

1	Research article
2	
3	Nectar yeasts of the Metschnikowia clade are highly susceptible to azole
4	antifungals widely used in medicine and agriculture*
5	
6	Sergio Álvarez-Pérez ^{1,2} , Clara de Vega ³ , María I. Pozo ⁴ , Marijke Lenaerts ² , Ado
7	Van Assche ² , Carlos M. Herrera ³ , Hans Jacquemyn ⁴ , and Bart Lievens ^{2,*}
8	
9	¹ Department of Animal Health, Faculty of Veterinary Medicine, Universidad
10	Complutense de Madrid, E-28040 Madrid, Spain
11	² Laboratory for Process Microbial Ecology and Bioinspirational Management
12	(PME&BIM), Department of Microbial and Molecular Systems (M^2S), KU Leuven,
13	Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium
14	³ Estación Biológica de Doñana, CSIC, E-41092 Sevilla, Spain
15	⁴ Plant Population and Conservation Biology, Biology Department, KU Leuven, B-
16	3001 Heverlee, Belgium
17	
18	* Correspondence: B. Lievens, Laboratory for Process Microbial Ecology and
19	Bioinspirational Management (PME&BIM), KU Leuven, Campus De Nayer,
20	Fortsesteenweg 30A, B-2860 Sint-Katelijne Waver (Belgium). Phone: +32 15 305590.
21	Fax: +32 15 305599. E-mail address: bart.lievens@kuleuven.be
22	
23	* This study was supported in part by a FEMS-ESCMID Joint Research Fellowship
24	awarded to S.AP. (FEMS-RG-2014-0059: 'Evaluating the effects of azole antifungals
25	on Metschnikowia yeasts').

- **Running title:** Azole susceptibility of the *Metschnikowia* clade
- 27 Key words: azoles; broth microdilution; EUCAST; floral nectar; insect pollinators;
- *Metschnikowia* clade.

30 Abstract

31 The widespread use of azole antifungals in medicine and agriculture and the resulting long-persistent residues could potentially affect beneficial fungi. However, there is very 32 33 little information on the tolerance of non-target environmental fungi to azoles. In this study, we assessed the susceptibility of diverse plant- and insect-associated yeasts from 34 35 the Metschnikowia clade, including several ecologically important species, to widely used medical and agricultural azoles (epoxiconazole, imazalil, ketoconazole and 36 37 voriconazole). A total of 120 strains from six species were tested. Minimum inhibitory 38 concentrations (MICs) were determined by the EUCAST broth microdilution procedure 39 after some necessary modifications were made. The majority of species tested were 40 highly susceptible to epoxiconazole, ketoconazole and voriconazole (>95% of strains 41 showed MICs < 0.125 mg/l). Most strains were also very susceptible to imazalil, although MIC values were generally higher than for the other azoles. Furthermore, 42 43 certain Metschnikowia reukaufii strains displayed a 'trailing' phenotype (i.e. showed reduced but persistent growth at antifungal concentrations above the MIC), but this 44 45 characteristic was dependent on test conditions. It was concluded that exposure to azoles may pose a risk for ecologically relevant yeasts from the *Metschnikowia* clade, 46 47 and thus could potentially impinge on the tripartite interaction linking these fungi with plants and their insect pollinators. 48

49

50 Introduction

51	Azoles are currently the largest and most widely used class of antifungal agents in
52	clinical medicine (Sheehan et al. 1999; Pierce et al. 2013; Allen et al. 2015), and also
53	represent a mainstay for crop protection and material preservation (Hof 2001; Groenier
54	and Lebow 2006; Price et al. 2015). Their mechanism of action is mainly based on the
55	alteration of cell membrane structure and function through interference with the
56	biosynthesis of ergosterol, but alterations in nutrient transport and other pleiotropic
57	effects not yet fully understood have also been described (Ghannoum and Rice 1999;
58	Price et al. 2015; Sanguinetti et al. 2015).
59	Recently, azole resistance has been increasingly reported in many fungal
60	pathogens of animals and plants, which is a cause of great public concern (Serfling et al.
61	2007; Chakrabarti 2011; ECDC 2013; Vermeulen et al. 2013; Price et al. 2015). For
62	some of such pathogens it has been suggested that antifungal resistance can arise during
63	prolonged treatment or, alternatively, through exposure of the microorganism to sub-
64	lethal concentrations of the compounds in the environment (ECDC 2013). Moreover,
65	azole residues can disperse and persist in the environment (Kahle et al. 2008; Battaglin
66	et al. 2010; Bollmann et al. 2014) and potentially affect non-pathogenic or even
67	beneficial fungi, and may therefore have a considerable impact on ecosystem health and
68	functionality. However, there is very little information on the tolerance of non-target
69	fungal species to medical and agricultural azoles, and risk assessments for antifungal
70	use do not take into account their effects on entire fungal communities (Dijksterhuis et
71	al. 2011; Dimitrov et al. 2014).
72	The Metschnikowia clade (Saccharomycetales) consists of an ancient and diverse
73	group of ascomycetous yeasts harboring around 50 Metschnikowia species, the three

species of genus *Clavispora* and several asexual forms currently assigned to the genus

75	Candida (Lachance 2011; Guzmán et al. 2013). Members of this clade are adapted to a
76	wide variety of habitats, including flowers and their pollinators (e.g. Metschnikowia
77	gruessii, M. proteae, and M. reukaufii), plant surfaces, fruits and agricultural soils (e.g.
78	M. pulcherrima), and aquatic environments (e.g. M. bicuspidata) (Lachance 2011;
79	Guzmán et al. 2013). Also, some Metschnikowia species are being used in agriculture
80	since they are highly effective in the control of plant pathogens (Piano et al. 1997;
81	Kurtzman and Droby 2001; Sipiczki 2006). The widespread presence of Metschnikowia
82	species in natural and agricultural plant communities makes them a potential accidental
83	target for azole antifungals. However, except for some reference strains from culture
84	collections and a few clinical and agricultural isolates (Jawich et al. 2006; Desnos-
85	Ollivier et al. 2012; Savini et al. 2013; Cordero-Bueso et al. 2014), little is known about
86	the possible effects that azoles might have on this ecologically important fungal group.
87	Floral nectar is a sugary solution essential for the attraction of pollinators that
88	provide a key ecosystem service (Kearns et al. 1998; Vanbergen and the Insect
89	Pollinators Initiative 2013). But nectar is also a crucial habitat for nectarivorous
90	members of the Metschnikowia clade (Brysch-Herzberg 2004; Herrera et al. 2010), and
91	this group of yeasts seems to play important ecological functions, including the
92	attraction of pollinators (Herrera et al. 2013; Schaeffer and Irwin 2014; Schaeffer et al.
93	2014; Pozo et al. 2015). It is well known that pesticides, chemical residues and azoles
94	can accumulate in floral nectar and may have sublethal effects on plant pollinators
95	(Rortais et al. 2005; Desneux et al. 2007; Wallner 2009; Blacquière et al. 2012;
96	Bernauer et al. 2015). However, the impact of such anthropogenic contaminants on
97	nectar yeast communities has not been investigated to date.
98	In this study we determined the susceptibility of a large collection of strains
99	from the Metschnikowia clade isolated from the floral nectar of diverse wild plants and

100 their insect pollinators to a number of azole antifungals that are widely used in agriculture (epoxiconazole and imazalil) and medicine (ketoconazole and voriconazole). 101 102 Imazalil and ketoconazole are two imidazoles, i.e. compounds containing two nitrogen 103 atoms in the azole ring, whereas epoxiconazole and voriconazole belong to the triazoles 104 and have three nitrogen atoms in the azole ring (Sheehan et al. 1999). Minimum 105 inhibitory concentrations (MICs) were determined by a modification of the reference European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth 106 107 microdilution (BMD) method. In addition, as antifungal susceptibility testing of yeasts from the Metschnikowia clade is still rarely performed, we explored the effect of some 108 109 specific parameters (incubation time, MIC end point and culture medium) on the performance of the EUCAST method for this yeasts group. 110

111

Materials and methods

113 Isolates

114 A total of 120 strains from the *Metschnikowia* clade, most of which were obtained and

identified to the species level by molecular methods in the course of previous studies

116 (Pozo et al. 2011, 2012; de Vega et al. 2012, 2014; Jacquemyn et al. 2013; Lenaerts et

- 117 *al.* 2015), were tested (Table S1, supplementary materials). Studied strains belonged to
- the following six species: *Metschnikowia reukaufii* (n = 46), *M. proteae* (n = 23), *M.*
- 119 gruessii (n = 22), M. koreensis (n = 11), M. caudata (n = 7) and Candida rancensis (n = 11)
- 120 11). Most strains originated from the floral nectar of wild plants (87.7% of total,
- excluding type strains) and insect floral visitors (12.3%) from South Africa (44.7%),
- 122 Spain (36.0%), Morocco (10.5%) and Belgium (8.8%). In addition, the type strains of
- the six tested species were also included in the experiments (Table S1). All strains were
- stored at -80° C as cell suspensions in 25% glycerol stocks.

126 Antifungal susceptibility testing

127 In vitro antifungal susceptibility of strains was determined by the reference EUCAST BMD procedure guidelines for yeasts (Arendrup et al. 2012), with some modifications 128 129 in incubation conditions that had to be made for testing the strains investigated in this 130 study (see below). RPMI 1640 (Sigma-Aldrich, Diegem, Belgium) supplemented with glucose (Sigma-Aldrich) to a final concentration of 20 g/l and buffered with 3-(N-131 132 morpholino) propanesulfonic acid (Sigma-Aldrich) to a pH of 7.0 (hereafter referred to as RPMI+2%G) was used as test medium (Arendrup et al. 2012). The antifungal agents 133 134 tested (all purchased from Sigma-Aldrich) were the imidazoles imazalil and ketoconazole, and the triazoles epoxiconazole and voriconazole. Final concentrations of 135 the antifungal agents were in the range of 0.016 to 8 mg/l, and a positive control (i.e. 136 drug-free medium) was included in each test. Assay plates (96 wells, flat-bottom; 137 Thermo Fisher Scientific/Nunc, Roskilde, Denmark) were prepared in batches 138 according to the EUCAST guidelines and stored until used (but always for less than 3 139 140 months) at -80°C. Prior to susceptibility testing, frozen strains were subcultured by at 141 least two serial transfers on yeast malt (YM) agar (2.0% agar, 1.0% dextrose, 0.5% peptone, 0.3% yeast extract, 0.3% malt extract; pH 6.2) for 72 to 96 h at 25°C, so as to 142 check them for purity. Yeast suspensions were prepared in sterile distilled water, 143 adjusted to the density of a 0.5 McFarland standard $(1-5 \cdot 10^6 \text{ cells/ml})$ and further 144 145 diluted 1/10 in sterile distilled water. Columns 1 to 10 of the test plate contained 100 µl of twofold serial dilutions of the antifungals, column 11 contained 100 µl of drug-free 146 147 medium, and column 12 corresponded to the sterility controls. One hundred microliters 148 of the working yeast cell suspension were inoculated per well in columns 1 to 11, and $100 \ \mu$ l of sterile distilled water per well in column 12. Plates were then covered with a 149

150	sterile lid to prevent the medium from evaporating and incubated at 25°C. Although the
151	EUCAST method recommends an incubation temperature of $35 \pm 2^{\circ}$ C, we selected 25° C
152	as this is a common growth temperature for Metschnikowia species and most tested
153	strains were unable to grow or only showed poor growth at $35 \pm 2^{\circ}C$ (Lachance 2011;
154	de Vega et al. 2012, 2014; Pozo et al. 2012). Assay plates were read
155	spectrophotometrically (530 nm) after 24, 48 and 72 h of incubation. For the slow-
156	growing species M. caudata (de Vega et al. 2014), incubation was extended for 24
157	additional hours (i.e. 96 h in total; see Results). All strains were tested at least twice on
158	different days and Candida krusei ATCC 6258 and Candida parapsilosis ATCC 22019,
159	which are two quality control strains recommended by the EUCAST method, were
160	included in each series of experiments. Additionally, in order to assess possible
161	differences in the performance of the EUCAST method related to the test medium,
162	susceptibility tests were repeated for a selection of 37 strains (the seven M. caudata
163	strains available, and six strains representative of different regions and/or hosts for each
164	of the remaining five species) using non-synthetic YM broth (1.0% dextrose, 0.5%
165	peptone, 0.3% yeast extract, 0.3% malt extract; pH 6.2) instead of synthetic
166	RPMI+2%G.

