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 Non-typeable Haemophilus influenzae (NTHi) is a Gram-negative bacterium that frequently colonizes

. the human nasopharynx; it is a common cause of chronic and recurrent otitis media in children and
of exacerbations of chronic obstructive pulmonary disease. To date, no exopolysaccharide clearly
contributing to NTHi biofilms has been identified. Consequently, there is some debate as to whether
NTHi forms biofilms during colonization and infection. The present work shows that NTHi can form
biofilms in vitro, producing an extracellular matrix composed of proteins, nucleic acids, and a 3-glucan.
Extracellular DNA, visualized by immunostaining and using fluorochromes, is an important component
of this matrix and appears to be essential in biofilm maintenance. Extracellular RNA appears to be
required only in the first steps of biofilm formation. Evidence of a matrix polysaccharide was obtained
by staining with Calcofluor white M2R and by disaggregating biofilms with cellulase. Using strain
54997, residues of Glcp(1—4) in the NTHi biofilm were confirmed by gas-liquid chromatography-mass
spectrometry. Evidence that N-acetyl-L-cysteine shows notable killing activity towards in vitro NTHi
biofilm-forming bacteria is also provided.

. Non-typeable (non-encapsulated) Haemophilus influenzae (NTHji) is an opportunistic pathogen that colonizes
© the nasopharynx of some 80% of humans'. Colonization promotes the development of disease and produces
. bacterial reservoirs facilitating person-to-person transmission. NTHj is the main bacterial cause of chronic otitis
media (OM) with effusion, recurrent acute OM, and acute OM with treatment failure?. In addition, NTHji is one
of the main causal agents of upper and lower respiratory tract disease, such as sinusitis, conjunctivitis, and exac-
: erbations of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD)?. Indeed, chronic infection
¢ with NTHi contributes to the progression of COPD and accounts for approximately 20-30% of all exacerbation
. episodes. It should be noted that, by 2020, COPD is projected to rank fifth in the global burden of disease*. In
. addition, NTHi infections frequently become chronic and recurrent; up to 30% of children who experience at
: least one episode of OM, re-experience three or more episodes before three years of age®.
: Chronicity and recurrence are characteristic of diseases produced by biofilm-forming microorganisms®; bac-
: terial strains isolated from patients with persistent infections are usually biofilm producers’. A biofilm is defined
: as layers of cells of microorganisms adhered to the surface of an organic or inorganic substrate and embedded in
an extracellular matrix®. This matrix consists of a mixture of biopolymers (extracellular polymeric substances or
. EPS) synthesized largely by the biofilm-producing microorganisms themselves. In most cases, the formation of
. biofilms is controlled by a regulatory switch, and the transition from planktonic to biofilm growth involves the
. production of an extracellular polysaccharide plus other macromolecules’. It has been reported that NTHj strains
. isolated from patients with CE, OM or COPD are prone to form biofilms in vitro and in vivo'®!!. In the past, some
- have expressed doubts about the relevance of NTHi biofilms in disease!?, although evidence exists that NTHi
: can grow in an aggregate form that is consistent with a biofilm and that this form of growth affects virulence*'°.
. Whether NTHi is truly capable of biofilm formation, however, is a matter of debate'®. Firstly, while a number of

!Departamento de Microbiologia Molecular y Biologia de las Infecciones, Centro de Investigaciones Bioldgicas
(CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain. 2CIBER de Enfermedades Respiratorias (CIBERES), Instituto de
Salud Carlos lll, Monforte de Lemos 3-5, 28029 Madrid, Spain. 3Departamento de Biologia Medioambiental, Centro
de Investigaciones Bioldgicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain. Correspondence and requests for
materials should be addressed to M.D. (email: mirid@cib.csic.es).

SCIENTIFICREPORTS | 6:36424| DOI: 10.1038/srep36424 1


mailto:mirid@cib.csic.es

www.nature.com/scientificreports/

studies have reported quorum sensing in NTHi, issues exist regarding the relationship between this and biofilm
formation in these bacteria; for example, NTHi mutants for several quorum sensing genes can still form sup-
posed biofilms'. Secondly, while in vivo studies suggest extracellular DNA (eDNA) to be a major element of
NTHi biofilms!®, and while treatment with DNase I increases the susceptibility of the NTHi present to certain
antibiotics'®, it is debatable whether this eDNA (or any EPS present) is of bacterial or host origin (or both)™.
Even if the eDNA were bacterial, it could be the product of autolysis. The purported existence in the matrix of
in vitro biofilm-specific proteins has, however, been reported providing some evidence that biofilm formation
does occur".

