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ABSTRACT

The effects of cosmic rays on the carriers of the interstellar 3.4 μm absorption band have been investigated in the
laboratory. This band is attributed to stretching vibrations of CH3 and CH2 in carbonaceous dust. It is widely
observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH3 and CH2 by cosmic
rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations,
samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the
band intensity versus electron fluence reflects a-C:H dehydrogenation, which is well described by a model
assuming that H2 molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse
out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance
with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron
bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays
on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for
the 3.4 μm band carriers lie in the 108 yr range and cannot account for the disappearance of this band in dense
clouds, which have characteristic lifetimes of 3×107 yr. The results invite a more detailed investigation of the
mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.

Key words: astrochemistry – dust, extinction – infrared: ISM – methods: laboratory: molecular – techniques:
spectroscopic

1. INTRODUCTION

The 3.4 μm IR absorption band, which is widely observed in
the diffuse interstellar medium (DIM) and has also been found
in extragalactic sources (Wickramasinghe & Allen 1980; Duley
& Williams 1983; Adamson et al. 1990; Sandford et al. 1991;
Pendleton et al. 1994; Whittet et al. 1997; Imanishi 2000; Chiar
et al. 2002; Mason et al. 2004; Kondo et al. 2012, and
references in these articles), is associated with the presence of
carbonaceous interstellar (IS) dust. The band is mostly assigned
to CH stretching vibrations of CH2 and CH3 aliphatic groups
and is related to weaker absorptions at 6.8 and 7.7 μm
corresponding to bending motions of the same functional
groups. Estimates about the amount of elemental carbon locked
up in interstellar dust range from 5% to 30% (Sandford
et al. 1991; Duley 1994; Duley et al. 1998; Furton et al. 1999).
This imprecise range reflects the uncertainty about the nature of
the likely carbon carriers and, consequently, about the band
strengths of the IR absorption. In dense, molecular clouds, the
3.4 μm band is not observed.

Candidates for the carriers of the 3.4 μm band have been
fabricated in laboratories using various procedures, including
laser ablation or pyrolysis of carbon-containing precursors
(Mennella et al. 1999; Schnaiter et al. 1999; Duley et al. 2005;
Jäger et al. 2008), plasma deposition (Furton et al. 1999;
Kovacevic et al. 2005; Godard et al. 2011; Maté et al. 2014),
combustion (Pino et al. 2008), or low-temperature photolysis of
hydrocarbons (Dartois et al. 2004, 2005). A thorough
discussion on the suitability of the various types of laboratory
candidates can be found in Pendleton & Allamandolla (2002).
All the laboratory analogs of IS carbon dust have disordered
structures with variable mixtures of aromatic and aliphatic
groups. Among them, hydrogenated amorphous carbon

(abbreviated a-C:H or HAC) leads to the best agreement with
the observations.
The formation and destruction of the aliphatic structures

responsible for the interstellar 3.4 μm band have been
attributed to the interaction of carbonaceous solids, generated
in the shells of evolved stars, with hydrogen atoms, UV
photons, and cosmic rays (CRs; Chiar et al. 2013; Jones et al.
2013). UV photons and CRs lead to dehydrogenation and
graphitization of dust analogs (Mennella et al. 2001, 2003;
Gadallah et al. 2012; Godard et al. 2011; Alata et al. 2014),
whereas interaction with H atoms has been found to reconstruct
aliphatic structures (Mennella et al. 2002). In the DIM, the
effects of the intense UV field prevail over those of CRs, but in
denser regions, shrouded from UV radiation, CRs can become
relevant.
The effects of CRs on carbonaceous dust analogs have been

investigated by Mennella et al. (2003) and by Godard et al.
(2011). In the first of these studies, 30 keV He+ ions were used
to simulate CRs, and analogs of IS carbonaceous dust were
prepared by establishing an arc discharge between graphite
electrodes in a hydrogen atmosphere, and by hydrogenation of
laser-ablated carbon grains with a flow of H atoms from a
microwave discharge. The authors used the approximation of
monoenergetic protons for the estimation of CR effects from
their He+ data. In the investigation of Godard et al. (2011),
samples of soot and of plasma-deposited a-C:H were taken as
dust analogs and bombarded with a variety of high-energy ions
ranging from protons to Ni9+. The authors considered CR ion
distributions from the literature and used a model of H-atom
recombination within the irradiated samples for the treatment of
their data. The estimated CR destruction rates of the 3.4 μm
band derived by the two groups differ by an order of
magnitude. The difference is relevant since with the destruction
rate of Mennella et al. (2003), CRs might play some role in the
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destruction of the aliphatic carriers of the 3.4 μm band in the
interior of dense clouds, whereas with that of Godard et al.
(2011) the destruction would be much slower and would be
irrelevant over the entire lifetime of the clouds.

