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Abstract 

Physiological and biochemical changes in Myrtus communis L. plants after being 

subjected to different solutions of NaCl (44, and 88 mM) for up to 30 days (Phase I) and 

after recovery from the salinity period (Phase II) were studied. Myrtle plants showed 

salinity tolerance by displaying a series of adaptative mechanisms to cope with salt-stress, 

including controlled ion homeostasis, the increase in root/shoot ratio, the reduction of 

water potentials and stomatal conductance to limit water loss. In addition, they displayed 

different strategies to protect the photosynthetic machinery, including  limiting toxic ion 

accumulation in leaves, increase in chlorophyll content, and changes in chlorophyll 

fluorescence parameters, leaf anatomy and increases in catalase activity. Anatomical 

modifications in leaves, including a decrease in spongy parenchyma and increased 

intercellular spaces, allow CO2 diffusion in a situation of reduced stomatal aperture. In 

spite of all these changes, salinity produced oxidative stress in myrtle plants as monitored 

by increases in oxidative stress parameter values. The post-recovery period is perceived 

as a new stress situation, as observed through effects on plant growth and alterations in 

non-photochemical quenching parameters and lipid peroxidation values. 

 

Keywords: ASC-GSH cycle, Gas exchange, Leaf anatomy, Oxidative stress, Recovery 

capacity, Water relations. 

 

Abbreviations: APX: ascorbate peroxidase, ASC: Ascorbate reduced form; DHAR, 

dehydroascorbate reductase; GR, Glutathione reductase; GSH: glutathione reduced form; 

GSSG, glutathione oxidised form; MDHAR, monodehydroascorbate reductase; POX, 

peroxidase; SOD: superoxide dismutase. 
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Introduction 

 The presence of NaCl in the soil and the irrigation water is one of the main factors 

limiting plant growth. Salt-stress affects different physiological and biochemical 

processes, including photosynthesis, respiration, protein synthesis or lipid metabolism 

(Parida and Das, 2005; Tattini et al., 2006; Stepien and Johnson, 2009).  

 Salinity induced a water deficit as well as an ionic toxicity in the plants resulting 

in an alteration in the ionic homeostasis. In addition to the osmotic and toxic effects, salt 

stress is also manifested as an oxidative stress, with all these factors contributing to the 

deleterious effects of salinity in plants (Hernández et al., 2001; Barba-Espín et al., 2011; 

Acosta-Motos et al., 2014a; b). 

 The bibliography related to the effect of salt stress in ornamental shrubs is scarce. 

Few authors have studied the effect of salt-stress on plant growth and ion distribution in 

ornamental plants (Tattini et al., 2006; Cassaniti et al., 2009; Navarro et al., 2009; Álvarez 

et al., 2014; Acosta-Motos et al., 2014a; b). Saline water use can be a strategy for an 

efficient water management in landscaping projects, especially in arid zones 

characterized by limited water resources, such as the Mediterranean areas. For 

landscaping projects it is very important to select ornamental shrub species showing some 

degree of salt tolerance.  

 Myrtle (Myrtus communis L.) is a bushy evergreen sclerophyllous plant with 

significant ornamental interest used in re-vegetation projects in arid and degraded land 

and landscaping projects. Myrtle is a Mediterranean specie that is well adapted to abiotic 

stresses, although it may be affected by salinity and high light intensity. In general, 

Myrtaceae species such as Eugenia myrtifolia and Leptospermum scoparium are 

considered as salt-tolerant, showing less than 25% reduction in their relative growth rates 
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after 120 days of exposure to salinity levels up to 70 mMNaCl (7.4 dS m-1) (Cassaniti et 

al., 2009). 

 In this work, the effect of different solutions of NaCl on plant growth, mineral 

nutrition, gas exchange parameters, water relations, chlorophyll fluorescence, leaf 

anatomy and antioxidative metabolism in M. communis plants was studied. The plant 

capacity of recovery following salinity relief has also been taken into account. In this 

way, there is scarce information about the response of plants to recovery from salinity 

and the physiological mechanisms involved in the recovery of plants subjected to salt 

stress are poorly understood (Chaves et al., 2011). 

 

Material and Methods 

Plant and experimental conditions 

Native Myrtus communis L. plants from Viveros Muzalé S.L. (Cieza, Murcia, 

Spain) were cultivated in black polyethylene multi-alveolar trays under environmental 

conditions. The plants were immediately transplanted into 14 x 12 cm pots (1.2 l) and 

grown in a controlled growth chamber as described previously (Acosta-Motos et al., 

2014a; b). The temperature in the chamber was 23ºC during the light phase (16 h 

photoperiod) and 18ºC during darkness. Relative humidity (RH) values ranged between 

55-70%. A mean photosynthetic active radiation (PAR) of 350 µmol m-2 s-1 at canopy 

height was supplied during the light phase (08:00h-00:00h) by cold white fluorescent 

lamps. 

Experimental design and treatments 

 Once myrtle plants (90 plants), were adapted to chamber conditions, they were exposed 

for up to 30 days (Phase I) to the following three irrigation treatments. Control plants were 

watered with a mixture of distilled water and tap water with an electrical conductivity (EC) = 0.3 

dS/m.  Saline treatments were designed as control treatment plus NaCl added specifically for each 
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treatment:  S4 (4 dS/m) and S8 (8 dS/m), corresponding to 44 and 88 mM NaCl, respectively. The 

EC of different treatments was checked with a multirange Cryson-HI8734 electrical conductivity 

meter (Cryson Instrumnents, S.A., Barcelona, Spain) at the beginning and throughout the 

experimental period. Before starting the experimental period, the maximum water holding 

capacity of the soil was determined for each individual pot and considered as the weight at field 

capacity (WFC). Throughout the experiment, all pots were irrigated three times a week below the 

WFC in order to avoid drainage favouring an increase in soil salinity caused by time and severity 

of saline treatments. The maximum water holding capacity calculated for the substrate was 

1226.16 ± 2.94 ml. 

After the stress phase, all plants were exposed to a 23-days recovery period (Phase II) in which 

they were irrigated with the same solution used for the control plants. During the first three days 

of the recovery period, all plants were exposed to a further irrigation event with leaching with the 

same solution used for the control plants (a mixture of distilled water and tap water). The leaching 

fraction reached 10% (v/v) of the water applied in the control treatments, 27% of the water applied 

in S4 treatments, 50% of the water applied in S8 treatments. 

 

Growth and plant water measurements 

 At the end of Phase I and Phase II, the substrate was gently washed from the roots 

of six plants per treatment and plants were divided into shoots (leaves and stem) and roots, 

and oven-dried at 80ºC until they reached a constant weight to measure their respective 

dry weights (DW).  