In addition to proteins and eDNA, two components of NTH;i lipooligosaccharides (LOS) have been reported
important in biofilm formation: sialic acid (Neu5Ac) and phosphorylcholine!. Since NTHi is auxotroph for
Neu5Ac, this compound must be taken up from the host, and mutants deficient in Neu5Ac incorporation into
LOS are reported impaired in their capacity to form biofilms in vitro'®. Moreover, a direct relationship between
the phosphorylcholine content of the LOS and the capacity to form biofilms has been reported'®?, although this
finding may have been the result of the particular method used to test biofilm formation, i.e., continuous flow or
static systems®!. In most microorganisms, the transition from planktonic to biofilm growth involves production
of an extracellular polysaccharide??. However, there has yet to be an exopolysaccharide identified that clearly
contributes to NTHi biofilms?. Thus, the question of whether NTHj really forms biofilms has remained partly
unanswered"’. The present work goes some way to settling this issue by providing evidence of substantial amounts
of bacterial eDNA, plus a hitherto unknown extracellular 3-glucan polysaccharide, among the EPS components
of in vitro NTHI biofilms.

Results

Biofilm formation capacity of different NTHi strains. The biofilm-forming capacity of four NTHi
strains, i.e., 54997, 86-028NP, 375 AopsX and Rd KW20, was examined. It has been reported that strain NTHi 375
AopsX (astrain deficient in the heptosyltransferase I for lipopolysaccharide biosynthesis) forms biofilms not signif-
icantly different to those produced by the wild-type strain®. In addition, the genomes of strains 375 and 86-028NP
share notable synteny (although they also show distinct genome rearrangements) (Supplementary Fig. S1).
This agrees with the finding that the sequence types (ST) of these strains (see Methods) share 5 of the 7 alleles
used in multilocus sequence typing.

It was observed here that all strains formed supposed biofilms in both C medium supplemented with yeast
extract, haemin and NAD [s(C+Y)] (especially well) and in supplemented brain-heart infusion (sBHI) (Fig. 1).
The s(C+Y) medium was developed in our laboratory during preliminary experiments aimed at producing
Streptococcus pneumoniae-NTHi mixed biofilms (unpublished results). Moreover, this medium has the additional
advantage that it does not produce a detectable background after crystal violet (CV) staining, unlike sBHI. In both
media, however, strains 54997 and Rd KW20 were the best and worst producers respectively. For this reason,
strain 54997 was used for most of the following experiments.

Extracellular proteins and nucleic acids. Exposure to proteolytic enzymes led to the dispersal of the
NTHi biofilms indicating their matrix to contain proteins important in their maintenance (Fig. 2a,b). Treatment
of the biofilms with DNase I confirmed eDNA to be present in the matrix, and to be important in its preservation
(Fig. 2¢). Nuclease treatment of growing biofilms strongly suggested the importance of extracellular RNA (but not
DNA) in biofilm formation (Fig. 2e,f). However, once a biofilm formed, it appeared that extracellular RNA was
not necessary to ensure its continued integrity (Fig. 2d).

In situ staining with DDAO (7-hydroxy-9H-[1,3-dichloro-9,9-dimethylacridin-2-one]) revealed abundant,
apparently cell-associated eDNA in a 6 h-old biofilm formed by NTHi strain 54997 in s(C+Y) medium (Fig. 3a—c).
Moreover, immunostaining with anti-double-stranded (ds) DNA monoclonal antibodies revealed a network-like
structure consisting of long DNA strands with numerous bacteria at the top of the biofilm (Fig. 3d-f,j). At the
bottom, only small areas of what appeared to be compacted eDNA were seen (Fig. 3g-i). Planktonic cultures of
strain 54997 incubated with DDAO, or immunostained with anti-dsDNA antibodies, showed no DNA-related
fluorescence (data not shown).

Polysaccharide component of the NTHi biofilm matrix. To determine whether matrix polysaccha-
ride(s) is required for biofilm preservation, sodium metaperiodate — a mild oxidant for converting the hydroxyl
groups [cis-glycol] in carbohydrates to reactive aldehyde groups — was added to a biofilm formed by strain
54997. Notable destruction of NTHi biofilms was observed when treated with 40 pg mL™! of this compound
(Supplementary Fig. S2).

In a first attempt to identify the sugar components of the NTHi matrix glycan, five different Alexa-conjugated
lectins were used (see Methods). Positive labelling was observed only with concanavalin A (ConA) (Fig. 4). This
stained the biofilms formed by NTHi 54997, 86-028NP and 375 AopsX, but not that formed by strain Rd KW20
(Fig. 4f-1). Labelling intensity varied greatly among strains, suggesting that the biosynthesis of the putative matrix
polysaccharide may be strain-dependent. Interestingly, incubation of ConA with 80 mg mL™! of either D(+)glu-
cose (Glc) or D(+)mannose (Man) before addition to the biofilms prevented their labelling, especially when
D(+) Man was used (Fig. 5). Planktonically grown cells of all these strains (again with the exception of Rd KW20)
also stained with ConA (Fig. 4j and data not shown).

