommended for genome-wide quantification because of its 

global assessment, accuracy and reproducibility (Fraga & Esteller 2002; Lisanti et al. 

2013) and have been successfully used to infer macroevolutionary patterns in 

vertebrates (Varriale 2014) and plants (Alonso et al. 2015). The quantitative global 

methylation value is, thus, a genomic feature such as genome size, which can be 

interpreted as an individual phenotypic trait whose variation within a species can be also 

significant (Alonso et al. 2016). In this study we will apply this method to uncover 

whether, within a species, natural populations with different ploidy may quantitatively 

differ in genome-wide cytosine methylation.  

As stated above, epigenetic regulation is instrumental to successful 

polyploidization events by silencing redundant genes and regulating the activity of TEs 

(Osborn et al. 2003; Hegarty et al. 2011; Madlung & Wendel 2013; Tayalé & Parisod 

2013; Song & Chen 2015). Complementary insights can be gained by analyzing 

epigenome and transcriptome features both in early generations of synthesized 

polyploids and also in naturally stabilized polyploids with more complex evolutionary 

histories (Paun et al. 2007; Springer et al. 2016). In one hand, induced polyploids 

should contribute to understand how different epigenetic mechanisms solve redundancy 
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and genome regulation during the highly disturbing and stochastic nature of the early 

stages (Parisod et al. 2010; Madlung & Wendel 2013; Hollister 2015; Springer et al. 

2016). Interpretation of these experiments should take into account that, in 

allopolyploids, hybridization rather than genome doubling per se, appears to be a major 

cause of epigenetic changes (Doyle et al. 2008). On the other hand, the analysis of 

natural polyploids may contribute to reveal the genomic features of the stabilized 

polyploids, successfully established in the wild after the strong selective pressures 

affecting the initial stages (Parisod et al. 2010; Madlung & Wendel 2013 and references 

therein). In natural populations of polyploid species, variation in patterns of cytosine 

methylation contributes to explain functional plasticity and local adaptation (Paun et al. 

2010; Rois et al. 2013; Schulz et al. 2014) and has been proposed as a relevant factor 

for invasion success of polyploids (Ainouche et al. 2009). However, the relationships 

between magnitude and patterns of cytosine DNA methylation and ploidy within a 

species remains largely unexplored. In Actinidia chinensis, a low genetic and epigenetic 

differentiation was observed between diploid, tetraploid and hexaploid individuals 

growing intermixed along an altitudinal gradient although epigenetic markers were 

more closely linked to the altitude where each sampled individual lived than to ploidy 

(Liu et al. 2015). We are not aware of any other study analyzing intraspecific variation 

in global cytosine methylation across wild growing plants differing in ploidy.  

The question addressed in this study is whether natural polyploidization events 

result in substantial genome-wide methylation changes. For this aim, we analyzed 

global cytosine methylation in Dianthus broteri, a perennial herb with an extensive 

polyploid series, to uncover whether natural populations with increased number of sets 

of chromosomes may quantitatively differ in global cytosine methylation. Our study 

species is particularly interesting because it encompasses diploid, triploid, tetraploid, 

hexaploid and dodecaploid individuals that do not usually coexist and are most likely 

the result of several autopolyploidization events (Balao et al. 2009). Analysis of related 

organisms of several ploidies should be powerful to detect either a quantitative trend 

along the series or specific changes associated to any particular ploidy. However, 

absence of significant differences in global methylation should not be interpreted as 

evidence of similarity in methylation patterns because magnitude and patterns of 

cytosine methylation provide complementary but not identical information (Alonso et 

al. 2016). 
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Materials and Methods 

Study species and sites 

Dianthus broteri Boiss. & Reuter (Caryophyllaceae) is a perennial herb endemic to the 

south and east of the Iberian Peninsula. The species occurs mainly on calcareous and 

dolomitic areas, from altitudes of 1700 m to coastal sand palaeodunes, where it 

represents a relatively rare component of xerophytic scrub formations. Along its 

distribution range, D. broteri shows an extensive polyploid series including diploids, 

triploids, tetraploids, hexaploids and dodecaploids, which do not usually coexist within 

a site (Balao et al. 2009). Tetraploidy is the most common and widespread cytotype, in 

contrast to the other cytotypes that exhibited more restricted geographic distributions 

