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Abstract 30 

The widespread use of azole antifungals in medicine and agriculture and the resulting 31 

long-persistent residues could potentially affect beneficial fungi. However, there is very 32 

little information on the tolerance of non-target environmental fungi to azoles. In this 33 

study, we assessed the susceptibility of diverse plant- and insect-associated yeasts from 34 

the Metschnikowia clade, including several ecologically important species, to widely 35 

used medical and agricultural azoles (epoxiconazole, imazalil, ketoconazole and 36 

voriconazole). A total of 120 strains from six species were tested. Minimum inhibitory 37 

concentrations (MICs) were determined by the EUCAST broth microdilution procedure 38 

after some necessary modifications were made. The majority of species tested were 39 

highly susceptible to epoxiconazole, ketoconazole and voriconazole (>95% of strains 40 

showed MICs≤0.125 mg/l). Most strains were also very susceptible to imazalil, 41 

although MIC values were generally higher than for the other azoles. Furthermore, 42 

certain Metschnikowia reukaufii strains displayed a ‘trailing’ phenotype (i.e. showed 43 

reduced but persistent growth at antifungal concentrations above the MIC), but this 44 

characteristic was dependent on test conditions. It was concluded that exposure to 45 

azoles may pose a risk for ecologically relevant yeasts from the Metschnikowia clade, 46 

and thus could potentially impinge on the tripartite interaction linking these fungi with 47 

plants and their insect pollinators. 48 
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Introduction 50 

Azoles are currently the largest and most widely used class of antifungal agents in 51 

clinical medicine (Sheehan et al. 1999; Pierce et al. 2013; Allen et al. 2015), and also 52 

represent a mainstay for crop protection and material preservation (Hof 2001; Groenier 53 

and Lebow 2006; Price et al. 2015). Their mechanism of action is mainly based on the 54 

alteration of cell membrane structure and function through interference with the 55 

biosynthesis of ergosterol, but alterations in nutrient transport and other pleiotropic 56 

effects not yet fully understood have also been described (Ghannoum and Rice 1999; 57 

Price et al. 2015; Sanguinetti et al. 2015).  58 

 Recently, azole resistance has been increasingly reported in many fungal 59 

pathogens of animals and plants, which is a cause of great public concern (Serfling et al. 60 

2007; Chakrabarti 2011; ECDC 2013; Vermeulen et al. 2013; Price et al. 2015). For 61 

some of such pathogens it has been suggested that antifungal resistance can arise during 62 

prolonged treatment or, alternatively, through exposure of the microorganism to sub-63 

lethal concentrations of the compounds in the environment (ECDC 2013). Moreover, 64 

azole residues can disperse and persist in the environment (Kahle et al. 2008; Battaglin 65 

et al. 2010; Bollmann et al. 2014) and potentially affect non-pathogenic or even 66 

beneficial fungi, and may therefore have a considerable impact on ecosystem health and 67 

functionality. However, there is very little information on the tolerance of non-target 68 

fungal species to medical and agricultural azoles, and risk assessments for antifungal 69 

use do not take into account their effects on entire fungal communities (Dijksterhuis et 70 

al. 2011; Dimitrov et al. 2014). 71 

 The Metschnikowia clade (Saccharomycetales) consists of an ancient and diverse 72 

group of ascomycetous yeasts harboring around 50 Metschnikowia species, the three 73 

species of genus Clavispora and several asexual forms currently assigned to the genus 74 
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Candida (Lachance 2011; Guzmán et al. 2013). Members of this clade are adapted to a 75 

wide variety of habitats, including flowers and their pollinators (e.g. Metschnikowia 76 

gruessii, M. proteae, and M. reukaufii), plant surfaces, fruits and agricultural soils (e.g. 77 

M. pulcherrima), and aquatic environments (e.g. M. bicuspidata) (Lachance 2011; 78 

Guzmán et al. 2013). Also, some Metschnikowia species are being used in agriculture 79 

since they are highly effective in the control of plant pathogens (Piano et al. 1997; 80 

Kurtzman and Droby 2001; Sipiczki 2006). The widespread presence of Metschnikowia 81 

species in natural and agricultural plant communities makes them a potential accidental 82 

target for azole antifungals. However, except for some reference strains from culture 83 

collections and a few clinical and agricultural isolates (Jawich et al. 2006; Desnos-84 

Ollivier et al. 2012; Savini et al. 2013; Cordero-Bueso et al. 2014), little is known about 85 

the possible effects that azoles might have on this ecologically important fungal group. 86 

 Floral nectar is a sugary solution essential for the attraction of pollinators that 87 

provide a key ecosystem service (Kearns et al. 1998; Vanbergen and the Insect 88 

Pollinators Initiative 2013). But nectar is also a crucial habitat for nectarivorous 89 

members of the Metschnikowia clade (Brysch-Herzberg 2004; Herrera et al. 2010), and 90 

this group of yeasts seems to play important ecological functions, including the 91 

attraction of pollinators (Herrera et al. 2013; Schaeffer and Irwin 2014; Schaeffer et al. 92 

2014; Pozo et al. 2015). It is well known that pesticides, chemical residues and azoles 93 

can accumulate in floral nectar and may have sublethal effects on plant pollinators 94 

(Rortais et al. 2005; Desneux et al. 2007; Wallner 2009; Blacquière et al. 2012; 95 

Bernauer et al. 2015). However, the impact of such anthropogenic contaminants on 96 

nectar yeast communities has not been investigated to date. 97 

In this study we determined the susceptibility of a large collection of strains 98 

from the Metschnikowia clade isolated from the floral nectar of diverse wild plants and 99 
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their insect pollinators to a number of azole antifungals that are widely used in 100 

agriculture (epoxiconazole and imazalil) and medicine (ketoconazole and voriconazole). 101 

Imazalil and ketoconazole are two imidazoles, i.e. compounds containing two nitrogen 102 

atoms in the azole ring, whereas epoxiconazole and voriconazole belong to the triazoles 103 

and have three nitrogen atoms in the azole ring (Sheehan et al. 1999). Minimum 104 

inhibitory concentrations (MICs) were determined by a modification of the reference 105 

European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth 106 

microdilution (BMD) method. In addition, as antifungal susceptibility testing of yeasts 107 

from the Metschnikowia clade is still rarely performed, we explored the effect of some 108 

specific parameters (incubation time, MIC end point and culture medium) on the 109 

performance of the EUCAST method for this yeasts group.  110 

 111 

Materials and methods 112 

Isolates 113 

A total of 120 strains from the Metschnikowia clade, most of which were obtained and 114 

identified to the species level by molecular methods in the course of previous studies 115 

(Pozo et al. 2011, 2012; de Vega et al. 2012, 2014; Jacquemyn et al. 2013; Lenaerts et 116 

al. 2015), were tested (Table S1, supplementary materials). Studied strains belonged to 117 

the following six species: Metschnikowia reukaufii (n = 46), M. proteae (n = 23), M. 118 

gruessii (n = 22), M. koreensis (n = 11), M. caudata (n = 7) and Candida rancensis (n = 119 

11). Most strains originated from the floral nectar of wild plants (87.7% of total, 120 

excluding type strains) and insect floral visitors (12.3%) from South Africa (44.7%), 121 

Spain (36.0%), Morocco (10.5%) and Belgium (8.8%). In addition, the type strains of 122 

the six tested species were also included in the experiments (Table S1). All strains were 123 

stored at −80°C as cell suspensions in 25% glycerol stocks. 124 
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 125 

Antifungal susceptibility testing 126 

In vitro antifungal susceptibility of strains was determined by the reference EUCAST 127 

BMD procedure guidelines for yeasts (Arendrup et al. 2012), with some modifications 128 

in incubation conditions that had to be made for testing the strains investigated in this 129 

study (see below). RPMI 1640 (Sigma-Aldrich, Diegem, Belgium) supplemented with 130 

glucose (Sigma-Aldrich) to a final concentration of 20 g/l and buffered with 3-(N-131 

morpholino) propanesulfonic acid (Sigma-Aldrich) to a pH of 7.0 (hereafter referred to 132 

as RPMI+2%G) was used as test medium (Arendrup et al. 2012). The antifungal agents 133 

tested (all purchased from Sigma-Aldrich) were the imidazoles imazalil and 134 

ketoconazole, and the triazoles epoxiconazole and voriconazole. Final concentrations of 135 

the antifungal agents were in the range of 0.016 to 8 mg/l, and a positive control (i.e. 136 

drug-free medium) was included in each test. Assay plates (96 wells, flat-bottom; 137 

