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SUMMARY 

1. Ecological restoration is becoming increasingly widespread to compensate for wetland loss 

worldwide. However, most post-restoration studies fail to establish whether the restored 

wetlands replace or complement natural wetlands for communities of aquatic organisms 

such as macroinvertebrates.  

2. During two consecutive hydroperiods (ca 6 months each), we studied the 

macroinvertebrate communities in 32 new temporary ponds created during a restoration 6 

to 7 years previously in Doñana, SW Spain, and compared them with ten natural temporary 

sites nearby. We compared results for two dominant groups of active dispersers 

(Coleoptera and Hemiptera) and for the whole aquatic macroinvertebrate community (a 

mix of active and passive dispersers) to shed light on the role of dispersal constraints 

during ecosystem recovery. We also compared the ranks of new ponds and reference sites 

in nested matrices to assess whether communities in new ponds are impoverished subsets 

of communities in reference sites. 

3. Because of their young age, newly created ponds were predicted to have less stable 

communities over the two study years than reference sites, and to have lower species 

diversity for the whole community but not for active dispersers. On the other hand, 

communities in new ponds were predicted to approach the taxonomic composition of 

reference sites as time went on.  

4. New ponds differed in environmental conditions (particularly less emergent vegetation 

cover and lower chlorophyll concentration) from reference sites, but their invertebrate 

richness and diversity matched those in reference sites and invertebrate abundance was 

even higher. Richness and diversity increased in the second hydroperiod in new ponds, but 

not in reference sites. Significant differences in community composition occurred between 

new ponds and reference sites, but were largely explained by their environmental 
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differences. As succession progressed within a hydroperiod, communities in new ponds 

were first dominated by large branchiopods, then by active dispersers such as 

Chironomidae and Coleoptera, then finally by halotolerant taxa such as the beetle 

Ochthebius viridis fallaciosus.  

5. Communities in new ponds were not impoverished subsets of those in reference sites, and 

communities in new and reference ponds diverged towards the end of the hydroperiods. 

We conclude that new temporary ponds can provide diverse and complementary habitats 

important for maintaining macroinvertebrate diversity at the regional scale. 

 

INTRODUCTION  

Wetlands are dynamic ecosystems that support unique biodiversity and provide 

important ecosystem services (Millennium Ecosystem Assessment, 2005; Ramsar Convention 

Secretariat, 2006). However, most of the world’s wetland surface area has been lost since 

1900 (Davidson, 2014), and human activities such as land conversion and introduction of 

alien species continue to cause further degradation and loss (Millennium Ecosystem 

Assessment, 2005). On the other hand, there are increasing numbers of wetland restoration 

projects that aim to re-establish ecosystem functions and reverse biodiversity loss (Nakamura, 

Tockner & Amano, 2006; Palmer, 2009; Bullock et al., 2011).  

Post-restoration monitoring is essential to evaluate the effectiveness of restoration 

projects and to facilitate adaptive management, but in many restoration projects monitoring is 

absent or inadequate (Ruiz-Jaen & Aide, 2005). Where monitoring exists, the overall 

restoration success is typically evaluated based on similarities between the restored sites and 

reference sites (Moseman et al., 2004; Matthews & Spyreas, 2010; Meyer, Whiles & Baer, 

2010).  
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In general, new ponds are rapidly colonized by species from nearby water bodies 

(Williams, Heeg & Magnusson 2007), which may serve as reference sites. If common species 

inhabit both new ponds and reference sites, whereas rarer species occur only in reference 

sites, species assemblages in new ponds will be impoverished and nested within those of 

reference sites (Patterson, 1987). This may result from differences in habitat heterogeneity 

(e.g. plant richness and structure) between new and reference sites, especially during the early 

years after wetland restoration (Ruhí et al., 2013). Nestedness analyses can thus help to 

evaluate the value of restored sites for biodiversity conservation. 

Monitoring macroinvertebrates provides different insights compared to waterbirds, 

plants and zooplankton, which are more frequently used in monitoring programs, but can be 

less sensitive to ecological change (Guareschi et al., 2015). However, macroinvertebrates 

have a broad range of dispersal abilities. The arrival of passive dispersers to new habitats 

depends on vectors such as water, wind and/or birds, therefore it can be slowed by spatial 

constraints even if habitat conditions are suitable. In contrast, flying active dispersers are 

independent from such vectors and should actively select habitats suitable to them. Thus, they 

should be affected more by environmental control than by spatial processes (Heino, 2013). As 

a consequence, active dispersers may be better than the whole community for evaluating 

short-term ecosystem recovery. 

The present study is centred in the “Caracoles estate” within Doñana National Park 

(South West Spain), where a large complex of new, temporary ponds was created during 

marsh restoration. We investigated the value of these new ponds for aquatic 

macroinvertebrates 6 to 7 years after restoration. We compared species diversity and 

composition between new ponds and reference sites throughout flooding-drying cycles 

(hereafter hydroperiods, ca 6 months each) in consecutive years, to compare the assemblages 

in new ponds and reference sites, and investigate how community composition could be 
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explained by environmental variables. We compared patterns for the entire macroinvertebrate 

community with those for the speciose Coleoptera and Hemiptera, which are active 

dispersers. The Coleoptera include particularly sensitive taxa (Bloechl et al., 2010; Van den 

Broeck et al., 2015), which may be good indicators of environmental differences between 

new and restored ponds. We examined nestedness between new ponds and reference sites to 

investigate whether new ponds held nested assemblages relative to those in reference sites, or 

if they provide complementary habitats for macroinvertebrates by supporting unique taxa.  