168 Data analysis

169 Since no reference MIC end point has yet been established for susceptibility testing of

azoles against *Metschnikowia* clade strains, end points of \geq 50% and \geq 90% of reduction

in turbidity compared to the azole-free control well (i.e. partial and almost complete

172 inhibition of growth, respectively) were determined. Essential agreement (EA) between

the MIC values determined at different incubation times, or by using different test

media (i.e. RPMI+2%G and YM broth) and reading end points (50% vs. 90%) was

175	defined as discrepancy of no more than ±2 two-fold dilutions (Cuenca-Estrella <i>et al.</i>
176	2010). When necessary, high off-scale MIC results were converted to the next highest
177	concentration and low off-scale MIC results were left unchanged (Pfaller et al. 2011).
178	Discrepancies between MIC values were classified as non-substantial differences (NSD,
179	discrepancies of three or four two-fold dilutions) or substantial differences (SD,
180	discrepancies of >4 two-fold dilutions) (Cuenca-Estrella et al. 2010). Where relevant,
181	differences among the MIC data distributions were evaluated by the Friedman's test
182	followed by Bonferroni post-hoc comparisons, as implemented in Statgraphics
183	Centurion XVII (Statpoint Technologies, Inc., Warrenton, VA, USA). The critical p-
184	value was set at <0.05.
185	
186	Results
187	Optimization of the EUCAST method for yeast strains from the <i>Metschnikowia</i>
187 188	Optimization of the EUCAST method for yeast strains from the <i>Metschnikowia</i> clade
187 188 189	Optimization of the EUCAST method for yeast strains from the <i>Metschnikowia</i> clade The EUCAST method for antifungal susceptibility testing recommends incubating
187 188 189 190	Optimization of the EUCAST method for yeast strains from the <i>Metschnikowia</i> clade The EUCAST method for antifungal susceptibility testing recommends incubating microdilution plates for 24 ± 2 h, after which the absorbance at 530 nm of azole-free
187 188 189 190 191	Optimization of the EUCAST method for yeast strains from the <i>Metschnikowia</i> clade The EUCAST method for antifungal susceptibility testing recommends incubating microdilution plates for 24 ± 2 h, after which the absorbance at 530 nm of azole-free control wells should be >0.2 (Arendrup <i>et al.</i> 2012). If required, test plates can be
187 188 189 190 191 192	Optimization of the EUCAST method for yeast strains from the <i>Metschnikowia</i> clade Clade The EUCAST method for antifungal susceptibility testing recommends incubating microdilution plates for 24 ± 2 h, after which the absorbance at 530 nm of azole-free control wells should be >0.2 (Arendrup <i>et al.</i> 2012). If required, test plates can be further incubated for 12–24 h, but failure to reach the threshold absorbance after 48 h is
187 188 189 190 191 192 193	Optimization of the EUCAST method for yeast strains from the <i>Metschnikowia</i> clade Clade The EUCAST method for antifungal susceptibility testing recommends incubating microdilution plates for 24 ± 2 h, after which the absorbance at 530 nm of azole-free control wells should be >0.2 (Arendrup <i>et al.</i> 2012). If required, test plates can be further incubated for 12–24 h, but failure to reach the threshold absorbance after 48 h is considered to represent a failed test (Arendrup <i>et al.</i> 2012). A strict application of these
187 188 189 190 191 192 193 194	Optimization of the EUCAST method for yeast strains from the <i>Metschnikowia</i> clade The EUCAST method for antifungal susceptibility testing recommends incubating microdilution plates for 24 ± 2 h, after which the absorbance at 530 nm of azole-free control wells should be >0.2 (Arendrup <i>et al.</i> 2012). If required, test plates can be further incubated for 12–24 h, but failure to reach the threshold absorbance after 48 h is considered to represent a failed test (Arendrup <i>et al.</i> 2012). A strict application of these stringent criteria was not possible in the present study, as most tested strains (including
187 188 189 190 191 192 193 194 195	Optimization of the EUCAST method for yeast strains from the <i>Metschnikowia</i> clade The EUCAST method for antifungal susceptibility testing recommends incubating microdilution plates for 24 ± 2 h, after which the absorbance at 530 nm of azole-free control wells should be >0.2 (Arendrup <i>et al.</i> 2012). If required, test plates can be further incubated for 12–24 h, but failure to reach the threshold absorbance after 48 h is considered to represent a failed test (Arendrup <i>et al.</i> 2012). A strict application of these stringent criteria was not possible in the present study, as most tested strains (including those used for quality control) displayed poor growth in RPMI+2%G medium after 24 h
187 188 189 190 191 192 193 194 195 196	Optimization of the EUCAST method for yeast strains from the <i>Metschnikowia</i> clade The EUCAST method for antifungal susceptibility testing recommends incubating microdilution plates for 24 ± 2 h, after which the absorbance at 530 nm of azole-free control wells should be >0.2 (Arendrup <i>et al.</i> 2012). If required, test plates can be further incubated for 12–24 h, but failure to reach the threshold absorbance after 48 h is considered to represent a failed test (Arendrup <i>et al.</i> 2012). A strict application of these stringent criteria was not possible in the present study, as most tested strains (including those used for quality control) displayed poor growth in RPMI+2%G medium after 24 h of incubation at 25°C and, in some cases, an absorbance value >0.2 was not reached
187 188 189 190 191 192 193 194 195 196 197	Optimization of the EUCAST method for yeast strains from the <i>Metschnikowia</i> clade The EUCAST method for antifungal susceptibility testing recommends incubating microdilution plates for 24 ± 2 h, after which the absorbance at 530 nm of azole-free control wells should be >0.2 (Arendrup <i>et al.</i> 2012). If required, test plates can be further incubated for 12–24 h, but failure to reach the threshold absorbance after 48 h is considered to represent a failed test (Arendrup <i>et al.</i> 2012). A strict application of these stringent criteria was not possible in the present study, as most tested strains (including those used for quality control) displayed poor growth in RPMI+2%G medium after 24 h of incubation at 25°C and, in some cases, an absorbance value >0.2 was not reached until 72 h (Figure 1). In addition, although all <i>C. rancensis</i> strains and the quality
187 188 189 190 191 192 193 194 195 196 197 198	Optimization of the EUCAST method for yeast strains from the <i>Metschnikowia</i> clade The EUCAST method for antifungal susceptibility testing recommends incubating microdilution plates for 24 ± 2 h, after which the absorbance at 530 nm of azole-free control wells should be >0.2 (Arendrup <i>et al.</i> 2012). If required, test plates can be further incubated for 12–24 h, but failure to reach the threshold absorbance after 48 h is considered to represent a failed test (Arendrup <i>et al.</i> 2012). A strict application of these stringent criteria was not possible in the present study, as most tested strains (including those used for quality control) displayed poor growth in RPMI+2%G medium after 24 h of incubation at 25°C and, in some cases, an absorbance value >0.2 was not reached until 72 h (Figure 1). In addition, although all <i>C. rancensis</i> strains and the quality control strains displayed enough growth in RPMI+2%G after 48 h (Figure 1, Table 1

200	rather low (e.g. mean \pm S.D. = 0.30 \pm 0.02 for <i>C. rancensis</i> SA16, and 0.31 \pm 0.03 for
201	isolate SA25). Notably, none of the seven M. caudata isolates included in the study
202	consistently grew in RPMI+2%G even after extended incubation up to 96 h post-
203	inoculum (Figure 1).
204	In contrast, when tested in YM broth, the quality control strains and all strains
205	tested except those belonging to <i>M. caudata</i> reached absorbance values >0.2 in just 24 h
206	(Figure 1). Further incubation in YM broth resulted in most cases in saturated
207	absorbance values in the drug-free wells (data not shown), thus resulting in unreliable
208	MIC determination. For M. caudata, enough growth level for reliable MIC
209	determination was not reached until 48-96 h, depending on the strain and test plate
210	(Figure 1).
211	Voriconazole MIC values obtained in RPMI+2%G medium for the quality
212	control strains fell within the acceptable ranges provided in the EUCAST reference
213	document (0.03–0.25 mg/l for C. krusei ATCC 6258 and 0.015–0.06 mg/l for C.
214	parapsilosis ATCC 22019; Arendrup et al. 2012) or, for a minority of tests, differed in
215	\leq 2 two-fold dilutions (Table 1; Table S2, supplementary materials). Obviously, due to
216	the methodological modifications described in previous paragraphs, this comparison of
217	voriconazole MICs for the quality control strains is tentative (the acceptable ranges
218	given by the EUCAST document only refer to the 50% inhibition end point and
219	incubation at 37°C for 24 h). The reliability of epoxiconazole, imazalil and ketoconazole
220	MIC determinations in RPMI+2%G could not be assessed, as acceptable MIC ranges
221	are not yet available for these antifungals; nevertheless, repeated assays for these
222	compounds yielded consistent results (data not shown). The same can be said for MIC
223	determinations in YM broth.

In view of these results, it was concluded that for all species except *M. caudata* the optimal test conditions for azole MIC determination by the EUCAST procedure are 72 h of incubation in RPMI+2%G or 24 h of incubation in YM broth. In the particular case of *M. caudata*, MIC values can only be reliably determined after 96 h of incubation in a nutrient rich medium such as YM broth.