The observation that ConA did not label the biofilm formed by NTHi Rd KW20 suggested the possibility that
ConA-labelling might be related to the presence/absence of a pair of high molecular weight (HMW) adhesins
described in a number of NTHi isolates?. These proteins are synthesized by ~60% of NTHji isolates, and 90%
of these possess two HMW adhesin-coding genes®. Interestingly, imw genes are present in strains 86-028NP2
and 375%, but absent in strain Rd KW20. The adhesin HMW1 (and presumably also HMW?2) of strain 12 (also
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Figure 1. Biofilm formation capacity of four NTHi strains. Bacteria were incubated for 6h at 37°Cina 5%
CO, atmosphere to allow biofilm development. (a) CLSM images of the NTHi strains grown in s(C+Y) and
sBHI media. The cells in the biofilms were stained with SYTO 9. Horizontal reconstructions of 55 scans

(x—y plane) are shown. In all images the scale bar =25 pm. (b) For biofilm formation, NTHi cells were grown
in s(C+Y) medium on polystyrene microtiter plates and stained with CV. Grey and black bars indicate growth
(adherent plus non-adherent cells) and biofilm formation respectively. *P < 0.001 compared to the biofilm
formed by strain 54997. The results are the average of three independent experiments each performed in
triplicate.

named R2846; Acc. No. CP002276) is a glycoprotein in which 31 asparagine residues are N-glycosylated?. Based
on chemical analysis it has been shown that the carbohydrate of HMW1 contains galactose (Gal), Glc and Man®.
In the present work, when the amino acid sequence of the HMW 1 adhesins of the sequenced strains were aligned
and compared to that of strain 12, in which the N-glycosylated asparagine residues were originally identified,
several changes were found (Supplementary Fig. S3). Five and nine asparagine residues present in strain 12
were not present in strains 86-028NP and 375 respectively. Of these, two and five changes, respectively, were
non-conservative substitutions.

Calcofluor white M2R (CW) was used to check for the presence of a glycan component in the NTHi matrix.
Biofilm-growing NTHi cells (Fig. 6), but not planktonic cells (not shown), were able to bind CW in significant
amounts, and most of the CW-stained material appeared to be cell-associated. Interestingly, the biofilm formed
by NTHi 375 AopsX, a strain lacking all core sugars of the LOS, also stained with CW (Fig. 6g), which strongly
suggests that CW labelling of NTHi biofilms is largely unrelated to the presence of LOS components. Since CW
is known to bind to 3-polysaccharides such as chitin and cellulose®, these results suggest the NTHi biofilm to
be composed of aggregates of microbial cells encased in an extracellular polysaccharide matrix that contains
(at least) 3-linked D-glycopyranosyl units. The specificity of CW labelling was checked by pre-incubating the
compound with either pullulan (an a-glucan) (Fig. 7d-f) or cellulose (a 3-glucan) (Fig. 7g-i). Only cellulose was
able to inhibit the binding of CW, as indicated by the loss of fluorescence.

To further investigate the presence of a polysaccharide component in the matrix, NTHi 54997 biofilms were
incubated with cellulase. This glycolytic enzyme was very effective in killing the bacteria and dispersing the NTHi
biofilms, as determined by BacLight LIVE/DEAD staining (Supplementary Fig. S4). A direct relationship between
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Figure 2. Inhibition and dispersal of NTHi biofilms with proteases and nucleases. Panels a-d correspond
to dispersal assays. After biofilm development (6h at 37 °C under 5% CO,), non-adherent cells were removed,
enzymes at the indicated concentrations were added and incubation allowed for an additional 1h at 37°C
under 5% CO, before staining with CV to quantify biofilm formation. Panels e and f correspond to inhibition
assays. NTHi 54997 was grown overnight at 37 °C under 5% CO, to an As5, value of 0.5 (corresponding to the
late exponential phase of growth) in s(C+Y) medium, centrifuged, and adjusted to an Ass, of 0.6 with fresh
medium. The cell suspension was then diluted 100-fold, and 200 pl aliquots were distributed in the wells of

a microtiter plate, which was then incubated for 6 h at 37 °C under 5% CO, with DNase I, or RNase at the
indicated concentrations. In all panels, grey and black bars indicate growth (adherent plus non-adherent cells)
and biofilm formation respectively. *P < 0.05 and **P < 0.001 compared with the untreated control.

bacterial killing and biofilm disaggregation could not be established since, at least in some cases, biofilm-growing
bacteria may be enzymatically killed without any appreciable biofilm dispersal®'.