In recent works, the possibility of using high-energy (keV)
electrons to mimic the effects of CRs on matter has been
emphasized (Kaiser et al. 2013; Mason et al. 2014). Electron
irradiation cannot certainly substitute the more rigorous
experiments on bombardment with specific ions, but can
provide valuable data on the global effect of CRs. The rationale
behind this assertion lies in the fact that the chemical effects of
CRs are not directly due to the impinging high-energy particles,
but to secondary electrons and bremsstrahlung photons of
much lower energy (a few eV to tens of eV) that are much more
efficient for bond breaking. To a first approximation, the effects
of high-energy particle processing depend on the energy dose
taken by the sample rather than on the specific processing
agent. In this respect, electrons in the keV range turn out to be
very useful since their energy transfer per unit sample length is
similar to that of MeV protons (Kaiser et al. 2013), which are
often used for laboratory simulations of the effect of CRs. The
adequacy of electron bombardment for the simulation of CR
effects was corroborated in a recent investigation by our group
(Maté et al. 2015), where glycine lifetimes, estimated for
various astronomical environments from electron irradiation
data, were found to be in good agreement with those from the
ion irradiation experiments of Gerakines et al. (2012) carried
out with 0.8 MeV protons.

In a previous work by our group we observed the effects of
2 keV electrons on a-C:H samples (Maté et al. 2014). However,
no quantitative information on a-C:H destruction by electrons
could be derived from these experiments carried out with too
high electron fluxes and thick deposits. In the present study,
which supersedes our older measurements, we address the
effects of 5 keV electrons on the 3.4 μm band of a-C:H deposits
generated in cold plasmas. Changes in the band profile and the
decay of the total band intensity are recorded as a function of
electron fluence. Total destruction cross sections are derived
from our measurements at 300 and at 85 K. The results are
compared with the previous investigations of Mennella et al.
(2003) and Godard et al. (2011) on the bombardment of dust
analogs by high-energy ions, and implications for the
destruction rate of the carriers of the 3.4 μm band by CRs in
the interstellar medium are discussed.

2. EXPERIMENTAL

Deposits of a-C:H were generated on IR transparent Si
substrates in an inductively coupled radiofrequency (RF)
plasma (Maté et al. 2014). Mixtures of CH4 and He were used
as plasma precursors. The Si substrates with the a-C:H deposits
were then taken to the sample compartment of a Fourier
transform infrared (FTIR) spectrometer, where spectra of the
3.4 μm band were recorded for control and thickness measure-
ment. For a given set of deposition conditions, the band shape
and intensity were very repetitive and the integrated absorbance
was proportional to the deposition time. IR interference fringes
could be used to estimate the width of samples thicker than
≈800 nm. For thinner samples, the width was extrapolated
using the deposition time. An uncertainty of±30 nm is
estimated in the width values. For the processing experiments
of this work, four a-C:H samples, S1 (520 nm), S2 (540 nm),
S3 (490 nm), and S4 (420 nm), were used. This thickness range

was chosen to maximize the spectral intensities while
guaranteeing electron irradiation of the whole sample (see
below). For the generation of these deposits, flows of methane
and He of 5 and 10 sccm, respectively, were allowed into the
reactor. The total pressure before plasma ignition was 0.32
mbar, and the discharge power was 40W. The deposition time
was ≈15 minutes. In the time between experiments, the
deposits were kept in a sealed box under inert gas pressure to
minimize oxidation.
The a-C:H deposits were then transferred to a high-vacuum

chamber for processing (see Maté et al. 2014 for details of
the setup). The Si substrates with the deposits were placed in
an appropriate Cu holder in contact with a liquid nitrogen
Dewar, mounted in a rotatable flange. During processing, the
substrates were made to face alternatively the IR beam from an
FTIR spectrometer or the electron beam from an electron
gun inside the chamber. The samples were irradiated with
a 7.9×1012 electron cm−2 s−1 homogeneous flux of 5 keV
electrons at normal incidence. At given intervals, electron
irradiation was interrupted and the sample was rotated to
record IR transmission spectra at normal incidence. Typical
irradiation times of 350minutes (electron fluences 1.7×
1017 electrons cm−2) were used. The experiments were carried
out for sample temperatures of 85 (S1 and S3) and 300 K (S2
and S4).
The penetration depth of the 5 keV electrons in the a-C:H

samples was estimated by means of Monte Carlo simulations
using the CASINO (monte CArlo SImulations of electroN
trajectories in sOlids) code (Drouin et al. 2007; Drouin 2011).
Although the composition (H/C ratio) and densities of the a-C:
H deposits are not known with precision, we have assumed a
density of 1.2 g cm−3 and an H/C ratio of 1 in analogy with
Godard et al. (2011), who used also RF discharges of methane
for the generation of their samples. These values are also
consistent with the results of other authors for similar methane
plasmas (Schwarz-Selinger et al. 1999). A comparison with
literature work on plasma-generated a-C:H samples (see, e.g.,
Angus & Jensen 1988; Robertson 1996; Godard & Dartois
2010, and references cited therein) suggests that the fraction of
sp2 C atoms in our deposits, defined as sp2/(sp2 + sp3), should
be in the ≈0.20–0.40 range. The penetration depth calculated
with CASINO is ≈530 nm. Variations in the estimated
penetration depths are small for densities in the 1–1.5 g cm−3

range and for C/H ratios between 0.5 and 1.