229

230 In vitro susceptibility to azole antifungals of yeasts of the *Metschnikowia* clade

Table 2 shows the azole MIC distributions for the studied strains in RPMI +2%G

232 medium (or YM broth, in the case of *M. caudata*). In general, epoxiconazole,

ketoconazole and voriconazole were very active against all species tested and,

regardless of the end point considered for MIC determination, >95% of strains were

susceptible at concentrations ≤ 0.125 mg/l. Notably, in most cases there were no

significant differences in the median MICs of epoxiconazole, ketoconazole and

voriconazole (p > 0.05 in all pair-wise comparisons except epoxiconazole vs.

ketoconazole and epoxiconazole vs. voriconazole for *M. reukaufii* and the 90%

239 inhibition end point). In contrast, median MICs for imazalil were generally higher (p

240 <0.05 in all pair-wise comparisons except imazalil vs. voriconazole for *M. caudata* and

the 90% inhibition end point), and MIC distributions depended largely on the species

and endpoint criteria. For example, only 68.3% and 27.5% of the total number of

isolates were susceptible to ≤ 0.125 mg/l of imazalil when the partial ($\geq 50\%$) and almost

complete (\geq 90%) inhibition end points were considered, respectively.

An excellent EA (100%) was observed for most species-azole combinations between the MIC values obtained by the two end point criteria considered (Table 2). A notable exception was *M. reukaufii*, which yielded discrepant results for all tested

247 notuble exception was *m. reanaujn*, which yielded discrepant results for an ested

antifungals: 1 NSD and 2 SD for epoxiconazole, 8 NSD for imazalil, and 1 SD for

249	ketoconazole and voriconazole (Table 2). Interestingly, one particular isolate (6.3.2-Y2,
250	obtained in 2012 in Belgium from floral nectar of Pulmonaria officinalis) displayed
251	discrepant results for all tested antifungals. In addition, two NSD were observed for <i>M</i> .
252	caudata and imazalil.
253	Regarding the comparison of test media, for most species, azole antifungal and
254	end point combinations, the EA between the MIC results determined after 72 h of
255	incubation in plates containing RPMI+2%G or 24 h in plates containing YM broth was
256	100% (Table 3). Discrepancies in MIC results due to the test medium when the partial
257	inhibition end point criterion was considered were only observed for imazalil and the
258	species M. gruessii and M. koreensis, for which three out of the six isolates tested in
259	each case yielded NSDs (Table 3). Non-significant differences were also obtained for
260	the same three <i>M. gruessii</i> and a single <i>M. reukaufii</i> isolate when tested for imazalil
261	susceptibility considering the almost complete inhibition end point (Table 3). Notably,
262	isolate 6.3.2-Y2 of <i>M. reukafii</i> yielded SDs in the 90% end point MIC results when
263	tested for epoxiconazole, ketoconazole and voriconazole susceptibility (Table 3).
264	

265 **Discussion**

266 Controlling fungal pathogens is paramount to ensuring human and animal health, food 267 security and preservation of wood and other materials (Hof 2001; ECDC 2013; Price et al. 2015). However, the widespread use of azole antifungals in agriculture and medicine 268 269 is leading to a significant accumulation of azole residuals in the environment (Kahle et 270 al. 2008; Battaglin et al. 2010), which poses a threat for the composition and/or functioning of fungal communities harboring non-target fungi (Dijksterhuis et al. 2011; 271 272 Dimitrov et al. 2014). In spite of this, current knowledge about yeast antifungal susceptibility profiles is mostly limited to species responsible for human infections 273

(Desnos-Ollivier *et al.* 2012), and there is very scarce information on the tolerance of
environmental fungi to antifungal compounds. To contribute to fill this research gap,
this study has provided novel information on the azole susceptibility of plant- and
insect-associated strains from the *Metschnikowia* clade. To do so, we first had to
optimize the EUCAST broth microdilution method of antifungal susceptibility testing
for *Metschnikowia* clade yeasts.

Apart from setting the incubation temperature to 25°C, which is optimal for 280 281 members of the Metschnikowia clade (see Materials and Methods), the scarce growth displayed by most tested species in RPMI+2%G necessitated extended incubation of 282 283 test plates (72 h, instead of the 24 h recommended by the EUCAST method) for reliable determination of azole MICs. Alternatively, adequate growth for MIC determination 284 was obtained in just 24 h when RPMI+2%G was substituted for nutrient rich YM broth. 285 286 Nevertheless, *M. caudata* was particularly recalcitrant to azole susceptibility testing, and MIC values for this species could only be determined when YM broth was used as 287 test medium and plates were read after 96 h of incubation. 288 289 In general, most strains included in the present study were highly susceptible to 290 broad-spectrum imidazole and triazole antifungals of widespread use in clinical and 291 agricultural settings. These findings are in line with the observation of Desnos-Ollivier 292 et al. (2012), who tested 62 Metschnikowia isolates (belonging to 36 different species) 293 from reference culture collections and found no resistance to the medical azoles 294 fluconazole, itraconazole, posaconazole and voriconazole. Nevertheless, for a few M. 295 reukaufii strains included in our study the azole MICs determined at a 90% inhibition 296 end point were several two-fold dilutions higher than those obtained using the partial 297 inhibition criterion. This observation points to the occurrence of a 'trailing' phenotype in some *Metschnikowia* strains, which is defined as the manifestation of reduced but 298

persistent growth in broth dilution tests with azole agents at antifungal concentrations
above the MIC (Lee *et al.* 2004). Curiously, the trailing phenotype of *M. reukaufii* only
appeared when susceptibility tests were performed in RPMI+2%G but not when these
were carried out in YM broth, thus confirming that this effect depends on species and
strain-specific characteristics, as well as on different methodological aspects

(Arthington-Skaggs et al. 2002; Agrawal et al. 2007; Coenye et al. 2008).

304

It is worth noting that MICs for the imidazole imazalil for our strain collection 305 306 were generally higher than those observed for the other azoles tested. A similar result was reported by Dijksterhuis et al. (2011) after performing toxicity tests to determine 307 308 the effects of azoles and other fungicides on aquatic fungi and oomycetes. The reason 309 for this higher susceptibility to imazalil is still unknown, but it might be due to a longer 310 exposure to imazalil residues and/or the presence of higher concentrations of these in the environment. Indeed, imazalil has been extensively used in agriculture since the 311 1970s, while epoxiconazole was introduced twenty years later (Morton and Staub 2008; 312 Price et al. 2015). Typical uses of imazalil include field, glasshouse and indoor 313 314 application by diverse methods (e.g. spraying, dipping, waxing) for the pre- and post-315 harvest control of diverse fungal pathogens (EFSA 2010). Moreover, apart from its 316 agricultural applications, imazalil is used (sometimes under the synonym enilconazole) 317 in veterinary medicine as a topical broad-spectrum antimycotic and also in some 318 countries as a fungicide formulation for the disinfection of farm buildings (EMEA 319 1998), which constitute potential additional sources for environmental contamination 320 (Kahle et al. 2008). Although most strains tested in this study were obtained from 321 natural plant communities located relatively far from agricultural fields and human 322 settlements, the presence of azole residues in these environments cannot be excluded and should be evaluated in future. 323

324 Floral nectar is a valuable reward for pollinators, and extensive research work 325 has been carried out to understand its composition, availability and secretion patterns 326 (Nicolson and Thornburg 2007; Brandenburg et al. 2009; Heil 2011; Lievens et al. 327 2015). More recently, there has been a growing interest in studying the role of floral nectar as a habitat for eukaryotic and prokaryotic microorganisms, and the effects these 328 329 might have on nectar chemistry, pollinator behavior and sexual plant reproduction (see Pozo et al. 2015 for an updated review). In particular, it was found that Metschnikowia 330 331 yeasts are widespread in the floral nectar of diverse plant families, and some species such as *M. reukaufii* could have a relevant role in attracting pollinators and influencing 332 333 their foraging behaviour (Herrera et al. 2013; Schaeffer and Irwin 2014; Schaeffer et al. 2014). Another emerging focus of interest is the study of the presence of anthropogenic 334 contaminants in floral nectar, and the impact of these on declining pollinator 335 336 populations and, eventually, on plant reproduction. For example, it has been that demonstrated that some insecticides such as the neonicotinoids are relatively common 337 in nectar and can alter the physiology and behavior of pollinators (Blacquière et al. 338 339 2012; Stanley et al. 2015). Although some studies have reported the presence of trace 340 amounts of certain azoles in pollen and nectar collected by foraging honey bees shortly 341 after field applications and over a prolonged time afterwards (e.g. Wallner 2009), to the 342 best of our knowledge, no study has analyzed so far the possible effect of these 343 antifungal compounds on the nectar microorganisms-plant-pollinator system. In any 344 case, given the high susceptibility to azoles of nectar yeasts from the Metschnikowia 345 clade found in this study, it seems clear that future risk assessments of the use of 346 antifungals should pay attention to the nectar microbiota. 347 In summary, results of this study provide compelling evidence that exposure to

15

azoles may pose a risk for ecologically important yeasts from the Metschnikowia clade,

and thus could potentially have detrimental effects on ecosystem dynamics and key
services including plant pollination. This adds yet another source of concern for the
long-term persistence of healthy plant-pollinator systems in natural communities. A
next step would be to study the *in planta* effects of azoles on *Metschnikowia* yeasts, as
well as to determine the actual ecological consequences of the in vitro results here
reported.

355

356 Acknowledgements

S.A.-P. thanks the members of B. Lievens' lab at KU Leuven and those of the Scientia
Terrae Research Institute for their encouragement and support during the development
of the research project reported in this article. C.d.V thanks Dr. R.G. Albaladejo and Dr.
S.L. Steenhuisen for help in field collection.

361

362 Funding

S.A.-P. acknowledges a 'Juan de la Cierva' postdoctoral contract funded by the Spanish
Ministry of Economy and Competitiveness [JCI-2012–12396]. C.d.V. was supported by
postdoctoral fellowship from the Severo Ochoa Programme for Centres of Excellence in
R&D&I [SEV-2012-0262] and 'Ayudas Fundación BBVA a Investigadores y Creadores
Culturales'. M.L., H.J. and B.L. acknowledge support from FWO [G.0652.13N]. The
funders had no role in study design, data collection and analysis, decision to publish, or

369 preparation of the manuscript.

370

- 371 *Conflict of interest.* None declared.
- 372

373 **References**

374	Agrawal D, Patterson TF, Rinaldi MG, et al. Trailing end-point phenotype of Candida
375	spp. in antifungal susceptibility testing to fluconazole is eliminated by altering
376	incubation temperature. J Med Microbiol 2007;56:1003-4.
377	Allen D, Wilson D, Drew R, et al. Azole antifungals: 35 years of invasive fungal
378	infection management. Expert Rev Anti Infect Ther 2015;13:787-98.
379	Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, et al. EUCAST definitive document
380	EDef 7.2: method for the determination of broth dilution minimum inhibitory
381	concentrations of antifungal agents for yeasts. 2012. Available at:
382	http://www.eucast.org/ast_of_fungi/methodsinantifungalsusceptibilitytesting/susc
383	eptibility_testing_of_yeasts/ [last accessed on 22 November 2015]
384	Arthington-Skaggs BA, Lee-Yang W, Ciblak MA, et al. Comparison of visual and
385	spectrophotometric methods of broth microdilution MIC end point determination
386	and evaluation of a sterol quantitation method for in vitro susceptibility testing of
387	fluconazole and itraconazole against trailing and nontrailing Candida isolates.
388	Antimicrob Agents Chemother 2002;46:2477–81.
389	Battaglin WA, Sandstrom MW, Kuivila KM, et al. Occurrence of azoxystrobin,
390	propiconazole, and selected other fungicides in US streams, 2005–2006. Water
391	Air Soil Pollut 2011; 218 :307–22.
392	Bernauer OM, Gaines-Day HR, Steffan SA. Colonies of bumble bees (Bombus
393	impatiens) produce fewer workers, less bee biomass, and have smaller mother
394	queens following fungicide exposure. Insects 2015;6:478-88.
395	Blacquière T, Smagghe G, van Gestel CA, et al. Neonicotinoids in bees: a review on
396	concentrations, side-effects and risk assessment. <i>Ecotoxicology</i> 2012; 21 :973–92.