Leaf water potential (Ψl), leaf osmotic potential, leaf turgor potential (Ψt), leaf 

osmotic potential at full turgor (Ψ100S) was estimated in six plants per treatment during 

the central hours of illumination at the middle and at the end of Phase I (15 d and 30d) 

and Phase II as described previously (Álvarez et al., 2012). Leaf proline was analysed in 
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six plants per treatment at the middle and at the end of Phase I (15 d and 30d) and Phase 

II according to Bates et al., (1973). 

For the experiment of high light intensity (HL), a batch of plants, not used for the 

salt-stress study, were grown in the same conditions describes above for two months, and 

during the last four days of the experiment they were exposed to 100% solar radiation 

(sunlight), whereas another batch of plants were grown in a room chamber in the same 

conditions but in presence of low light intensity (LL) (100 PAR) for two months. 

 

Determination of inorganic solutes  

 At the beginning, at the end of Phase I (30 d) and Phase II, six plants per treatment 

were separated into leaves, stem, and roots, washed with distilled water, dried at 70ºC, 

and stored at room temperature for inorganic solute analyses. The concentration of Cl−, 

Na+, K+, and Ca2+ ions were determined as described in Acosta-Motos et al. (2014 a; b). 

 The absorption rates of Na+, Cl-, K+, and Ca2+ ions (J) by the root system at the 

end of Phase I and Phase II was calculated considering the total salt content of six plants 

per treatment at harvest, expressed as mmol Na+, Cl-, K+ and Ca2+the mean root weight, 

using the formula described by Pitman (1975): 

J = (M2-M1)/ (WR*t) 

where M1 and M2 correspond to a concentration in mmol of ion studied in the total plant 

at the beginning and at the end of Phase I and Phase II, respectively; t corresponds to the 

time in days and WR is the logarithmic mean root biomass, calculated as (WR2-WR1)/Ln 

(WR2/WR1), with WR1 and WR2, being the dry weight of roots at the beginning and at 

the end of Phase I and Phase II, respectively. 

 

Gas Exchange and chlorophyll determination 
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 Leaf stomatal conductance (gs) and net photosynthesis rate (PN) were determined 

in attached leaves in six plants per treatment during the central hours of illumination at 

middle and the end of Phase I (15 d and 30 d) and Phase II using a gas exchange system 

(LI-6400; LI-COR Inc., Lincoln, NE, USA). Intrinsic water efficiency PN/gs was 

calculated. Total chlorophyll was analysed in leaf samples in six plants per treatment at 

middle of Phase I (15 d), at the end of Phase I (30 d) and Phase II as described by Inskeep 

and Bloom (1985). 

 

Measurement of chlorophyll fluorescence 

 The fluorescence of chlorophyll was measured at middle and the end of Phase I 

(15 d, 30 d) and Phase II with a chlorophyll fluorometer (IMAGIM-PAM M-series, Heinz 

Walz, Effeltrich, Germany) in detached leaves from controls and salt-treated myrtle 

plants. After dark-incubation of plants (20 min), the minimum and the maximal 

fluorescence yields were monitored. Kinetic analyses were carried out with actinic light 

(81 µmol quanta m-2 s-1 PAR) and repeated pulses of saturating light at 2700 µmol quanta 

m-2 s-1 PAR for 0.8 s at intervals of 20 s. The effective PSII quantum yield (Y(II)), the 

quantum yield of regulated energy dissipation (Y(NPQ)), the non-photochemical 

quenching (NPQ), the maximal PSII quantum yield (Fv/Fm), the coefficients of non-

photochemical quenching (qN) and the photochemical quenching (qP) were analysed 

(Maxwell and Johnson, 2000). 

 ETR (apparent rate of photosynthetic electron transport) parameter was performed 

at the end of Phase I (30 d) and Phase II as well as in the experiment with HL using a 

light curve analysis with increasing PAR light pulses (0-700 PAR). 
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Antioxidative metabolism 

Enzyme extraction and analysis 

 All operations were performed at 4ºC. For the enzymatic determinations plants 

were sampled at middle and the end of Phase I (15 d, 30 d) and Phase II. Leaf samples (1 

g) were homogenized and pre-purified as described previously (Acosta-Motos et al., 

2014b). For the APX activity, 20 mM sodium ascorbate was added to the extraction 

buffer. The activities of the ASC-GSH cycle enzymes, POX, CAT, and SOD were 

assayed as described in Barba-Espín et al. (2011). 

 

Oxidative stress parameters 

 The rate of passive electrolyte leakage from stress-sensitive plant tissue can be 

used as a measure of alterations of membrane permeability. Ion leakage was estimated at 

15 and 30 days in Phase I and at the end of Phase II, according to the method described 

by Lafuente et al. (1991). The extent of lipid peroxidation was estimated by determining 

the concentration of thiobarbituric acid-reactive substances (TBARS) as previously 

described (Hernández and Almansa, 2002).  

 

Light microscopy and morphometrical analysis  

 Leaves sections (1 × 1 mm from the most recent fully expanded leaves) from the 

central region of myrtle leaves, avoiding the main vein, were used for light microscopy. 

These samples were fixed and postfixed according to Agulló-Antón et al. (2013). Semi-

thin sections (0.5-0.7 µm thick were cut with a Leica EM UC6 ultramicrotome. The 

sections were stained with 0.5% toluidine blue, mounted in DPX and observed with a 

Leica DMR light microscope. 
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For morphometric analysis, 10 different sections from each treatment (3 plants 

of each treatment), were studied at the end of Phase I (30 d). The percentages of area 

occupied by palisade parenchyma (PP), spongy parenchyma (SP) and intercellular spaces 

(IS) in leaves from myrtle plants were measured and expressed as the % of total area using 

Adobe Photoshop CS4 Extended software.  

Statistical analyses of data 

 In the experiment plants were randomly attributed to each treatment. Statistical 

analysis of the data were performed using the SPSS 19.0 software (SPSS Inc., 2002) Data 

were subjected to analysis of variance (ANOVA) and the mean values were compared by 

a Duncan’s Multiple Range Test at p ≤ 0.05 to assess significant differences between C, 

S4 and S8 treatments.  

 

Results 

Effect of NaCl on plant growth 

 At the end of Phase I, 4 or 8 dS m-1 NaCl did not negatively affect the growth of 

myrtle plants. In addition, S4 plants showed a significant increase in root growth and in 

leaf and shoots DW, whereas S8 plants significantly increased the root DW by about 62% 

(Table 1), leading to a 50% increase in the DW root/DW shoot ratio (Table 1). After 

the recovery period (Phase II), a decrease in leaf and stem DW was produced in S4 and 

S8 plants.  