Given their younger age, new ponds were predicted to provide a simpler environment 

(e.g. with less vegetation structure) and to lack some passive dispersers owing to dispersal 

constraints. This would translate into lower species diversity for the whole community, but 

lees so for active dispersers such as Coleoptera and Hemiptera. New ponds were predicted to 

have greater differences in community structure between hydroperiods, with greater diversity 

in the second hydroperiod as the ponds matured and more microhabitats become available for 

the colonization of new species. Thus, we predicted that communities in new ponds would 

become more similar to reference sites during the second hydroperiod. Finally, we predicted 

that new ponds would have higher nested ranks than reference sites in the combined, nested 

matrices, owing to lower habitat complexity and species richness than reference sites. 

 

 

MATERIAL AND METHODS 

Study area and climate  

The study was conducted within and around the Caracoles estate in the northern edge 

of Doñana National Park, where a large complex of new ponds was created during marsh 

restoration (Fig. 1). During the 1960s, this estate of 2700 ha was hydrologically disconnected 

from the surrounding marshes to prevent flooding and was converted into arable farmland. 
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During 2004-2005, restoration was carried out in the estate, with the aim of restoring 

connectivity with surrounding marshes. This involved the complete removal of dykes along 

the western and southern borders, the filling-in of drainage channels, and excavating a set of 

96 new temporary ponds. These ponds were of similar elliptical shape but of three sizes (long 

axes 60, 125 and 250 m) and two depths of excavation (30 and 60 cm). Two clusters of 44 

ponds each were combined with 8 medium-sized ponds positioned in greater isolation (Fig. 

1). The colonization of these ponds by zooplankton and by water birds has been studied 

previously (Badosa et al., 2010; Frisch et al., 2012; Sebastián-González & Green, 2014).   

Doñana has a Mediterranean climate with rainfall concentrated between October and 

March (wet season) and little precipitation from April to September (dry season). Caracoles 

ponds and surrounding water-bodies are usually flooded during the wet season and dry out in 

May, June or July. Dates of flooding and drying vary among years, as a result of different 

rainfall and evaporation patterns. Total precipitation (between the months of september and 

august) was 784 mm for our first study hydroperiod (2009-2010) and 712 mm for our second 

hydroperiod (2010-2011), with much higher rainfall from December to February during the 

first hydroperiod than the second. See Frisch et al. (2012) and Sebastian-Gonzalez & Green 

(2014) for more details of the study area.  

 

 

Site selection and data collection 

We sampled 32 new ponds representative of all size and depth classes, of which 24 

were within the two clusters, and 8 medium-sized ponds were outside these clusters and 

relatively isolated (Fig. 1). Most of the selected ponds had already been studied for 

zooplankton by Badosa et al. (2010). We also sampled 10 older temporary sites that were 

located nearby within the same marshland area and served as reference sites (Fig. 1). These 
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reference sites shared a common hydrology and geomorphology with the new ponds, as part 

of the seasonal “marismas” marsh system based on clay and fed by rainwater in the absence 

of groundwater influence (Espinar & Serrano 2009). New ponds and reference sites share 

similar timing of flooding in response to rainfall and drying in response to the dry summers. 

Occasional heavy floods can establish temporary connections between some new ponds and 

reference sites, and this occurred during our study, especially during the first hydroperiod 

(Fig. S1). Owing to the limited choice for reference sites and the design of the new ponds, the 

former included a greater range in size and depth (as measured in the middle of a 

hydroperiod).   

Sampling was conducted during two consecutive hydroperiods (2009 - 2010 and 2010 

– 2011, hereafter referred to as 2010 and as 2011 respectively). It started approximately 2 

months after initial pond filling, i.e. the early phase of the hydroperiod (February), and was 

then repeated every 45 days, twice during the middle phase of the hydroperiod (March and 

May, respectively) and once in the drying phase of the hydroperiod (June), resulting in a total 

of 4 sampling events along each hydroperiod. During the first hydroperiod, the connections 

between ponds in clusters and some reference sites (Fig. S1) inhibited access to the southern 

part of the estate, preventing sampling of some ponds during some months. 

 

Environmental variables measured in ponds 

During each visit we visually estimated the percentage of each pond area that was 

inundated, and water depth profiles were recorded with a measuring stick in five locations 

evenly distributed in the water body. We measured in situ pH, salinity and temperature with a 

WTW 340i multiprobe. We also collected water samples for laboratory analyses of 

chlorophyll-a, nutrient concentrations (total phosphorous and nitrogen) and turbidity. 

Chlorophyll a concentration (μg l-1) was determined using methanol extraction (Talling & 
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Driver, 1963). Total phosphorus was determined by colorimetry after acid hydrolysis (APHA, 

1980). Total nitrogen was determined by measuring absorbance at 220 nm after digestion with 

alkaline potassium persulphate (D’Elia, Steudler & Corwin, 1977). The presence of fish was 

determined by visual inspection of the sweep net contents after invertebrate sampling (see 

below). The presence/absence of submerged vegetation and total cover (%) of emergent 

vegetation was estimated visually.  