3. RESULTS AND DISCUSSION

The upper panels of Figure 1 show the 3.4 μm band of the S1
and S2 deposits before irradiation. Three peaks stand out in the
characteristic band contour. A conventional decomposition of
the band into the stretching modes of CH, CH2, and CH3

groups using adjustable Gaussian functions (see, e.g., Sandford
et al. 1991; Dartois et al. 2004; Duley et al. 2005; Dartois et al.
2007; Chiar et al. 2013) is also shown. According to this
decomposition, the two higher peaks of the band, in order of
decreasing frequency, correspond largely to antisymmetric CH
stretching vibrations of CH3 and CH2, respectively, and the
third peak contains the unresolved contributions of the
corresponding symmetric modes. Aromatic or olefinic CH
stretching is assumed to be responsible for the wing at higher
frequencies. This non-aliphatic component makes up about
10% of the band intensity. Some authors suggest also small
contributions from a Fermi resonance with bending modes
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(Dartois et al. 2007) or from CH modes of tertiary carbons
(Allamandola et al. 1992), but we have not considered them
here. The peak positions, widths, and areas of the Gaussians in
the band profile decomposition of the four a-C:H samples
studied are listed in Table 1.

The lower panels of Figure 1 display the evolution of the
band intensity and profile of the a-C:H deposit under electron
bombardment at 85 and 300 K. At the end of the experiments,
after 350 minutes of irradiation by 5 keV electrons, the overall
band intensity decreases markedly, and the band contour is
appreciably modified. In the unprocessed a-C:H samples the
maximum of the band corresponds to the high-frequency peak,
but this peak decreases faster than the other two, and at the end
of the processing experiments the middle peak dominates the
band profile.

Assuming the band decomposition shown in the upper
panels of Figure 1 and in Table 1, one can take the time

evolution of the areas under the Gaussians of the two highest
peaks, which are assigned to the asymmetric stretch vibrations
of CH3 and CH2 groups, respectively, as a measure of the
relative stability of these groups against electron bombardment.
This evolution is shown in Figure 2. The corresponding

symmetric stretch contributions are not adequate to this aim
since they are blended in the third peak and the decomposition
is much less reliable and has not been used. As can be seen, the
CH3 curve decreases faster than that of CH2, indicating that
methyl groups in the initial a-C:H structure are more easily
destroyed by electron bombardment than methylene groups.
This behavior is in accordance with intuitive expectations,
since statistically the probability of CH bond breaking is higher
in methyl, with three CH bonds, than in methylene, with just
two. Moreover, breaking of one of the CH3 bonds will often
lead to the formation of a CH2 group. It should be stressed that
the vibrational mode assignment reflected in Figure 1 and

Figure 1. Upper panels: decomposition of the 3.4 μm band of samples S1 and S2 into a sum of five Gaussians. Black trace: observed spectrum. Red trace: sum of
proposed five components. Lower panels: evolution of the band, as a function of time, under 5 keV electron irradiation at 85 and 300 K.

Table 1
Band Decomposition of the Unprocessed a-C:H Deposits for the Four Samples (S1–S4) Used

S1 (520 nm) S2 (540 nm) S3 (490 nm) S4 (420 nm)

Stretch Mode P cm−1 W cm−1 A cm−1 P cm−1 W cm−1 A cm−1 P cm−1 W cm−1 A cm−1 P cm−1 W cm−1 A cm−1

CH arom 3010 60 0.51 3008 60 0.55 3010 60 0.60 3010 60 0.50
CH3 asym 2959 30 1.83 2959 30 1.81 2960 30 1.85 2959 30 1.75
CH2 asym 2921 30 1.63 2922 30 1.70 2922 30 1.57 2922 30 1.57
CH3 sym 2876 30 0.86 2876 30 0.94 2875 30 0.75 2877 30 0.83
CH2 sym 2851 30 0.35 2851 30 0.33 2845 30 0.45 2853 30 0.34

Note. P, W, and A indicate the peak position, the width of the fitted Gaussian, and the integrated area of each band, respectively.
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Table 2 is only an approximation and that a significant degree
of mode mixing is expected for the complex structure of a-C:H.
From now on, we will consider just the evolution of the
integrated band intensity and will not elaborate on the specific
functional group of the CH bonds.