Thermo Fisher Scientific/Nunc, Roskilde, Denmark) were prepared in batches 138 

according to the EUCAST guidelines and stored until used (but always for less than 3 139 

months) at –80ºC. Prior to susceptibility testing, frozen strains were subcultured by at 140 

least two serial transfers on yeast malt (YM) agar (2.0% agar, 1.0% dextrose, 0.5% 141 

peptone, 0.3% yeast extract, 0.3% malt extract; pH 6.2) for 72 to 96 h at 25ºC, so as to 142 

check them for purity. Yeast suspensions were prepared in sterile distilled water, 143 

adjusted to the density of a 0.5 McFarland standard (1-5·10
6
 cells/ml) and further 144 

diluted 1/10 in sterile distilled water. Columns 1 to 10 of the test plate contained 100 µl 145 

of twofold serial dilutions of the antifungals, column 11 contained 100 µl of drug-free 146 

medium, and column 12 corresponded to the sterility controls. One hundred microliters 147 

of the working yeast cell suspension were inoculated per well in columns 1 to 11, and 148 

100 µl of sterile distilled water per well in column 12. Plates were then covered with a 149 
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sterile lid to prevent the medium from evaporating and incubated at 25ºC. Although the 150 

EUCAST method recommends an incubation temperature of 35 ± 2ºC, we selected 25ºC 151 

as this is a common growth temperature for Metschnikowia species and most tested 152 

strains were unable to grow or only showed poor growth at 35 ± 2ºC (Lachance 2011; 153 

de Vega et al. 2012, 2014; Pozo et al. 2012). Assay plates were read 154 

spectrophotometrically (530 nm) after 24, 48 and 72 h of incubation. For the slow-155 

growing species M. caudata (de Vega et al. 2014), incubation was extended for 24 156 

additional hours (i.e. 96 h in total; see Results). All strains were tested at least twice on 157 

different days and Candida krusei ATCC 6258 and Candida parapsilosis ATCC 22019, 158 

which are two quality control strains recommended by the EUCAST method, were 159 

included in each series of experiments. Additionally, in order to assess possible 160 

differences in the performance of the EUCAST method related to the test medium, 161 

susceptibility tests were repeated for a selection of 37 strains (the seven M. caudata 162 

strains available, and six strains representative of different regions and/or hosts for each 163 

of the remaining five species) using non-synthetic YM broth (1.0% dextrose, 0.5% 164 

peptone, 0.3% yeast extract, 0.3% malt extract; pH 6.2) instead of synthetic 165 

RPMI+2%G.  166 

 167 

Data analysis 168 

Since no reference MIC end point has yet been established for susceptibility testing of 169 

azoles against Metschnikowia clade strains, end points of ≥50% and ≥90% of reduction 170 

in turbidity compared to the azole-free control well (i.e. partial and almost complete 171 

inhibition of growth, respectively) were determined. Essential agreement (EA) between 172 

the MIC values determined at different incubation times, or by using different test 173 

media (i.e. RPMI+2%G and YM broth) and reading end points (50% vs. 90%) was 174 
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defined as discrepancy of no more than ±2 two-fold dilutions (Cuenca-Estrella et al. 175 

2010). When necessary, high off-scale MIC results were converted to the next highest 176 

concentration and low off-scale MIC results were left unchanged (Pfaller et al. 2011). 177 

Discrepancies between MIC values were classified as non-substantial differences (NSD, 178 

discrepancies of three or four two-fold dilutions) or substantial differences (SD, 179 

discrepancies of >4 two-fold dilutions) (Cuenca-Estrella et al. 2010). Where relevant, 180 

differences among the MIC data distributions were evaluated by the Friedman’s test 181 

followed by Bonferroni post-hoc comparisons, as implemented in Statgraphics 182 

Centurion XVII (Statpoint Technologies, Inc., Warrenton, VA, USA). The critical p-183 

value was set at <0.05. 184 

 185 

Results 186 

Optimization of the EUCAST method for yeast strains from the Metschnikowia 187 

clade 188 

The EUCAST method for antifungal susceptibility testing recommends incubating 189 

microdilution plates for 24 ± 2 h, after which the absorbance at 530 nm of azole-free 190 

control wells should be >0.2 (Arendrup et al. 2012). If required, test plates can be 191 

further incubated for 12–24 h, but failure to reach the threshold absorbance after 48 h is 192 

considered to represent a failed test (Arendrup et al. 2012). A strict application of these 193 

stringent criteria was not possible in the present study, as most tested strains (including 194 

those used for quality control) displayed poor growth in RPMI+2%G medium after 24 h 195 

of incubation at 25ºC and, in some cases, an absorbance value >0.2 was not reached 196 

until 72 h (Figure 1). In addition, although all C. rancensis strains and the quality 197 

control strains displayed enough growth in RPMI+2%G after 48 h (Figure 1, Table 1 198 

and Table S2, supplementary materials), absorbance values for some strains were still 199 
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rather low (e.g. mean ± S.D. = 0.30 ± 0.02 for C. rancensis SA16, and 0.31 ± 0.03 for 200 

isolate SA25). Notably, none of the seven M. caudata isolates included in the study 201 

consistently grew in RPMI+2%G even after extended incubation up to 96 h post-202 

inoculum (Figure 1). 203 

In contrast, when tested in YM broth, the quality control strains and all strains 204 

tested except those belonging to M. caudata reached absorbance values >0.2 in just 24 h 205 

(Figure 1). Further incubation in YM broth resulted in most cases in saturated 206 

absorbance values in the drug-free wells (data not shown), thus resulting in unreliable 207 

MIC determination. For M. caudata, enough growth level for reliable MIC 208 

determination was not reached until 48–96 h, depending on the strain and test plate 209 

(Figure 1). 210 

Voriconazole MIC values obtained in RPMI+2%G medium for the quality 211 

control strains fell within the acceptable ranges provided in the EUCAST reference 212 

document (0.03–0.25 mg/l for C. krusei ATCC 6258 and 0.015–0.06 mg/l for C. 213 

parapsilosis ATCC 22019; Arendrup et al. 2012) or, for a minority of tests, differed in 214 

≤2 two-fold dilutions (Table 1; Table S2, supplementary materials). Obviously, due to 215 

the methodological modifications described in previous paragraphs, this comparison of 216 

voriconazole MICs for the quality control strains is tentative (the acceptable ranges 217 

given by the EUCAST document only refer to the 50% inhibition end point and 218 

incubation at 37ºC for 24 h). The reliability of epoxiconazole, imazalil and ketoconazole 219 

MIC determinations in RPMI+2%G could not be assessed, as acceptable MIC ranges 220 

are not yet available for these antifungals; nevertheless, repeated assays for these 221 

compounds yielded consistent results (data not shown). The same can be said for MIC 222 

determinations in YM broth. 223 
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In view of these results, it was concluded that for all species except M. caudata 224 

the optimal test conditions for azole MIC determination by the EUCAST procedure are 225 

72 h of incubation in RPMI+2%G or 24 h of incubation in YM broth. In the particular 226 

case of M. caudata, MIC values can only be reliably determined after 96 h of incubation 227 

in a nutrient rich medium such as YM broth. 228 

 229 

In vitro susceptibility to azole antifungals of yeasts of the Metschnikowia clade 230 

Table 2 shows the azole MIC distributions for the studied strains in RPMI +2%G 231 

medium (or YM broth, in the case of M. caudata). In general, epoxiconazole, 232 

ketoconazole and voriconazole were very active against all species tested and, 233 

regardless of the end point considered for MIC determination, >95% of strains were 234 

susceptible at concentrations ≤0.125 mg/l. Notably, in most cases there were no 235 

significant differences in the median MICs of epoxiconazole, ketoconazole and 236 

voriconazole (p >0.05 in all pair-wise comparisons except epoxiconazole vs. 237 

ketoconazole and epoxiconazole vs. voriconazole for M. reukaufii and the 90% 238 

inhibition end point). In contrast, median MICs for imazalil were generally higher (p 239 

<0.05 in all pair-wise comparisons except imazalil vs. voriconazole for M. caudata and 240 

the 90% inhibition end point), and MIC distributions depended largely on the species 241 

and endpoint criteria. For example, only 68.3% and 27.5% of the total number of 242 

isolates were susceptible to ≤0.125 mg/l of imazalil when the partial (≥50%) and almost 243 

complete (≥90%) inhibition end points were considered, respectively. 244 

An excellent EA (100%) was observed for most species-azole combinations 245 

between the MIC values obtained by the two end point criteria considered (Table 2). A 246 

notable exception was M. reukaufii, which yielded discrepant results for all tested 247 

antifungals: 1 NSD and 2 SD for epoxiconazole, 8 NSD for imazalil, and 1 SD for 248 
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ketoconazole and voriconazole (Table 2). Interestingly, one particular isolate (6.3.2-Y2, 249 

obtained in 2012 in Belgium from floral nectar of Pulmonaria officinalis) displayed 250 

discrepant results for all tested antifungals. In addition, two NSD were observed for M. 251 

caudata and imazalil. 252 

Regarding the comparison of test media, for most species, azole antifungal and 253 

end point combinations, the EA between the MIC results determined after 72 h of 254 

incubation in plates containing RPMI+2%G or 24 h in plates containing YM broth was 255 