 

Sampling and processing of macroinvertebrates  

In each pond on each sampling occasion, 3 samples of macroinvertebrates were 

collected using a D-framed pond net (500 μm mesh; 16 × 16 cm) by sweeping at 5 m intervals 

(at 0, 5 and 10 m from the shore) along a transect. At each of the three points, a sweep was 

carried out over 1m during 30 s. Invertebrate samples were preserved in plastic containers 

filled with 70% ethanol. Data from the three samples were pooled before analysis. 

Macroinvertebrates were identified in the laboratory under a stereo-microscope. The 

Coleoptera, Hemiptera and Crustacea were identified mostly to species level (after Jansson, 

1986; Friday, 1988; Vondel, 1991; Alonso, 1996; Nieser et al., 1994); Odonata, Gastropoda 

and Ephemeroptera to genus level (Carchini, 1983; Gerken & Sternberg, 1999; Tachet et al., 

2000); and Diptera, Trichoptera and Lepidoptera to family level (Tachet et al., 2000). We also 

counted the Collembola, Hydracarina, Coelenterata, Turbellaria, Oligochaeta and Hirudinea, 

but did not identify them further. For Coleoptera and Hemiptera, some juveniles could not be 

identified beyond genus level and were assigned to species according to the proportions of 

congeneric adults in the same pond. If adults were not present, juveniles were left at genus 

level. Some Hemiptera instars could not be classified to genus, and were left at family level.  
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Statistical analyses 

All analyses were conducted in the statistical programming environment R version 

2.15.3 (R Development Core Team, 2009), including functions in the Vegan (adonis, cor, 

diversity, metaMDS, nestednodf, oecosim, rarefy, raupcrick, simper, speaccum), Bipartite 

(nestedrank) and Coin (Wilcox_test, permutational test) packages. 

 

Environmental variables  

To investigate changes between hydroperiods in abiotic conditions in either new ponds 

or reference sites, and differences between new ponds and reference sites in a given sampling 

event, we used a Permutational Multivariate Analysis of Variance with distance matrices 

(PERMANOVA; “ADONIS” in R, see Oksanen et al., 2012). Analyses were conducted on 

log (x+1) transformed data (with the exception of pH and variables expressed as 

presence/absence), and dissimilarities were calculated using Euclidean distances. Differences 

between years were tested using samples from May, as this was the month when the number 

of sites sampled was highest (Table 1).  

When ADONIS revealed significant differences between hydroperiods in new ponds 

or in reference sites, or significant differences between reference sites and new ponds in a 

given sampling month, we performed a Multivariate Homogeneity of Group Dispersion 

(SIMPER) analysis to identify the influential explanatory variables. Environmental variables 

were reported according to their average contribution to dissimilarities between hydroperiods 

or between new ponds and reference sites. Variable lists were cut off when the cumulative 

contribution to dissimilarity reached ~ 50%. P values were calculated using Wilcoxon paired 

tests (for differences between hydroperiods) and Mann-Whitney U tests (for differences 

between new ponds and reference sites), respectively. We also calculated Pearson correlations 
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between the environmental variables found to contribute to the ~ 50% of cumulative 

dissimilarities by SIMPER.  

 

Changes in macroinvertebrate abundance and diversity between hydroperiods  

Richness and diversity were calculated using the lowest possible taxonomic level. 

Estimates of richness were thus conservative. However, since richness can be expected to 

increase as the number of individuals in a sample increases, and as this number varied 

between samples, we used rarefied richness to compare differences between hydroperiods in 

new or reference sites. Comparison was performed using the “rarefy” function in R after 

standardising the data to the lowest number of invertebrates collected in any single site over 

the two hydroperiods. Changes between hydroperiods in rarefied richness, the Shannon-

Wiener diversity index and relative abundance (individuals/m2) were performed separately for 

May samples from new ponds and reference sites using Wilcoxon matched pairs tests. As an 

alternative method, we also estimated richness using the Chao 2 estimator, obtaining very 

similar results. We used sample-based rarefaction curves based on the Chao 2 estimator to 

compare completeness of our sampling between years. 

Similarity in composition between hydroperiods for new ponds or reference sites was 

tested using ADONIS based on the Hellinger-transformed Euclidean distance matrix of 

invertebrate abundance (i.e. Hellinger distances, see Legendre & Gallagher, 2001). Rare 

species that occurred in only one pond were excluded to avoid potential bias. If significant 

differences were found, we performed a SIMPER analysis to identify the taxa that were 

responsible. Taxa were reported depending on their average contribution to dissimilarities 

between new ponds and reference sites. Species lists were cut off when the cumulative 

contribution to dissimilarity reached ~ 50%. All analyses were conducted separately for the 

total community, for Coleoptera and for Hemiptera. 
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Differences in community between new ponds and refernce sites within hydroperiods 

We first visualized the differences in community structure between new ponds and 

reference sites for each month during each hydroperiod using non-metric multidimensional 

scaling (NMDS) based on the Hellinger distance matrices. We then compared rarefied 

richness (standardized to the lowest number of invertebrates collected in any sampling event 

in any single site), Shannon-Wiener diversity indices and relative abundance (individuals/m2) 

between new and reference ponds for each sampled month by means of a Mann-Whitney U 

test. As an alternative method, we also estimated rarefied richness using the Chao 2 estimator, 

obtaining equivalent results. 