Figure 3 shows the decrease in the relative intensity of the
3.4 μm band as a function of electron fluence for the four a-C:H
samples investigated. The intensity drop is comparatively steep
at the beginning and becomes more gradual for larger
irradiation fluences. A similar trend was observed in the ion
irradiation experiments of Mennella et al. (2003) and Godard
et al. (2011) and was attributed to dehydrogenation. A model to
account for the hydrogen release induced by ion irradiation of
a-C:H was advanced by Adel et al. (1989) and Marée et al.
(1996). The model assumes that hydrogen leaves a-C:H in
molecular form. When a CH bond is broken, the hydrogen
atom diffuses within the solid, where it can recombine with
another H atom to produce H2, or be trapped by a reactive site
in the bulk material. Once formed, the H2 molecules are stable
and diffuse out of the solid. Under continued irradiation, the H-
atom density drops to a point where recombination stops, when

H atoms from broken CH bonds react at a solid active site
before finding another H atom.
In the formulation of Adel et al. (1989) the evolution of H-

atom density with ion fluence can be expressed as

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥s= + - -
-
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d

1
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where nH is the H-atom density, F the ion fluence, nH0 the
initial H-atom density, nHf the asymptotic H-atom density for
infinite fluence, and sd

r an effective dehydrogenation cross
section for the recombination model. Assuming that the
absorption intensity of the 3.4 μm band is proportional to the
hydrogen-atom density (Godard et al. 2011), Equation (1) can
be rewritten as
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where I(F ) is the integrated band intensity for a fluence F, I0
the initial band intensity, and If the asymptotic final intensity.
Equation (2) provides a good description of the experimental
results of Godard et al. (2011) on the irradiation of a-C:H and
soot samples with different high-energy ions. From a fit of this
equation to their measurements, the authors derived destruction
cross sections for the band carriers (CH bonds).
In accordance with previous publications (Kaiser et al. 2013;

Mason et al. 2014; Maté et al. 2015), we have assumed that the
effects of high-energy electrons are comparable to those of
high-energy ions if the sample width does not exceed
appreciably the electron penetration depth, and we have also
adopted the hydrogen-atom recombination model (Adel
et al. 1989; Marée et al. 1996) to evaluate our measurements
and have adjusted the experimental decay data to Equation (2).
In our experiments, the intensity decrease is somewhat more
pronounced for the samples irradiated at 85 K than for those
irradiated at 300 K. We have fitted the joint irradiation data
from S1 and S3 for 85 K and the joint irradiation data from S2

Figure 2. Evolution of the relative intensities of the CH3 and CH2 asymmetric
stretching peaks with electron fluence. Upper panel: S1 sample, irradiated at 85
K; lower panel: S2 sample, irradiated at 300 K.

Table 2
Parameters from the H-atom Recombination Model (Equation (2)) for the

Electron Irradiation Experiments and Recombination Volume

Sample Temperature (K) sd
r(×1017) cm2 If/I0 V (Å3)

85 1.0±0.2 0.21±0.02 85
300 1.2±0.2 0.28±0.02 64

Figure 3. Decay of the 3.4 μm band intensity under 5 keV electron
bombardment. Black filled symbols: samples processed at 85 K (squares: S1
[520 nm]; circles: S3 [490 nm]). Red open symbols: samples processed at
300 K (squares: S2 [540 nm]; circles: S4 [420 nm]). Solid curves: fits to the
data with the recombination model of Equation (2). Dashed curves: exponential
fits to the data (Equation (3)).
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and S4 for 300 K. The resulting curves, which are displayed in
Figure 3, provide a reasonably good description of the band
decay over the whole fluence range investigated. The
destruction cross sections, sd

r, and the asymptotic relative
band intensities (I0/If) are given in Table 2.

The differences between the parameters for two temperatures
are not large and, in the case of the cross sections, lie within the
mutual uncertainty. In the spirit of the recombination model,
the higher asymptotic band intensity obtained for 300 K would
mean that the balance between H2 formation and trapping of H
atoms by a reactive site of the solid shifts toward the latter for
the higher temperature. In any case, the temperature depend-
ence is weak.

The asymptotic H-atom density, nHf, in Equation (1) defines
a characteristic recombination volume (V=1/nHf) within the
solid. When the density drops to nHf, free H atoms released by
electron irradiation are too far apart and get trapped by the solid
before recombining to form H2. Although the precise density
and H proportion of the deposited a-C:H samples are not
accurately known, we can make reasonable assumptions to
estimate V values. As indicated above, we have taken a density
of 1.2 g cm−3 and a hydrogen-atom ratio H/C=1 for our
plasma-deposited a-C:H, in analogy with Godard et al. (2011).
The corresponding H-atom density is nH0=5.6×1022 cm−3.
The destruction cross sections from Table 2 are lower than
those obtained by Godard et al. (2011) for a-C:H bombardment
with ions using the same fit model. In the case of 10MeV
protons the difference is less than a factor of two, but it is
typically more than an order of magnitude larger for heavier
and multicharged ions. Recombination volumes of tens of Å3,
like those derived from our fits, are also typical for the ion
irradiation experiments.