 

Nutritional Changes 

 Salt stress increased the absorption rates of Na+ and Cl- by myrtle roots. The 

increase observed in Na+ uptake was quite similar in S4 and S8 plants, reaching about 2 

times the values reported for their respective control plants (Fig. 1A). In contrast, the 
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changes showed in Cl- uptake were dependent on the NaCl level used in each treatment. 

Accordingly, Cl- uptake rates increased up to 38% and 52% for S4 and S8 plants, 

respectively (Fig. 1C). The uptake rate of K+ and Ca2+was not affected in plants subjected 

to S4 and S8 treatments (Fig. 1E and G). 

 After Phase II, the absorption rates for Na+ and Cl- were still much higher in plants 

previously subjected to NaCl stress than in the controls (Fig 1B and D). The uptake rate 

for K+ did not change in S4 and S8 plants (Fig. 1F), whereas Ca2+ uptake rate values were 

a 45% higher in S4 plants and a 56% higher in S8 plants in relation to the values presented 

by control plants (Fig.1H).  

Ion Distribution 

 Concerning the distribution of the different ions, Na+ accumulated mainly in roots, 

where its content increased up to 1.86-times in S4 plants and about 2-times in S8 plants 

(Fig. 2A). The Na+ ions also accumulated in the aerial part but in a lower extent than in 

roots (Fig. 2A). Thereby, Na+ content increased by 50% in leaves subjected to NaCl 

stress, whereas the Na+ levels in stems increased up to 70% in S4 plants and up to 42% 

in S8 plants (Fig. 1A).  

 In contrast, Cl- distribution was more uniform than that of Na+, although Cl-

accumulated more in S8 than in S4 plants. In this case, Cl- accumulated in the aerial part 

from S4 plants but not in roots, whereas in S8 plants Cl- accumulated in all plant organs, 

especially in stems (52% increase) and roots (45% increase) (Fig. 2C).  

 No significant effects of NaCl were recorded for K+ distribution (Fig 2E) whereas 

Ca2+ levels significantly increased in leaves from S4 plants (15%) and in stem from S8 

plants (27%) (Fig. 2G).  

 After Phase II, again Na+ accumulated in roots, being the increase up to 51% and 

57% in S4 and S8 plants, respectively (Fig 2B). Na+ also accumulated in the aerial part 
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of the plants, although data were lower to that showed by roots (Fig. 2B). Regarding Cl- 

distribution, this toxic ion showed a 38% increase in roots from plants previously treated 

with 4 dS m-1, whereas in S8 plants Cl- levels rose up to 20% in stems and 72% in roots 

in relation to control plants (Fig 2D). K+ contents declined in leaves and stems from S4 

plants and in roots from S8 plants (Fig 2F). The increase in Ca2+ uptake observed after 

Phase II was parallel with a rise in the Ca2+contents in roots in S4 (23%) and S8 (51%) 

plants (Fig. 2H).  

 

Plant Water Relations 

 Leaf water potential (Ψl) showed a progressive decline with the severity and the 

duration of the NaCl treatments applied. Salt-treated plants showed more negative Ψl 

values than control plants. In this way, S4 plants presented Ψl values of -0.69 and -0.84 

MPa at 15 and 30 days of stress, respectively (Table 2). The decline in Ψl was more 

noticeable in S8 plants, with values, of -0.78 and -0.96 MPa at 15 and 30 days of stress, 

respectively. At the end of Phase II, Ψl values increased in S4 (-0.72 MPa) and S8 (-0.75 

MPa) plants but did not reach control values (Table 2).  

 Concerning leaf turgor potential (Ψt), at 15 days of salinity only S8 plants 

experienced a decline in leaf Ψt (0.47 MPa) (Table 2). However, at 30 days both S4 and 

S8 plants showed a decline in Ψt (0.82 and 0.82 MPa, respectively). At the end of Phase 

II, a significant increase in Ψt was observed in S4 and S8 plants, reaching values of 0.93 

and 0.97 MPa, respectively (Table 2). 

 The osmotic potential at maximum saturation (Ψ100s) values decreased in both 

saline treatments during the phase I, pointing to a slight osmotic adjustment in these 

treatments, while no differences in this parameter were found at the end of Phase II Table 

2). 
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 In parallel to water relation parameters, we analysed the leaf proline content 

during the experiment. No significant differences were observed in proline levels due to 

the effect of NaCl treatments, and only at the end of Phase II proline increased in plants 

previously treated with 8 dS m-1 NaCl (Table 2). 

 

Gas exchange and chlorophyll fluorescence parameters 

 Myrtle plants showed unchanged (S4) or increased (S8) leaf chlorophyll levels at 

the end of Phase I (Table 3). At the end of Phase II, S8 plants presented significant higher 

chlorophyll contents than control plants (Table 3).  

 After 15 days of NaCl treatments, all plants showed similar gs values, although 

S4 and S8 plants showed lower PN values than the control, resulting in a decrease of about 

50% in the intrinsic water efficiency (PN/gs) in both treatments (Table 3). At the end of 

Phase I, salt-treated plants appeared to have developed an ability to acclimate to the stress 

conditions. S4 showed similar PN and gs values to control plants and S8 had similar 

intrinsic water use efficiency (PN/gs), as PN and gs were proportionally reduced compared 

with control. Finally, at the end of Phase II, S8 plants still showed lower PN and gs values 

than control and S4 plants, although no significant differences in PN/gs among treatments 

were found (Table 3).  

After 15 days of NaCl-stress, myrtle plants irrigated with 4 and 8 dS m-1 showed 

increased photochemical quenching parameters [qP, Y(II), and Fv/Fm] values (Table 4, 

Fig S1). In addition, S8 plants increased non-photochemical quenching parameters [qN, 

NPQ and Y(NPQ)] (Table 4; Fig S1). At 30 days of NaCl stress, S4 plants only showed 

a decline in qP, whereas in S8 plants a reduction in qP and Y(II), and an increase in the 

non-photochemical quenching parameters was recorded (Table 4, Fig S1). After Phase II, 

the response was quite similar to that observed at 15 days of stress. In this case, plants 
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previously subjected to S4 treatment increased qP and Y(II), but reduced the non-

photochemical quenching parameters. In contrast, S8 plants increased qP and decreased 

Y(II), whereas no change in qN and NPQ was observed (Table 4, Fig S1).  

 At a known flux of incident photosynthetically active radiation (PAR) the relative 

rate of photosynthetic electron transport (ETR) was determined in M. communis L. leaves. 