100% (Table 3). Discrepancies in MIC results due to the test medium when the partial 256 

inhibition end point criterion was considered were only observed for imazalil and the 257 

species M. gruessii and M. koreensis, for which three out of the six isolates tested in 258 

each case yielded NSDs (Table 3). Non-significant differences were also obtained for 259 

the same three M. gruessii and a single M. reukaufii isolate when tested for imazalil 260 

susceptibility considering the almost complete inhibition end point (Table 3). Notably, 261 

isolate 6.3.2-Y2 of M. reukafii yielded SDs in the 90% end point MIC results when 262 

tested for epoxiconazole, ketoconazole and voriconazole susceptibility (Table 3). 263 

 264 

Discussion 265 

Controlling fungal pathogens is paramount to ensuring human and animal health, food 266 

security and preservation of wood and other materials (Hof 2001; ECDC 2013; Price et 267 

al. 2015). However, the widespread use of azole antifungals in agriculture and medicine 268 

is leading to a significant accumulation of azole residuals in the environment (Kahle et 269 

al. 2008; Battaglin et al. 2010), which poses a threat for the composition and/or 270 

functioning of fungal communities harboring non-target fungi (Dijksterhuis et al. 2011; 271 

Dimitrov et al. 2014). In spite of this, current knowledge about yeast antifungal 272 

susceptibility profiles is mostly limited to species responsible for human infections 273 
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(Desnos-Ollivier et al. 2012), and there is very scarce information on the tolerance of 274 

environmental fungi to antifungal compounds. To contribute to fill this research gap, 275 

this study has provided novel information on the azole susceptibility of plant- and 276 

insect-associated strains from the Metschnikowia clade. To do so, we first had to 277 

optimize the EUCAST broth microdilution method of antifungal susceptibility testing 278 

for Metschnikowia clade yeasts. 279 

Apart from setting the incubation temperature to 25ºC, which is optimal for 280 

members of the Metschnikowia clade (see Materials and Methods), the scarce growth 281 

displayed by most tested species in RPMI+2%G necessitated extended incubation of 282 

test plates (72 h, instead of the 24 h recommended by the EUCAST method) for reliable 283 

determination of azole MICs. Alternatively, adequate growth for MIC determination 284 

was obtained in just 24 h when RPMI+2%G was substituted for nutrient rich YM broth. 285 

Nevertheless, M. caudata was particularly recalcitrant to azole susceptibility testing, 286 

and MIC values for this species could only be determined when YM broth was used as 287 

test medium and plates were read after 96 h of incubation. 288 

In general, most strains included in the present study were highly susceptible to 289 

broad-spectrum imidazole and triazole antifungals of widespread use in clinical and 290 

agricultural settings. These findings are in line with the observation of Desnos-Ollivier 291 

et al. (2012), who tested 62 Metschnikowia isolates (belonging to 36 different species) 292 

from reference culture collections and found no resistance to the medical azoles 293 

fluconazole, itraconazole, posaconazole and voriconazole. Nevertheless, for a few M. 294 

reukaufii strains included in our study the azole MICs determined at a 90% inhibition 295 

end point were several two-fold dilutions higher than those obtained using the partial 296 

inhibition criterion. This observation points to the occurrence of a ‘trailing’ phenotype 297 

in some Metschnikowia strains, which is defined as the manifestation of reduced but 298 
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persistent growth in broth dilution tests with azole agents at antifungal concentrations 299 

above the MIC (Lee et al. 2004). Curiously, the trailing phenotype of M. reukaufii only 300 

appeared when susceptibility tests were performed in RPMI+2%G but not when these 301 

were carried out in YM broth, thus confirming that this effect depends on species and 302 

strain-specific characteristics, as well as on different methodological aspects 303 

(Arthington-Skaggs et al. 2002; Agrawal et al. 2007; Coenye et al. 2008). 304 

 It is worth noting that MICs for the imidazole imazalil for our strain collection 305 

were generally higher than those observed for the other azoles tested. A similar result 306 

was reported by Dijksterhuis et al. (2011) after performing toxicity tests to determine 307 

the effects of azoles and other fungicides on aquatic fungi and oomycetes. The reason 308 

for this higher susceptibility to imazalil is still unknown, but it might be due to a longer 309 

exposure to imazalil residues and/or the presence of higher concentrations of these in 310 

the environment. Indeed, imazalil has been extensively used in agriculture since the 311 

1970s, while epoxiconazole was introduced twenty years later (Morton and Staub 2008; 312 

Price et al. 2015). Typical uses of imazalil include field, glasshouse and indoor 313 

application by diverse methods (e.g. spraying, dipping, waxing) for the pre- and post-314 

harvest control of diverse fungal pathogens (EFSA 2010). Moreover, apart from its 315 

agricultural applications, imazalil is used (sometimes under the synonym enilconazole) 316 

in veterinary medicine as a topical broad-spectrum antimycotic and also in some 317 

countries as a fungicide formulation for the disinfection of farm buildings (EMEA 318 

1998), which constitute potential additional sources for environmental contamination 319 

(Kahle et al. 2008). Although most strains tested in this study were obtained from 320 

natural plant communities located relatively far from agricultural fields and human 321 

settlements, the presence of azole residues in these environments cannot be excluded 322 

and should be evaluated in future. 323 
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 Floral nectar is a valuable reward for pollinators, and extensive research work 324 

has been carried out to understand its composition, availability and secretion patterns 325 

(Nicolson and Thornburg 2007; Brandenburg et al. 2009; Heil 2011; Lievens et al. 326 

2015). More recently, there has been a growing interest in studying the role of floral 327 

nectar as a habitat for eukaryotic and prokaryotic microorganisms, and the effects these 328 

might have on nectar chemistry, pollinator behavior and sexual plant reproduction (see 329 

Pozo et al. 2015 for an updated review). In particular, it was found that Metschnikowia 330 

yeasts are widespread in the floral nectar of diverse plant families, and some species 331 

such as M. reukaufii could have a relevant role in attracting pollinators and influencing 332 

their foraging behaviour (Herrera et al. 2013; Schaeffer and Irwin 2014; Schaeffer et al. 333 

2014). Another emerging focus of interest is the study of the presence of anthropogenic 334 

contaminants in floral nectar, and the impact of these on declining pollinator 335 

populations and, eventually, on plant reproduction. For example, it has been that 336 

demonstrated that some insecticides such as the neonicotinoids are relatively common 337 

in nectar and can alter the physiology and behavior of pollinators (Blacquière et al. 338 

2012; Stanley et al. 2015). Although some studies have reported the presence of trace 339 

amounts of certain azoles in pollen and nectar collected by foraging honey bees shortly 340 

after field applications and over a prolonged time afterwards (e.g. Wallner 2009), to the 341 

best of our knowledge, no study has analyzed so far the possible effect of these 342 

antifungal compounds on the nectar microorganisms-plant-pollinator system. In any 343 

case, given the high susceptibility to azoles of nectar yeasts from the Metschnikowia 344 

clade found in this study, it seems clear that future risk assessments of the use of 345 

antifungals should pay attention to the nectar microbiota. 346 

 In summary, results of this study provide compelling evidence that exposure to 347 

azoles may pose a risk for ecologically important yeasts from the Metschnikowia clade, 348 
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and thus could potentially have detrimental effects on ecosystem dynamics and key 349 

services including plant pollination. This adds yet another source of concern for the 350 

long-term persistence of healthy plant-pollinator systems in natural communities. A 351 

next step would be to study the in planta effects of azoles on Metschnikowia yeasts, as 352 

well as to determine the actual ecological consequences of the in vitro results here 353 

reported. 354 
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Tables 

Table 1. Range of minimum inhibitory concentrations (MICs) obtained for quality control strains.
a 