The evolution of the 3.4 μm band observed in the irradiation
experiments of Mennella et al. (2003) with 30 keV He+ ions
was satisfactorily fitted by an exponential decay, with a
phenomenological destruction cross section, plus an added
constant accounting for the asymptotic H concentration. In
terms of the band intensity, this behavior can be expressed as

s= - +
I F

I
a F

I

I
exp , 3e f

0
d

0

( ) ( ) ( )

where sd
e is a destruction cross section for the exponential

decay, α is a fitting constant, and the meaning of the rest of the
symbols is the same as in Equations (1) and (2). In this
equation, the reformation of CH bonds is implicitly assumed by
the existence of a nonzero asymptotic value for If, but, in
contrast to the recombination model, no hypothesis about the
specific mechanism of dehydrogenation is considered. The
exponential decay of Equation (3) leads to similar asymptotic
band intensities, but to larger cross sections than the
recombination model (see Table 3); it provides also a worse
global fit to the measurements (see Figure 3).

Godard et al. (2011) verified also that an exponential fit
(Equation (3)) to their ion irradiation data led to a worse
agreement with the measurements and to higher values of the
fitted cross sections than those obtained with the recombination
model. It should be noted at this point that both the H-atom
recombination model and even more so the phenomenological
exponential decay provide only simple approximate descrip-
tions of the actual processes. A more realistic view should take
into account that a simple destruction cross section might not
be enough to account for energetic processing leading to a
gradual transformation of the material and that stable chemical
species other than H2, such as CH4 or other hydrocarbons,
might also evolve and contribute to the decay of the 3.4 μm
band (Alata et al. 2014, 2015; Duley et al. 2015; Jones &
Habart 2015).
At the beginning of the irradiation process (electron fluences

lower than ≈1016 cm−2), the band decay for all data is
reasonably well accounted for by a simple exponential
function, tending asymptotically to zero:

s= -
I F

I
Fexp . 4e

0
d

( ) ( ) ( )

The fit of Equation (4) to our data is displayed in Figure 4.
A sd

e value of (3.6 ± 0.1)×10−17 cm−2 can account
approximately for the low-fluency decay at the two tempera-
tures. It provides an approximate upper limit to the destruction
cross section of the a-C:H deposits by 5 keV electrons.
To perform a direct comparison of the effects of our 5 keV

electron bombardment on a-C:H with those of high-energy ion
irradiation of Godard et al. (2011), we have represented in
Figure 5 the evolution of the 3.4 μm band as a function of the
energy deposited per unit mass sample, ΔE(F ), which can be
calculated as

rD = ´ ´ -E F FLET , 5HAC
1( ) ( )

where LET is the linear energy transfer of the bombarding
electrons, F the electron fluence, and ρa-C:H the a-C:H density.
As indicated in Section 2, a penetration depth of ≈530 nm is
obtained with the CASINO Monte Carlo simulation (Drouin
et al. 2007; Drouin 2011) for the assumed values of a-C:H

Table 3
Parameters of the Exponential Fit (Equation (3))

for the Electron Irradiation Experiments

Sample Temperature (K) sd
e (×1017) cm2 If/I0 V (Å3)

85 3.4±0.2 0.25±0.02 71
300 3.0±0.2 0.31±0.02 57

Figure 4. Fits of the 3.4 μm band decay with an exponential function
(Equation (4)) for electron fluences lower than 1×1016 cm−2. Symbols are the
same as in Figure 3. Solid line: fit using Equation (4).
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density (ρa-C:H=1.2 g cm−3) and hydrogen proportion
(H/C= 1), which corresponds to an LET of 9.4 eV nm−1.
We have taken this value of the LET in all cases, since
CASINO simulations further show that the LET hardly varies
over the range of thickness values of our samples
(420–540 nm).

For clarity of display, only a few ions are represented in
the figure to delimit the range of destruction efficiencies; the
reader is referred to Figure 3 of Godard et al. (2011) for the
original data on the whole ion set. The efficiency of 5 keV
electrons for the destruction of the carriers of the 3.4 μm band
is found to be somewhat higher than that of protons,
comparable to that of carbon ions and lower than that of
heavy ions. The energy doses sampled in the present electron
bombardment experiments are appreciably larger than those of
the previous ion bombardment measurements. It is reassuring
that even for this extended range, the simple H-atom
recombination model can account reasonably well for the
observed behavior (see Figure 3). The validity of this
approximate method, which uses a single destruction cross
section irrespective of the possible structural modifications of
the bombarded material, is strengthened by results of the ion
irradiation experiments of Godard et al. (2011) on soot samples
with a higher density (1.8 g cm−3) and a much smaller
hydrogen content (H/C=0.01) than a-C:H. The latter results
yielded comparable CH destruction efficiencies showing that
the destruction cross section of CH bonds for a given energetic
ion is only weakly dependent on the carbonaceous material.