We also tested the similarity in community composition between new and reference 

ponds using a month-by-month ADONIS analysis based on Hellinger distances. SIMPER 

analysis was used to identify the taxa that contributed most to significant differences. 

Analyses were conducted separately for the total community, for Coleoptera and for 

Hemiptera. 

Finally, we investigated the compositional similarity between new and reference 

ponds while controlling for the environmental variables that were found to contribute to ~ 

70% of cumulative dissimilarities between them each month in the SIMPER, using ADONIS. 

As the order of incorporation of non-orthogonal variables can influence the outcome of 

significance testing in this procedure, the explanatory descriptors were introduced as the first 

predictors in the analysis, adding water body types (new ponds and reference sites) as the last 

variable. This procedure allowed measurement of the pure effect of the difference between 

“new” and “restored” sites after controlling for environmental variability, which was largely 

responsible for their differences in community composition. 
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Temporal trajectories in community assembly within hydroperiods 

To assess whether communities in new ponds became more similar to reference sites 

as time passed and their age increased, we used a modified version of the Raup-Crick 

dissimilarity index (βRC Chase et al., 2011), which is robust to variation in species richness. 

This index uses presence/absence data to express the dissimilarity between two observed 

communities relative to the null expectation under a random assembly. The null expectation 

was generated using 9999 randomizations of a null model. This index was calculated using 

one single matrix containing data from both new ponds and reference sites.  

We first tested for differences in the levels of similarity between new ponds and 

reference sites by means of Mann Whitney U tests on the averaged pairwise dissimilarity of 

all pairwise comparisons within the group (i.e. on the one hand comparing each new pond P1 

with all other new ponds P2-P32, on the other hand comparing each reference site R1 with all 

other reference sites R2-R10). We then tested if the dissimilarity index within each 

taxonomical group was affected by water body type [i.e., comparing new ponds with each 

other (PP) on the one hand, and new ponds with reference sites (PR) on the other]. If water 

body type affected community composition, the pairwise dissimilarity indices between 

communities in new ponds and reference sites (PR) should be greater than those among 

individual new ponds (PP). Because the pairwise dissimilarity indices calculated either among 

different new ponds (PP) or between new ponds and reference sites (PR) were not 

independent, the significance of this comparison was tested via Permutational Multivariate 

Analyses (ADONIS). 

 

Nestedness 

To evaluate whether assemblages in new ponds were effectively nested within those of 

reference sites, we carried out nestedness analyses based on nested overlap and decreasing 
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filling (NODF, see Almeida-Neto et el., 2008). NODF can assume values ranging from 0 to 

100, with higher values indicating higher nestedness of communities. Nestedness analyses 

were calculated on presence/absence data, for a maximally nested matrix (i.e. sites ranked in 

decreasing order of  species richness, and species ranked in decreasing order of incidence, so 

that the most diverse assemblage will occupy the first row and have a nested rank of 1). The 

significance of nestedness was evaluated by comparing observed values with those generated 

by 999 null models randomized according to a quasi swap algorithm (Gotelli & Entsminger, 

2001). The quasi swap method creates independent matrices that maintain both row and 

column frequencies. This method is less vulnerable to Type I error (Gotelli, 2000). When 

significant nested patterns were detected, we tested for significant differences between the 

nested rank of reference sites and new ponds using a Mann-Whitney U test with 999 

permutations. All analyses were repeated for each sampled month, each hydroperiod and for 

each taxonomic group. 

 

RESULTS  

Environmental variables 

Environmental conditions varied from 2010 to 2011 in both new ponds and reference 

sites (ADONIS, P < 0.05). Submerged vegetation, pH and turbidity explained ~50 % of 

cumulative differences between hydroperiods for new ponds (according to SIMPER analysis). 

During the second hydroperiod, turbidity was significantly lower (82.5 ± 10.3 vs. 47.8 ± 5.8, 

mean ± SE Wilcoxon paired test, V = 454.5, P < 0.001), but pH was significantly higher (9.0 

± 0.0 vs. 9.4 ± 0.1, V = 35.5, P < 0.001) and submergent vegetation was detected in a higher 

number of new ponds (14 vs. 29). There was a strong negative correlation between pH and 

turbidity (Pearson’s R = - 0.75). Submergent vegetation, pH and chlorophyll-a explained ~50 
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% of cumulative differences between hydroperiods for reference sites (according to SIMPER 

analysis). During the second hydroperiod, pH and chlorophyll-a were not significantly 

different (8.4 ± 0.0 vs. 8.5 ± 0.2 and 16.0 ± 5.6 vs. 15.7 ± 3.2 μg l-1) but submergent 

vegetation was detected in a higher number of reference sites (2 vs. 8).  

There were significant differences in environmental parameters between new ponds 

and reference sites (ADONIS, P < 0.05) in each month, for each hydroperiod (see Table 1 and 

Fig. S3 for mean monthly values). Overall, SIMPER analysis revealed that 6 variables 

explained ~50 % of cumulative monthly dissimilarity between new ponds and reference sites, 

but they had different contributions in each month (Table 1 and Table S1). New ponds 

consistently had higher pH and presence of submerged vegetation, and lower chlorophyll-a 

concentration and presence of emergent vegetation and fish (Table 1). pH correlated 

negatively with emergent vegetation in February 2011 (Pearson’s R =  - 0.61) and with 

chlorophyll-a concentration in March 2011 (Pearson’s R =  - 0.56). Dissimilarity between 

new ponds and reference sites was higher in June during both hydroperiods (ADONIS, 

~11%), when new ponds also exhibited significantly higher salinity (Mann Whitney U test, 

W2010=60 P = 0.003; W2011= 116, P = 0.007). See Table S2 for detailed information on 

vegetation and fish recorded.  