(Supplementary Information Fig. S1; Balao et al. 2009). Tetraploids inhabit mainly on 

calcareous soils but also on dolomitic and siliceous substrates associated to either 

coastal or mountaineous areas in the south and east of the Iberian Peninsula 

(Supplementary Information Fig. S1). In contrast, diploids appear in two disjunct areas 

associated to different mountain ranges (up to 1700 m.a.s.l.) of Portugal and Spain with 

characteristic cold and rainy winters; hexaploids are restricted to the semiarid lowlands 

in east of Spain (< 200 m.a.s.l.); and dodecaploids (also identified as D. inoxianus) are 

endemic to a small littoral area (< 100 m.a.s.l.) of the Doñana National Park in south 

Spain where they inhabit dry sandy soils (Supplementary Information Fig. S1; Balao et 

al. 2009). For the present purposes, 12 monocytotypic populations with different 

ploidies were selected (Table 1) and five individuals per population were analyzed. 

Most study populations belong to the same genetic group based on previous analyses of 

neutral molecular markers (AFLP), except all dodecaploids and the tetraploid 

population in the eastern region that belonged to two separate genetic groups (Balao et 

al. 2010). The plant material used here is a subset of the larger collection analyzed in 

Balao et al. (2009, 2010, 2011), where additional information of study populations can 

be found.  

 

Field sampling 

Populations were visited in summer when individuals were bearing both flowers and 

fruits that made them more conspicuous. At daytime, leaves from each reproductive 

plant were collected separately in numbered individual containers, dried at ambient 

temperature in silica gel and preserved in this way by periodic replacement of the 

desiccant until processing. This fast drying method is the current standard for plant 
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molecular DNA analyses of field-collected samples, providing good yield of high 

quality DNA in many species (Carrió & Roselló 2014 for a review), including D. 

broteri (Balao et al. 2010).  

 

Lab methods 

Dry leaves were subsequently homogenized to a fine powder using a Retsch MM 200 

mill. Total genomic DNA was extracted using Qiagen DNeasy Plant Mini Kit, including 

RNAse treatment. A 100 ng aliquot of DNA extract was digested with 3 U of DNA 

Degradase PlusTM (Zymo 71 Research, Irvine, CA), a nuclease mix that degrades DNA 

to its individual nucleoside components. Digestion was carried out in a 40 μL volume at 

37°C for 3 h, and terminated by heat inactivation at 70°C for 20 minutes. Two 

independent replicates of digested DNA per sample were processed to estimate global 

cytosine methylation. Selective derivatization of cytosine moieties with 2-

bromoacetophenone under anhydrous conditions and subsequent reverse phase HPLC 

with spectrofluorimetric detection, were conducted. The percentage of total cytosine 

methylation on each replicated sample was estimated as 100 x 5mdC/(5mdC + dC), 

where 5mdC and dC are the integrated areas under the peaks for 5-methyl-2’-

deoxycytidine and 2’-deoxycytidine, respectively (see Lopez-Torres et al. 2011 and 

Alonso et al. 2016 for details). 

 

Data analyses 

The variation in global cytosine methylation was analyzed by using Linear mixed 

models (procedure MIXED; SAS Institute, 2008) including ploidy, and population 

nested within ploidy as fixed categorical effects. Individual was entered as a random 

effect to account for non-independence of the replicated analyses. The intraclass 

correlation coefficient, which estimates consistency of the replicated analyses, was 

0.8745. The interpretation of a significant nested effect was accomplished by using the 

slice option, which tests the equality of simple effects of one factor (i.e., population) for 

a given level of the other factor (i.e., ploidy). In addition, as ploidy can be more 

precisely understood as a quantitative factor variable in which levels are ordered (2 < 4 

< 6 < 12) and unequally spaced (i.e, difference between 12 and 6 levels was larger) 

orthogonal polynomial contrasts were used to analyze the effect of this factor. 

Accordingly, 2x level was contrasted against the other three levels in proportion to their 

difference in genome copies (i.e., using the contrast coefficients -1; 0.1818; 0.2727; 
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0.5455 for 2x, 4x, 6x, and 12x respectively). The exclusion of the individual with the 

minimum percentage of methylation, which was outlier within the distribution of study 

samples (see Fig. 1), improved model adjustment but did not qualitatively alter the 

results (analyses not shown). Averages (± SE) are hereafter shown. 

 

Results 

The percentage of cytosine methylation in D. broteri leaves averaged 32.92 % (SE ± 

0.22). Across the studied individuals DNA methylation ranged between 23.96 and 37.79 

%, the minimum value, obtained from the hexaploid population at San Miguel de 

Salinas, being an outlier within the study sample (Fig. 1).  