4. ASTROPHYSICAL IMPLICATIONS

We adopt the monoenergetic proton approximation (Strazzulla
& Johnson 1991; Moore et al. 2001, and references therein)
to estimate the destruction rate of CH bonds in diffuse clouds
from our electron bombardment measurements. This approx-
imation was also applied by Mennella et al. (2003) for the
evaluation of their measurements on a-C:H irradiation with
30 keV He+ ions, and here we follow closely their formulation.
Within this approximation, the CR destruction rate, Rd,CR, is
expressed as

s f»R 1 MeV 1 MeV , 6d,CR d,p p( ) ( ) ( )

where σd,p (1MeV) is the destruction cross section by 1MeV
protons and fp is an effective quantity that represents the flux
of 1MeV protons that would lead to the same ionization as the
whole CR distribution. fp(1MeV) can be estimated from
models giving the CR ionization rate, ζCR, and the ionization
cross section for 1 MeV protons in different environments. In
analogy with Mennella et al. (2003), we take here a value
fp(1MeV) of 1.8 and 1 cm−2 s−1 for diffuse and dense clouds,
respectively, which are based on a ζCR value of 6×10−17 s−1

and on ionization estimates by Spitzer & Tomashko (1968) and
Cravens & Dalgarno (1978). For the evaluation of σd,p (1MeV)
we use our σd values for 5 keV electrons and assume, also in
analogy with Mennella et al. (2003), that the destruction cross
section is directly proportional to the stopping cross section, S,
of a-C:H for a given particle. We can now write

s s=
S

S
1 MeV

1 MeV

5 keV
5 keV . 7

e
d,p

p
d,e( )

( )
( )

( ) ( )

The stopping cross section of a-C:H for our 5 keV electrons is
Se (5 keV)=LET×ρa-C:H

−1 =7.9×10−2 MeVmg−1 cm2 and
that for 1 MeV protons is Sp (1MeV)=2.62×10−1 MeV
mg−1 cm2 as calculated with the Stopping and Range of Ions in
Matter (SRIM) code (Ziegler et al. 2010) for our assumed a-C:
H composition (C/H=1) . Mennella et al. (2003) used a very
similar value (2.60×10−1 MeVmg−1 cm2) for the evaluation
of their data. Substituting these stopping cross sections in
Equation (7) and using the σd,e values from our experiments,
we obtain the CR dissociation rates listed in Table 4.
The CR destruction rates derived from our measurements are

compared in Table 5 with those from the ion irradiation
experiments of Mennella et al. (2003) and Godard et al. (2011).
The value of Mennella et al. (2003) was derived with the same
monoenenrgetic proton approximation used in the present
work. Godard et al. (2011) took advantage of their measure-
ments with multiple ions and used a more elaborated method
considering explicitly the distribution of elements in CRs. They
assumed also that the dependence of the destruction cross
section, σd, on the stopping cross section, S, could take the
form σd=K Sα, with K a proportionality constant and α
between 1 and 1.4, and considered different models for the CR

Figure 5. Comparison of the effects of ion (Godard et al. 2011) and electron
(present experiments) irradiation on a-C:H samples.

Table 4
Cosmic-ray CH Bond Destruction Rates, Rd,CR, in the Diffuse ISM Estimated

from Our Measurements Using the 1 MeV Monoenergetic Proton
Approximation (see the text and Mennella et al. 2003)

C Dust Temper-
ature (K)

Rd CR (s−1) Recombination
Model

Rd CR (s−1) Exponen-
tial Fit

85 7.0×10−17 2.0×10−16

300 5.9×10−17 1.8×10−16

Table 5
Comparison of Cosmic-ray CH Destruction Rates in the Diffuse ISM Estimated

from Electron and Ion Bombardment Data

Source Destruction Rate, Rd CR(s
−1)

Present work (average of 85
and 300 K)

6.6×10−17 (rec. model); 1.9×10−16

(exp. fit)
Mennella et al. (2003) 1.7×10−15

Godard et al. (2011) 3.0×10−17
–3.3×10−16

6

The Astrophysical Journal, 831:51 (9pp), 2016 November 1 Maté et al.



ionization rate ζCR. In Table 5 we indicate also the interval of
CH destruction rate values reported by these authors.