 

Changes in macroinvertebrate abundance and diversity between hydroperiods 

Over the two hydroperiods, we identified a total of 109 taxa (55 identified to species 

level) belonging to 22 major taxonomical groups dominated by insects (Table S3). During the 

first hydroperiod we found 77 taxa, of which 13% were recorded exclusively in new ponds, 

35% in reference sites and 48% were shared between new ponds and reference sites (Table 

S3). During the second hydroperiod we found 93 taxa, of which 15% were recorded 

exclusively in new ponds, 20% in reference sites and 62% were shared (Table S3). Not all the 
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taxa consistently occurred during each hydroperiod, both in the case of new ponds and of 

reference sites (e.g. the Coleoptera Laccophilus minutus and Enochrus spp, see Table S3). In 

new ponds, rarified richness and diversity showed a significant increase in the second 

hydroperiod for all groups (P < 0.001, Wilcoxon paired- tests, Fig. 2), whereas in reference 

sites no significant differences between hydroperiods were recorded for any group (Fig. 2). 

Equivalent results were obtained with the Chao 2 estimator of richness (details not shown).  

Differences between hydroperiods in community composition were found in new 

ponds for the whole community (ADONIS; R2 = 0.07, P = 0.001), for Coleoptera (R2 = 0.04, 

P = 0.03) and for Hemiptera (R2
 = 0.11, P = 0.001). In reference sites such differences were 

only significant for Hemiptera (R2 = 0.14, P = 0.006). Decisive changes identified with 

SIMPER analysis were higher abundance of Berosus affinis in new ponds in 2011 and of 

Sigara lateralis in reference sites in 2010. 

Species accumulation curves approached an asymptotic trend for new and reference 

ponds for each group in each hydroperiod (Fig. S4). Therefore, considering that we analysed 

rarefied richness, any differences in number of ponds sampled between hydroperiods were 

unlikely to affect the above results. 

 

Differences between new ponds and reference sites in the invertebrate communities 

within hydroperiods  

Non-metric multidimensional scaling ordination showed that the extent to which new 

ponds were different in community structure from reference sites depended on the taxonomic 

group, the month and the hydroperiod (Fig. 3). New ponds had significantly lower rarified 

richness (P < 0.001, Mann-Whitney U test) and diversity (P < 0.001) for the whole 

community than reference sites during February 2011 (Fig. 2). New ponds also had 

significantly higher Coleoptera abundance than reference sites in May (P < 0.05) and June (P 
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< 0.05) for each hydroperiod (Fig. 2), higher Hemiptera abundance in June 2011 (P = 0.01), 

and higher Hemiptera richness in May 2011 (P = 0.05, Fig. 2). Equivalent results were 

obtained with the Chao 2 estimator.  

New ponds and reference sites differed in community composition in 7 out of 8 

sampled months for the whole community and for Coleoptera (ADONIS; P < 0.05; see Tables 

S4 and S5 for the main differences in taxa according to SIMPER analysis), and in every 

month of the second hydroperiod for Hemiptera (ADONIS; P < 0.05; see Table S6 for the 

main differences in taxa according to SIMPER). 

Most of the variation in community composition between new ponds and reference 

sites was explained by their environmental differences, and most of the above differences 

between them disappeared after adjusting for their environmental dissimilarities with 

ADONIS. However, differences between new ponds and reference sites remained significant 

for the whole community in March 2011 (ADONIS; R2 = 0.04, P = 0.032), for Coleoptera in 

June 2010 (R2 = 0.15, P = 0.041) and for Hemiptera in February 2011 (R2 = 0.07, P =0.012). 

 

Temporal trajectories in community assembly within hydroperiods 

For the whole macroinvertebrate community, dissimilarity between new ponds was 

significantly lower compared to reference sites in each month (i.e. comparing PP and RR in 

Fig. 4), during both hydroperiods (Mann-Whitney U test, P < 0.05). Differences were not 

significant in March 2010 for Coleoptera (W= 32.5; P = 0.06) and Hemiptera (W = 62.5 P = 

1), or in June 2010 for Hemiptera (W = 14; P = 0.06). When comparing differences within 

new ponds with those between new ponds and reference sites (i.e. PP and PR in Fig. 4), 

dissimilarity was higher for PR than for PP (i.e. water body type effected community 

composition) every month for the whole community, and for all months other than March for 

Coleoptera (ADONIS; P < 0.05). For Hemiptera, dissimilarity was higher for PR than for PP  
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in May 2010 (R2 = 0.05, P = 0.05) and all months in 2011 except March (ADONIS, P < 

0.05). 

 

Nestedness  

During the first hydroperiod, there was a trend of species-poor sites being nested 

within species-rich sites for Coleoptera in May (NODF= 36.49, P= 0.08). During the second 

hydroperiod 2011, the whole community was significantly nested in March (NODF = 36.41, 

P = 0.021), whereas Coleoptera were nested in March (NODF = 35.51, P = 0.03) and June 

(NODF = 50.28, P = 0.037). Also in 2011, Hemiptera were nested in May (NODF = 49.56, P 

= 0.021) and June (NODF = 65.70, P = 0.037). In no case did new ponds have a significantly 

higher nestedness rank than reference sites.  