Contrary to our expectations, cytosine methylation did not significantly differ 

between ploidies when considered either as unordered categorical classes (F3,60 = 0.89, 

P = 0.45) or when contrasted against the diploid level according to their proportional 

difference in genome copies (F1,60 = 0.04, P = 0.84). A significant population nested 

effect (F8,60 = 5.28, P < 0.0001) suggested that differences across populations of each 

ploidy were not constant (Fig. 2). The sliced analyses indicated that the three diploid 

populations studied did not differ in the percent of cytosine methylation (32.67 ± 0.43 

%; F2,60 = 1.95, P = 0.15). The four tetraploid populations neither differed among them 

in average methylation (33.48 ± 0.37 %; F3,60 = 0.82, P = 0.49). In contrast, the two 

hexaploid populations recorded different methylation levels (32.49 ± 1.12 %; F1,60 = 

10.70, P = 0.0018) and the three dodecaploid populations were widely different in 

methylation percentage (Fig. 2; 32.71 ± 0.78 %, F2,60 = 12.59, P <0.0001), including the 

two extreme populations studied.  

In cytotypes where differences between populations were statistically significant 

(hexaploid and docecaploid populations), we looked for a relationship between the 

average methylation percentage and site altitude, and found that it was positive and 

significant (rs = 0.90, P = 0.037, N = 5).  
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Discussion 

Cytosine methylation is the best understood mechanism for epigenetic regulation in 

higher plants with potential for transgeneration inheritance (Finnegan 2010; Hirsch et 

al. 2013). Global cytosine methylation has been recently revealed as a genomic feature, 

highly variable across plant species, with a strong phylogenetic signal, and evolutionary 

related to the monoploid genome size in Angiosperms (Alonso et al. 2015). According 

to the data presented here, the global cytosine methylation in the leaves of D. broteri 

(ca. 33 %) is relatively high compared to the rest of Angiosperms, which coarsely range 

between 4 – 40 % (Alonso et al. 2015). Further, D. broteri leaves double the expected 

methylation percentage according to its monoploid genome size, which ranged 0.78 - 

1.00 pg (Balao et al. 2009, Alonso et al. 2015). Further analyses in other Dianthus 

species should help to better calibrate whether these outstanding results are specific to 

D. broteri or are characteristic of the entire Dianthus genus, a young and large genus, 

with exceptional endemic species richness associated to a fast and recent diversification 

process in the Mediterranean basin (Valente et al. 2010).  

With regard to the intraspecific variation in global cytosine methylation in D. 

broteri, the study populations ranged between 29.3 and 35.3 % methylated cytosines. 

Such a 6 % interval must be biologically relevant because it is in the range of 

differences obtained between contrasting ecotypes and growing conditions in other 

plant species (e.g., Cai & Chinnapa 1999) and also equals in magnitude the minimum 

global methylation so far reported in Angiosperms (Alonso et al. 2015). Such 

differences among populations may result from either ploidy or local environmental 

conditions. First, we note that hexaploid and particularly dodecaploid populations were 

more variable in the methylation levels recorded than diploid and tetraploid populations. 

On the one hand, this is striking because both hexaploids and dodecaploids have 

significantly restricted geographic distributions and show notable genetic relatedness 

within cytotype (Balao et al. 2010). In contrast, the geographically distant tetraploid 

populations analyzed did not differ in methylation level despite encompassing samples 

from two distinct genetic groups (Balao et al. 2010). Such findings suggest that the 

local ecological factors more than genetic and geographic differentiation could underlie 

the observed epigenetic variability across populations within the same cytotype in D. 

broteri, as it has been found in other plant species (e.g., Lira-Medeiros et al. 2010, 
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Schulz et al. 2014). The positive association between the average methylation and 

elevation in hexaploid and dodecaploid populations supports this view.  