As can be seen, the destruction rates from the present work
are comparable to those of Godard et al. (2011) and one order
of magnitude lower than that of Mennella et al. (2003). The
good agreement with the thorough work of Godard et al. (2011)
is reassuring and confirms once more the adequacy of using
high-energy electrons for the investigation of CR effects on
interstellar particles, at least to a first approximation. Electron
bombardment experiments also have limitations. They do not
inform on the specific role of heavy CR elements like Fe ions,
which might play some role in the long-term destruction of CH
bonds, and they do not allow the simulation of the effects of the
element distribution in CRs (Godard et al. 2011). On the other
hand, electron bombardment measurements are experimentally
simple and offer the possibility of depositing higher-energy
doses in the carbonaceous dust analogs, which is tantamount to
exploring the effects of CRs over a longer time.

The reasons for the discrepancy of the present results and
those of Godard et al. (2011) with the value of Mennella et al.
(2003) are not clear. Different CR models were used by Godard
et al. (2011) for the derivation of their destruction rates, but in
the present work we have applied exactly the same approx-
imation as Mennella et al. (2003) for the CR flow. A significant
difference between the work of Mennella et al. (2003) and the
other two lies in the procedure of generation of the dust
analogs. Plasma-generated a-C:H deposits were taken as
irradiation targets in this work and also in the experiments of
Godard et al. (2011), whereas in the measurements of Mennella
et al. (2003) an arch discharge or laser ablation techniques were
applied for the production of the analogs. However, this
difference in the nature of the dust analogs does not seem likely
to justify the large discrepancy in the destruction rates, since, as
mentioned above, the comparison of ion irradiation experi-
ments on very different soot and a-C:H samples (Godard
et al. 2011) points just to a weak dependence of the CH bond
destruction on the specific carbonaceous material.

Characteristic times for the CR destruction of CH bonds can
be roughly estimated as the inverse of the destruction rates, τd,
CR=Rd,CR

−1 . In Table 6 these characteristic times are compared
with the times for UV bond destruction or to bond formation
through interaction with H atoms in typical diffuse and dense
interstellar regions.

The formation of CH bonds, and specifically of aliphatic
structures, which would be mostly responsible for the presence
of the 3.4 μm band, is assumed to take place in the DIM
through the interaction of H atoms with hydrogen-poor carbon
grains formed in the envelopes of evolved stars. In this
environment the rates of bond formation and of destruction by
UV photons are relatively high, but the balance is shifted
toward hydrogenation. This view is consistent with the
characteristic times for CH formation and destruction derived
from the experiments of Mennella et al. (2001, 2002), shown in
Table 6. In this environment, the intense UV field is dominant
and CRs would play a negligible role in the overall destruction
of CH bonds, in spite of the fact that their destruction cross
sections are orders of magnitude larger than those of UV
photons.

The disappearance of the 3.4 μm band in dense clouds is not
so well understood. The interior of dense clouds is shielded
from the galactic UV field, and although the UV flux drops
sharply, the actual penetration of these photons into the clouds

is not known with precision, since it depends strongly on grain
properties (Roberge et al. 1991). The proportion of H atoms in
the gas phase drops also rapidly with growing extinction (AV)
as most of them recombine to form H2 molecules (see, e.g.,
Le Petit et al. 2006). Experimental evidence also indicates that
ice mantles are formed on grains beyond AV=3 (Whittet
et al. 2001), and depending on their width, these mantles
protect, at least partially, the grain surface from hydrogenation
and from UV processing. With the decrease of the influence of
H atoms and UV photons, the role of CRs, whose flux does not
change much inside dense clouds, becomes more important.
Characteristic CR destruction times estimated from the
experiments of Mennella et al. (2003) are of the order of the
cloud lifetime (107 yr) and could in principle lead to an
appreciable destruction of CH bonds in hydrocarbon dust, but
the results of the present work, which corroborate the previous
values of Godard el al. (2011), indicate that the direct effects of
CRs on the carriers of the 3.4 μm should be negligible over the
whole lifetime of a typical molecular cloud. Alternative
mechanisms must be invoked to justify the observations.
CRs have an important indirect effect in dense clouds,

namely, the production of a secondary UV field through the
excitation of H2 fluorescent levels. The flux of secondary UV
photons could reach 104 cm−2 s−1 (Prasad & Tarafdar 1983), as
compared with the 8×107 cm−2 s−1 photon flux estimated for
the galactic UV field outside the clouds (Mathis et al. 1983).
The CH destruction time associated with this secondary UV
field would be of the order of 107 yr for unshielded grain
surfaces. This time is shorter by an order of magnitude than that
estimated in this work and also in the study of Godard et al.
(2011) for direct CH bond destruction by CRs. Nevertheless, as

Table 6
Characteristic Times for CH Bond Destruction and Formation as Compared

with the Dynamical Times of Diffuse Regions and Dense Clouds

Characteristic Time (yr)