Strain Test 

medium
b
 

Antifungal 

(n)
c
 

≥50% inhibition end point  ≥90% inhibition end point 

24 h 48 h 72 h  24 h 48 h 72 h 

Candida krusei 

ATCC 6258 

RPMI+2%G EPZ (23) ND(65.2%), 

≤0.016–0.125 

0.031–0.125 0.063–0.25  ND(65.2%), 

0.125–0.25 

0.25–0.5 0.5–1 

IZL (22) ND(54.5%), 

0.063–0.5 

0.5–2 1–4  ND(54.5%), 1–2 4 8 

KTZ (22) ND(63.6%), 

≤0.016–0.25 

0.031–0.25 0.063–0.25  ND(63.6%), 

0.25– 0.5 

0.5–1 0.5–1 

VCZ (22) ND(45.5%), 

0.031–0.125 

0.125–0.25 0.125–0.5  ND(45.5%), 0.25 0.25–0.5 0.5– 1 

YM broth EPZ (9) 0.125–0.25 1 1– 2  0.5 1–2 1–2 

IZL (10) 1–4 4–8 8–>8  2–8 4–8 8–>8 

KTZ (9) 0.25–1 0.5–2 0.5–4  0.5–2 0.5–2 0.5–4 

VCZ (9) 0.5 1–2 1–2  0.5–1 1–2 2 

Candida 

parapsilosis 

ATCC 22019 

RPMI+2%G EPZ (33) ND(45.5%), 

≤0.016– 0.031 

0.063–0.125 0.063–0.25  ND(45.5%), 

≤0.016–0.25 

0.25–0.5 0.25–0.5 

IZL (30) ND(36.7%), 

0.125–0.25 

0.25–0.5 0.5–1  ND(36.7%), 1–2 2–4 4–8 

KTZ (33) ND(36.4%), 

≤0.016–0.031 

≤0.016–0.031 ≤0.016–0.063  ND(36.4%), 

0.031–0.063 

0.063–0.125 0.125–0.25 

VCZ (33) ND(30.3%), 

≤0.016 

≤0.016–0.031 0.031  ND(30.3%), 

0.031–0.063 

0.031–0.063 0.063–0.125 

YM broth EPZ (8) 0.031–0.063 0.125–0.25 0.25–0.5  0.25 1 2–4 

IZL (6) 0.25– 1 1–4 2–8  1– 4 4–8 8–>8 

KTZ (7) ≤0.016 ≤0.016–0.063 0.031–0.125  ≤0.016–0.063 0.031–0.25 0.063– 1 

VCZ (8) 0.031 0.063 0.063– 0.125  0.063–0.125 0.125–0.25 0.25–0.5 
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a
 For each quality control strain and combination of test conditions (test medium, antifungal compound, incubation time –24, 48 and 72 h–, and 

inhibition end point), the range of MIC values (in mg/l) obtained in this study is given. In some cases, the percentage of tests in which the actual 

MIC value could not be determined (ND) due to scarce growth (i.e. absorbance at 530 nm ≤0.2; Arendrup et al. 2012) is also provided. 

b
 RPMI+2%G, RPMI 1640 supplemented with glucose and buffered with 3-(N-morpholino) propanesulfonic acid (see main text); YM broth, 

yeast malt broth. 

c
 EPZ, epoxiconazole; IZL, imazalil; KTZ, ketoconazole; VCZ, voriconazole. The number of tests performed (n) in each case is shown within 

parentheses. 
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Table 2. Distribution of minimum inhibitory concentrations (MICs) for azole antifungals determined by the EUCAST broth microdilution 

method for yeast strains of the Metschnikowia clade. 

Species (no. of 

strains tested) 

Antifungal
a
 End 

point
b
 

MIC distribution (mg/l)
c
 EA

d
 NSD

e
 SD

e
 

≤0.016 0.031 0.063 0.125 0.25 0.5 1 2 4 8 

Metschnikowia 

reukaufii (46) 

EPZ 50% 42* 3 1        93.5% 1 (2.2%) 2 (4.3%) 

90% 20 14* 7 2 1 1 1    

IZL 50% 1 2 2 22* 18 1     82.6% 8 (17.4%) 0 

90%   2 1 11 21* 11    

KTZ 50% 46*          97.8% 0 1 (2.2%) 

90% 39* 4 2     1   

VCZ 50% 46*          97.8% 0 1 (2.2%) 

90% 41* 3 1       1 

Metschnikowia 

proteae (23) 

EPZ 50% 23*          100% 0 0 

90% 23*          

IZL 50%   7 15* 1      100% 0 0 

90%    13* 10      

KTZ 50% 23*          100% 0 0 

90% 21* 2         

VCZ 50% 23*          100% 0 0 

90% 22* 1         

Metschnikowia 

gruessii (22) 

EPZ 50% 21*  1        100% 0 0 

90% 19* 2  1       

IZL 50%  1 16* 4   1    100% 0 0 

90%   1 14* 6   1   

KTZ 50% 21*  1        100% 0 0 

90% 21*   1       

VCZ 50% 21*  1        100% 0 0 

90% 20* 1   1      

Candida EPZ 50% 2 5* 4        100% 0 0 
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rancensis (11) 90% 1 2 5* 3       

IZL 50%    1 3 4* 3    100% 0 0 

90%     1 7*  2 1  

KTZ 50% 4 7*         100% 0 0 

90%  6* 4 1       

VCZ 50% 5 5* 1        100% 0 0 

90% 2 3 6*        

Metschnikowia 

koreensis (11) 

EPZ 50% 11*          100% 0 0 

90% 6* 4 1        

IZL 50%   1 7* 3      100% 0 0 

90%    2 2 7*     

KTZ 50% 9* 2         100% 0 0 

90% 8* 3         

VCZ 50% 10* 1         100% 0 0 

90% 9* 2         

Metschnikowia 

caudata
f
 (7) 

EPZ 50% 5* 2         100% 0 0 

90%  5* 2        

IZL 50%  1 1 1 2* 2     71.4% 2 (28.6%) 0 

90%      7*     

KTZ 50% 7*          100% 0 0 

90% 4* 3         

VCZ 50% 5* 2         100% 0 0 

90%  2 5*        

Total (120) EPZ 50% 104 

(86.7%) 

10 

(8.3%) 

6 (5%)        97.5% 1 (0.8%) 2 (1.7%) 

90% 69 

(57.5%) 

27 

(22.5%) 

15 

(12.5%) 

6 (5%) 1 

(0.8%) 

1 

(0.8%) 

1 

(0.8%) 

   

IZL 50% 1 

(0.8%) 

4 

(3.3%) 

27 

(22.5%) 

50 

(41.7%) 

27 

(22.5%) 

7 

(5.8%) 

4 

(3.3%) 

   91.7% 10 (8.3%) 0 

90%   3 

(2.5%) 

30 

(25%) 

30 

(25%) 

42 

(35%) 

11 

(9.2%) 

3 

(2.5%) 

1 

(0.8%) 

 

KTZ 50% 110 

(91.7%) 

9 

(7.5%) 

1 

(0.8%) 

       99.2% 0 1 (0.8%) 
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90% 93 

(77.5%) 

18 

(15%) 

6 (5%) 2 

(1.7%) 

   1 

(0.8%) 

  

VCZ 50% 110 

(91.7%) 

8 

(6.7%) 

2 

(1.7%) 

       99.2% 0 1 (0.8%) 

90% 94 

(78.3%) 

12 

(10%) 

12 

(10%) 

 1 

(0.8%) 

    1 

(0.8%) 

 

a
 EPZ, epoxiconazole; IZL, imazalil; KTZ, ketoconazole; VCZ, voriconazole.

  

b 
Percentage of growth inhibition relative to a positive control (i.e. test medium without azoles) set as end point for antifungal susceptibility 

testing. 

c
 Number (and percentage, only for total results) of strains falling into each MIC value. The median MIC value for each yeast species, antifungal 

and end point combination is indicated by an asterisk. 

d
 Percentage of essential agreement (i.e. discrepancy of no more than ±2 two-fold dilutions) between MIC values obtained for the different end 

points. 

e
 Number (and percentage) of strains showing non-substantial differences (NSDs) or substantial differences (SDs) between MIC values obtained 

for the different end points. 

f
 Azole susceptibility testing of Metschnikowia caudata strains was performed using yeast maltose (YM) broth instead of RPMI 1640 

supplemented with 2% (w/v) of glucose (RPMI+2%G) as culture medium and after 96 h of incubation at 25ºC instead of 72 h (see details in the 

main text). 
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Table 3. Comparison of the results obtained for a selection of yeast strains from the Metschnikowia clade when tested for azole susceptibility in 

different culture media. 