397	Bollmann UE, Tang C, Eriksson E, et al. Biocides in urban wastewater treatment plant
398	influent at dry and wet weather: concentrations, mass flows and possible sources.
399	Water Res 2014; 60 :64–74.

- Brandenburg A, Dell'Olivo A, Bshary R, *et al.* The sweetest thing: advances in nectar
 research. *Curr Opin Plant Biol* 2009;12:486–90.
- 402 Brysch-Herzberg M. Ecology of yeasts in plant-bumblebee mutualism in Central
- 403 Europe. *FEMS Microbiol Ecol* 2004;**50**:87–100.
- 404 Chakrabarti A. Drug resistance in fungi an emerging problem. Regional Health
- 405 *Forum* 2011;**15**:97–103.
- 406 Coenye T, De Vos M, Vandenbosch D, et al. Factors influencing the trailing endpoint
- 407 observed in *Candida albicans* susceptibility testing using the CLSI procedure.
- 408 *Clin Microbiol Infect* 2008;**14**:495–7.
- 409 Cordero-Bueso G, Arroyo T, Valero E. A long term field study of the effect of
- 410 fungicides penconazole and sulfur on yeasts in the vineyard. *Int J Food Microbiol*
- 411 2014;**189**:189–94.
- 412 Cuenca-Estrella M, Gomez-Lopez A, Alastruey-Izquierdo A, et al. Comparison of the
- 413 Vitek 2 antifungal susceptibility system with the Clinical and Laboratory
- 414 Standards Institute (CLSI) and European Committee on Antimicrobial
- 415 Susceptibility Testing (EUCAST) broth microdilution reference methods and with
- the Sensititre YeastOne and Etest techniques for in vitro detection of antifungal
- 417 resistance in yeast isolates. *J Clin Microbiol* 2010;**48**:1782–6.
- 418 Desneux N, Decourtye A, Delpuech JM. The sublethal effects of pesticides on
- 419 beneficial arthropods. *Annu Rev Entomol* 2007;**52**:81–106.

420	Desnos-Ollivier M, Robert V, Raoux-Barbot D, et al. Antifungal susceptibility profiles
421	of 1698 yeast reference strains revealing potential emerging human pathogens.
422	<i>PLoS One</i> 2012; 7 :e32278.
423	de Vega C, Guzmán B, Lachance MA, et al. Metschnikowia proteae sp. nov., a
424	nectarivorous insect-associated yeast species from Africa. Int J Syst Evol
425	<i>Microbiol</i> 2012; 62 :2538–45.
426	de Vega C, Guzmán B, Steenhuisen SL, et al. Metschnikowia drakensbergensis sp. nov.
427	and Metschnikowia caudata sp. nov., endemic yeasts associated with Protea
428	flowers in South Africa. Int J Syst Evol Microbiol 2014;64:3724–32.
429	Dijksterhuis J, van Doorn T, Samson R, et al. Effects of seven fungicides on non-target
430	aquatic fungi. Water Air Soil Pollut 2011;222:421-5.
431	Dimitrov MR, Kosol S, Smidt H, et al. Assessing effects of the fungicide tebuconazole
432	to heterotrophic microbes in aquatic microcosms. Sci Total Environ
433	2014; 490 :1002–11.
434	EMEA (European Agency for the Evaluation of Medicinal Products). Committee for
435	Veterinary medicinal products. Enilconazole: summary report
436	[EMEA/MRL/496/98-FINAL]. 1998. Available at:
437	http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/document/docume
438	nt_detail.jsp?webContentId=WC500014130 [last accessed on 22 November 2015]
439	ECDC (European Centre for Disease Prevention and Control). Risk assessment on the
440	impact of environmental usage of triazoles on the development and spread of
441	resistance to medical triazoles in Aspergillus species. Stockholm: ECDC, 2013.
442	EFSA (European Food Safety Authority). Conclusion on the peer review of the
443	pesticide risk assessment of the active substance imazalil. EFSA Journal 2010;
444	8 :1526.

445	Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance,
446	and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev
447	1999; 12 :501–17.
448	Groenier JS, Lebow ST. Preservative-treated wood and alternative products in the
449	Forest Service. Missoula: USDA Forest Service Technology and Development
450	Program, 2006.
451	Guzmán B, Lachance MA, Herrera CM. Phylogenetic analysis of the angiosperm-
452	floricolous insect-yeast association: have yeast and angiosperm lineages co-
453	diversified? Mol Phylogenet Evol 2013;68:161–75.
454	Heil M. Nectar: generation, regulation and ecological functions. Trends Plant Sci
455	2011; 16 :191–200.
456	Herrera CM, Canto A, Pozo MI, et al. Inhospitable sweetness: nectar filtering of
457	pollinator-borne inocula leads to impoverished, phylogenetically clustered yeast
458	communities. <i>Proc R Soc B</i> 2010; 277 :747–54.
459	Herrera CM, Pozo MI, Medrano M. Yeasts in nectar of an early-blooming herb: sought
460	by bumble bees, detrimental to plant fecundity. <i>Ecology</i> 2013;94:273–9.
461	Hof H. Critical annotations to the use of azole antifungals for plant protection.
462	Antimicrob Agents Chemother 2001;45:2987–90.
463	Jacquemyn H, Lenaerts M, Brys R, et al. Among-population variation in microbial
464	community structure in the floral nectar of the bee-pollinated forest herb
465	Pulmonaria officinalis L. PLoS One 2013;8:e56917.
466	Jawich D, Lteif R, Pfohl-Leszkowicz A, et al. Effects of penconazole on two yeast
467	strains: growth kinetics and molecular studies. Mol Nutr Food Res 2006;50:552-
468	6.

469	Kahle M, Buerge IJ, Hauser A, et al. Azole fungicides: occurrence and fate in
470	wastewater and surface waters. Environ Sci Technol 2008;42:7193–200.
471	Kearns CA, Inouye DW, Waser NM. Endangered mutualisms: the conservation of
472	plant-pollinator interactions. Annu Rev Ecol Syst 1998;29:83-112.
473	Kurtzman CP, Droby S. Metschnikowia fructicola, a new ascosporic yeast with
474	potential for biocontrol of postharvest fruit rots. Syst Appl Microbiol
475	2001; 24 :395–9.
476	Lachance MA. Metschnikowia Kamienski (1899). In: Kurtzman CP, Fell JW, Boekhout
477	T (eds.). The Yeasts, a Taxonomic Study. London: Elsevier Science, 2011, 575-
478	620.
479	Lee MK, Williams LE, Warnock DW, et al. Drug resistance genes and trailing growth
480	in Candida albicans isolates. J Antimicrob Chemother 2004;53:217–24.
481	Lenaerts M, Pozo MI, Wäcker F, et al. Impact of microbial communities on floral nectar
482	chemistry: Potential implications for biological control of pest insects. Basic Appl
483	Ecol 2015, doi:10.1016/j.baae.2015.10.001
484	Lievens B, Hallsworth JE, Pozo MI, et al. Microbiology of sugar-rich environments:
485	diversity, ecology and system constraints. Environ Microbiol 2015;17:278-98.
486	Morton V, Staub T. A Short History of Fungicides. APSnet Features 2008, DOI:
487	10.1094/APSnetFeature-2008-0308.
488	Nicolson SW, Thornburg RW. Nectar chemistry. In: Nicolson SW, Nepi M, Pacini E
489	(eds.). Nectaries and Nectar. Dordrecht: Springer-Verlag, 2007, 215-64.
490	Pfaller MA, Watanabe N, Castanheira M, et al. Pre-clinical development of antifungal
491	susceptibility test methods for the testing of the novel antifungal agent E1210
492	versus Candida: comparison of CLSI and European Committee on Antimicrobial
493	Susceptibility Testing methods. J Antimicrob Chemother 2011;66:2581-4.

- 494 Piano S, Neyrotti V, Migheli Q, et al. Biocontrol capability of Metschnikowia
- *pulcherrima* against *Botrytis* postharvest rot of apple. *Postharvest Biol Technol*1997;11:131–40.
- 497 Pierce CG, Srinivasan A, Uppuluri P, *et al.* Antifungal therapy with an emphasis on
 498 biofilms. *Curr Opin Pharmacol* 2013;13:726–30.
- 499 Pozo MI, Herrera CM, Bazaga P. Species richness of yeast communities in floral nectar
 500 of southern Spanish plants. *Microb Ecol* 2011;61:82–91.
- 501 Pozo MI, Lachance MA, Herrera CM. Nectar yeasts of two southern Spanish plants: the
- 502 roles of immigration and physiological traits in community assembly. *FEMS*
- 503 *Microbiol Ecol* 2012;**80**:281–93.
- 504 Pozo MI, Lievens B, Jacquemyn H. Impact of microorganisms on nectar chemistry,
- 505 pollinator attraction and plant fitness. In: Peck RL (ed.). *Nectar: Production*,
- 506 Chemical Composition and Benefits to Animals and Plants. New York: Nova
- 507 Science Publishers, Inc., 2015, 1–40.
- 508 Price CL, Parker JE, Warrilow AG, et al. Azole fungicides understanding resistance
- 509 mechanisms in agricultural fungal pathogens. *Pest Manag Sci* 2015;**71**:1054–8.
- 510 Rortais A, Arnold G, Halm M-P, *et al.* Modes of honeybees exposure to systemic
- insecticides: estimated amounts of contaminated pollen and nectar consumed by
 dfferent categories of bees. *Apidologie* 2005;**36**:71–83.
- 513 Sanguinetti M, Posteraro B, Lass-Flörl C. Antifungal drug resistance among *Candida*
- 514 species: mechanisms and clinical impact. *Mycoses* 2015;**58**(Suppl.2):2–13.
- 515 Savini V, Hendrickx M, Sisti M, et al. An atypical, pigment-producing Metschnikowia
- strain from a leukaemia patient. *Med Mycol* 2013;**51**:438–43.
- 517 Schaeffer RN, Irwin RE. Yeasts in nectar enhance male fitness in a montane perennial
- 518 herb. *Ecology* 2014;**95**:1792–8.