 

DISCUSSION 

In this study we found that, 6-7 years after restoration, new ponds provided different 

environmental conditions to reference sites while still supporting diverse communities 

overlapping with those of reference sites and representative of natural systems. As a whole, 

newly created ponds increased the habitat heterogeneity of the area, which in turn benefited 

species with different and/or more specific requirements than those found in reference sites.  

 

Patterns of community change between hydroperiods 

Between the two consecutive hydroperiods studied, richness and diversity increased in 

new ponds for all invertebrate groups, whereas they were almost stable in reference sites. This 

result supports our prediction that communities in new ponds would be less stable between 

hydroperiods than those in reference sites. As ponds age, they are likely to be colonized by an 
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increasing number of new species over time. The colonisation of new ponds occurs when 

passive dispersers are transported via vectors, or when actively flying insects (e.g. Coleoptera 

and Hemiptera) arrive from nearby water bodies (Williams et al., 2007). Passive dispersers 

with dormant propagules (e.g. branchiopods or turbellarians; Brendonck & De Meester 2003) 

can recolonise temporary ponds from the egg bank in subsequent years when they are re-

flooded. Hence, one reason why richness increased in the second hydroperiod could be an 

increase in diversity of the propagule bank in the sediments. Newly created habitats have 

unoccupied niches that become rapidly colonized by agile, generalist taxa. As communities 

develop, more niches become available (e.g. through an increase in submerged vegetation as 

we recorded in the second hydroperiod) and species with specialized requirements can 

colonize progressively (Townsend & Hildrew, 1994). The development of vegetation is a 

prime driver of macroinvertebrate diversity in freshwater systems (Thomaz & Cunha 2010). 

This is supported by the colonization or increased abundance of taxa typically associated with 

macrophytes in the second hydroperiod (e.g. Laccophilus minutus; Enochrus spp., 

Libellulidae, Berosus affinis, see Table S3). However, the difference between study 

hydroperiods may also partly have been a consequence of the dynamic hydrology. Reduced 

connectivity and increased isolation between new ponds in the second hydroperiod (Fig. S1) 

could in itself cause increases in beta and gamma diversity. Different communities can 

develop in similar but disconnected ponds because, particularly in passive dispersers with 

restrictive dispersal abilities, beta diversity can be promoted by differences in stochastic 

colonisation events among ponds and maintained via priority effects and monopolization 

effects (De Meester et al., 2016).  
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Macroinvertebrate recovery and dispersal limitation 

At a given point in time within each hydroperiod, new ponds and reference sites often 

differed in community composition, richness and diversity. One major reason for this may be 

that some taxa had not yet managed to colonize new ponds. The absence of some taxa such as 

Gastropoda from new ponds and the presence of others such as Oligochaeta in low abundance 

suggest that populations of these species had not yet fully established. Lack of planktonic 

dispersal stages and development of juveniles in cocoons delay colonization of new habitats 

by Gastropoda and Oligochaeta (Brady et al., 2002). These results support our prediction that 

dispersal limitation will be more apparent for the whole community than for Coleoptera and 

Hemiptera, which are active dispersers. 

On several occasions, new ponds and reference sites differed in community 

composition but not in richness or diversity, suggesting that some taxa showed site-specific 

preferences, largely due to variation in environmental conditions, as observed in the middle of 

hydroperiods. New ponds were usually fishless, which enabled the dominance of the large 

branchiopods Streptocephalus torvicornis and Chirocephalus diaphanus that hatch from 

dormant egg banks. These taxa did not emerge in hatching experiments using sediments taken 

from new ponds when they were first created (Frisch & Green, 2007), suggesting that their 

eggs were rapidly dispersed from surrounding areas either through water connections, wind, 

or by the waterbirds abundant in the area (Brochet et al., 2010; Sebastián-González & Green, 

2014; Horvát, Vad & Ptacnik, 2015). The dominance of chironomids in the new ponds was to 

be expected (Layton & Voshell, 1991) and as with the large branchiopods, this might reflect 

their lack of dependence on emergent plants. New ponds generally had a higher presence of 

submergent vegetation than reference sites. This difference could partly explain the higher 

abundances of adult Berosus (Hydrophilidae) in new ponds than reference sites in May and 

June each hydroperiod (Bloechl et al., 2010; Touaylia, Garrido & Boumaiza, 2013). Lower 

predation pressure exerted by fish in new ponds may have also played a role. On the other 
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hand, the lower abundance of Odonata may reflect the lack of emergent vegetation in new 

ponds.  

As summer begins and temporary ponds begin to dry out, salinity increases cause 

osmotic stress to macroinvertebrates. In this drying phase, only the most halotolerant species 

could persist in the new ponds that reached highest salinities, such as the Coleoptera 

Ochthebius viridis fallaciosus (Garrido & Munilla, 2008; Millán et al., 2011) or the 

Hemiptera Sigara stagnalis and the alien Trichocorixa verticalis (Van de Meutter, Trekels & 

Green, 2010). Higher Hemiptera richness recorded in new ponds in May and June also 

reflects their acquisition of some widespread taxa absent from reference sites (e.g. Notonecta 

glauca). Among Hemiptera, the families of Notonectidae and Corixidae include large taxa 

that are particularly vulnerable to fish predation, especially because they swim to the water 

surface to breathe (Schilling, Loftin & Huryn, 2009). Hence, lower fish predation in new 

ponds may have influenced the distribution of several taxa from these families. 