Species (no. of 

strains tested) 

Antifungal
a
 ≥50% inhibition end point  ≥90% inhibition end point 

MIC distribution
b
 %EA

c
 NSD

d
 SD

d
  MIC distribution

b
 %EA

c
 NSD

d
 SD

d
 

RPMI+2%G YM broth RPMI+2%G YM broth 

Candida 

rancensis (6) 

EPZ ≤0.016(1), 

0.031(3), 

0.063(2) 

0.031(2), 

0.063(3), 0.125(1) 

100 0 0  ≤0.016(1), 

0.063(3), 

0.125(2) 

0.031(1), 

0.063(1), 

0.125(3), 

0.25(1) 

100 0 0 

IZL 0.25(1), 

0.5(3), 1(2) 

1(2), 2(2), 4(2) 100 0 0  0.5(4), 2(1), 4(1) 1(1), 2(2), 4(1), 

8(1) 

100 0 0 

KTZ ≤0.016(2), 

0.031(4) 

0.031(2), 

0.063(2), 0.125(2) 

100 0 0  0.031(4), 

0.063(1), 

0.125(1) 

0.031(1), 

0.063(2), 

0.125(3) 

100 0 0 

VCZ ≤0.016(2), 

0.031(4) 

0.031(2), 

0.063(2), 0.125(2) 

100 0 0  ≤0.016(1), 

0.031(2), 

0.063(3) 

0.031(1), 

0.063(3), 

0.125(1), 

0.25(1) 

100 0 0 

Metschnikowia 

gruessii (6) 

EPZ ≤0.016(6) ≤0.016(5), 

0.031(1) 

100 0 0  ≤0.016(6) ≤0.016(3), 

0.031(2), 

0.063(1) 

100 0 0 

IZL 0.031(1), 

0.063(4), 

0.125(1) 

0.063(1), 

0.125(1), 0.25(1), 

0.5(2), 1(1) 

50 3 

(50%) 

0  0.125(5), 0.25(1) 0.125(1), 

0.25(1), 0.5(1), 

1(2), 2(1) 

50 3 (50%) 0 

KTZ ≤0.016(6) ≤0.016(5), 

0.031(1) 

100 0 0  ≤0.016(6) ≤0.016(4), 

0.031(2) 

100 0 0 

VCZ ≤0.016(6) ≤0.016(5), 

0.031(1) 

100 0 0  ≤0.016(6) ≤0.016(3), 

0.031(2), 

0.063(1) 

100 0 0 

Metschnikowia 

koreensis (6) 

EPZ ≤0.016(6) ≤0.016(1), 

0.031(5) 

100 0 0  ≤0.016(2), 

0.031(3), 

0.063(1) 

≤0.016(1), 

0.063(5) 

100 0 0 
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IZL 0.125(5), 

0.25(1) 

0.25(2), 0.5(1), 

1(3) 

50 3 

(50%) 

0  0.25(2), 0.5(4) 0.25(1), 0.5(1), 

1(4) 

100 0 0 

KTZ ≤0.016(4), 

0.031(2) 

≤0.016(2), 

0.031(4) 

100 0 0  ≤0.016(4), 

0.031(2) 

≤0.016(2), 

0.031(4) 

100 0 0 

VCZ ≤0.016(5), 

0.031(1) 

≤0.016(1), 

0.031(5) 

100 0 0  ≤0.016(5), 

0.031(1) 

0.031(2), 

0.063(4) 

100 0 0 

Metschnikowia 

proteae (6) 

EPZ ≤0.016(6) ≤0.016(6) 100 0 0  ≤0.016(6) ≤0.016(6) 100 0 0 

IZL 0.063(1), 

0.125(4), 

0.25(1) 

0.25(5), 0.5(1) 100 0 0  0.125(2), 0.25(4) 0.25(1), 0.5(5) 100 0 0 

KTZ ≤0.016(6) ≤0.016(6) 100 0 0  ≤0.016(5), 

0.031(1) 

≤0.016(5), 

0.031(1) 

100 0 0 

VCZ ≤0.016(6) ≤0.016(5), 

0.031(1) 

100 0 0  ≤0.016(6) ≤0.016(5), 

0.031(1) 

100 0 0 

Metschnikowia 

reukaufii (6) 

EPZ ≤0.016(6) ≤0.016(6) 100 0 0  ≤0.016(2), 

0.031(2), 

0.063(1), 1(1) 

≤0.016(1), 

0.031(4), 

0.063(1) 

83.3 0 1 

(16.7%) 

IZL 0.063(1), 

0.125(2), 

0.25(3) 

0.125(6) 100 0 0  0.25(2), 0.5(2), 

1(1), 2(2) 

0.125(4), 

0.25(1), 0.5(1) 

83.3 1 

(16.7%) 

0 

KTZ ≤0.016(6) ≤0.016(6) 100 0 0  ≤0.016(5), 2(1) ≤0.016(6) 83.3 0 1 

(16.7%) 

VCZ ≤0.016(6) ≤0.016(4), 

0.031(2) 

100 0 0  ≤0.016(5), 8(1) ≤0.016(1), 

0.031(5) 

83.3 0 1 

(16.7%) 

TOTAL (30) EPZ ≤0.016(25), 

0.031(3), 

0.063(2) 

≤0.016(18), 

0.031(8), 

0.063(3), 0.125(1) 

100 0 0  ≤0.016(17), 

0.031(5), 

0.063(5), 

0.125(2), 1(1) 

≤0.016(11), 

0.031(7), 

0.063(8), 

0.125(3), 

0.25(1) 

96.7 0 1 (3.3%) 

IZL 0.031(1), 

0.063(6), 

0.125(12), 

0.25(6), 

0.5(3), 1(2) 

0.063(1), 

0.125(7), 0.25(8), 

0.5(4), 1(6), 2(2), 

4(2) 

80 6 

(20%) 

0  0.125(7), 0.25(9), 

0.5(10), 1(1), 

2(2), 4(1) 

0.125(5), 

0.25(4), 0.5(8), 

1(8), 2(3), 4(1), 

8(1) 

86.7 4 

(13.3%) 

0 
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KTZ ≤0.016(24), 

0.031(6) 

≤0.016(19), 

0.031(7), 

0.063(2), 0.125(2) 

100 0 0  ≤0.016(20), 

0.031(7), 

0.063(1), 

0.125(1), 2(1) 

≤0.016(17), 

0.031(8), 

0.063(2), 

0.125(3) 

96.7 0 1 (3.3%) 

VCZ ≤0.016(25), 

0.031(5) 

≤0.016(15), 

0.031(11), 

0.063(2), 0.125(2) 

100 0 0  ≤0.016(23), 

0.031(3), 

0.063(3), 8(1) 

≤0.016(9), 

0.031(11), 

0.063(8), 

0.125(1), 

0.25(1) 

96.7 0 1 (3.3%) 

 

a
 EPZ, epoxiconazole; IZL, imazalil; KTZ, ketoconazole; VCZ, voriconazole.

  

b 
For each species and combination of test conditions (test medium, antifungal compound, and inhibition end point), the number of strains 

displaying each MIC value (in mg/l) is given. RPMI+2%G, RPMI 1640 supplemented with glucose and buffered with 3-(N-morpholino) 

propanesulfonic acid (see main text); YM broth, yeast malt broth. 

c
 Percentage of essential agreement (i.e. discrepancy of no more than ±2 two-fold dilutions) between MIC values obtained in different culture 

media. 

d
 Number (and percentage) of strains showing non-substantial differences (NSDs) or substantial differences (SDs) between MIC values obtained 

in different culture media. 



FIGURE LEGENDS 

Figure 1. Pie charts showing the percentages of isolates of the tested species which 

displayed enough growth for reliable azole susceptibility determination by the EUCAST 

method (i.e. absorbance at 530 nm >0.2 in the positive control well) at each reading 

time (24, 48 and 72 h for most species, and also 96 h for Metschnikowia caudata, see 

Results) in 100% (blue sectors), ≥75% but <100% (green),  ≥50% but <75% (orange), 

<50% but >0% (red) and 0% (black) of the test plates. Total numbers of isolates (N) and 

tests (n, mean ± S.D.) per species are as follows: i) experiments using RPMI-1640 

medium supplemented with 2% (w/v) glucose (RPMI+2%G): Metschnikowia reukaufii, 

N = 46, n = 423 (9.2 ± 1.6); M. proteae, N = 23, n = 193 (8.4 ± 0.7); M. gruessii, N = 

22, n = 181 (8.2 ± 0.8); M. koreensis, N = 11, n = 102 (9.3 ± 1.1); Candida rancensis, N 

= 11, n = 108 (9.8 ± 1.8); and M. caudata, N = 7, n = 56 (8 ± 0); ii) experiments using 

yeast malt (YM) broth: M. reukaufii, N = 6, n = 48 (8 ± 0); M. proteae, N = 6, n = 51 

(8.5 ± 1.1); M. gruessii, N = 6, n = 61 (10.2 ± 1.7); M. koreensis, N = 6, n = 66 (11 ± 

3.2); C. rancensis, N = 6, n = 52 (8.7 ± 1.5); and M. caudata, N = 7, n = 88 (12.6 ± 0.5). 
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Tables 

Table S1. Yeast strains included in the present study. 

