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We present an analog quantum simulator of spacetimes containing traversable wormholes. A suitable
spatial dependence in the external bias of a dc-SQUID array mimics the propagation of light in a 1D
wormhole background. The impedance of the array places severe limitations on the type of spacetime that
we are able to implement. However, we find that a wormhole throat radius in the submillimeter range is
achievable. We show how to modify this spacetime in order to allow the existence of closed timelike curves.
The quantum fluctuations of the phase associated to the finite array impedance might be seen as an analog
of Hawking’s chronology-protection mechanism.
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Quantum simulators [1] are becoming increasingly
popular as nonuniversal quantum computers with the
potential of proving the long-sought quantum supremacy
[2]. In addition to this most practical application, quantum
simulators have proven to be useful tools to explore the
frontiers of quantum physics, ranging from open problems
in well-established theories such as the quantum field
theory [3] to untested physics whose observability is hard
or dubious [4–8] or even probably impossible [9,10].
Wormholes or Einstein-Rosen bridges are compelling

mathematical objects appearing in some solutions of
Einstein’s general relativity equations. Since they provide
a bridge between distant regions of spacetime, they have
attracted a great deal of attention from a foundational
viewpoint as well as at a pedagogical level [11–15].
However, it seems that they do not appear naturally in
our Universe, and moreover there are reasons to expect that
even a hypothetical manufacture must be forbidden [16].
The stability of a wormhole relies on the use of exotic
material violating the weak energy condition—namely, the
existence of spacetime regions with negative energy density
for some observers—and wormhole spacetimes may con-
tain closed timelike curves (CTCs) [14] which are typically
deemed as incompatible with the physical principle of
causality. However, at least at the quantum level it is
possible to reconcile causality and CTCs [17]. Indeed,
CTCs would boost the capabilities of quantum computers
[18]—an observation that has motivated the interest of
quantum simulation of CTCs [19].
In this work, we introduce a quantum simulator of

traversable wormhole spacetimes by means of a super-
conducting circuit architecture consisting of an array of
dc-superconducting quantum interferometric devices
(SQUIDs). Superconducting setups have already proven
useful for the simulation of relativistic physics [20–23].
We show that the wide tunability of the SQUIDs can be
exploited to mimic the propagation of a microwave
electromagnetic field near a one-dimensional (1D)

wormhole, thus generating an effective wormhole space-
time for the quantum field. This is a remarkable difference
with previous proposals [24,25] to simulate wormholes in
metamaterials or in water, which are based on the classical
Maxwell equations—a classical simulator of a wormhole
for magnetostatic fields has been recently implemented in
the laboratory with a magnetic metamaterial [26]. We
consider a paradigmatic family of traversable wormholes
[15] as well as a modification of them which can contain
CTCs [14]. We see that the electromagnetic impedance of
the array places severe limitations on the simulated
spacetime parameters, by generating quantum fluctuations
of the superconducting phase in the surroundings of the
simulated wormhole throat. We try to minimize the region
of the array where the impedance is large, ideally to a
single point representing the throat which in turn estab-
lishes a limit on the size of the simulated throat radius.
These limitations coming from quantum phase fluctuations
can be seen as an analog of Hawking’s chronology-
protection mechanism [16], where quantum effects prevent
us frombuilding spacetime geometrieswhichmight collide
with the causality principle.
Let us start by introducing the family of spacetime

metrics considered in this work. A traversable wormhole
spacetime can be characterized by [15]

ds2 ¼ −c2e2ΦðrÞdt2 þ 1

1 − bðrÞ
r

dr2 þ r2ðdθ2 þ sin2θdϕ2Þ;

ð1Þ

where the redshift functionΦðrÞ and the shape function bðrÞ
are functions of the radius r only. There is a value b0 of r at
which bðr ¼ b0Þ ¼ r ¼ b0, which determines the position
of thewormhole’s throat. Then, the proper radial distance to
the throat is defined by [15] l ¼ � R

r
b0
dr0ð1 − bðr0Þ=r0Þ−1=2,

defining two different universes or regions within the same
universe for l > 0 (as r goes from∞ to b0) and l < 0 (as the
nonmonotonic r goes back from b0 to∞). Thus, as r → ∞
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we have two asymptotically flat spacetime regions l → �∞
connected by thewormhole throat at l ¼ 0 (r ¼ b0). [See the
embedding diagram in Fig. 1(a), which is obtained using
standard embedding techniques [15].]
In this work, we will consider for simplicity that