Parameter
Diffuse Region
AV(mag) < 10−4

Dense Cloud
AV(mag) > 3

Dynamical time ≈108a 3×107 a

CH destruction by CRs
Present work (2–5) ×108 (3–9) ×108b

Godard et al. (2011) 108–109 108–109

Mennella et al. (2003) 2×107 3×107b

CH destruction by UV
photons

Mennella et al. (2001) 4×103 �107c

CH formation by H
atoms

Mennella et al. (2002) 2×103 L

Notes. Typical diffuse and dense clouds conditions are indicated by the given
extinction (AV) values. The times are calculated as the inverse of the
destruction rates, R−1

d , and formation rates, R−1
f , reported in the mentioned

references.
a From Jones et al. (1994) and references therein. The dynamical time provides
an estimate of the grain lifetime. In the diffuse medium this time is limited by
shock destruction and in dense clouds by cloud collapse.
b Estimates in dense clouds using the monoenergetic proton approximation and
assuming an effective (1 MeV) proton flux of 1 cm2 s−1 as compared with
1.8 cm2 s−1 in diffuse regions (Mennella et al. 2003).
c Based on the CR-induced UV field (104 photons cm−2 s−1) of Prasad &
Tarafdar (1983). The penetration of galactic UV photons is difficult to estimate,
but could still be significant at AV=3 (see the text).
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the grains become gradually covered with ice mantles (i.e., for
AV > 3), the photodestruction efficiency of the secondary UV
field should decrease sharply. It is thus the region of AV< 3,
where the disappearance of the 3.4 μm band would be more
likely. Somewhere in this region, CH bond breaking by UV
photons is expected to prevail over hydrogenation and lead to
the destruction of the 3.4 μm band carriers. Details of the
process are at present a matter of speculation. Estimates by
Chiar et al. (2013), which assume a significant penetration of
the galactic UV field into the cloud, suggest that even at
AV=3, galactic UV radiation would destroy the external
aliphatic layer responsible for the 3.4 μm band in about 106 yr,
before the growth of an ice mantle. A recent cosmic dust model
by Jones et al. (2013, 2014), with reduced H-atom incorpora-
tion rates, suggests that photodestruction could dominate over
hydrogenation down to AV=0.01, where H atoms still make a
significant proportion of the gas phase.

SUMMARY AND CONCLUSIONS

The effects of CRs on the carriers of the 3.4 μm absorption
band of carbonaceous dust have been investigated in the
laboratory. This band is largely attributed to CH stretching
vibrations of aliphatic CH3 and CH2 groups, with some
contribution of aromatic or olefinic CH at its high-frequency
wing. The a-C:H deposits generated in RF CH4 plasmas were
taken as dust analogs, and 5 keV electrons were used to mimic
CR bombardment. Electron bombardment was carried out for
sample temperatures of 85 and 300 K. From the decay of the
band intensity as a function of electron fluence, CH destruction
cross sections were derived. These cross sections, in conjunc-
tion with the monoenergetic ion approximation (Mennella et al.
2003), were used to evaluate destruction rates of CH bonds in
interstellar hydrocarbon dust by CRs. The main conclusions of
this work are the following:

1. Changes in the band profile during irradiation suggest
that methyl groups in the a-C:H structure are destroyed
more efficiently than methylene groups.

2. The decay of the 3.4 μm band as a function of electron
fluence is well accounted for by a simple H recombina-
tion model, which assumes that the main dehydrogena-
tion mechanism is the bulk formation of H2 molecules
with the H atoms liberated through CH bond breaking.
The validity of the model, which was verified for ion
irradiation by Godard et al. (2011), is extended here to
higher-energy doses.

3. The band intensity decay tends toward a slightly larger
asymptotic value at T=300 K than at T=85 K. This
fact suggests that the balance between H recombination
and H trapping at reactive solid sites is shifted toward the
latter at the higher temperature. The effect is, however,
small.

4. The good agreement between the CR destruction rates of
the present work and those from the detailed irradiation
experiments of Godard et al. (2011) involving multiple
ions corroborates the adequacy of electron irradiation as a
surrogate for CR interaction. The experimental simplicity
and flexibility of electron bombardment measurements as
compared with energetic ion irradiation allow an easy
deposition of higher-energy doses in the solid samples,
and thus the simulation of CR effects over a longer time.
The discrepancy with the previous results by Mennella

et al. (2003), which reported higher CH bond destruction
rates from their 30 keV He+ bombardment measure-
ments, could be partly due to the different dust
analogs used.

5. The CH bond destruction rates derived from the present
experiments indicate that the direct effects of CRs are
small and cannot account for the disappearance of the
3.4 μm band in dense clouds. The effect of the secondary
UV field, induced by CRs inside dust clouds, is expected
to be larger, but probably not enough to justify CH
destruction, especially for ice-covered dust grains. The
present results, in line with Godard et al. (2011), suggest
that the destruction of the CH bonds responsible for the
3.4 μm band takes place at the transition from diffuse to
molecular clouds. More work on the interaction of carbon
dust with H atoms and UV photons, as well as on the
modeling of the intermediate region between diffuse and
dense clouds, is needed to clarify this issue.
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