Chemical analysis of the extracellular polysaccharide. Since, under the present experimen-
tal conditions, NTHi 54997 was the best biofilm former (Fig. 1), the extracellular polysaccharide synthesized
by biofilm-growing cells of this strain was analyzed by chemical methods. Both the alkali-soluble (AS) and
-insoluble (AI) fractions of the biofilm (AS-B and AI-B respectively) were subjected to acid hydrolysis to release
the monosaccharides. The same procedure was performed to investigate the planktonic component of the biofilm
(i.e., the non-adherent cells in biofilm culture [BP], and planktonic culture [P]). Irrespective of their origin, only
small amounts of carbohydrates (<2% of the dry weight) were found in the AS fractions (data not shown) so were
studied no further. In contrast, the major monosaccharide component of the AI-B and AI-BP fractions was Glc
(up to 40% and 20%, respectively); only minor amounts (4.5% and <1%, respectively) of Man and glucosamine
(<0.5% in the AI-B fraction) were detected. No putative LOS components were detected. The AI-P fraction con-
tained 4-5% Man and only <1% Glc (data not shown). The Man component found in the AI fraction may originate
from the yeast extract component of the growth medium — s(C+Y) — which contains mannans in large amounts.

Methylation analysis of AI-B and AI-BP showed both fractions to contain the same type of polymer —
although it was much more abundant in adherent, biofilm-forming cells (see above) — and to be mainly com-
posed of linear —4)-Glcp-(1— units (Fig. 8). This glucan appears to be slightly branched, as deduced from the
presence of peaks identified as terminal glucopyranose residues (Glcp-(1—) and branching points at positions
O-3 and/or O-6 on the main chain (Fig. 8). Alkali insolubility®, labelling with CW and biofilm destruction with
cellulase indicated these units to be connected by 3-linkages. Thus, the polysaccharide must be a 3-(1 — 4)-glucan.
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Figure 3. CLSM evidence of eDNA in NTHi biofilms. A biofilm of NTHi 54997 was stained with a
combination of SYTO 9 (a, green) and DDAO (b, blue), or with a combination of SYTO 59 (d and g red) and
anti-dsDNA mouse monoclonal antibody, followed by Alexa Fluor 488-labelled goat anti-mouse IgG (dsDNA
mADb) (e and h) green). Images d-f and g-i correspond, respectively, to the top and bottom parts of the biofilm.
Images (c,f and i) are mergers of the two previous channels and represent maximum projections of a series of
x-y sections. Scale bars =25 pm. (j) Enlargement of the area marked with a rectangle in (f). Yellow indicates co-
localisation of the two fluorophores.
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Figure 4. Staining of NTHi biofilms with ConA-Alexa fluor 647. NTHi biofilm matrix stained with SYTO
9 (green fluorescence) (a-d) and ConA lectin (pink fluorescence) (f-i). (e,j) Planktonically-grown 54997 cells
stained with SYTO 9 and ConA. Scale bars =25 pum.

SYTO 9 + ConA

Prevention of biofilm formation and therapy. Drug ‘repurposing’ (or ‘reprofiling’) appears a prom-
ising possibility for speeding up drug discovery, reducing failure rates and the associated costs®. In the present
work, the mucolytic compound N-acetyl-L-cysteine (NAC) and the well-known sugar substitute xylitol were
examined as candidates for use in future strategies aimed at preventing and improving the management of upper
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Figure 5. Inhibition of ConA-Alexa fluor 647 staining by monosaccharides. Biofilm of strain 54997 stained
with SYTO 9 (a; green fluorescence) and ConA lectin (b; pink fluorescence). A merger of the above two
channels is shown in (c). (d-i) As in (a-c) but where ConA was incubated with 80 mg mL! of D(+)Glc (d-f) or
D(+)Man (g-i) before staining the biofilm. Scale bars =25 pm.
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and lower respiratory tract diseases caused by biofilm-forming NTHi. Figure 9a shows that, in the present work,
NAC inhibited biofilm formation by NTHi 54997, and caused the death of >95% of bacteria in the biofilm when
used at concentrations of >0.5 mg mL™! (Fig. 9b,d) (well below the minimum inhibitory concentration [MIC] of
2.5mg mL"'; see Methods). Besides, a significant reduction in growth and in biofilm formation by NTHi 54997
was observed when xylitol was used at concentrations of >10 mg mL™ (Fig. 9¢).