ΦðrÞ ¼ 0 (massless wormhole). The properties of the
wormhole will depend on the form of the shape function
bðrÞ. In particular, as shown in Ref. [15], the parameters of
this function can be adjusted in order to make traversability
possible and convenient. We will consider some particular
shape function later.
First, we will restrict ourselves to 1D spacetimes:

ds2 ¼ −c2dt2 þ 1

1 − bðrÞ
r

dr2: ð2Þ

In this way, we can exploit the invariance of the 1D Klein-
Gordon equation under conformal factors [27]. This means
that the dynamics of a 1D electromagnetic field in the
spacetime given by Eq. (2) is totally equivalent to the one in
the following spacetime:

ds2 ¼ −c2
�
1 −

bðrÞ
r

�
dt2 þ dr2; ð3Þ

since the line element in Eq. (2) differs from the one in
Eq. (3) by the conformal factor 1=ð1 − bðrÞ=rÞ only.
The spacetime given by the line element in Eq. (3) is a

spacetime in which the speed of propagation of the
electromagnetic field depends on the radius r according to

c2ðrÞ ¼ c2
�
1 −

bðrÞ
r

�
; ð4Þ

which suggests that any experimental setup in which the
effective speed of light of Eq. (4) can be produced is a
suitable analog quantum simulator of a 1D wormhole
spacetime. Note that Eq. (4) predicts that c is exactly 0 at
the throat but larger than 0 at both sides of the throat. Thus,
light would experience an acceleration as traversing the
throat.
In this work, we consider a dc-SQUID array embedded in

an open transmission line [21,28–30]. The speed of propa-
gation along the transmission line is given by c ¼ 1=

ffiffiffiffiffiffiffi
LC

p
,

where C and L are the capacitance and inductance per unit
length, respectively. We will assume that the number of
embedded SQUIDs is large enough to consider that C and
L are given by the capacitance and inductance of a single
SQUID Cs and Ls. If the SQUID area is small enough,
we can neglect their self-inductance. In this case and
considering that the two Josephson junctions (JJs) of each
dc SQUID possess identical critical current Ic, we can treat
any SQUID as a single JJ with a tunable inductance
for frequencies well below the plasma frequency of the
SQUID [31]:

LsðϕextÞ ¼
ϕ0

4πIc cos
πϕext
ϕ0

cosψ
; ð5Þ

where ϕ0 ¼ h=ð2eÞ is the flux quantum, ϕext is the external
magnetic flux threading the SQUID, and ψ is the SQUID
phase, which gives rise to a nonlinearity. We will remain
within the linear regime; that is, we can assume the
approximation cosψ ≃ 1 (we will comment on this in more
detail below), and then the speed of light becomes

c2ðϕextÞ ¼ c2 cos
πϕext

ϕ0

; ð6Þ

where we are denoting c as the speed of light in the absence
of external flux c2 ¼ c2ðϕext ¼ 0Þ ¼ 1=ðLsðϕext¼0ÞCsÞ.
By inspection of Eqs. (4) and (6), we find that a

wormhole spacetime can be realized as long as the external
magnetic flux has the following dependence on some
variable r:

ϕextðrÞ ¼
ϕ0

π
arccos

�
1 −

bðrÞ
r

�
: ð7Þ

We will relate r with an actual position coordinate in the
laboratory in a particular example later. Before specializing
to particular shape functions bðrÞ, it is important to make
an important remark on Eq. (7). There will always be a
point at which bðrÞ ¼ r and then ϕext ¼ ϕ0=2, determining
the simulated wormhole’s throat as a point of infinite