Strain Yeast species Country of 

origin 

Habitat Host species (family) Year Reference
a
 

SA16 Candida rancensis South Africa Floral nectar Dierama trichorhizum (Iridaceae) 2008  

SA20 Candida rancensis South Africa Floral nectar Graderia scabra (Orobanchaceae) 2008  

SA25 Candida rancensis South Africa Floral nectar Kniphofia sp. (Xanthorrhoeaceae) 2008  

SA26 Candida rancensis South Africa Floral nectar Burchellia bubalina (Rubiaceae) 2008  

SA34 Candida rancensis South Africa Floral nectar Watsonia lepida (Iridaceae) 2008  

SA35-1 Candida rancensis South Africa Floral nectar Watsonia pillansii (Iridaceae) 2008  

SA40 Candida rancensis South Africa Floral nectar Haemanthus humilis (Amaryllidaceae) 2008  

SA45-1 Candida rancensis South Africa Floral nectar Protea caffra (Proteaceae) 2008  

SA71-2 Candida rancensis South Africa Floral nectar Adhatoda andromeda (Acanthaceae) 2008  

SA73-1 Candida rancensis South Africa Floral nectar Adhatoda andromeda (Acanthaceae) 2008  

NRRL Y-48759
T
 Candida rancensis USA Floral nectar Mimulus aurantiacus (Phrymaceae) 1984  

EBD-CdVSA08-1
T
 Metschnikowia caudata South Africa Floral nectar Protea dracomontana (Proteaceae) 2010 de Vega et al. 2014 

EBD-B8Y1 Metschnikowia caudata South Africa Floral nectar Apis mellifera (Apidae) 2010 de Vega et al. 2014 

EBD-CdVSA21-2 Metschnikowia caudata South Africa Floral nectar Protea roupelliae (Proteaceae) 2010 de Vega et al. 2014 

EBD-CdVSA23-1 Metschnikowia caudata South Africa Floral nectar Protea roupelliae (Proteaceae) 2010 de Vega et al. 2014 

EBD-CdVSA57-2AT Metschnikowia caudata South Africa Floral nectar Protea subvestita (Proteaceae) 2010 de Vega et al. 2014 

EBD-SA53 Metschnikowia caudata South Africa Floral nectar Protea roupelliae (Proteaceae) 2008 de Vega et al. 2014 

EBD-SA54 Metschnikowia caudata South Africa Floral nectar Protea roupelliae (Proteaceae) 2008 de Vega et al. 2014 

CBS 7657
T
 Metschnikowia gruessii Portugal Floral nectar Hebe salicifolia (Plantaginaceae) 1992  

6D1 Metschnikowia gruessii Spain Floral nectar Digitalis obscura (Plantaginaceae) 2009 Pozo et al. 2012 
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6D10 Metschnikowia gruessii Spain Floral nectar Digitalis obscura (Plantaginaceae) 2009 Pozo et al. 2012 

6D12 Metschnikowia gruessii Spain Floral nectar Digitalis obscura (Plantaginaceae) 2009 Pozo et al. 2012 

6E10 Metschnikowia gruessii Spain Floral nectar Gladiolus illyricus (Iridaceae) 2008 Pozo et al. 2011 

6E5 Metschnikowia gruessii Spain Floral nectar Lonicera implexa (Caprifoliaceae) 2008 Pozo et al. 2011 

6E6 Metschnikowia gruessii Spain Floral nectar Teucrium pseudochamaepytis 

(Lamiaceae) 

2008 Pozo et al. 2011 

6E8 Metschnikowia gruessii Spain Floral nectar Teucrium pseudochamaepytis 

(Lamiaceae) 

2008 Pozo et al. 2011 

6E9 Metschnikowia gruessii Spain Floral nectar Jasminum fruticans (Oleaceae) 2008 Pozo et al. 2011 

6F11 Metschnikowia gruessii Spain Floral nectar Antirrhinum australe (Plantaginaceae) 2008 Pozo et al. 2011 

6F12 Metschnikowia gruessii Spain Floral nectar Antirrhinum australe (Plantaginaceae) 2008 Pozo et al. 2011 

6F5 Metschnikowia gruessii Spain Floral nectar Digitalis obscura (Plantaginaceae) 2008 Pozo et al. 2011 

6F6 Metschnikowia gruessii Spain Floral nectar Digitalis obscura (Plantaginaceae) 2008 Pozo et al. 2011 

6F7 Metschnikowia gruessii Spain Floral nectar Digitalis obscura (Plantaginaceae) 2008 Pozo et al. 2011 

6F8 Metschnikowia gruessii Spain Floral nectar Phlomis lychnitis (Lamiaceae) 2008 Pozo et al. 2011 

6F9 Metschnikowia gruessii Spain Floral nectar Phlomis lychnitis (Lamiaceae) 2008 Pozo et al. 2011 

6G2 Metschnikowia gruessii Spain Floral nectar Prunella grandiflora (Lamiaceae) 2008 Pozo et al. 2011 

6G3 Metschnikowia gruessii Spain Floral nectar Prunella grandiflora (Lamiaceae) 2008 Pozo et al. 2011 

6G4 Metschnikowia gruessii Spain Floral nectar Prunella grandiflora (Lamiaceae) 2008 Pozo et al. 2011 

6G5 Metschnikowia gruessii Spain Floral nectar Atropa baetica (Solanaceae) 2008 Pozo et al. 2011 

6G6 Metschnikowia gruessii Spain Floral nectar Atropa baetica (Solanaceae) 2008 Pozo et al. 2011 

6G7 Metschnikowia gruessii Spain Floral nectar Atropa baetica (Solanaceae) 2008 Pozo et al. 2011 

CBS 8854T  Metschnikowia koreensis Korea Flower Lilium sp. (Liliaceae) 1999  

SA1-3 Metschnikowia koreensis South Africa Floral nectar Gladiolus longicollis (Iridaceae) 2008  

SA21 Metschnikowia koreensis South Africa Floral nectar Ruellia cordata (Acanthaceae) 2008  

SA41-1 Metschnikowia koreensis South Africa Floral nectar Stachys aethiopica (Lamiaceae) 2008  

SA44-1 Metschnikowia koreensis South Africa Floral nectar Ajuga ophrydis (Lamiaceae) 2008  
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SA60 Metschnikowia koreensis South Africa Floral nectar Glumicalyx goseloides 

(Scrophulariaceae) 

2008  

SA66 Metschnikowia koreensis South Africa Floral nectar Silene bellidioides (Caryophyllaceae) 2008  

SA70 Metschnikowia koreensis South Africa Floral nectar Disa crassicornis (Orchidaceae) 2008  

SA71-1 Metschnikowia koreensis South Africa Floral nectar Adhatoda andromeda (Acanthaceae) 2008  

SA8 Metschnikowia koreensis South Africa Floral nectar Gladiolus appendiculatus (Iridaceae) 2008  

SA9 Metschnikowia koreensis South Africa Floral nectar Dierama luteo-albidum (Iridaceae) 2008  

CdVSA78_2 Metschnikowia proteae South Africa Floral nectar Protea simplex (Proteaceae) 2010 de Vega et al. 2012 

EBDCdVSA 34_1 Metschnikowia proteae South Africa Floral nectar Protea caffra (Proteaceae) 2010 de Vega et al. 2012 

EBDCdVSA 35_1 Metschnikowia proteae South Africa Floral nectar Protea caffra (Proteaceae) 2010 de Vega et al. 2012 

EBDCdVSA 36_1 Metschnikowia proteae South Africa Floral nectar Protea caffra (Proteaceae) 2010 de Vega et al. 2012 

EBDCdVSA 37_1 Metschnikowia proteae South Africa Floral nectar Protea caffra (Proteaceae) 2010 de Vega et al. 2012 

EBDCdVSA 39_1 Metschnikowia proteae South Africa Floral nectar Protea caffra (Proteaceae) 2010 de Vega et al. 2012 

EBDCdVSA 46_1 Metschnikowia proteae South Africa Floral nectar Protea caffra (Proteaceae) 2010 de Vega et al. 2012 

EBDSA45_2 Metschnikowia proteae South Africa Floral nectar Protea caffra (Proteaceae) 2008 de Vega et al. 2012 