 Epigenetic regulation plays critical roles during polyploidization as a new 

balance has to be created between the duplicated chromosomes. Differences in genomic 

features such as abundance of TE, monoploid genome size, and GC content may 

determine species-specific responses after polyploidization (Hegarty et al. 2011; 

Springer et al. 2016). Cytosine methylation must be essential along the initial genome 

perturbation and stabilization processes since either hyper- or hypo-methylation at 

specific loci could be vital for correct gene activity, and regulation of the activity of 

transposons (Osborn et al. 2003; Parisod et al. 2010; Tayalé & Parisod 2013; Soltis et 

al. 2014; Song & Chen 2015). Thus, a quantitative assessment of genome-wide cytosine 

methylation can be useful to start a systematic analysis of changes associated to either 

experimentally synthesized polyploids or naturally stabilized polyploids. For instance, 

Lavania et al. (2012) reported an overall increase in global cytosine methylation with 

ploidy recorded by immunodetection after induced autopolyploidy in six species of 

aromatic grasses. Consistently, we report here a moderate steady increase in global 

cytosine methylation upon the natural polyploidization in D. broteri, particularly if the 

two most discordant populations at the highest-order polyploidy categories (Doñana 

Puntal and San Miguel de Salinas) were excluded (results not shown). Provided that 

cytosine methylation is also affected by environmental stress (reviewed in Chinnusamy 

& Zhou 2009; Alonso et al. 2015), our study cannot set apart how much the outstanding 

populations could be responding already to current local ecological factors, such 

recurrent and intensive herbivory (Herrera & Balao 2015), more than to the long-term 

polyploidization process. Thus, in this particular species, differences among populations 

in global methylation may result from either ploidy (genomic) or environmental 

(ecological) variation, or a combination of both effects that should be tested 

experimentally because cytotypes do not naturally coexist within populations (Balao et 

al. 2009).     

Uncovering the distinctive roles that epigenetic regulation play at different 

phases of polyploid formation, stabilization and successful short- and long-term 

selection is a current challenge for plant evolutionary ecologists (Wendel 2015). At 

interspecific level, the strong phylogenetic association between global cytosine 

methylation and monoploid genome size (Alonso et al. 2015) supports the notion that 

cytosine methylation is an adaptive feature allowing the evolutionary increase in size 
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and complexity of plant genomes, largely attributed to TEs and ancient whole-genome 

duplications (Fedoroff 2012; Wendel 2015; Springer et al. 2016). Similarly, cytosine 

methylation should play a role in success of more recent genome duplication events but 

lack of data regarding variation in cytosine methylation in plant species with several 

ploidies precludes such analysis. The quantitative assessment of global methylation with 

methods that do not require a full genome sequence could contribute to fill this gap. In 

this study, we demonstrate the usefulness of an HPLC method as a quick global 

measure of DNA methylation analogous to flow cytometry for quickly measuring DNA 

content and ploidy level (Dolezel & Bartos 2005).  
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Fig. S1 Map showing distribution ranges of different ploidy levels in Dianthus broteri 

complex and geographic location of the 12 populations studied. 

Table S1 Global methylation data for all analyzed samples. 
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Table 1. Location and features of the 12 populations of Dianthus broteri studied along 

the distribution range in Southern Iberian Peninsula, from the Atlantic Portuguese-

Spanish coast (SW region) to the Easternmost Mediterranean coastal locations (E), and 

including also three intermediate populations located in the Baetic ranges (S). Ploidy 

data as reported by Balao et al. (2009). Global cytosine methylation was analyzed in 

five individuals per locality, mean ± SD is shown. For exact geographical location see 

Fig. S1. 

Locality Code Region Latitude Longitude Altitude 

(m) 

Ploidy Methylation 

(%) 

1. Troia 259/06 SW 38°25'N 8°49'W 15 4x 32.74 ± 1.09 

2. São Brás de Alportel 213/06 SW 37°09'N 7°50'W 218 2x 31.55 ± 1.83 

3. Valverde 239/07 SW 37°30'N 6°40'W 250 12x 35.25 ± 2.08 

4. Moguer 328/06 SW 37°09'N 6°49'W 24 12x 33.53 ± 1.37 

5. Doñana, Puntal FA/05 SW 36°58'N 6°26'W 6 12x 29.33 ± 1.52 

6. Doñana, Peladillo 333/06 SW 37°05'N 6°35'W 41 4x 32.93 ± 1.26 

7. Ronda 827/05 S 36°45'N 5°10'W 672 4x 33.89 ± 2.68 

8. Zafarraya1 335/06 S 36°59'N 4°11'W 1025 2x 32.53 ± 1.31 

9. Orgiva 338/06 S 36°53'N 3°24'W 370 2x 33.93 ± 1.01 

10. Cartagena 280/07 E 37°35'N 0°57'W 210 6x 34.47 ± 1.58 

11. San Miguel de Salinas 276/07 E 37°58'N 0°45'W 54 6x 30.50 ± 4.00 

12. Alcublas 250/07 E 39°50'N 0°41'W 950 4x 34.37 ± 1.03 

 