Discussion

The ability of bacteria to produce biofilms appears to be governed by many genes and to be under tight regulation;
certainly, different NTHi isolates show different biofilm-forming capacity®® (Fig. 1), perhaps a consequence of
the well-known genetic heterogeneity of NTHi populations®. Proteins are important components of the bio-
film EPS, and different experimental approaches have been employed to try to identify NTHi biofilm-specific
proteins. Several proteins are present among the EPS of in vitro NTHi biofilms, namely, the adhesins Hap and
HMW1/HMW?2, and the IgA1 protease®. The requirement for the surface protein Hap in biofilm formation has,
however, recently been questioned®. In an independent study involving liquid chromatography coupled with
tandem mass spectrometry, more than 200 proteins were identified in the extracellular matrix of NTHji biofilms
formed on Millipore filters®. Unfortunately, the presence of lysed-cell components among the samples analyzed
could not be ruled out®. More recently, mild sonication was used to extract the EPS of in vitro NTHi biofilms,
and chemical analysis, nuclear magnetic resonance and Fourier transformed infrared spectroscopy used to reveal
the presence of proteins (18 of which were proposed potential biofilm-specific proteins), polysaccharide(s) and
DNA among them!”. Whether only intact bacteria were the source of these macromolecules could not, however,
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Figure 6. Calcofluor (CW) staining of NTHi biofilms. (a—d) a merger of biofilms of the four NTHi strains
stained with SYTO 9 (green fluorescence) and CW (blue fluorescence). In panels (e-h) only the CW staining is
shown. Scale bars =25 pum.
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be conclusively demonstrated. No protein identification was attempted in the present study, but treatment with
either proteinase K or trypsin fully confirmed proteins to be required for the maintenance of NTHi biofilms.

Nucleic acids are also important components of NTHi biofilm matrices. Extracellular RNA appears to be
required for the initial attachment of — but not the maintenance of — a biofilm. Certainly, the presence of RNase
led to a significant reduction in biofilm development (Fig. 2f), but had no effect on already formed biofilms
(Fig. 2d). To our knowledge, the requirement of extracellular RNA for biofilm formation has never before been
reported, although this result may not be representative of all NTHi clinical isolates. Although the release of RNA
to the medium is normally attributed to autolytic processes, Mycobacterium tuberculosis and Escherichia coli do
secrete small RNA fragments into the culture medium in the absence of detectable autolysis***. In contrast, the
importance of eDNA in both the establishment and maintenance of bacterial biofilms is well known.

The eDNA of NTHi and other bacterial biofilms can be visualized under the confocal laser scan-
ning microscope (CLSM) using fluorescent, ds specific stains'® plus propidium iodide, ethidium bromide,
4/,6-diamidino-2-phenylindole (DAPI) or SYTO dyes. The sensitivity of the microscope must, however, be
strongly increased, and good quality images can be hard to obtain*!. Recently, DDAO has been shown very suita-
ble for selectively targeting eDNA given its enhanced fluorescent properties and since its molecular size prevents
the stain from penetrating intact cell membranes*2. In the present work, staining with DDAO showed eDNA to be
distributed throughout the biofilm but, when anti-dsDNA antibodies were present, long filaments of eDNA with
attached bacteria were evident mostly in the upper part of the biofilm (Fig. 3). Since most were actively growing
NTHi cells, it would appear unlikely that eDNA fibres are formed exclusively via autolysis. Rather, some kind of
programmed release, involving a biofilm-specific secretion process, might be at work, although further research
is needed to test this hypothesis. Previous studies have shown that eDNA binds extracellular proteins such as PilA
(the type IV pilin protein)'® and the bacterial DNABII family of proteins (also known as histone-like proteins or
Hlps)**. Recent results from our laboratory have shown that the choline-binding proteins of S. pneumoniae have
the unexpected capacity to strongly bind DNA through electrostatic interactions; they may therefore be impor-
tant in the early stages of biofilm formation®*%. This might also be true for other bacteria.

It is generally accepted that carbohydrates are important components of biofilm matrices*. The biosynthe-
sis of alginate by species of Pseudomonas and Azotobacter, and of poly-3-1,6-N-acetylglucosamine by many
Gram-positive and Gram-negative bacteria, has been quite well studied?>. However, no exopolysaccharide has
been identified that clearly contributes to NTHi biofilms?*. Sodium metaperiodate has been extensively used to
test for the presence of carbohydrates in EPS*. This compound induced disaggregation of NTHi biofilms strongly
suggesting that they contain a glycan. Moreover, with the notable exception of strain Rd KW20, the incubation of
biofilms with ConA revealed the presence of accessible a-Man and/or Glc residues. Although direct evidence is
lacking, the absence of the two genes coding for the HMW adhesins (glycoproteins) in strain Rd KW20 suggests
that ConA binds to the N-linked glycan of HMW. The differences seen in ConA-labelling between the different
biofilms may be due to variation in the number of glycosylated Asn residues and/or to variations in the expression
of hmw genes, which is known to be modulated by phase variation. In any event, as planktonically grown cells
of all the NTHi strains tested here (with the exception of Rd KW20) also stained with ConA, the ConA-labelled
carbohydrate(s) appears to be not biofilm-specific.
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Figure 7. Specificity of Calcofluor (CW) staining. A biofilm of the NTHi 54997 strain stained with SYTO 9
(a; green fluorescence) and CW (b; blue fluorescence). A merger of the above two channels is also shown (c).
In panels (d-i) CW was incubated with pullulan (d-f) or cellulose (g-i) (at 25 mg mL! each), before staining.
Scale bars =25 pm.
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The literature contains no report of any exopolysaccharide in the matrix of NTHi biofilms®*; the CW staining
results provide the first experimental evidence that a cellulose-like 3-polysaccharide is present (Fig. 6). Moreover,
disaggregation by cellulase, and the chemical analysis of the alkali-insoluble fraction of strain 53997 biofilms, pro-
vided compelling evidence of the presence of a cellulose-like carbohydrate with 3-(1—4) linked glucosyl residues
(and possibly other monosaccharides as putative side chain substituents) among the EPS (Fig. 8). This glucan
would appear completely unrelated to glycogen (an a-glucan), which is overproduced when NTH;i biofilms are
treated with sub-inhibitory concentrations of 3-lactam antibiotics*.