This parameter was analysed at the end of both experimental phases, and showed that 

myrtle plants presented low ETR data. At the end of Phase I, the maximum ETR values 

were recorded at low light intensities (56-111 PAR), and then data decreased with the 

increase of PAR. In this phase, S4 plants displayed the highest ETR values (Fig 3A). At 

the end of Phase II, ETR values were much higher to those observed in Phase I, being the 

maximum ETR data reached at higher PAR values (111-186 PAR). At 111 PAR, plants 

recovered from NaCl-stress displayed higher ETR values than control plants. Again, ETR 

data progressively decreased with the increase of PAR, with the values close to zero at 

300 PAR (Fig 3B). The ETR/PN ratio observed in non-stressed plants was close to 4.5, 

both at the end of Phase I and Phase II. This ratio increased with the NaCl levels used, 

reaching a 23% increase in S4 plants and a 2-fold in S8 plants (Fig 3C). Furthermore, the 

recovered plants, previously subjected to NaCl-stress, showed higher ETR/PN values than 

those observed at the end of the salinization phase. In this case, the rise in ETR/PN was 

up to 84% and 5.3-fold in S4 and S8 plants, respectively (Fig 3C). 

 ETR data reflected that myrtle plants appear to be adapted to low light intensity 

(LL). In this sense, we studied the effect of high light intensity (HL) in the chlorophyll 

fluorescence parameters. The data, obtained for apical and basal leaves (3rd-4th branch), 

were different depending on the light conditions. For example, plants subjected to HL 

showed decreased Fv/Fm values compared to plants subjected to LL, especially the apical 

leaves, which were more exposed to sunlight (Table 5). In addition, these leaves presented 
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decreased non-photochemical quenching parameters, reflecting a reduced capacity for a 

safe dissipation of excess light energy (Table 5). However, basal leaves, more protected 

from HL, showed increased qP values and non-photochemical quenching parameters in 

relation to control basal leaves as well as than apical leaves from HL stressed plants. In 

addition, these leaves from HL-stressed plants also showed the highest ETR values (Fig 

S2). 

Leaf anatomy 

 Salt stress induced some changes in the leaf anatomy from M. communis plants. 

At the end of Phase I, plants treated with 8 dS m-1 NaCl presented a decrease in the 

percentage of spongy parenchyma and increased percentage of intercellular spaces. 

However, no significant changes were recorded in S4 plants (Table 6, Fig S3). 

 

Antioxidative metabolism 

 NaCl treatment induced an oxidative stress in myrtle plants after 30 days of 

treatment only in S8 plants, as evidenced by electrolyte leakage (EL) and lipid 

peroxidation (LP) in leaves, indicative of membrane damage (Table 7). The NaCl-

induced oxidative stress was also evidenced by the H2O2 accumulation observed in leaves 

from plants treated with 8 dS m-1 NaCl (Fig S4). After Phase II, both S4 and S8 plants 

showed increased EL values but only S8 plants still presented increased LP values (Table 

7), suggesting some damage to cell membranes. 

 The effect of salt stress on the activity of some antioxidant enzymes was studied 

in plants treated with 4 and 8 dS m-1 NaCl. Under our experimental conditions, DHAR 

and POX activities as well as ascorbate and glutathione levels were not detected in myrtle 

leaves. At 15 days of NaCl stress, a decrease in CAT activity and an increase in GR 

activity were produced in myrtle plants (Table 8). In addition, plants subjected to S8 
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treatment showed decreased APX and SOD activities (Table 8). At the end of Phase I, a 

2-fold increase in CAT activity occurred in S4 plants, whereas an increase in MDHAR 

was observed only in S8 plants (Table 8). At 30 days of stress, APX activity values were 

lower than those observed at 15 days, and a 60% decrease in APX occurred in S4 and S8 

plants. In addition, a 30% drop in SOD was observed in S8 plants (Table 8). At the end 

of Phase II, the antioxidants activities analysed were lower than those observed in Phase 

I except for CAT activity. Moreover, we were not able to detect GR activity in recovered 

plants. In this period, plants previously treated with NaCl displayed a significant increase 

in CAT activity, especially S4 plants that showed a 3-fold increase. However, APX 

activity showed no sign of recovery, and even decreases of 35% in S4 plants and 58% in 

S8 plants were recorded (Table 8). 

Discussion 

Growth and ion accumulation 

 Myrtus communis L. plants are considered to be moderately tolerant to NaCl levels 

of 25 mM (Cassaniti et al. 2012), whereas other Myrtaceae species such as E. myrtifolia 

and L. scoparium are tolerant to salinity levels up to 70 mM NaCl (7.4 dS m-1) (Casanitti 

et al., 2009). In the present work, we used higher levels of NaCl, and under our 

experimental conditions, 4 and 8 dS m-1 NaCl levels (equivalents to 44 and 88 mM NaCl, 

respectively) did not negatively affect the plant growth, and S4 treatment even produced 

stimulation in plant biomass production. S8 plants showed increase root biomass, and as 

a consequence a rise in DW root/ DW shoots ratio took place. DW roots is a parameter 

considered to be important in the response to salt stress, because the higher root growth 

the higher water and nutrient uptake can take place, favouring the accumulation of toxic 

ions in roots, especially Na+, and thus minimizing its negative effects in the shoot growth 

(Marchner, 1995). In Eugenia plants, reduced toxic ions accumulation seems to be due to 
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a tight control of its uptake rates and its translocation to the aerial part (Acosta-Motos et 

al., 2014b). However, myrtle plants seemed to control Na+ accumulation in the aerial part 

by reducing its translocation from the roots and/or by its accumulation in roots. At the 

end of Phase II plant growth seemed to be retarded by the new applied conditions in 

previously stressed plants. This response was observed also in other ornamental plants 

(Cassaniti et al., 2009; Acosta-Motos et al., 2014b; 2015?).  

 A correlation between K+ and /or Ca2+ contents and plant growth effect was 

observed in myrtle plants.  The treatments with 4 and 8 dS m-1 NaCl did not affect either 

the Ca2+ and K+ uptake rates nor the Ca2+ and K+ contents in roots and shoots. It is known 

that Ca2+ and K+ can play an important role in plant growth and development as well as 

in the maintenance of osmotic adjustment and cell turgor (Marchner, 1995). Moreover, 

the addition of Ca2+ in the irrigation water can reduce the Na+ and Cl- levels in loquat and 

anger plants, but was not able to improve plant growth (Hernández et al., 2003), probably 

due to the displacement of Ca2+ from cell membranes affecting the membrane functions 

(Lynch et al., 1987). It is known that Ca2+ plays a role maintaining the structure and 

functionality of membranes as well as the improvement of the K+/Na+ selectivity (Cramer 

et al., 1987; Lynch et al., 1987).  