EBDT1Y1
T
 Metschnikowia proteae South Africa Insect 

(Coleoptera) 

Trichostetha fascicularis 

(Scarabaeidae: Cetoniinae) 

2008 de Vega et al. 2012 

EBDC2Y2
AT

  Metschnikowia proteae South Africa Insect 

(Coleoptera) 

Cyrtothyrea marginalis (Scarabaeidae: 

Cetoniinae) 

2008 de Vega et al. 2012 

EBDA10Y1 Metschnikowia proteae South Africa Insect 

(Coleoptera) 

Atrichelaphinis tigrina (Scarabaeidae: 

Cetoniinae) 

2008 de Vega et al. 2012 

EBDA7Y1 Metschnikowia proteae South Africa Insect 

(Coleoptera) 

Atrichelaphinis tigrina (Scarabaeidae: 

Cetoniinae) 

2008 de Vega et al. 2012 

EBDC1Y3 Metschnikowia proteae South Africa Insect 

(Coleoptera) 

Cyrtothyrea marginalis (Scarabaeidae: 

Cetoniinae) 

2008 de Vega et al. 2012 

EBDC3Y1 Metschnikowia proteae South Africa Insect 

(Coleoptera) 

Cyrtothyrea marginalis (Scarabaeidae: 

Cetoniinae) 

2008 de Vega et al. 2012 

EBDC4Y1 Metschnikowia proteae South Africa Insect Cyrtothyrea marginalis (Scarabaeidae: 2008 de Vega et al. 2012 
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(Coleoptera) Cetoniinae) 

EBDM1Y1 Metschnikowia proteae South Africa Insect 

(Coleoptera) 

Heterochelus sp. (Scarabaeidae: 

Hopliinae) 

2008 de Vega et al. 2012 

EBDM2Y1 Metschnikowia proteae South Africa Insect 

(Coleoptera) 

Heterochelus sp. (Scarabaeidae: 

Hopliinae) 

2008 de Vega et al. 2012 

EBDM3Y1 Metschnikowia proteae South Africa Insect 

(Coleoptera) 

Heterochelus sp. (Scarabaeidae: 

Hopliinae) 

2008 de Vega et al. 2012 

EBDM6Y1 Metschnikowia proteae South Africa Insect 

(Coleoptera) 

Heterochelus sp. (Scarabaeidae: 

Hopliinae) 

2008 de Vega et al. 2012 

EBDM7Y1 Metschnikowia proteae South Africa Insect 

(Coleoptera) 

Heterochelus sp. (Scarabaeidae: 

Hopliinae) 

2008 de Vega et al. 2012 

EBDT2Y1 Metschnikowia proteae South Africa Insect 

(Coleoptera) 

Trichostetha fascicularis 

(Scarabaeidae: Cetoniinae) 

2008 de Vega et al. 2012 

EBDF1Y1 Metschnikowia proteae South Africa Insect (Diptera) Drosophilidae sp. 2008 de Vega et al. 2012 

EBDF2Y1 Metschnikowia proteae South Africa Insect (Diptera) Drosophilidae sp. 2008 de Vega et al. 2012 

ST12.14/017 Metschnikowia reukauffi Belgium Floral nectar Symphytum officinale (Boraginaceae) 2013 Lenaerts et al. 2015 

ST12.14/020 Metschnikowia reukauffi Belgium Floral nectar Symphytum officinale (Boraginaceae) 2013 Lenaerts et al. 2015 

7.3K/FT9 A Metschnikowia reukaufii Belgium Floral nectar Pulmonaria officinalis (Boraginaceae) 2012 Jacquemyn et al. 2013 

7.8L/FT6 Metschnikowia reukaufii Belgium Floral nectar Pulmonaria officinalis (Boraginaceae) 2012 Jacquemyn et al. 2013 

7.9L/FT9 A Metschnikowia reukaufii Belgium Floral nectar Pulmonaria officinalis (Boraginaceae) 2012 Jacquemyn et al. 2013 

ST12.14/023 Metschnikowia reukaufii Belgium Floral nectar Symphytum officinale (Boraginaceae) 2013 Lenaerts et al. 2015 

ST12.14/029 Metschnikowia reukaufii Belgium Floral nectar Symphytum officinale (Boraginaceae) 2013 Lenaerts et al. 2015 

ST12.14/030 Metschnikowia reukaufii Belgium Floral nectar Symphytum officinale (Boraginaceae) 2013 Lenaerts et al. 2015 

ST12.14/496 Metschnikowia reukaufii Belgium Floral nectar Symphytum officinale (Boraginaceae) 2013 Lenaerts et al. 2015 

6.3.2-Y2 Metschnikowia reukaufii Belgium Floral nectar Pulmonaria officinalis (Boraginaceae) 2012 Jacquemyn et al. 2013 

CECT 10671
T
 Metschnikowia reukaufii Canada Flower Epilobium angustifolium (Onagraceae) 1968  

CdV Mar10.1 Metschnikowia reukaufii Morocco Floral nectar Nonea vesicaria (Boraginaceae) 2013  
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CdV Mar11.1 Metschnikowia reukaufii Morocco Floral nectar Nonea vesicaria (Boraginaceae) 2013  

CdV Mar13.1 Metschnikowia reukaufii Morocco Floral nectar Teucrium pseudochamaepitys 

(Lamiaceae) 

2013  

CdV Mar16.1 Metschnikowia reukaufii Morocco Floral nectar Lamium album (Lamiaceae) 2013  

CdV Mar17.1 Metschnikowia reukaufii Morocco Floral nectar Lavandula multifida (Lamiaceae) 2013  

CdV Mar21.1 Metschnikowia reukaufii Morocco Floral nectar Lavandula multifida (Lamiaceae) 2013  

CdV Mar31.1 Metschnikowia reukaufii Morocco Floral nectar Gladiolus italicus-communis 

(Iridaceae) 

2013  

CdV Mar33.1 Metschnikowia reukaufii Morocco Floral nectar Gladiolus italicus-communis 

(Iridaceae) 

2013  

CdV Mar34.1 Metschnikowia reukaufii Morocco Floral nectar Gladiolus italicus-communis 

(Iridaceae) 

2013  

CdV Mar4.1 Metschnikowia reukaufii Morocco Floral nectar Linaria sp. (Plantaginaceae) 2013  

CdV Mar8.1 Metschnikowia reukaufii Morocco Floral nectar Echium plantagineum (Boraginaceae) 2013  

CdV Mar9.1 Metschnikowia reukaufii Morocco Floral nectar Nonea vesicaria (Boraginaceae) 2013  

SA33 Metschnikowia reukaufii South Africa Floral nectar Gladiolus parvulus (Iridaceae) 2008  

SA44-2 Metschnikowia reukaufii South Africa Floral nectar Ajuga ophrydis (Lamiaceae) 2008  

SA72-1 Metschnikowia reukaufii South Africa Floral nectar Adhatoda andromeda (Acanthaceae) 2008  

1A2 Metschnikowia reukaufii Spain Floral nectar Helleborus foetidus (Ranunculaceae) 2009  

1B11 Metschnikowia reukaufii Spain Floral nectar Aquilegia vulgaris (Ranunculaceae) 2008 Pozo et al. 2011 

1B4 Metschnikowia reukaufii Spain Floral nectar Anthyllis vulneraria (Fabaceae) 2008 Pozo et al. 2011 

1B5 Metschnikowia reukaufii Spain Floral nectar Tetragonolobus maritimus (Fabaceae) 2008 Pozo et al. 2011 

1B7 Metschnikowia reukaufii Spain Floral nectar Aquilegia vulgaris (Ranunculaceae) 2008 Pozo et al. 2011 

1C5 Metschnikowia reukaufii Spain Floral nectar Tetragonolobus maritimus (Fabaceae) 2008 Pozo et al. 2011 

1D6 Metschnikowia reukaufii Spain Floral nectar Tetragonolobus maritimus  (Fabaceae) 2008 Pozo et al. 2011 

2C12 Metschnikowia reukaufii Spain Floral nectar Iris foetidissima (Iridaceae) 2008 Pozo et al. 2011 

2C2 Metschnikowia reukaufii Spain Floral nectar Vicia onobrychioides (Fabaceae) 2008 Pozo et al. 2011 

2D10 Metschnikowia reukaufii Spain Floral nectar Prunella grandiflora (Lamiaceae) 2008 Pozo et al. 2011 
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2D11 Metschnikowia reukaufii Spain Floral nectar Prunella grandiflora (Lamiaceae) 2008 Pozo et al. 2011 