Cellulose is the most abundant biopolymer on Earth, and is synthesized by bacteria, protists, algae, plants
and even by some tunicates. Members of the classes a-, 3- and ~-Proteobacteria synthesize cellulose as an EPS
component, and it plays important roles in biofilm formation and maintenance*’. However, cellulose production
genes have not been found among the members of Pasteurellaceae; the present finding of a polysaccharide sim-
ilar to cellulose in NTHi biofilms was therefore totally unexpected. It has been shown, however, that Histophilus
somni, a relative of H. influenzae, synthesizes an exopolysaccharide composed of a D-mannan polymer and with
occasional Gal residues present on side chains during biofilm formation®, although the glycosyltrasferase(s)
responsible for its synthesis has not been identified. Aggregatibacter actinomycetemcomitans, another member of
Pasteurellaceae, also forms biofilms containing an extracellular homopolymer of N-acetylglucosamine residues in
B(1 — 6) linkage that acts as an important virulence factor®.

A search of the CAZy database™ revealed the existence of up to 30 putative glycosyltransferase-coding
genes in different NTHi genomes, most of them putatively involved in glycogen production or LOS biosynthe-
sis**. Interestingly, the putative glycosyltransferases LsgC, LsgE and LsgF of NTHi appear to be homologous
(E value <107"), respectively, to AmsD, AmsB and AmsE, proteins involved in the synthesis of amylovoran,
the acidic exopolysaccharide of Erwinia amylovora®. These corresponding NTHi genes are part of the Isg locus
(from HI_1695 to HI_1700 in the Rd KW20 chromosome) and are fully conserved across NTHi isolates. Further
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Figure 8. GC-MS chromatograms showing the linkage types identified in the polysaccharides recovered
from alkali-insoluble extracts of biofilms (AI-B) and their planktonic component (AI-BP).

studies are warranted to determine whether the Isg gene products play a role in the synthesis and/or transport of
the biofilm-specific 3-glucan described in this study.

One of the most important and persistent problems posed by biofilms is the tolerance bestowed upon the
communities they house to antibiotic therapy and host defence mechanisms. To our knowledge, the literature
contains only a few reports on the activity of antibiotics against NTHi biofilms; these have involved the use of
single and multiple antibiotics such as quinolones, macrolides, aminoglycoside, penicillin and cephems*. The
exposure of NTHi biofilms to sub-inhibitory concentrations of 3-lactam antibiotics has been reported to pro-
duce a strain- and antibiotic-dependent increase in biofilm formation*. Certainly, the need for alternatives to
antibiotic treatment is becoming ever clearer since bacteria in a biofilm can survive antibiotic concentrations up
to 1000 fold those that would kill them when in a planktonic state®. Enzymes that degrade the biofilm matrix,
inhibitors of quorum-sensing signals, anticoagulant agents, surfactants, and specific bacteriophages and their
endolysins may all provide alternatives®’—°. NAC, a thiol-containing antioxidant that disrupts disulphide bonds
in mucus, has been clinically available for several decades and is used in the treatment of a variety of clinical
conditions including chronic bronchitis, ototoxicity caused by certain anti-cancer (e.g., cisplatin) or antibacterial
(e.g., aminoglycosides) drugs, and in acetaminophen (paracetamol) poisoning®. However, it also has antibacte-
rial properties, particularly against microorganisms (Gram-positive and Gram-negative) growing in biofilms®!.
Interestingly, NAC has been reported not only to inhibit the in vitro formation of S. pneumoniae biofilms, but also
to disaggregate already formed biofilms®%. The concentrations of NAC that inhibited and killed the bacteria of
the NTH; biofilms are similar to those that are theoretically obtained in oropharyngeal secretions during normal
oral NAC treatment with 200-600 mg tablets taken two or three times daily®. Higher doses (up to 2400 mg/day
divided into two doses over 30 days) are also well tolerated and beneficial in patients with CF*. Moreover, if required,
NAC can be administered directly into the middle ear. In fact, transtympanic injections of up to 20 mg mL™"
NAC appear to be well tolerated in humans, as demonstrated in a recent clinical trial®.