Plant water relations 

 The decrease in leaf water potential (Ψl) in salt-treated plants reflects an osmotic 

effect and as consequence difficulty for water uptake during the Phase I, probably as a 

result of salts accumulation in the substrate, especially in S8 plants.  Even at the end of 

Phase II these plants showed reduced Ψl, despite the availability of water in the substrate 

(Hardikar and Pandey, 2008). This behaviour has been described in other ornamental 

species irrigated under saline conditions (Sánchez-Blanco et al, 1998; Navarro et al., 
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2007; Acosta-Motos et al., 2014b). These results are supported by the decrease in Ψt at 

the end of phase I, indicating lower leaf turgor. 

 Moreover, myrtle plants showed an osmotic adjustment at the end of Phase I as 

observed by the reduction in Ψ100S, especially in S8 plants, that could be due to the ion 

compartmentation inside the vacuoles (Koyro et al., 2006). However, no effect of proline 

in the osmotic adjustment was observed during Phase I, and only a limited contribution 

can be observed at the end of Phase II only in S8 plants.  

 

Gas exchange and chlorophyll fluorescence parameters 

 NaCl levels of 8 dS m-1 did not negatively affect plant biomass although a clear 

reduction in PN took place. Similarly, Tattini et al. (2006) previously reported the negative 

effect of NaCl on photosynthesis in myrtle plants. As a compensatory mechanism to 

protect the photosynthetic process, M. communis plants showed unchanged (S4) or 

increased (S8) chlorophyll contents at the end of Phase I. It is known that salt-tolerant 

species show increased or unchanged chlorophyll content under salinity conditions 

whereas chlorophyll levels decrease in salt-sensitive species, suggesting this parameter 

as a biochemical marker of salt tolerance in plants (Ashraf and Harris, 2013; Stepien and 

Johnson, 2009). Thus, the loss of chlorophyll can lead to photo-damage in the 

photosynthetic apparatus (Havaux and Tardy, 1999). 

 Myrtle plants showed low PN data and this result was associated with lower gs 

values, which can also influence the response of myrtle plants to salt stress through a fine 

stomatal control regulation. Decreased gs values is a common response of NaCl-adapted 

plant species, and this response allows plants to maintain a level of toxic ions lower than 

expected through a limited transpiration, as described previously (Alarcón et al., 2006; 

Fernández-García et al., 2014).  
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 At the end of Phase II, S8 plants significantly increased chlorophyll contents, but 

no recovery of PN was produced, that were linked again to the decrease in gs. This lack 

of photosynthesis recovery correlated with a decrease in plant biomass and an osmotic 

effect in PN decline cannot be ruled out. In spite of the drainage conditions applied at the 

beginning of Phase II, Na+ and Cl- accumulated in the substrate. A similar lack of PN 

recovery was found in olive trees after salinity relief (Tattini et al., 1995). These authors 

attributed the decline in PN, after NaCl recovery, to an osmotic effect outside the roots 

rather than a specific effect of toxic ions on leaf photosynthesis. 

 After Phase II, and although a partial recovery in PN occurred in S4 plants, a 

general reduction in plant growth was observed. Probably, in this case, myrtle plants have 

to invest most of the produced photosynthates in different mechanisms to cope with the 

new imposed growth conditions, for example, i) to form roots in order to retain toxic ions 

and to increase water uptake, and ii) to produce more energy (ATP) for proton pumps to 

compartmentalize toxic ions and/or for ion exclusion. That would mean that both 

chloroplast and mitochondrial electron transport chains could be working at full capacity, 

with the risk of ROS overproduction.  

 No correlation between PN and fluorescence parameters was observed at 15 days 

of salt stress. At 30 days of stress the drop in PN parallel with a decline in qP and Y(II) 

and increases in non-photochemical parameters. The long-term NaCl treatment (75-150 

mM) also decreased Y(II) in Lawsonia inermis L. plants along with a decrease in Y(NPQ) 

(Fernández-Garcia et al.,  2014). At the end of Phase II, the partial recovery in PN 

observed in S4 plants correlated with increases in qP and Y(II) whereas in S8 plants, both 

qN and Y(NPQ) dropped, reflecting a decrease in the safe dissipation of excess energy 

that could induce photo-oxidative damage in the photosynthetic apparatus (Maxwell and 

Johnson, 2000). 
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 Myrtle leaves showed low Fv/Fm data that could be related with the low electron 

transport rates observed. Different authors described optimal Fv/Fm values around 0.8 in 

most non-succulent leaves (Krall and Edwards 1992; Karpinski et al., 1997; Maxwell and 

Johnson 2000; Hernández 2004, 2006a), and values lower than 0.8 can be observed after 

the exposition of plants to stress, indicating a phenomenon of photoinhibition. However, 

we have recorded lower Fv/Fm data in some woody species such as apricot (about 0.76-

0.78; Hernández et al., 2006b) or in Eugenia plants (0.68-0.76; Acosta-Motos et al., 2015 

Planta). For this reason, other authors suggested that plants can be considered as stressed 

with Fv/Fm values lower than 0.7 (Colom and Vazzana, 2003, Percival et al., 2006, 

Bacelar et al., 2007). 

 The ETR/PN ratio reflects a balance between the PSII activity and the CO2 fixation 

(Krall and Edwards 1992). In C3 plants, both CO2 fixation and photorespiration are the 

major sinks of electrons from PSII (4 electrons are required for CO2 or O2 reacting with 

Rubisco), whereas in C4 plants there is a linear relationship between PSII activity and 

CO2 fixation (Krall and Edwards 1992). In different C4 species, ETR/PN values ranging 

4.6-6.1 have been recorded. According to these data, both control plants as S4 plants 

behave as C4 plants. However, S8 plants and especially recovered plants showed 

increased ETR/PN ratios, emphasizing that there was an important electron transport to 

other acceptors different to CO2. The increased ETR/PN values were correlated with an 

increase in NPQ and qN in S8 plants, reflecting a dissipation of excess energy as heat to 

avoid PSII damage (Maxwell and Johnson 2000). The involvement of photorespiration 

as a sink for electrons from PSII was more evident in the recovered plants that showed 

increased CAT activity values. 

 According to the ETR data recorded, myrtle plants seem to be adapted to LL and 

the exposure to HL strongly decreased Fv/Fm values, indicating that photoinhibition of 
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photosynthesis occurred (Karpinski et al., 1997; Hernández et al., 2006). In addition, 

apical leaves, more exposed to solar irradiation, showed reduced non-photochemical 

quenching parameters reflecting a reduced capacity for a safe dissipation of excess light 

energy. The decline observed in Fv/Fm in myrtle plants, after exposure to 100% solar 

irradiation, was much lower than that described in pea or Arabidopsis plants subjected to 

HL stress (Karpinski et al., 1997; Hernández et al., 2006).  