- 519 Schaeffer RN, Phillips CR, Duryea MC, et al. Nectar yeasts in the tall larkspur
- 520 *Delphinium barbeyi* (Ranunculaceae) and effects on components of pollinator
- 521 foraging behavior. *PLoS One* 2014;**9**:e108214.
- 522 Serfling A, Wohlrab J, Deising HB. Treatment of a clinically relevant plant-pathogenic
- 523 fungus with an agricultural azole causes cross-resistance to medical azoles and
- 524 potentiates caspofungin efficacy. *Antimicrob Agents Chemother* 2007;51:3672–6.
- 525 Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents.
- 526 *Clin Microbiol Rev* 1999;**12**:40–79.
- 527 Sipiczki M. *Metschnikowia* strains isolated from botrytized grapes antagonize fungal
- and bacterial growth by iron depletion. *Appl Environ Microbiol* 2006;**72**:6716–24.
- 529 Stanley DA, Garratt MP, Wickens JB, et al. Neonicotinoid pesticide exposure impairs
- crop pollination services provided by bumblebees. *Nature* 2015,
- 531 doi:10.1038/nature16167
- 532 Vanbergen AJ, The Insect Pollinators Initiative. Threats to an ecosystem service:
- pressures on pollinators. *Front Ecol Environ* 2013;**11**:251–9.
- 534 Vermeulen E, Lagrou K, Verweij PE. Azole resistance in Aspergillus fumigatus: a
- growing public health concern. *Curr Opin Infect Dis* 2013;**26**:493–500.
- 536 Wallner K. Sprayed and seed dressed pesticides in pollen, nectar and honey of oilseed
- 537 rape. Julius-Kühn-Archiv 2009;**423**:152–3.

Tables

Strain	Test	Antifungal	≥50% inhibition	end point		≥90% inhibition end point			
	medium [®]	$(n)^c$	24 h	48 h	72 h	24 h	48 h	72 h	
<i>Candida krusei</i> ATCC 6258	RPMI+2%G	EPZ (23)	ND(65.2%), ≤0.016−0.125	0.031-0.125	0.063–0.25	ND(65.2%), 0.125–0.25	0.25-0.5	0.5–1	
		IZL (22)	ND(54.5%), 0.063–0.5	0.5–2	1–4	ND(54.5%), 1–2	4	8	
		KTZ (22)	ND(63.6%), ≤0.016–0.25	0.031-0.25	0.063-0.25	ND(63.6%), 0.25–0.5	0.5–1	0.5–1	
		VCZ (22)	ND(45.5%), 0.031–0.125	0.125-0.25	0.125–0.5	ND(45.5%), 0.25	0.25-0.5	0.5-1	
	YM broth	EPZ (9)	0.125-0.25	1	1-2	0.5	1–2	1–2	
		IZL (10)	1–4	4–8	8->8	2-8	4-8	8->8	
		KTZ (9)	0.25-1	0.5-2	0.5–4	0.5-2	0.5-2	0.5–4	
		VCZ (9)	0.5	1–2	1–2	0.5-1	1–2	2	
Candida parapsilosis	RPMI+2%G	EPZ (33)	ND(45.5%), ≤0.016− 0.031	0.063-0.125	0.063-0.25	ND(45.5%), ≤0.016–0.25	0.25-0.5	0.25-0.5	
ATCC 22019		IZL (30)	ND(36.7%), 0.125–0.25	0.25-0.5	0.5–1	ND(36.7%), 1–2	2-4	4-8	
		KTZ (33)	ND(36.4%), ≤0.016–0.031	≤0.016-0.031	≤0.016–0.063	ND(36.4%), 0.031–0.063	0.063-0.125	0.125-0.25	
		VCZ (33)	ND(30.3%), ≤0.016	≤0.016-0.031	0.031	ND(30.3%), 0.031–0.063	0.031-0.063	0.063-0.125	
	YM broth	EPZ (8)	0.031-0.063	0.125-0.25	0.25-0.5	0.25	1	2–4	
		IZL (6)	0.25-1	1–4	2-8	1-4	4-8	8->8	
		KTZ (7)	≤0.016	≤0.016-0.063	0.031-0.125	≤0.016-0.063	0.031-0.25	0.063-1	
		VCZ (8)	0.031	0.063	0.063-0.125	0.063-0.125	0.125-0.25	0.25-0.5	

Table 1. Range of minimum inhibitory concentrations (MICs) obtained for quality control strains.^a

^{*a*} For each quality control strain and combination of test conditions (test medium, antifungal compound, incubation time –24, 48 and 72 h–, and inhibition end point), the range of MIC values (in mg/l) obtained in this study is given. In some cases, the percentage of tests in which the actual MIC value could not be determined (ND) due to scarce growth (i.e. absorbance at 530 nm \leq 0.2; Arendrup *et al.* 2012) is also provided. ^{*b*} RPMI+2%G, RPMI 1640 supplemented with glucose and buffered with 3-(N-morpholino) propanesulfonic acid (see main text); YM broth, yeast malt broth.

^c EPZ, epoxiconazole; IZL, imazalil; KTZ, ketoconazole; VCZ, voriconazole. The number of tests performed (*n*) in each case is shown within parentheses.

Species (no. of	Antifungal ^a	End	MIC distribution (mg/l) ^c								\mathbf{EA}^{d}			NSD ^e	SD ^e
strains tested)		point ^ø	≤0.016	0.031	0.063	0.125	0.25	0.5	1	2	4	8	_		
Metschnikowia reukaufii (46)	EPZ	50% 90%	42* 20	3 14*	1 7	2	1	1	1				93.5%	1 (2.2%)	2 (4.3%)
	IZL	50% 90%	1	2	2 2	22* 1	18 11	1 21*	11				82.6%	8 (17.4%)	0
	KTZ	50% 90%	46* 39*	4	2					1			97.8%	0	1 (2.2%)
	VCZ	50% 90%	46* 41*	3	1							1	97.8%	0	1 (2.2%)
Metschnikowia proteae (23)	EPZ	50% 90%	23* 23*										100%	0	0
	IZL	50% 90%			7	15* 13*	1 10						100%	0	0
	KTZ	50% 90%	23* 21*	2									100%	0	0
	VCZ	50% 90%	23* 22*	1									100%	0	0
Metschnikowia gruessii (22)	EPZ	50% 90%	21* 19*	2	1	1							100%	0	0
	IZL	50% 90%		1	16* 1	4 14*	6		1	1			100%	0	0
	KTZ	50% 90%	21* 21*		1	1							100%	0	0
	VCZ	50% 90%	21* 20*	1	1		1						100%	0	0
Candida	EPZ	50%	2	5*	4								100%	0	0

Table 2. Distribution of minimum inhibitory concentrations (MICs) for azole antifungals determined by the EUCAST broth microdilution

method for yeast strains of the Metschnikowia clade.

rancensis (11)		90%	1	2	5*	3								
	IZL	50% 90%				1	3 1	4* 7*	3	2	1	100%	0	0
	KTZ	50% 90%	4	7* 6*	4	1						100%	0	0
	VCZ	50% 90%	5 2	5* 3	1 6*							100%	0	0
Metschnikowia koreensis (11)	EPZ	50% 90%	11* 6*	4	1							100%	0	0
	IZL	50% 90%			1	7* 2	3 2	7*				100%	0	0
	KTZ	50% 90%	9* 8*	2 3								100%	0	0
	VCZ	50% 90%	10* 9*	1 2								100%	0	0
Metschnikowia caudata ^f (7)	EPZ	50% 90%	5*	2 5*	2							100%	0	0
	IZL	50% 90%		1	1	1	2*	2 7*				71.4%	2 (28.6%)	0
	KTZ	50% 90%	7* 4*	3								100%	0	0
	VCZ	50% 90%	5*	2 2	5*							100%	0	0
Total (120)	EPZ	50%	104 (86.7%)	10 (8.3%)	6 (5%)							97.5%	1 (0.8%)	2 (1.7%)
		90%	69 (57.5%)	27 (22.5%)	15 (12.5%)	6 (5%)	1 (0.8%)	1 (0.8%)	1 (0.8%)					
	IZL	50%	1 (0.8%)	4 (3.3%)	27 (22.5%)	50 (41.7%)	27 (22.5%)	7 (5.8%)	4 (3.3%)			91.7%	10 (8.3%)	0
		90%			3 (2.5%)	30 (25%)	30 (25%)	42 (35%)	11 (9.2%)	3 (2.5%)	1 (0.8%)			
	KTZ	50%	110 (91.7%)	9 (7.5%)	1 (0.8%)							99.2%	0	1 (0.8%)

	90%	93 (77.5%)	18 (15%)	6 (5%)	2 (1.7%)		1 (0.8	.8%)				
VCZ	50%	110	8	2						99.2%	0	1 (0.8%)
		(91.7%)	(6.7%)	(1.7%)								
	90%	94	12	12		1			1			
		(78.3%)	(10%)	(10%)		(0.8%)			(0.8%)			

^a EPZ, epoxiconazole; IZL, imazalil; KTZ, ketoconazole; VCZ, voriconazole.

^b Percentage of growth inhibition relative to a positive control (i.e. test medium without azoles) set as end point for antifungal susceptibility testing.

^c Number (and percentage, only for total results) of strains falling into each MIC value. The median MIC value for each yeast species, antifungal and end point combination is indicated by an asterisk.

 d Percentage of essential agreement (i.e. discrepancy of no more than ± 2 two-fold dilutions) between MIC values obtained for the different end points.

^{*e*} Number (and percentage) of strains showing non-substantial differences (NSDs) or substantial differences (SDs) between MIC values obtained for the different end points.

 f Azole susceptibility testing of *Metschnikowia caudata* strains was performed using yeast maltose (YM) broth instead of RPMI 1640 supplemented with 2% (w/v) of glucose (RPMI+2%G) as culture medium and after 96 h of incubation at 25°C instead of 72 h (see details in the main text).

Species (no. of	Antifungal ^a	≥50% inhibitio	on end point				≥90% inhibition end point				
strains tested)		MIC distributi	ion ^b	%EA ^c	NSD ^d	\mathbf{SD}^d	MIC distribution	b	%EA ^c	NSD ^d	\mathbf{SD}^d
		RPMI+2%G	YM broth	_			RPMI+2%G	YM broth	_		
Candida rancensis (6)	EPZ	≤0.016(1), 0.031(3), 0.063(2)	0.031(2), 0.063(3), 0.125(1)	100	0	0	≤0.016(1), 0.063(3), 0.125(2)	0.031(1), 0.063(1), 0.125(3), 0.25(1)	100	0	0
	IZL	0.25(1), 0.5(3), 1(2)	1(2), 2(2), 4(2)	100	0	0	0.5(4), 2(1), 4(1)	1(1), 2(2), 4(1), 8(1)	100	0	0
	KTZ	≤0.016(2), 0.031(4)	0.031(2), 0.063(2), 0.125(2)	100	0	0	0.031(4), 0.063(1), 0.125(1)	0.031(1), 0.063(2), 0.125(3)	100	0	0
	VCZ	≤0.016(2), 0.031(4)	0.031(2), 0.063(2), 0.125(2)	100	0	0	$\leq 0.016(1),$ 0.031(2), 0.063(3)	0.031(1), 0.063(3), 0.125(1), 0.25(1)	100	0	0
Metschnikowia gruessii (6)	EPZ	≤0.016(6)	$\leq 0.016(5), \\ 0.031(1)$	100	0	0	≤0.016(6)	$\leq 0.016(3),$ 0.031(2), 0.063(1)	100	0	0
	IZL	0.031(1), 0.063(4), 0.125(1)	0.063(1), 0.125(1), 0.25(1), 0.5(2), 1(1)	50	3 (50%)	0	0.125(5), 0.25(1)	0.125(1), 0.25(1), 0.5(1), 1(2), 2(1)	50	3 (50%)	0
	KTZ	≤0.016(6)	$\leq 0.016(5), \\ 0.031(1)$	100	0	0	≤0.016(6)	$\leq 0.016(4), \\ 0.031(2)$	100	0	0
	VCZ	≤0.016(6)	≤0.016(5), 0.031(1)	100	0	0	≤0.016(6)	≤0.016(3), 0.031(2), 0.063(1)	100	0	0
Metschnikowia koreensis (6)	EPZ	≤0.016(6)	≤0.016(1), 0.031(5)	100	0	0	$\leq 0.016(2),$ 0.031(3), 0.063(1)	≤0.016(1), 0.063(5)	100	0	0

Table 3. Comparison of the results obtained for a selection of yeast strains from the *Metschnikowia* clade when tested for azole susceptibility in different culture media.