FIG. 1. (a) Embedding diagram of a traversable wormhole
spacetime. Two asymptotically flat regions of spacetime at
l → �∞ are connected by a throat centered at l ¼ 0, where l
is defined by the proper radial distance to the wormhole throat.
(b) An array of dc SQUIDS embedded in a superconducting
open transmission line. A suitable strongly inhomogeneous
external flux bias (gray) generates an effective speed of propa-
gation for the electromagnetic quantum field, which can mimic
the one in the spacetime depicted in (a).
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inductance in the array. It is well known that if all the
SQUIDs of the array were biased with such a value of the
external flux, the approximation cosψ ≃ 1 would be no
longer valid. Indeed, the array would not be in the super-
conducting state [28], since quantum fluctuations of the
phase would become dominant, triggering a quantum phase
transition to an insulating state. This is because, in a SQUID
array, the impedance Z of a SQUID does not depend on the
impedance ZE of the electromagnetic environment only
(typically negligible) but also on the impedance of the rest of
the array ZA, which depends on the external flux. In some
experiments, the parameters of the array are chosen precisely
to use the array as a high-impedance electromagnetic
environment [28–30]. We pursue the opposite goal here.
More specifically, we need to make sure that ZA=RQ ≤ 1

everywhere, where RQ ¼ h=ð4e2Þ is the resistance quan-
tum. In our case, the impedance is r dependent and will be
given by [22,28]

ZAðrÞ
RQ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πe2

ϕ0C0Ic cos
πϕextðrÞ

ϕ0

vuut ; ð8Þ

whereC0 is the capacitance to the ground of the transmission
line. Assuming, for instance, the realistic values Ic ¼ 10 μA
andC0 ¼ 0.1 pF, we find thatZA=RQ ≃ 1 forϕext ≃ 0.45ϕ0.
Therefore, we would like to minimize the region of the
array where the flux takes values above this threshold.
Ideally, we would like to have a single SQUID only above
the threshold—the one defining the throat. If that is the case,
we do not need to consider the array as a high-impedance
electromagnetic environment, and we worry only about
remaining within the small-phase approximation for any
SQUID of the array, which amounts to the standard con-
dition Ib=Ic ≪ 1, where Ib is the external current bias [31].
We keep this in mind when choosing shape functions.
In order to understand how this 1D array is able to

connect two otherwise distant physical regions, we can
envision a 2D array consisting of several 1D superconduct-
ing transmission lines. For instance, we can place two
horizontal standard transmission lines separated by a
certain distance d, large enough to safely neglect any cross
talk between the lines. In this way, there is, of course, no
way for the microwave field to travel from one transmission
line to the other. However, if we place the wormhole line
vertically interrupting both horizontal lines at some point
x0, the 1D microwave fields in the horizontal lines would
feel a vertical acceleration when passing by x0, and there-
fore they would be able to go through the vertical line, thus
accessing the other horizontal one.
Of particular interest is the following family of worm-

holes [14,32–34]:

bðrÞ ¼ b20
r
; ð9Þ

for which the proper radial distance to the wormhole throat
is simply l2ðrÞ ¼ r2 − b20. Neither the nonmonotonic r nor
the proper distance l are suitable coordinates to identify
them with a position coordinate along the transmission
line in the laboratory. To this end, we define a coordinate x
such that

jxj ¼ r − b0; x ∈ ð−∞;∞Þ: ð10Þ
Clearly, x possesses similar features as l, since x ¼ 0 at the
wormhole’s throat r ¼ b0 and acquires a different sign at
both sides of the throat. Unlike l, it has the advantage that
the spacetime metric does not change when transforming
coordinates from r to x. Notice that l2 ¼ jxjðjxj þ 2b0Þ.
Thus, using Eq. (7) and expressing it as a function of x,
we find