Our finding that richness and diversity in new ponds matched the levels in reference 

sites 6-7 years after restoration, and that invertebrate abundance even surpassed the reference 

levels, is not unusual in restored wetlands. Several studies have found a rapid recovery of 

species richness and diversity in macroinvertebrates within a few years (Meyer & Whiles, 

2008), and this was previously observed for zooplankton in our new ponds (Badosa et al., 

2010). In contrast, the recovery of natural community composition generally takes more time 

(Levin & Talley, 2002). We recorded 19 taxa exclusive to new ponds and 40 Coleoptera taxa 

in new ponds (Table S3), including specialist herbivores (e.g. Curculionidae), indicating that 

the new ponds are healthy ecosystems of conservation value (Bameul, 1994). 
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Community similarity and the effect of water body type  

Overall, different individual new ponds supported communities that were more similar 

to each other (including ponds within and outside the clusters) than recorded for different 

reference sites. This probably reflects greater habitat heterogeneity between individual 

reference sites, which include a broader range of waterbody shape, depth and spatial 

distribution (Fig. 1). The slow recovery for emergent plants in new ponds might have 

contributed to the high levels of community dissimilarity between new and reference ponds. 

Emergent plants appear to be relatively poor at colonizing by seeds compared to submerged 

ones, and were mainly expanding their cover in new ponds slowly by clonal horizontal 

expansion. A recent meta-analysis (Moreno-Mateos et al., 2012) showed slow recovery rates 

for vegetation in restored wetlands.  

In general, our results did not support the prediction that community composition 

between new and reference ponds becomes more similar during the second hydroperiod, 

when new ponds become more mature and the development of new habitats may allow the 

colonization of new species. Instead, communities were shaped mainly by environmental 

differences between new ponds and reference sites, which were sufficiently strong to prevent 

convergence in community composition. This is especially true towards the end of the 

hydroperiod, when the environmental dissimilarity between new ponds and reference sites 

increased and the new ponds became more saline through evaporation. During the first 

hydroperiod, differences between new ponds and reference sites in levels of dissimilarity 

within each class (i.e. comparing PP with RR in Fig. 4) were weakest early on in March, and 

became weak again later in June in the case of the Hemiptera, probably because of their broad 

niches (Bloechl et al., 2010). Typically, early colonists are the most generalist, and should 

therefore be the least affected by specific habitat properties (Vanschoenwinkel et al., 2010). 

The lack of differences between water body types for Coleoptera and Hemiptera in March 

2010 (comparing PP with PR in Fig. 4) suggests that pioneer taxa colonized both new and 
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reference ponds indiscriminately, irrespective of their environmental differences. This is 

probably due to the high connectivity in the early phase of the first hydroperiod, when there 

was extensive flooding (Fig. S1), allowing high exchange of Coleoptera and Hemiptera 

between water body types that may have decreased the inter-pond dissimilarity.  

Differences in the abundance of invasive species between new ponds and reference 

sites and between hydroperiods may also have had strong effects. This concerns invasive fish 

(Table S2) but also the alien corixid T. verticalis whose impact on other macroinvertebrates 

requires more detailed investigation (Van de Meutter et al., 2010; Coccia et al., 2013). 

 

Contribution of new ponds to nestedness and macroinvertebrate assemblages  

A nested species assemblage occurs when taxa in sites with lower species richness are 

a proper subset of those in richer sites (Patterson, 1987). Nestedness is the result of a non-

random distribution of species between sites that differ in characteristics such as area, 

isolation or habitat diversity (Patterson & Brown, 1991; Wright et al., 1998). We did not find 

support for our initial hypothesis that reference sites would be more complex owing to greater 

maturity and would contain more habitat specialists, so that new pond communities would be 

ranked higher in the maximally nested matrices than reference sites. 

Overall across the whole study area, the communities exhibited significant nested 

patterns. Previous studies have found macroinvertebrates to be highly nested in freshwater 

habitats (Florencio et al., 2011; Ruhí et al., 2013). There are several factors that may have 

contributed to the nestedness we observed, including differences in pond size or isolation 

(Kadmon, 1995; Heino, Mykrä & Rintala, 2010), whose effects may have been variable 

within and between hydroperiods. However, we did not find any significant differences in the 

nested ranks between new and reference ponds during each hydroperiod for any taxonomic 

group. Nestedness is a type of hierarchical organization of species, sites or both (Patterson & 
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Atmar, 2000), so that the rank order of site reflects the suitability gradient among them 

(Azeria & Kolasa, 2008). Similar ranking values between new and reference ponds suggest 

that new ponds, despite being less heterogeneous than reference sites, are now well integrated 

into our wetland complex. Furthermore, it seems likely that their ecological attributes 

increased the overall habitat complexity of the area. This in turn suggests that new ponds 

provide habitats that are rare in reference sites and have the capacity to accommodate 

different macroinvertebrate species, underlining the value of the new ponds for biodiversity 

conservation 6-7 years after restoration. New ponds, however, will not stay new and over time 

the unique conditions they house may be lost as their resemblance to reference sites increases. 

Future research is required to identify pioneer species that can only thrive in new ponds, even 

in such a dynamic wetland complex as Doñana.  