Anatomical changes 

 It is known that prolonged salt stress may cause changes in leaf anatomy (Garrido 

et al., 2014; Fernández-García et al., 2014). The observed morphological changes at 30 

days of stress (increased root/canopy ratio) in S8 plants were accompanied by leaf 

anatomical changes. These NaCl-induced anatomical changes might facilitate the CO2 to 

reach the chloroplast in a more efficient manner in a situation of reduced stomatal 

aperture. These changes seemed to be an adaptative response to protect the photosynthetic 

process. However, in spite of these anatomical changes, S8 plants strongly reduced PN in 

response to NaCl stress. 

 

Effects on the antioxidative metabolism 

 At 15 days of NaCl treatment no oxidative stress was observed. However, at 

longer term, S8 plants showed increased oxidative stress parameters such as H2O2 

accumulation, EL and LP, indicating membrane damage. The salt-induced oxidative 

stress has been described in other plant species, including herbaceous, woody plant or 

even in vitro plants (Hernández et al., 2001, 2003; Diaz-Vivancos et al., 2013; Ikbal et 

al., 2014). The membrane damage was also evident in salt recovered pea plants 

(Hernández and Almansa, 2002). These authors suggested that the new growth conditions 
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could be perceived by plants as a new stress conditions, at least during the period of 

recovery studied. 

 Under NaCl stress, S8 plants undergo a decline of H2O2-scavenging enzymes as 

well as SOD activity. On the other hand, myrtle plants suffered a sharp decline in the 

APX activity during the experimental period, contrary to that happen in CAT activity. 

APX and CAT appear to compensate each other at least to a certain degree, as reported 

in knock-out cytAPX Arabidopsis plants in response to light stress that showed elevated 

CAT expression (Pnueli et al., 2003). At the end of the recovery period, APX, although 

showing low activity data, is partially recovered in S4 in relation to the values observed 

in control plants, but not in S8 plants. The effect of NaCl in reducing APX activity has 

been described in other plant species, including in vitro grapevine plantlets (Ikbal et al., 

2014), anger plants (Hernández et al., 2003) or in pea leaves (Hernández et al., 2001).  

Thus, APX activity seems to be crucial for plant stress tolerance as well as for growth and 

development (Shigeoka and Maruta, 2014). In a wheat mutant line, showing a 40% 

decrease in thylakoidal APX, a decline in PN as well as in growth and seed production 

was reported (Danna et al., 2003). This lack of APX recovery can be related with the 

decline observed in plant growth in recovered plants after Phase II.  

 The decrease in CAT activity observed at 15 days of salinity was also described 

in pea leaf peroxisomes after 15 days of growth with 70 mM NaCl (Corpas et al., 1993). 

The increase in CAT activity after Phase I (S4 plants) and after recovery from salt stress 

(S4 and S8 plants) may suggest an involvement of photorespiration in the response of 

myrtle plants to long-term NaCl stress and recovery. A correlation between CAT activity 

and photosynthesis has been described since the increase in CAT reduces the 

photorespiratory loss of CO2 (Brisson et al., 1998). 
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 Conclusion 

 This work integrates morphological, anatomical, physiological and biochemical 

responses of myrtle plants to NaCl stress. As a general conclusion, myrtle plants are able 

to grow in the presence of high NaCl levels. To perform this tolerant response, myrtle 

plants implement different adaptative mechanisms to cope with salt stress (See Figure 6). 

In the case of S4 plants, at the end of Phase I, they maintained non-photochemical 

parameters values and increased CAT activity, whereas S8 plants increased the 

mechanisms for safe dissipation of excess energy [(qN, NPQ and Y(NPQ)]. In addition, 

S8 plants increased the root/canopy ratio and the chlorophyll content in addition to 

changes in the leaf anatomy to favour the photosynthesis process. Moreover, in both 

treatments plants accumulated toxic ions in roots in order to avoid leaf toxicity, and keep 

their water status and stomata regulation in order to limit water loss. Finally, myrtle plants 

cope with the established oxidative stress by maintaining and/or activating certain 

defence mechanisms. Nevertheless, irrigation with the same water used on the controls 

for 23 days (Phase II) seems to be perceived by myrtle plants as a new challenge, as 

previously described in other plant species. Finally, we would point out that the present 

work was carried out under controlled environmental conditions. However, myrtle is a 

Mediterranean plant, and under field conditions more than one abiotic stress condition 

occurred.  Stress combination can have deleterious effect on plant productivity, and 

prolonged exposure of plants to abiotic stresses, such as drought, extreme temperature, 

light stress, or salinity, resulted in the weakening of plant defenses and enhanced 

susceptibility to biotic stresses (Suzuki et al., 2014).  For this reason, under filed 

conditions, myrtle plants could respond differently to salinity than those observed in this 

experiment where plants were grown under controlled conditions. 
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Table 1.- Effect of NaCl on different growth parameters in M. communis plants 

at the end of the salinity period (Phase I) and after the recovery period (Phase II). 

 Treatments  

Growth parameters Control S4 S8 F 

 (Phase I) 

DW Leaf (g plant-1) 

DW Stem (g plant-1) 

DW Root (g plant-1) 

DW Root / DW Shoot 

 

1.61±0.17a 

1.78±0.15a 

3.61±0.30a 

1.06±0.12a 

 

2.94±0.34b 

2.38±0.24b 

5.51±0.78b 

1.04±0.09a 

 

1.80±0.02a 

1.85±0.08ab 

5.85±0.26b 

1.60±0.08b 

 

13.02** 

3.88* 

4.26* 

8.29** 

 (Phase II) 

DW Leaf (g plant-1) 

DW Stem (g plant-1) 

DW Root (g plant-1) 

DW Root/ D.W. Shoot 

 

4.08±0.27b 

4.46±0.34b 

5.08±0.49 

0.60±0.06 

 

2.41±0.32a 

2.47±0.42a 

5.06±0.46 

1.04±0.08 

 

2.63±0.34 

2.75±0.36a 

3.83±0.28 

0.71±0.08 

 

7.07a* 

8.32** 

3.01 ns 

1.12 ns 

Data represent the mean ± SE from 6 plants. Different letters in the same row indicate significant 
differences according Multiple Range Duncan´s Test (p≤0.05). F values from one-way ANOVA for 
the different plant growth parameters analysed. F values were significant at 99.9% (***), 99% (**) or 
95% (*) levels of probability. Non-significant values are indicated by “ns”. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.- Effect of increased NaCl levels on leaf water potential (ψl, as MPa), leaf 
turgor potential (ψt, as MPa); leaf osmotic potential at full turgor (ψ100s, as MPa) and 
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Proline levels (µmol/g FW) in M. communis plants after 15 and at the end of salinity 
(Phase I) and after the recovery period (Phase II). 