	IZL	0.125(5), 0.25(1)	0.25(2), 0.5(1), 1(3)	50	3 (50%)	0	0.25(2), 0.5(4)	0.25(1), 0.5(1), 1(4)	100	0	0
	KTZ	$\leq 0.016(4), \\ 0.031(2)$	$\leq 0.016(2), \\ 0.031(4)$	100	0	0	$\leq 0.016(4), \\ 0.031(2)$	≤0.016(2), 0.031(4)	100	0	0
	VCZ	$\leq 0.016(5), \\ 0.031(1)$	$\leq 0.016(1), \\ 0.031(5)$	100	0	0	$\leq 0.016(5), \\ 0.031(1)$	0.031(2), 0.063(4)	100	0	0
Metschnikowia	EPZ	≤0.016(6)	≤0.016(6)	100	0	0	≤0.016(6)	≤0.016(6)	100	0	0
proteae (6)	IZL	0.063(1), 0.125(4), 0.25(1)	0.25(5), 0.5(1)	100	0	0	0.125(2), 0.25(4)	0.25(1), 0.5(5)	100	0	0
	KTZ	≤0.016(6)	≤0.016(6)	100	0	0	$\leq 0.016(5), \\ 0.031(1)$	$\leq 0.016(5), \\ 0.031(1)$	100	0	0
	VCZ	≤0.016(6)	$\leq 0.016(5), \\ 0.031(1)$	100	0	0	≤0.016(6)	$\leq 0.016(5), \\ 0.031(1)$	100	0	0
Metschnikowia reukaufii (6)	EPZ	≤0.016(6)	≤0.016(6)	100	0	0	≤0.016(2), 0.031(2), 0.063(1), 1(1)	$\leq 0.016(1),$ 0.031(4), 0.063(1)	83.3	0	1 (16.7%)
	IZL	0.063(1), 0.125(2), 0.25(3)	0.125(6)	100	0	0	0.25(2), 0.5(2), 1(1), 2(2)	0.125(4), 0.25(1), 0.5(1)	83.3	1 (16.7%)	0
	KTZ	≤0.016(6)	≤0.016(6)	100	0	0	≤0.016(5), 2(1)	≤0.016(6)	83.3	0	1 (16.7%)
	VCZ	≤0.016(6)	$\leq 0.016(4), \\ 0.031(2)$	100	0	0	≤0.016(5), 8(1)	$\leq 0.016(1), \\ 0.031(5)$	83.3	0	1 (16.7%)
TOTAL (30)	EPZ	≤0.016(25), 0.031(3), 0.063(2)	≤0.016(18), 0.031(8), 0.063(3), 0.125(1)	100	0	0	$\leq 0.016(17),$ 0.031(5), 0.063(5), 0.125(2), 1(1)	$\leq 0.016(11),$ 0.031(7), 0.063(8), 0.125(3), 0.25(1)	96.7	0	1 (3.3%)
	IZL	0.031(1), 0.063(6), 0.125(12), 0.25(6), 0.5(3), 1(2)	0.063(1), 0.125(7), 0.25(8), 0.5(4), 1(6), 2(2), 4(2)	80	6 (20%)	0	0.125(7), 0.25(9), 0.5(10), 1(1), 2(2), 4(1)	0.125(5), 0.25(4), 0.5(8), 1(8), 2(3), 4(1), 8(1)	86.7	4 (13.3%)	0

KTZ	≤0.016(24), 0.031(6)	≤0.016(19), 0.031(7), 0.063(2), 0.125(2)	100	0	0	$\leq 0.016(20),$ 0.031(7), 0.063(1), 0.125(1), 2(1)	$\leq 0.016(17),$ 0.031(8), 0.063(2), 0.125(3)	96.7	0	1 (3.3%)
VCZ	≤0.016(25), 0.031(5)	$\leq 0.016(15),$ 0.031(11), 0.063(2), 0.125(2)	100	0	0	≤0.016(23), 0.031(3), 0.063(3), 8(1)	$\leq 0.016(9),$ 0.031(11), 0.063(8), 0.125(1), 0.25(1)	96.7	0	1 (3.3%)

^a EPZ, epoxiconazole; IZL, imazalil; KTZ, ketoconazole; VCZ, voriconazole.

^{*b*} For each species and combination of test conditions (test medium, antifungal compound, and inhibition end point), the number of strains displaying each MIC value (in mg/l) is given. RPMI+2%G, RPMI 1640 supplemented with glucose and buffered with 3-(N-morpholino) propanesulfonic acid (see main text); YM broth, yeast malt broth.

 c Percentage of essential agreement (i.e. discrepancy of no more than ± 2 two-fold dilutions) between MIC values obtained in different culture media.

^d Number (and percentage) of strains showing non-substantial differences (NSDs) or substantial differences (SDs) between MIC values obtained in different culture media.

FIGURE LEGENDS

Figure 1. Pie charts showing the percentages of isolates of the tested species which displayed enough growth for reliable azole susceptibility determination by the EUCAST method (i.e. absorbance at 530 nm >0.2 in the positive control well) at each reading time (24, 48 and 72 h for most species, and also 96 h for *Metschnikowia caudata*, see Results) in 100% (blue sectors), \geq 75% but <100% (green), \geq 50% but <75% (orange), <50% but >0% (red) and 0% (black) of the test plates. Total numbers of isolates (*N*) and tests (*n*, mean ± S.D.) per species are as follows: i) experiments using RPMI-1640 medium supplemented with 2% (w/v) glucose (RPMI+2%G): *Metschnikowia reukaufii*, *N* = 46, *n* = 423 (9.2 ± 1.6); *M. proteae*, *N* = 23, *n* = 193 (8.4 ± 0.7); *M. gruessii*, *N* = 22, *n* = 181 (8.2 ± 0.8); *M. koreensis*, *N* = 11, *n* = 102 (9.3 ± 1.1); *Candida rancensis*, *N* = 11, *n* = 108 (9.8 ± 1.8); and *M. caudata*, *N* = 7, *n* = 56 (8 ± 0); ii) experiments using yeast malt (YM) broth: *M. reukaufii*, *N* = 6, *n* = 48 (8 ± 0); *M. proteae*, *N* = 6, *n* = 51 (8.5 ± 1.1); *M. gruessii*, *N* = 6, *n* = 52 (8.7 ± 1.5); and *M. caudata*, *N* = 7, *n* = 88 (12.6 ± 0.5).

Tables

Strain	Yeast species	Country of origin	Habitat	Host species (family)	Year	Reference ^{<i>a</i>}
SA16	Candida rancensis	South Africa	Floral nectar	Dierama trichorhizum (Iridaceae)	2008	
SA20	Candida rancensis	South Africa	Floral nectar	Graderia scabra (Orobanchaceae)	2008	
SA25	Candida rancensis	South Africa	Floral nectar	Kniphofia sp. (Xanthorrhoeaceae)	2008	
SA26	Candida rancensis	South Africa	Floral nectar	Burchellia bubalina (Rubiaceae)	2008	
SA34	Candida rancensis	South Africa	Floral nectar	Watsonia lepida (Iridaceae)	2008	
SA35-1	Candida rancensis	South Africa	Floral nectar	Watsonia pillansii (Iridaceae)	2008	
SA40	Candida rancensis	South Africa	Floral nectar	Haemanthus humilis (Amaryllidaceae)	2008	
SA45-1	Candida rancensis	South Africa	Floral nectar	Protea caffra (Proteaceae)	2008	
SA71-2	Candida rancensis	South Africa	Floral nectar	Adhatoda andromeda (Acanthaceae)	2008	
SA73-1	Candida rancensis	South Africa	Floral nectar	Adhatoda andromeda (Acanthaceae)	2008	
NRRL Y-48759 ^T	Candida rancensis	USA	Floral nectar	Mimulus aurantiacus (Phrymaceae)	1984	
EBD-CdVSA08-1 ^T	Metschnikowia caudata	South Africa	Floral nectar	Protea dracomontana (Proteaceae)	2010	de Vega et al. 2014
EBD-B8Y1	Metschnikowia caudata	South Africa	Floral nectar	Apis mellifera (Apidae)	2010	de Vega et al. 2014
EBD-CdVSA21-2	Metschnikowia caudata	South Africa	Floral nectar	Protea roupelliae (Proteaceae)	2010	de Vega et al. 2014
EBD-CdVSA23-1	Metschnikowia caudata	South Africa	Floral nectar	Protea roupelliae (Proteaceae)	2010	de Vega et al. 2014
EBD-CdVSA57-2 ^{AT}	Metschnikowia caudata	South Africa	Floral nectar	Protea subvestita (Proteaceae)	2010	de Vega et al. 2014
EBD-SA53	Metschnikowia caudata	South Africa	Floral nectar	Protea roupelliae (Proteaceae)	2008	de Vega et al. 2014
EBD-SA54	Metschnikowia caudata	South Africa	Floral nectar	Protea roupelliae (Proteaceae)	2008	de Vega et al. 2014
CBS 7657 ^T	Metschnikowia gruessii	Portugal	Floral nectar	Hebe salicifolia (Plantaginaceae)	1992	
6D1	Metschnikowia gruessii	Spain	Floral nectar	Digitalis obscura (Plantaginaceae)	2009	Pozo et al. 2012

Table S1. Yeast strains included in the present study.