ϕextðxÞ ¼
ϕ0

π
arccos

�
1 −

b20
ðjxj þ b0Þ2

�
: ð11Þ

In Fig. 2, we plot Eq. (11) for several values of the throat
radius b0. If we identify x with the position coordinate
along the array (e.g., we set the wormhole throat x ¼ 0 in
the center of the array), we find that for b0 ¼ 0.1 mm the
flux is below the critical threshold everywhere but in a
small region of around 0.02 mm. This could be consistent
with the idea of having only one SQUID above the critical
value. If the separation d among the SQUIDs is around
0.05 mm, the array could still be regarded as a continuum
for microwave photons up to 200 GHz (λ ¼ 0.5 mm ≫ d).
This frequency cutoff does not represent a stronger limi-
tation than the plasma frequency of the SQUID, which is
typically smaller than 100 GHz. Notice that, while inho-
mogeneities in the magnetic field bias of the array are
usually regarded as problematic and the aim is to minimize
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FIG. 2. Flux bias ϕext=ðπϕ0Þ vs xðmmÞ as given by Eq. (11) for
different wormhole throat radii b0 ¼ 1 mm (blue dotted line),
b0 ¼ 0.5 mm (yellow dashed line), and b0 ¼ 0.1 mm (green
solid line). The value ϕext ¼ 0.45πϕ0 (red solid line) is plotted as
a reference of the critical threshold. The array region above the
critical threshold is proportional to the simulated wormhole’s
throat radius.
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them, in our case our goal is to achieve a strongly
inhomogeneous field.
In Ref. [14], it is shown how to turn a traversable

wormhole into a time machine, i.e., a spacetime containing
CTCs. The idea is to induce a time shift between the
spacetime region at l > 0 and the one at l < 0. For instance,
one mouth of the wormhole at l ¼ l0 could be initially at
rest with respect to the other mouth at l ¼ −l0 and then
follow a twin-paradox trajectory, accelerating up to rela-
tivistic speeds in order to travel to a distant star and coming
back to the same place. After the trajectory, there is a time
shift between l < 0 and l > 0 from the point of view of
external observers; however, if the throat geometry does not
change during the trip—which amounts to enforcing that
2gl0=c2 ≪ 1, where g is the maximum acceleration—time
does not experience any shift through the throat. Thus, if
after the trip an observer travels from l < 0 to l > 0 and
then back to l < 0, she would travel along a CTC, accessing
in principle her own past.
The trip of the wormhole mouth in a traversable

wormhole spacetime would be codified in the following
metric [14]:

ds2 ¼ −c2e2ΦðrÞð1þ gðtÞlFðlÞ cos θÞ2dt2 þ 1

1 − bðrÞ
r

dr2

þ r2ðdθ2 þ sin2θdϕ2Þ; ð12Þ
where gðtÞ is the acceleration and FðlÞ is a form factor
function of the radial distance, vanishing at l < 0 and rising
smoothly up to 1 in the traveling mouth. Again, we
consider ΦðrÞ ¼ 0, restrict ourselves to 1D, and pull out
a conformal factor in order to get the shape of the external
flux:

ϕextðr; tÞ ¼
ϕ0

π
arccos

�
1 −

bðrÞ
r

�
ð1þ gðtÞlFðlÞÞ2;

ð13Þ
where we have further assumed θ ¼ 0 for the sake of
simplicity. In Fig. 3, we choose again bðrÞ ¼ b20=r and also
FðlÞ ¼ l=l0 for 0 < l ≤ l0 and FðlÞ ¼ 0 otherwise. We plot
the form of the flux in the region between −x0 and x0 for
g ¼ 0, g ¼ c2=ð20l0Þ, and g ¼ −c2=ð20l0Þ, which would
characterize the different stages of the accelerated mouth
trajectory. Outside this region, the flux should be the same
as in the case of no acceleration. Notice that if c ¼ 108 m=s
and l0 ¼ 0.2 mm, then g ¼ 2.5 × 1018 m=s2. The men-
tioned value of l0 would imply that we need only to adjust
the flux of a few SQUIDs, perhaps only 1 if we look at
Fig. 3. For simplicity, we are assuming that the simulated
acceleration is instantaneous, meaning that the magnetic
flux switches instantaneously among the different curves in
Fig. 3. An abrupt change of the magnetic flux might
generate unwanted dynamics, so it would be desirable to
include a switching function for the transitions.