The polyalcohol xylitol may have a variety of medical and pharmaceutical applications, including the treat-
ment and/or prevention of acute OM®*¢” and viral respiratory diseases®. It is reported that xylitol evades micro-
bial resistance and can control infection both alone and in combination with other compounds. Moreover, it has
been documented that xylitol has anti-adherent properties that may be relevant for fighting biofilm formation®.
In the present in vitro system, xylitol was indeed capable of inhibiting the formation of NTHi biofilms, but at con-
centrations much higher than those required by NAC for an equivalent reduction (Fig. 9).

In conclusion, this study shows that, actively growing NTHi cells release eDNA (a major EPS component),
and that the biofilm produced contains a hitherto unknown (3-glucan. Together with our previous results®4, plus
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Figure 9. Inhibition of biofilm development in NTHi cultures in the presence of N-acetyl-L-cysteine (NAC)
or xylitol. (a) Strain 54997 was distributed in the wells of a microtiter plate, which was then incubated for 6h at
37°C under 5% CO, in the presence of different concentrations of NAC. (b) Killing of NTHi 54997 cells growing
as biofilms by incubation at 37 °C under 5% CO, for 90 min with NAC at the indicated concentrations. (c) As

in (a), but with xylitol instead of NAC. Biofilm formation was quantified by staining with CV. In panels a and c,
grey and blackened bars indicate growth (adherent plus non-adherent cells) and biofilm formation respectively.
Results represent the mean = standard error of at least four independent experiments, each performed in
triplicate. *P < 0.01 and **P < 0.001 compared with the control. (d) CLSM image of the viability of biofilm-
grown NTHi 54997 untreated (panels 1-3) or treated (panels 4-6) with 0.5 mg ml™! of NAC for 90 min at 37°C
under 5% CO,. Cells in the biofilms were stained with the BacLight kit showing viable (green fluorescence) and
non-viable (red fluorescence) bacteria. Images are horizontal three-dimensional reconstructions of 25 scans in
the x—y plane. Scale bars =25 um.

those of other authors on pneumococcal biofilms”, the present findings pave the way for detailed in vitro studies
on more complex pneumococcal-NTH;i biofilms.

Methods

Bacterial strains, growth conditions, biofilm formation and susceptibility testing. Four NTHi
strains were used: 1) 54997, isolated from a patient with acute OM!!; 2) 86-028NP (ST33), recovered from the
nasopharynx of a child with chronic OM?; 3) a AopsX mutant of strain 375 (ST3)?’ that synthesizes a truncated
LOS lacking all core sugars and exposing the 3-deoxy-a-D-manno-octulosonic acid attached to lipid A%’ and
4) Rd KW20 (ST47), a mutant of a serotype d strain, which completely lacks the entire capsule locus due to a
deletion”". Unless otherwise stated, NTHi strains were grown at 37 °C in a 5% CO, atmosphere in C+Y medium®!
or brain-heart infusion (BHI) supplemented with 10ug mL™! each of haemin and NAD, referred to as s(C+Y) and
sBHI respectively. Both media were supplemented with NAD and haemin to allow the growth of H. influenzae.
When required, NTHi was grown on chocolate agar plates (bioMérieux).

For biofilm formation, NTHi strains were grown at 37 °C and under 5% CO, in sBHI medium to an absorb-
ance at 550 nm (Ass) of 0.5. They were then sedimented by centrifugation, resuspended in an equal volume of
s(C+Y) or sBHI, and diluted 100-fold. Inocula of 4-5 x 10° colony-forming units (CFU) mL~! were dispensed
into each well of Costar 3595 96-well polystyrene microtiter plates (Corning). Plates were incubated at 37 °C for
5-6hin a 5% CO, atmosphere, and bacterial growth (adherent plus non-adherent bacteria) was determined by
measuring the Asq; using a VERSAmax microplate absorbance reader (Molecular Devices). Biofilm formation
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was measured using a modified CV assay’. Fifty microlitres of a 1% solution of CV were added to each well.
The plates were then incubated at room temperature for approximately 15 min, rinsed three times with 200 pL of
distilled water, and air dried. CV-stained biofilm formation was quantified by solubilizing the biofilm with 95%
ethanol (200 pL/well) and then determining the Asgs. For the inhibition of biofilm formation, the enzymes or
antioxidants to be tested were added to the bacteria at the beginning of the incubation in the plates. For dispersal
of biofilms, after biofilm formation for 6 h, non-attached cells were withdrawn, the enzymes or antioxidants were
added and incubated for 1-1.5h at 37°C.