6D10	Metschnikowia gruessii	Spain	Floral nectar	Digitalis obscura (Plantaginaceae)	2009	Pozo et al. 2012
6D12	Metschnikowia gruessii	Spain	Floral nectar	Digitalis obscura (Plantaginaceae)	2009	Pozo et al. 2012
6E10	Metschnikowia gruessii	Spain	Floral nectar	Gladiolus illyricus (Iridaceae)	2008	Pozo et al. 2011
6E5	Metschnikowia gruessii	Spain	Floral nectar	Lonicera implexa (Caprifoliaceae)	2008	Pozo et al. 2011
6E6	Metschnikowia gruessii	Spain	Floral nectar	<i>Teucrium pseudochamaepytis</i> (Lamiaceae)	2008	Pozo <i>et al.</i> 2011
6E8	Metschnikowia gruessii	Spain	Floral nectar	<i>Teucrium pseudochamaepytis</i> (Lamiaceae)	2008	Pozo <i>et al.</i> 2011
6E9	Metschnikowia gruessii	Spain	Floral nectar	Jasminum fruticans (Oleaceae)	2008	Pozo et al. 2011
6F11	Metschnikowia gruessii	Spain	Floral nectar	Antirrhinum australe (Plantaginaceae)	2008	Pozo et al. 2011
6F12	Metschnikowia gruessii	Spain	Floral nectar	Antirrhinum australe (Plantaginaceae)	2008	Pozo et al. 2011
6F5	Metschnikowia gruessii	Spain	Floral nectar	Digitalis obscura (Plantaginaceae)	2008	Pozo et al. 2011
6F6	Metschnikowia gruessii	Spain	Floral nectar	Digitalis obscura (Plantaginaceae)	2008	Pozo et al. 2011
6F7	Metschnikowia gruessii	Spain	Floral nectar	Digitalis obscura (Plantaginaceae)	2008	Pozo et al. 2011
6F8	Metschnikowia gruessii	Spain	Floral nectar	Phlomis lychnitis (Lamiaceae)	2008	Pozo et al. 2011
6F9	Metschnikowia gruessii	Spain	Floral nectar	Phlomis lychnitis (Lamiaceae)	2008	Pozo et al. 2011
6G2	Metschnikowia gruessii	Spain	Floral nectar	Prunella grandiflora (Lamiaceae)	2008	Pozo et al. 2011
6G3	Metschnikowia gruessii	Spain	Floral nectar	Prunella grandiflora (Lamiaceae)	2008	Pozo et al. 2011
6G4	Metschnikowia gruessii	Spain	Floral nectar	Prunella grandiflora (Lamiaceae)	2008	Pozo et al. 2011
6G5	Metschnikowia gruessii	Spain	Floral nectar	Atropa baetica (Solanaceae)	2008	Pozo et al. 2011
6G6	Metschnikowia gruessii	Spain	Floral nectar	Atropa baetica (Solanaceae)	2008	Pozo et al. 2011
6G7	Metschnikowia gruessii	Spain	Floral nectar	Atropa baetica (Solanaceae)	2008	Pozo et al. 2011
CBS 8854 ^T	Metschnikowia koreensis	Korea	Flower	Lilium sp. (Liliaceae)	1999	
SA1-3	Metschnikowia koreensis	South Africa	Floral nectar	Gladiolus longicollis (Iridaceae)	2008	
SA21	Metschnikowia koreensis	South Africa	Floral nectar	Ruellia cordata (Acanthaceae)	2008	
SA41-1	Metschnikowia koreensis	South Africa	Floral nectar	Stachys aethiopica (Lamiaceae)	2008	
SA44-1	Metschnikowia koreensis	South Africa	Floral nectar	Ajuga ophrydis (Lamiaceae)	2008	

SA60	Metschnikowia koreensis	South Africa	Floral nectar	<i>Glumicalyx goseloides</i> (Scrophulariaceae)	2008	
SA66	Metschnikowia koreensis	South Africa	Floral nectar	Silene bellidioides (Caryophyllaceae)	2008	
SA70	Metschnikowia koreensis	South Africa	Floral nectar	Disa crassicornis (Orchidaceae)	2008	
SA71-1	Metschnikowia koreensis	South Africa	Floral nectar	Adhatoda andromeda (Acanthaceae)	2008	
SA8	Metschnikowia koreensis	South Africa	Floral nectar	Gladiolus appendiculatus (Iridaceae)	2008	
SA9	Metschnikowia koreensis	South Africa	Floral nectar	Dierama luteo-albidum (Iridaceae)	2008	
CdVSA78_2	Metschnikowia proteae	South Africa	Floral nectar	Protea simplex (Proteaceae)	2010	de Vega et al. 2012
EBDCdVSA 34_1	Metschnikowia proteae	South Africa	Floral nectar	Protea caffra (Proteaceae)	2010	de Vega et al. 2012
EBDCdVSA 35_1	Metschnikowia proteae	South Africa	Floral nectar	Protea caffra (Proteaceae)	2010	de Vega et al. 2012
EBDCdVSA 36_1	Metschnikowia proteae	South Africa	Floral nectar	Protea caffra (Proteaceae)	2010	de Vega et al. 2012
EBDCdVSA 37_1	Metschnikowia proteae	South Africa	Floral nectar	Protea caffra (Proteaceae)	2010	de Vega et al. 2012
EBDCdVSA 39_1	Metschnikowia proteae	South Africa	Floral nectar	Protea caffra (Proteaceae)	2010	de Vega et al. 2012
EBDCdVSA 46_1	Metschnikowia proteae	South Africa	Floral nectar	Protea caffra (Proteaceae)	2010	de Vega et al. 2012
EBDSA45_2	Metschnikowia proteae	South Africa	Floral nectar	Protea caffra (Proteaceae)	2008	de Vega et al. 2012
EBDT1Y1 ^T	Metschnikowia proteae	South Africa	Insect (Coleoptera)	Trichostetha fascicularis (Scarabaeidae: Cetoniinae)	2008	de Vega et al. 2012
EBDC2Y2 ^{AT}	Metschnikowia proteae	South Africa	Insect (Coleoptera)	<i>Cyrtothyrea marginalis</i> (Scarabaeidae: Cetoniinae)	2008	de Vega <i>et al</i> . 2012
EBDA10Y1	Metschnikowia proteae	South Africa	Insect (Coleoptera)	<i>Atrichelaphinis tigrina</i> (Scarabaeidae: Cetoniinae)	2008	de Vega <i>et al</i> . 2012
EBDA7Y1	Metschnikowia proteae	South Africa	Insect (Coleoptera)	<i>Atrichelaphinis tigrina</i> (Scarabaeidae: Cetoniinae)	2008	de Vega <i>et al</i> . 2012
EBDC1Y3	Metschnikowia proteae	South Africa	Insect (Coleoptera)	<i>Cyrtothyrea marginalis</i> (Scarabaeidae: Cetoniinae)	2008	de Vega <i>et al.</i> 2012
EBDC3Y1	Metschnikowia proteae	South Africa	Insect (Coleoptera)	<i>Cyrtothyrea marginalis</i> (Scarabaeidae: Cetoniinae)	2008	de Vega <i>et al</i> . 2012
EBDC4Y1	Metschnikowia proteae	South Africa	Insect	Cyrtothyrea marginalis (Scarabaeidae:	2008	de Vega et al. 2012

			(Coleoptera)	Cetoniinae)		
EBDM1Y1	Metschnikowia proteae	South Africa	Insect (Coleoptera)	<i>Heterochelus</i> sp. (Scarabaeidae: Hopliinae)	2008	de Vega <i>et al</i> . 2012
EBDM2Y1	Metschnikowia proteae	South Africa	Insect (Coleoptera)	<i>Heterochelus</i> sp. (Scarabaeidae: Hopliinae)	2008	de Vega <i>et al</i> . 2012
EBDM3Y1	Metschnikowia proteae	South Africa	Insect (Coleoptera)	<i>Heterochelus</i> sp. (Scarabaeidae: Hopliinae)	2008	de Vega <i>et al</i> . 2012
EBDM6Y1	Metschnikowia proteae	South Africa	Insect (Coleoptera)	<i>Heterochelus</i> sp. (Scarabaeidae: Hopliinae)	2008	de Vega <i>et al</i> . 2012
EBDM7Y1	Metschnikowia proteae	South Africa	Insect (Coleoptera)	<i>Heterochelus</i> sp. (Scarabaeidae: Hopliinae)	2008	de Vega <i>et al</i> . 2012
EBDT2Y1	Metschnikowia proteae	South Africa	Insect (Coleoptera)	Trichostetha fascicularis (Scarabaeidae: Cetoniinae)	2008	de Vega <i>et al</i> . 2012
EBDF1Y1	Metschnikowia proteae	South Africa	Insect (Diptera)	Drosophilidae sp.	2008	de Vega et al. 2012
EBDF2Y1	Metschnikowia proteae	South Africa	Insect (Diptera)	Drosophilidae sp.	2008	de Vega et al. 2012
ST12.14/017	Metschnikowia reukauffi	Belgium	Floral nectar	Symphytum officinale (Boraginaceae)	2013	Lenaerts et al. 2015
ST12.14/020	Metschnikowia reukauffi	Belgium	Floral nectar	Symphytum officinale (Boraginaceae)	2013	Lenaerts et al. 2015
7.3K/FT9 A	Metschnikowia reukaufii	Belgium	Floral nectar	Pulmonaria officinalis (Boraginaceae)	2012	Jacquemyn et al. 2013
7.8L/FT6	Metschnikowia reukaufii	Belgium	Floral nectar	Pulmonaria officinalis (Boraginaceae)	2012	Jacquemyn et al. 2013
7.9L/FT9 A	Metschnikowia reukaufii	Belgium	Floral nectar	Pulmonaria officinalis (Boraginaceae)	2012	Jacquemyn et al. 2013
ST12.14/023	Metschnikowia reukaufii	Belgium	Floral nectar	Symphytum officinale (Boraginaceae)	2013	Lenaerts et al. 2015
ST12.14/029	Metschnikowia reukaufii	Belgium	Floral nectar	Symphytum officinale (Boraginaceae)	2013	Lenaerts et al. 2015
ST12.14/030	Metschnikowia reukaufii	Belgium	Floral nectar	Symphytum officinale (Boraginaceae)	2013	Lenaerts et al. 2015
ST12.14/496	Metschnikowia reukaufii	Belgium	Floral nectar	Symphytum officinale (Boraginaceae)	2013	Lenaerts et al. 2015
6.3.2-Y2	Metschnikowia reukaufii	Belgium	Floral nectar	Pulmonaria officinalis (Boraginaceae)	2012	Jacquemyn et al. 2013
CECT 10671 ^T	Metschnikowia reukaufii	Canada	Flower	Epilobium angustifolium (Onagraceae)	1968	
CdV Mar10.1	Metschnikowia reukaufii	Morocco	Floral nectar	Nonea vesicaria (Boraginaceae)	2013	