  

Data represent the mean from 5 plants. For more details, please see Table 1. 

  

 Ψl Ψt Ψ100s Proline 

15 Days(Phase I) 

Control 

 

-0.61c 

 

0.65 b 

 

-1.33 b 

 

7.56 

S4 -0.69b 0.62 b -1.47 a 6.99 

S8 - 0.78a 0.47a -1.44a 7.32 

     
aF 12.38*** 10.70*** 20.14** 0.31n.s 

30 Days(Phase I)     

Control -0.68b 0.99b -1.49 b 8.62 

S4 -0.84a 0.86a -1.59 a 8.22 

S8 -0.96a 0.82a -1.67 a 7.72 
     

aF 10.73*** 4.93* 13.78** 1.46n.s 

Recovery period 
(Phase II) 

Control  

 

 

-0.66b 

 

 

0.76a 

 

 

-1.33 

 

 

7.91a 

S4 -0.72ab 0.93b -1.24 7.63a 

S8 -0.75a 0.97b -1.03 10.85b 

     
aF 3.04* 8.58*** 1.79n.s 3.88* 
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Table 3.- Effect of increased NaCl levels on total chlorophyll content (mg mg-1 FW), net 

photosynthetic rate (PN, as µmoles m-2 s-1); stomatal conductance (gs, as mmoles m-2 s-1); 

intrinsic water efficiency (PN/gs, as µmol CO2 mol-1 H2O) in M. communis plants after 15 

and at the end of salinity period (Phase I) and after the recovery period (Phase II).  

Data represent the mean ± SE from 6 plants. For more details, please see Table 1. 

 

 

 Chlorophyll PN gs PN/gs 

15 Days(Phase I)     

Control 2.36 ±0.05a 1,09±0.08b 23.57±4.02a 51.35±9.96b 

S4 2.19±0.08a 0.71±0.12a 24.71±3.54a 28.86±3.74a 

S8 2.73±0.02b 0.63±0.09a 23.62±3.38a 26.71±1.50a 

     

aF 16.50** 6.33* 0.03n.s 4.84* 

30 Days(Phase I)     

Control 2.30 ±0.04a 1.79±0.33b 22.89±4.04b 78.20±2.54b 

S4 2.10±0.07a 1.46±0.37ab 24.05±2.42b 60.70±1.78a 

S8 2.43±0.01b 0.86±0.16a 10.43±1.30a 82.45±4.35b 

     

aF 5.58* 4.90* 3.81* 3.53* 

Revovery period 

(Phase II) 
    

Control 1.88±0.04a 2.70±0.75b 
73.94±24.40

b 
36.51±1.00 

S4 1.93±0.03a 1.80±0.50ab 57.51±8.83b 31.30±2.04 

S8 2.20±0.01b 0.63±0.32a 24.67±3.61a 25.53±8.90 

     

aF 20.43** 4,09* 3,51* 0,94n.s 
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Table 4.- Effect of increased NaCl levels on fluorescence parameters in M. communis plants after 

15 and at the end of salinity period (Phase I) and after the recovery period (Phase II).  

 qP Y(II) Fv/Fm qN NPQ Y(NPQ) 

15 Days (Phase I) 

Control 

 

0.667a 

 

0.288a 

 

0.670a 

 

0.755b 

 

0.370a 

 

0.396a 

S4 0.720b 0.382c 0.702b 0.700a 0.378a 0.411a 

S8 0.697ab 0.352b 0.717b 0.796b 0.535b 0.555b 

       

aF 3.15* 25.46*** 9.16***  10.25*** 8.82*** 6.61** 

30 Days (Phase I)       

Control 0.712b 0.372b 0.683a 0.649a 0.268a 0.318a 

S4 0.636a 0.344b 0.706a 0.658a 0.282a 0.342a 

S8 0.643a 0.279a 0.692a 0.815b 0.505b 0.472b 

       

aF 4.69* 11.87*** 0.97n.s 58.87*** 69.47*** 44.66*** 

Recovery period 
(Phase II) 

Control  

 

 

0.588a 

 

 

0.275a 

 

 

0.670a 

 

 

0.711b 

 

 

0.450b 

 

 

0.480c 

S4 0.684b 0.355b 0.693a 0.670a 0.284a 0.338a 

S8 0.666b 0.275a 0.666a 0.763b 0.380b 0.415b 

       

aF 8.33***  12.10*** 1.35n.s 12.10*** 10.11*** 12.81*** 

Data represent the mean from at least 50 measurements. For more details, please see Table 1. 
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Table 5.- Effect of lighting on fluorescence parameters in M. communis plants. A batch of plants 

were grown in the presence of 350 PAR for two months, and the last four days of the experiment, 

they were exposed to100% solar radiation (HL treatment), whereas other batch of plants were grown 

in a room chamber in the presence of low light intensity (LL) (100 PAR) for two months.  

Data represent the mean from at least 50 measurements. For more details, please see Table 1. 

 

 

 

 

 

 

 

 

 

 

 

Lighting Leaf type qP Y(II) Fv/Fm qN NPQ Y(NPQ) 

LL  Apical 

Basal 

0.434a 

0.444a 

0.240a 

0.246ab 

0.712c 

0.716c 

0.762c 

0.659b 

0.392c 

0.280b 

0.392c 

0.280b 

HL 

 

Apical 

Basal 

0.465a 

0.639b 

0.249b 

0.274b 

0.587a 

0.659b 

0.620a 

0.780c 

0.193a 

0.409c 

0.194a 

0.409c 

        

aF  32.46*** 8.00*** 41.13***  48.17*** 71.03*** 6.54*** 
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Table 6.- Quantitative analysis for morphometric data in leaves from control and NaCl-treated 

plants in M. communis plants at the end of the salinity period (Phase I). 

 Treatments   

 Control S4 S8 aF 

 (Phase I) 

Palisade parenchyma 

Spongy parenchyma 

Intercellular space 

 

22.51±0.83a 

49.57±1.38b 

27.92±0.58a 

 

22.40±0.80a 

48.62±1.22b 

28.99±0.89b 

 

24.36±0.48b 

42.35±1.29a 

33.28±1.51b 

 

1.68n.s 

7.96** 

7.06** 

Data represent the mean ± SE 10 different sections from each treatment (3 plants of each 

treatment). For more details, please see Table 1. 
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Table 7.- Effect of increased NaCl levels on oxidative stress parameters in leaves from 

M. communis plants. Electrolyte leakage (EL) and lipid peroxidation (TBARS) were 

analysed at the end of the salinity period (Phase I) and after the recovery period (Phase 

II). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data represent the mean ± SE from 10 plants. For more details, please see Table 1.