2D6 Metschnikowia reukaufii Spain Floral nectar Vicia villosa (Fabaceae) 2008 Pozo et al. 2011 

2D7 Metschnikowia reukaufii Spain Floral nectar Vicia villosa (Fabaceae) 2008 Pozo et al. 2011 

2E2 Metschnikowia reukaufii Spain Floral nectar Aquilegia pyrenaica cazorlensis 

(Ranunculaceae) 

2008 Pozo et al. 2011 

2E3 Metschnikowia reukaufii Spain Floral nectar Aquilegia pyrenaica cazorlensis 

(Ranunculaceae) 

2008 Pozo et al. 2011 

2E4 Metschnikowia reukaufii Spain Floral nectar Aquilegia pyrenaica cazorlensis 

(Ranunculaceae) 

2008 Pozo et al. 2011 

3A3 Metschnikowia reukaufii Spain Floral nectar Helleborus foetidus (Ranunculaceae) 2008 Pozo et al. 2011 

3B10 Metschnikowia reukaufii Spain Floral nectar Helleborus foetidus (Ranunculaceae) 2008 Pozo et al. 2011 

3C12 Metschnikowia reukaufii Spain Floral nectar Helleborus foetidus (Ranunculaceae) 2008 Pozo et al. 2011 

5C4 Metschnikowia reukaufii Spain Floral nectar Helleborus foetidus (Ranunculaceae) 2008 Pozo et al. 2011 

 
T
, type strain; AT, allotype strain. 

a
 When relevant, references for field-collected strains are provided (see details in the References section of the paper).
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Table S2. Distribution of minimum inhibitory concentrations (MICs, in mg/l) obtained for quality control strains.
a
 

Strain Test 

medium
b
 

Antifungal 

(n)
c
 

≥50% inhibition end point  ≥90% inhibition end point 

24 h 48 h 72 h  24 h 48 h 72 h 

Candida krusei 

ATCC 6258 

RPMI+2%G EPZ (23) ND(65.2%), 

≤0.016(13%), 

0.031(17.4%), 

0.125(4.3%) 

0.031(8.7%), 

0.063(60.9%), 

0.125(30.4%) 

0.063(4.3%), 

0.125(73.9%), 

0.25(21.7%) 

 ND(65.2%), 

0.125(17.4%), 

0.25 (17.4%) 

0.25(21.7%), 

0.5(78.3%) 

0.5(30.4%), 

1(69.6%) 

IZL (22) ND(54.5%), 

0.063(4.5%), 

0.125(4.5%), 

0.25(13.6%), 

0.5(22.7%) 

0.5(22.7%), 

1(63.6%), 

2(13.6%) 

1(4.5%), 

2(86.4%), 

4(9.1%) 

 ND(54.5%), 

1(13.6%), 

2(31.8%) 

4(100%) 8(100%) 

KTZ (22) ND(63.6%), 

≤0.016(4.5%), 

0.031(4.5%), 

0.125(18.2%), 

0.25(9.1%) 

0.031(9.1%), 

0.063(22.7%), 

0.125(59.1%), 

0.25(9.1%) 

0.063(18.2%), 

0.125(59.1%), 

0.25(22.7%) 

 ND(63.6%), 

0.25(13.6%), 

0.5(22.7%) 

0.5(90.9%), 1(9.1%) 0.5(22.7%), 

1(77.3%) 

VCZ (22) ND(45.5%), 

0.031(4.5%), 

0.063(27.3%), 

0.125(22.7%) 

0.125(72.7%), 

0.25(27.3%) 

0.125(9.1%), 

0.25(86.4%), 

0.5(4.5%) 

 ND(45.5%), 

0.25(54.5%) 

0.25(4.5%), 

0.5(95.5%) 

0.5(86.4%), 

1(13.6%) 

YM broth EPZ (9) 0.125(33.3%), 

0.25(66.7%) 

1(100%) 1(55.6%), 

2(44.4%) 

 0.5(100%) 1(77.8%), 2(22.2%) 1(33.3%), 

2(66.7%) 

IZL (10) 1(10%), 

2(30%), 4(60%) 

4(40%), 8(60%) 8(70%), 

>8(30%) 

 2(10%), 4(80%), 

8(10%) 

4(10%), 8(90%) 8(40%), 

>8(60%) 

KTZ (9) 0.25(33.3%), 

1(66.7%) 

0.5(33.3%), 

2(66.7%) 

0.5(22.2%), 

1(11.1%), 

2(55.6%), 

4(11.1%) 

 0.5(33.3%), 

1(55.6%), 

2(11.1%) 

0.5(22.2%), 

1(11.1%), 2(66.7%) 

0.5(11.1%), 

1(11.1%), 

2(11.1%), 

4(66.7%) 

VCZ (9) 0.5(100%) 1(88.9%), 

2(11.1%) 

1(33.3%), 

2(66.7%) 

 0.5(11.1%), 

1(88.9%) 

1(55.6%), 2(44.4%) 2(100%) 
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Candida 

parapsilosis 

ATCC 22019 

RPMI+2%G EPZ (33) ND(45.5%), 

≤0.016(9.1%), 

0.031(45.5%) 

0.063(66.7%), 

0.125(33.3%) 

0.063(3%), 

0.125(93.9%), 

0.25(3%) 

 ND(45.5%), 

≤0.016(3%), 

0.125(48.5%), 

0.25(3%) 

0.25(93.9%), 

0.5(6.1%) 

0.25(24.2%), 

0.5(75.8%) 

IZL (30) ND(36.7%), 

0.125(20%), 

0.25(43.3%) 

0.25(13.3%), 

0.5(86.7%) 

0.5(36.7%), 

1(63.3%) 

 ND(36.7%), 

1(56.7%), 

2(6.7%) 

2(30%), 4(70%) 4(86.7%), 

8(13.3%) 

KTZ (33) ND(36.4%), 

≤0.016(60.6%), 

0.031(3%) 

≤0.016(33.3%), 

0.031(66.7%) 

≤0.016(3%), 

0.031(90.9%), 

0.063(6.1%) 

 ND(36.4%), 

0.031(3%), 

0.063(60.6%) 

0.063(9.1%), 

0.125(90.9%) 

0.125(90.9%), 

0.25(9.1%) 

VCZ (33) ND(30.3%), 

≤0.016(69.7%) 

≤0.016(33.3%), 

0.031(66.7%) 

0.031(100%)  ND(30.3%), 

0.031(63.6%), 

0.063(6.1%) 

0.031(6.1%), 

0.063(93.9%) 

0.063(90.1%), 

0.125(9.1%) 

YM broth EPZ (8) 0.031(25%), 

0.063(75%) 

0.125(87.5%), 

0.25(12.5%) 

0.25(25%), 

0.5(75%) 

 0.25(100%) 1(100%) 2(75%), 4(25%) 

IZL (6) 0.25(33.3%), 

0.5(33.3%), 

1(33.3%) 

1(33.3%), 

2(16.7%), 

4(50%) 

2(33.3%), 

8(66.7%) 

 1(16.7%), 

2(50%), 

4(33.3%) 

4(33.3%), 8(66.7%) 8(50%), 

>8(50%) 

KTZ (7) ≤0.016(100%) ≤0.016(42.9%), 

0.063(57.1%) 

0.031(42.9%), 

0.125(57.1%) 

 ≤0.016(14.3%), 

0.031(28.6%), 

0.063(57.1%) 

0.031(14.3%), 

0.063(28.6%), 

0.125(42.9%), 

0.25(14.3%) 

0.063(14.3%), 

0.125(14.3%), 

0.25(42.9%), 

0.5(14.3%), 

1(14.3%) 

VCZ (8) 0.031(100%) 0.063(100%) 0.063(12.5%), 

0.125(87.5%) 

 0.063(37.5%), 

0.125(62.5%) 

0.125(12.5%), 

0.25(87.5%) 

0.25(25%), 

0.5(75%) 

 

a
 For each quality control strain and combination of test conditions (test medium, antifungal compound, incubation time –24, 48 and 72 h–, and 

inhibition end point), the percentage of tests in which each MIC value was obtained is given within parentheses. In some cases, the actual MIC 

value could not be determined (ND) due to scarce growth (i.e. absorbance at 530 nm ≤0.2; Arendrup et al. 2012). 
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b
 RPMI+2%G, RPMI 1640 supplemented with glucose and buffered with 3-(N-morpholino) propanesulfonic acid (see main text); YM broth, 

yeast malt broth. 

c
 EPZ, epoxiconazole; IZL, imazalil; KTZ, ketoconazole; VCZ, voriconazole. The number of tests performed (n) in each case is shown within 

parentheses. 