The susceptibility of NTHji isolates to antibacterial agents was determined using the broth microdilution
method according to CLSI guidelines”. The MIC values for NAC and xylitol were identical (2.5 mg mL™') (data
not shown).

Microscopic observation of biofilms. For the observation of NTHi biofilms by CLSM, strains were
grown on glass-bottomed dishes (WillCo-dish, WillCo Wells) for 5-6h at 37°C in a 5% CO, atmosphere.
Following incubation, the culture medium was removed and the biofilm rinsed with sterile water to remove
non-adherent bacteria. The biofilms were then stained with DDAO (H6482, Invitrogen), anti-dsDNA antibody
(ab27156, Abcam) (at 2-25pg mL! each), and SYTO 9 (10 pM) (S34854, Invitrogen), SYTO 59 (10pM) (511341,
Invitrogen) and CW (50 pg mL™) (#18909, Sigma-Aldrich). When indicated, biofilms were stained with the bac-
terial viability BacLight kit (5 M) (L7007, Invitrogen). To tentatively identify the sugar components of the NTHi
matrix glycan, Alexa-conjugated lectins, i.e., ConA (specific for a-Man and «/3-Glc), peanut agglutinin (PNA;
specific for terminal residues of 3-Gal, e.g., in GalB3-1,3-N-acetylgalactosamine [GalNAc] residues of N-glycans
and glycolipids), soybean agglutinin (SBA; specific for GalNAc as in GalNAca-1,3-Gal of O-linked glycopep-
tides), wheat germ agglutinin (WGA; specific for N-acetylglucosamine and Neu5Ac) and Helix pomatia agglu-
tinin (HPA; specific for a-GalNAc) were used’. The biofilms were stained with ConA-Alexa fluor 647 (C21421,
Invitrogen), HPA-Alexa fluor 488 (L11271, Invitrogen), PNA-Alexa fluor 594 (L32459, Invitrogen), SBA-Alexa
fluor 488 (L11272, Invitrogen) or WGA-Alexa fluor 488 (W11261, Invitrogen) at 5-25 g mL™! each. All stain-
ing procedures involved incubation for 10-20 min at room temperature in the dark, except when biofilms were
incubated with mouse anti-dsDNA antibody (2 pg mL™!); this involved 1 h incubation at 4 °C followed by 30 min
incubation at room temperature in the dark with Alexa fluor 488-labelled goat anti-mouse IgG (1:500) (A-11001,
Invitrogen) (diluted 1/500). Lectins and CW were incubated for 20 min with 25-80 mg mL ™" of specific sugars or
polysaccharides at room temperature in the dark to check their binding”. After staining, the biofilms were gently
rinsed with 0.5 ml PBS. Observations were made at a 63 x magnification using a Leica TCS-SP2-AOBS-UV CLSM
equipped with an argon ion laser. Images were analyzed using LCS software from Leica. Projections were obtained
in the planes x-y (individual scans at 0.5 pm intervals) and x-z (images at 6 pm intervals).

Analysis of extracellular and cell surface-associated glycans. EPS were prepared by growing NTHi
54997 in 50 Petri dishes (10 cm diameter), each containing 20 mL of s(C+Y) medium, at 37 °C for 6h under 5%
CO, without shaking, or in 1L of the same medium under planktonic (P) conditions, i.e., in a culture flask. The
non-adherent cells in the dishes (BP) were pipetted off and the biofilm-grown cells (B) suspended in 20 mM
sodium phosphate buffer, pH 7.0. The cells were then treated with NaOH (1 M, final concentration) as described
elsewhere®!. In short, alkali-soluble (AS) and alkali-insoluble (AI) fractions were dialyzed using membranes with
a molecular mass cut-off of 3.5kDa (SnakeSkin™ Pleted Dialysis Tubing; Thermo Scientific) and the different
products were freeze-dried. To determine their monosaccharide composition, the AS and Al fractions were
acid-hydrolyzed. The products were reduced with sodium borohydride and the corresponding alditols acetylated.
Identification and quantification were performed by gas-liquid chromatography-mass spectrometry (GC-MS).
For quantification, myo-inositol (100 ug) was used as an internal standard. To analyze the bonding between the
monosaccharide components, 1-3 mg of the Al and AS fractions were permethylated, hydrolyzed and converted
into a mixture of partially methylated alditol acetates that was analyzed by GC-MS. Quantifications were made
according to the peak area.

Statistical analysis. Data comparisons were performed using the two-tailed Student ¢-test.
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