CdV Mar11.1	Metschnikowia reukaufii	Morocco	Floral nectar	Nonea vesicaria (Boraginaceae)	2013	
CdV Mar13.1	Metschnikowia reukaufii	Morocco	Floral nectar	<i>Teucrium pseudochamaepitys</i> (Lamiaceae)	2013	
CdV Mar16.1	Metschnikowia reukaufii	Morocco	Floral nectar	Lamium album (Lamiaceae)	2013	
CdV Mar17.1	Metschnikowia reukaufii	Morocco	Floral nectar	Lavandula multifida (Lamiaceae)	2013	
CdV Mar21.1	Metschnikowia reukaufii	Morocco	Floral nectar	Lavandula multifida (Lamiaceae)	2013	
CdV Mar31.1	Metschnikowia reukaufii	Morocco	Floral nectar	<i>Gladiolus italicus-communis</i> (Iridaceae)	2013	
CdV Mar33.1	Metschnikowia reukaufii	Morocco	Floral nectar	<i>Gladiolus italicus-communis</i> (Iridaceae)	2013	
CdV Mar34.1	Metschnikowia reukaufii	Morocco	Floral nectar	<i>Gladiolus italicus-communis</i> (Iridaceae)	2013	
CdV Mar4.1	Metschnikowia reukaufii	Morocco	Floral nectar	Linaria sp. (Plantaginaceae)	2013	
CdV Mar8.1	Metschnikowia reukaufii	Morocco	Floral nectar	Echium plantagineum (Boraginaceae)	2013	
CdV Mar9.1	Metschnikowia reukaufii	Morocco	Floral nectar	Nonea vesicaria (Boraginaceae)	2013	
SA33	Metschnikowia reukaufii	South Africa	Floral nectar	Gladiolus parvulus (Iridaceae)	2008	
SA44-2	Metschnikowia reukaufii	South Africa	Floral nectar	Ajuga ophrydis (Lamiaceae)	2008	
SA72-1	Metschnikowia reukaufii	South Africa	Floral nectar	Adhatoda andromeda (Acanthaceae)	2008	
1A2	Metschnikowia reukaufii	Spain	Floral nectar	Helleborus foetidus (Ranunculaceae)	2009	
1B11	Metschnikowia reukaufii	Spain	Floral nectar	Aquilegia vulgaris (Ranunculaceae)	2008	Pozo et al. 2011
1B4	Metschnikowia reukaufii	Spain	Floral nectar	Anthyllis vulneraria (Fabaceae)	2008	Pozo et al. 2011
1B5	Metschnikowia reukaufii	Spain	Floral nectar	Tetragonolobus maritimus (Fabaceae)	2008	Pozo et al. 2011
1B7	Metschnikowia reukaufii	Spain	Floral nectar	Aquilegia vulgaris (Ranunculaceae)	2008	Pozo et al. 2011
1C5	Metschnikowia reukaufii	Spain	Floral nectar	Tetragonolobus maritimus (Fabaceae)	2008	Pozo et al. 2011
1D6	Metschnikowia reukaufii	Spain	Floral nectar	Tetragonolobus maritimus (Fabaceae)	2008	Pozo et al. 2011
2C12	Metschnikowia reukaufii	Spain	Floral nectar	Iris foetidissima (Iridaceae)	2008	Pozo et al. 2011
2C2	Metschnikowia reukaufii	Spain	Floral nectar	Vicia onobrychioides (Fabaceae)	2008	Pozo et al. 2011
2D10	Metschnikowia reukaufii	Spain	Floral nectar	Prunella grandiflora (Lamiaceae)	2008	Pozo et al. 2011

2D11	Metschnikowia reukaufii	Spain	Floral nectar	Prunella grandiflora (Lamiaceae)	2008	Pozo et al. 2011
2D6	Metschnikowia reukaufii	Spain	Floral nectar	Vicia villosa (Fabaceae)	2008	Pozo et al. 2011
2D7	Metschnikowia reukaufii	Spain	Floral nectar	Vicia villosa (Fabaceae)	2008	Pozo et al. 2011
2E2	Metschnikowia reukaufii	Spain	Floral nectar	Aquilegia pyrenaica cazorlensis (Ranunculaceae)	2008	Pozo <i>et al.</i> 2011
2E3	Metschnikowia reukaufii	Spain	Floral nectar	Aquilegia pyrenaica cazorlensis (Ranunculaceae)	2008	Pozo <i>et al.</i> 2011
2E4	Metschnikowia reukaufii	Spain	Floral nectar	<i>Aquilegia pyrenaica cazorlensis</i> (Ranunculaceae)	2008	Pozo <i>et al.</i> 2011
3A3	Metschnikowia reukaufii	Spain	Floral nectar	Helleborus foetidus (Ranunculaceae)	2008	Pozo et al. 2011
3B10	Metschnikowia reukaufii	Spain	Floral nectar	Helleborus foetidus (Ranunculaceae)	2008	Pozo et al. 2011
3C12	Metschnikowia reukaufii	Spain	Floral nectar	Helleborus foetidus (Ranunculaceae)	2008	Pozo et al. 2011
5C4	Metschnikowia reukaufii	Spain	Floral nectar	Helleborus foetidus (Ranunculaceae)	2008	Pozo et al. 2011

^T, type strain; ^{AT}, allotype strain.

^{*a*} When relevant, references for field-collected strains are provided (see details in the References section of the paper).

Strain	Test medium ^b	Antifungal (<i>n</i>) ^c	≥50% inhibition end point			≥90% inhibition end point		
			24 h	48 h	72 h	24 h	48 h	72 h
Candida krusei ATCC 6258	RPMI+2%G	EPZ (23)	ND(65.2%), ≤0.016(13%), 0.031(17.4%), 0.125(4.3%)	0.031(8.7%), 0.063(60.9%), 0.125(30.4%)	0.063(4.3%), 0.125(73.9%), 0.25(21.7%)	ND(65.2%), 0.125(17.4%), 0.25 (17.4%)	0.25(21.7%), 0.5(78.3%)	0.5(30.4%), 1(69.6%)
		IZL (22)	ND(54.5%), 0.063(4.5%), 0.125(4.5%), 0.25(13.6%), 0.5(22.7%)	0.5(22.7%), 1(63.6%), 2(13.6%)	1(4.5%), 2(86.4%), 4(9.1%)	ND(54.5%), 1(13.6%), 2(31.8%)	4(100%)	8(100%)
		KTZ (22)	$\begin{array}{l} \text{ND}(63.6\%),\\ \leq 0.016(4.5\%),\\ 0.031(4.5\%),\\ 0.125(18.2\%),\\ 0.25(9.1\%) \end{array}$	0.031(9.1%), 0.063(22.7%), 0.125(59.1%), 0.25(9.1%)	0.063(18.2%), 0.125(59.1%), 0.25(22.7%)	ND(63.6%), 0.25(13.6%), 0.5(22.7%)	0.5(90.9%), 1(9.1%)	0.5(22.7%), 1(77.3%)
		VCZ (22)	ND(45.5%), 0.031(4.5%), 0.063(27.3%), 0.125(22.7%)	0.125(72.7%), 0.25(27.3%)	0.125(9.1%), 0.25(86.4%), 0.5(4.5%)	ND(45.5%), 0.25(54.5%)	0.25(4.5%), 0.5(95.5%)	0.5(86.4%), 1(13.6%)
	YM broth	EPZ (9)	0.125(33.3%), 0.25(66.7%)	1(100%)	1(55.6%), 2(44.4%)	0.5(100%)	1(77.8%), 2(22.2%)	1(33.3%), 2(66.7%)
		IZL (10)	1(10%), 2(30%), 4(60%)	4(40%), 8(60%)	8(70%), >8(30%)	2(10%), 4(80%), 8(10%)	4(10%), 8(90%)	8(40%), >8(60%)
		KTZ (9)	0.25(33.3%), 1(66.7%)	0.5(33.3%), 2(66.7%)	0.5(22.2%), 1(11.1%), 2(55.6%), 4(11.1%)	0.5(33.3%), 1(55.6%), 2(11.1%)	0.5(22.2%), 1(11.1%), 2(66.7%)	0.5(11.1%), 1(11.1%), 2(11.1%), 4(66.7%)
		VCZ (9)	0.5(100%)	1(88.9%), 2(11.1%)	1(33.3%), 2(66.7%)	0.5(11.1%), 1(88.9%)	1(55.6%), 2(44.4%)	2(100%)

Table S2. Distribution of minimum inhibitory concentrations (MICs, in mg/l) obtained for quality control strains.^a

Candida parapsilosis ATCC 22019	RPMI+2%G	EPZ (33)	ND(45.5%), ≤0.016(9.1%), 0.031(45.5%)	0.063(66.7%), 0.125(33.3%)	0.063(3%), 0.125(93.9%), 0.25(3%)	ND(45.5%), ≤0.016(3%), 0.125(48.5%), 0.25(3%)	0.25(93.9%), 0.5(6.1%)	0.25(24.2%), 0.5(75.8%)
		IZL (30)	ND(36.7%), 0.125(20%), 0.25(43.3%)	0.25(13.3%), 0.5(86.7%)	0.5(36.7%), 1(63.3%)	ND(36.7%), 1(56.7%), 2(6.7%)	2(30%), 4(70%)	4(86.7%), 8(13.3%)
		KTZ (33)	ND(36.4%), ≤0.016(60.6%), 0.031(3%)	≤0.016(33.3%), 0.031(66.7%)	≤0.016(3%), 0.031(90.9%), 0.063(6.1%)	ND(36.4%), 0.031(3%), 0.063(60.6%)	0.063(9.1%), 0.125(90.9%)	0.125(90.9%), 0.25(9.1%)
		VCZ (33)	ND(30.3%), ≤0.016(69.7%)	≤0.016(33.3%), 0.031(66.7%)	0.031(100%)	ND(30.3%), 0.031(63.6%), 0.063(6.1%)	0.031(6.1%), 0.063(93.9%)	0.063(90.1%), 0.125(9.1%)
	YM broth	EPZ (8)	0.031(25%), 0.063(75%)	0.125(87.5%), 0.25(12.5%)	0.25(25%), 0.5(75%)	0.25(100%)	1(100%)	2(75%), 4(25%)
		IZL (6)	0.25(33.3%), 0.5(33.3%), 1(33.3%)	1(33.3%), 2(16.7%), 4(50%)	2(33.3%), 8(66.7%)	1(16.7%), 2(50%), 4(33.3%)	4(33.3%), 8(66.7%)	8(50%), >8(50%)
		KTZ (7)	≤0.016(100%)	≤0.016(42.9%), 0.063(57.1%)	0.031(42.9%), 0.125(57.1%)	≤0.016(14.3%), 0.031(28.6%), 0.063(57.1%)	0.031(14.3%), 0.063(28.6%), 0.125(42.9%), 0.25(14.3%)	0.063(14.3%), 0.125(14.3%), 0.25(42.9%), 0.5(14.3%), 1(14.3%)
		VCZ (8)	0.031(100%)	0.063(100%)	0.063(12.5%), 0.125(87.5%)	0.063(37.5%), 0.125(62.5%)	0.125(12.5%), 0.25(87.5%)	0.25(25%), 0.5(75%)

^{*a*} For each quality control strain and combination of test conditions (test medium, antifungal compound, incubation time –24, 48 and 72 h–, and inhibition end point), the percentage of tests in which each MIC value was obtained is given within parentheses. In some cases, the actual MIC value could not be determined (ND) due to scarce growth (i.e. absorbance at 530 nm ≤ 0.2 ; Arendrup *et al.* 2012).

^b RPMI+2%G, RPMI 1640 supplemented with glucose and buffered with 3-(N-morpholino) propanesulfonic acid (see main text); YM broth, yeast malt broth.

^c EPZ, epoxiconazole; IZL, imazalil; KTZ, ketoconazole; VCZ, voriconazole. The number of tests performed (n) in each case is shown within parentheses.