 

CONCLUSION 

Our study shows that 6-7 years after restoration new ponds constructed in Doñana 

hold different macroinvertebrate communities than do natural reference sites. This may 

indicate that new ponds are still supporting pioneer communities. A longer time is usually 

needed to reach a stable, mature macroinvertebrate community assemblage in restored 

wetlands (Moreno-Mateos et al., 2012), which seems likely in our system given the slow 

recovery of emergent vegetation. However, communities in new ponds will not necessarily 

converge towards the composition of reference communities. Further studies will be needed 

to address this in the future. Environmental factors seem to be the main drivers of community 

assembly in this area, and the large number of new ponds (96) varying in size, depth, 

connectivity etc assures a high level of environmental heterogeneity that in turn translates into 

high beta and gamma diversity. The success of restoration is often evaluated based on 

similarities in species composition, diversity and density between the restored sites and target 
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reference sites. However, this study illustrates that there are high levels of variation within 

and between hydroperiods in temporary Mediterranean wetland systems that need to be 

considered. Although somewhat different to reference sites, newly created ponds are healthy 

ecosystems supporting diverse macroinvertebrate assemblages with considerable conservation 

value.  
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FIGURE LEGENDS 
 

 
 
 
 
Figure 1. Map of the sampling sites in Doñana. The dark grey area in the bottom left 
figure indicates Doñana National Park and the light grey area indicates Doñana Natural 
Park. Circles identify sampled new ponds within the Caracoles estate, triangles identify 
reference sites.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



� ��

 
 
 
 
 
 

 
 
 
Figure 2. Mean (± SE) monthly abundance (individuals/m2), rarefied richness (Nº taxa) and 
Shannon–Wiener diversity (H’) in new ponds (P) and reference sites (R) for the total 
macroinvertebrate community (Macroinvertebrates), Coleoptera and Hemiptera during 2010 
and 2011. 
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Figure 3. Non-metric multidimensional scaling ordination of (a) the whole macroinvertebrate 
community, (b) Coleoptera and (c) Hemiptera abundance showing the differences in 
community composition between new ponds (empty circles) and reference sites (filled circles) 
for each month. Polygons contain all the sites for a given month. Dot-dashed lines = Feb; 
dotted lines = Mar; long-dashed lines = May; solid lines = Jun. 
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Figure 4. Mean pairwise Raup-Crick dissimilarity indices for the whole community 
(Macroinvertebrates), Coleoptera and Hemiptera, within new ponds (PP), within reference 
sites (RR) and between them (PR). February 2010 data are missing because extensive 
flooding prevented complete sampling of the area (Fig. S1).  

 

 

 

 

 

2010 2011

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

M
acroinvertebrates

C
oleoptera

H
em

iptera

Feb Mar May Jun Feb Mar May Jun

β R
C

Type

PP

RR

PR



� ��

Table 1. Mean monthly values (±SE) of environmental variables that most often explained 
the dissimilarity between new ponds and reference sites determined by the SIMPER analysis. 
In the case of fish and vegetation the values indicate the number of sites where they were 
detected. Emergent vegetation refers to the presence of Juncus subulatus and Scirpus 
maritimus.  
 
 

 
 

 2010 2011 
 Mar May Jun Feb Mar MMay Jun 
New Ponds       
N 14 32 8 30 32 32 14 
pH 8.4 (0.1) 9.0 (0.0) 8.9(0.1) 8.9 (0.0) 9.2 (0.1) 9.4 (0.1) 9.1 (0.1) 
Salinity (psu) 0.36 (0.0) 2.14 (0.2) 5.88 (0.85) 0.76 (0.1) 0.68 (0.1) 2.32 (0.1) 13.06 (2.0) 
Turbidity (NTU) 226.4 (21.9) 82.5 (10.4) 94.5 (24.8) 64.2 (10.1) 50.9 (5.6) 47.8 (5.8) 77.0 (15.6) 
Chla (μg l-1) 9.3 (1.2) 18.9 (4.8) 74.3 (15.2) 5.7 (0.6) 3.3 (0.4) 8.5 (1.7) 42.1 (10.8) 
Fish presence 3 4 2 1 9 7 9 
Emergent 
Vegetation  1 25 4 5 28 31 13 
Submerged 
vegetation  0 14 0 4 28 29 8 
Reference sites        
N 9 10 8 10 10 10 10 
pH 8.2 (0.1) 8.4 (0.1) 8.3 (0.2) 8.5 (0.0) 8.6 (0.2) 8.5 (0.2) 8.0 (0.2) 
Salinity (psu) 0.21 (0.1) 1.33 (0.4) 2.15 (0.5) 0.52 (0.01) 0.53 (0.1) 1.58 (0.2) 5.27 (1.3) 
Turbidity (NTU) 146.8 (32.6) 75.5 (11.0) 78.4 (16.5) 48.0 (7.7) 36.4 (13.1) 55.4 (13.8) 163.7 (44.9) 
Chla (μg l-1) 11.5 (3.4) 16.0 (3.2) 37.8 (9.6) 15.0 (4.1) 9.1 (2.2) 15.7 (5.6) 72.9 (9.9) 
Fish presence 1 6 4 1 5 7 9 
Emergent 
vegetation  

9 10 8 9 10 10 10 

Submerged 
vegetation  

0 2 3 3 7 8 3 
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