 EL 

(%) 

TBARS 

(nmoles/g FW) 

15 Days (Phase I)   

Control 29.70±1.25 5.60±0.21  

S4 30.62±0.85 6.20±0.43 

S8 30.47±0.77 5.82±0.28 

   

aF 1.53 ns 0.93n.s 

30 Days (Phase I)   

Control 34.43±1.20a 5.97±0.14a 

S4 36.27±0.54a 5.95±0.20a 

S8 39.73±0.97b 7.51±0.55b 

   

aF 8.07***  6.55* 

Revovery period (Phase II)   

Control 28.03±1.70a 7.14±0.45a 

S4 37.10±1.22a 7.67±0.49a 

S8 41.54±2.20a 8.65±0.15b 

   

aF 15.39*** 6.63* 
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Table 8.- Effect of NaCl on the activity of some antioxidant enzymes in leaves from 

M. communis plants at the end of the salinity period (Phase I) and after the recovery 

period (Phase II).  

Data represent the mean ± SE from at least 6 plants. For more details, please see Table 1; nd: non 

detected  

 

 CAT APX MDHAR GR SOD 

 µmol/g FW nmol/gFW nmol/g FW nmol/g FW U/g FW 

15 Days (Phase I)      

Control 462,2±6,8b 90,0±2,7b 180,0±18,7a 28,4±1,7a 35,5±1,2b 

S4 363,6±10,5a 88,0±4,3b 140,1±5,7a 43,8±3,1c 36,4±4,6b 

S8 370,3±16,8a 76,1±1,9a 134,0±13,1a 36,2±2,5b 26,1±1,6a 

      

aF 31,49*** 8,97* 2,96n.s 10,78** 3,88* 

30 Days (Phase I)      

Control 306,4±10,5a 29,8±2,4b 171,2±22,0a 20,7±3,4a 25,5±1,8b 

S4 628,6±14,5b 11,4±0,7a 186,9±9,3a 29,0±6,1a 25,3±2,2b 

S8 321,2±24,5a 11,3±1,4a 239,9±6,2b 31,9±3,6a 17,9±1,0a 

      

aF 81,01*** 36,24*** 7,22** 1,65n.s 6,53* 

Revovery period 
(Phase II) 

     

Control 402,2±91,2a 12,9±0,9c 8,6±0,5b nd 12,6±2,9a 

S4 1247,5±63,7c 8,4±0,6b 7,5±0,6a nd 10,5±0,4a 

S8 654,1±54,1b 5,9±0,6a 7,8±0,8ab nd 13,8±0,8a 

      

aF 36,96*** 23,28*** 3,18*  1,04n.s 
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Legend to Figures 

Fig 1.- Effect of increased concentrations of NaCl on the uptake rates of Na+ (A-D), Cl- 

(E-H), K+ (I-L) and Ca2+ (M-P) ions in M. communis plants at the end of the salinity 

period (Phase I) and after the recovery period (Phase II). Data represent the mean ± SE 

from 6 plants. Different letters in the same experimental period indicate significant 

differences according to Duncan’s Multiple Range Test (p ≤ 0.05) in C, S4 and S8 

treatments. Different letters in the same experimental period indicate significant 

differences according to t test (p ≤ 0.05) in C and S12 treatments. 

Fig 2.- Distribution of Na+ (A-D), Cl- (E-H), K+ (I-L) and Ca2+ (M-P) in different organs 

of M. communis plants at the end of the salinity period (Phase I) and after the recovery 

period (Phase II).  For more details, please see legend to Figure 1. 

Fig 3.-Light response curves of the relative photosynthetic ETR in leaf of M. communis 

plants at the end of the salinity period (A, Phase I) and after the recovery period (B, Phase 

II). (C) ETR/PN ratio at the end of salinity period (Phase I) and after the recovery period 

(Phase II). The maximum ETR values in each period were used to obtain the ETR/PN 

ratios. 

Fig 4.- Scheme showing the main adaptative responses implemented by M. communis 

plants after 30 days of NaCl exposure. Myrtle plants avoid ionic stress in leaves, 

maintaining low Na+ and Cl- contents and unchanged K+ and Ca2+ levels. Myrtle plants 

protect the photosynthetic process by maintaining chlorophyll levels (S4 and S8 plants), 

but also by increasing (S8) or maintaining (S4) the non-photochemical quenching 

parameters. In addition, S8 plants displayed a best stomatal control and experimented 

anatomical leaf changes aimed to facilitate the CO2 diffusion in a situation of reduced 

stomatal aperture. S4 plants increased CAT activity, suggesting increased 

photorespiratory activity. Myrtle plants decreased the root DW/ shoot DW ratio by 
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increasing root biomass, a mechanism to favour higher water and nutrient uptake as well 

as toxic ions accumulation (Marchner 1995). Finally, roots from myrtle plants showed 

increased Ca2+ rate uptake and unchanged K+ rate uptake, allowing the maintenance of 

Ca2+ and K+ contents in roots. 
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Fig S1.- Chlorophyll fluorescence parameters in leaves of M. communis at 15 and 30 days 

of NaCl stress (Phase I) and after the recovery period (Phase II). Images of the coefficient 

of photochemical quenching (qP), the effective PSII quantum yield [Y(II)] and the 

maximal PSII quantum yield (Fv/Fm), the non-photochemical quenching coefficient 

(qN), non-photochemical quenching (NPQ) and the quantum yield of regulated energy 

dissipation [Y(NPQ)]. 

Fig S2.- Light response curve of the relative photosynthetic ETR in leaf of M. communis 

plants exposed to low light (LL) or to high light (HL). 

Fig S3.- Light microscopy images showing the effect of NaCl on the percentage of area 

occupied by palisade parenchyma (PP), spongy parenchyma (SP), intercellular spaces 

(IS) and idioblaste (ID) in leaves from M. communis plants at the end of  the salinity 

period (Phase I; A, control; B, S4; C, S8). 

Fig S4.- Effect of NaCl (12 dS m-1) on ROS accumulation in leaves from M. communis 

plants at the end of the salinity period. Hydrogen peroxide was detected by staining with 

3,3-diaminobenzidine (DAB). A, control leaves; B, S4 leaves; C, S8 leaves; D, detail 

from C showing DAB-staining zones.  

 