After performing the series of modifications of the flux
corresponding to a simulated full twin-paradox trajectory
for a wormhole mouth, the effective spacetime region
between x0 and −x0 contains effective CTCs, which in
our case could be probed by sending microwave photons
back and forth along this region—e.g., by means of a mirror
interrupting the transmission line. If t and T are the times
measured by observers at x0 and −x0, respectively, the time
shift between them will be given by T=t ¼ γ, where γ is the
standard relativistic factor γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2=c2Þ

p
. The rel-

ative velocity v in our case will be determined by the
acceleration g and the duration of the acceleration as seen
by the inertial observer Ta, v ¼ gTa=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ g2T2

a=c2Þ
p

.
Thus, finally, γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ g2T2

a=c2Þ
p

. For the acceleration
considered above, γ ≈ 25 after Ta ¼ 1 ns of acceleration. If
the total trajectory lasts T ns as seen by an observer at −x0,
this means that the elapsed time for observers at x0 is
T=25 ns, generating a time shift of 24=25T ns. Thus,
photons that have lived in the left side of the transmission
line during the acceleration have now the opportunity of
traveling back in time 24=25T ns by going first to the
right side of the transmission line and back again to the
left side. For T of a few nanoseconds, this time is much
larger than the time needed to traverse the wormhole
t ¼ R x0

−x0 dx=cðxÞ≃ 0.04 ns. The assumption that a photon
is traveling along the left part of the transmission line only
during a few nanoseconds would imply a transmission
line length around 10 cm and thus a number of several
thousand SQUIDs. Transmission lines of more than 2 m
[35] and arrays of more than 500 SQUIDs [36] have already
been achieved in the laboratory. These numbers have been
derived within the assumption that the accelerations are
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FIG. 3. Flux bias ϕext=ðπϕ0Þ vs xðmmÞ as given by Eq. (13) for
a wormhole throat radius b0 ¼ 0.1 mm, l0 ¼ 0.2 mm, and
different values of the acceleration g ¼ 0 (blue solid line),
g ¼ c2=ð20l0Þ (yellow dashed line), and g ¼ −c2=ð20l0Þ (green
dotted line). The value ϕext ¼ 0.45πϕ0 (red solid line) is
plotted as a reference of the critical threshold. Outside the plotted
region, the flux bias should be equal to the corresponding plot in
Fig. 2.
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instantaneous. Including realistic switching functions to
smooth unwanted dynamics might push them even higher.
Notice that in our case there is no real acceleration;
however, the simulated acceleration would give rise to
different phase shifts [37] in the microwave field at both
sides of the throat. Thus, in our language traveling back in
time means acquiring a particular phase shift.
Letting alone the time-machine spacetime, a straightfor-

ward way of probing the effective wormhole geometry
given by Eq. (11) would be to measure the time that light
takes to travel along the transmission line, which should be
slightly delayed with respect to the flat spacetime case. In
Fig. 4, we see that this delay is as high as 1 ps after traveling
from x0 ¼ 10 cm to x0 ¼ 0.
It is interesting to reflect upon the implications of the

above results. In Ref. [16], Hawking posed the chronology-
protection conjecture, according to which quantum effects
would prevent the formation of CTCs, triggering a fasci-
nating open debate on the subject (see [38] and references
therein). Of course, here we do not have a real curved
spacetime, so Hawking’s argument—which is based on
divergencies of the quantum propagator of the gravitational
energy-momentum tensor—does not apply. However, in
our case, microwave photons would follow equations of
motion that are indistinguishable from the ones of a 1D
reduction of the spacetime in Eq. (12). Therefore, it is
natural to ask: Are CTCs forbidden in this centimeter-size
1D effective spacetime? As a matter of fact, in Ref. [39],
Reece Boston tried to build up an optical metamaterial

containing CTCs—more precisely, closed null geodesics—
and finally found that it was actually impossible since the
physical parameters of such a metamaterial would be
unphysical. In our case, this does not seem to be the case,
since there is not anything unphysical in the parameters of
the external flux bias, although there are of course
important technical challenges. However, we have
acknowledged the role of the finite impedance array,
which would generate quantum fluctuations of the phase.
We have tried to minimize the impedance so it does not
prevent the building up of a wormhole spacetime.
Nevertheless, it is suggestive to think of this effect as
an analog of Hawking’s chronology-protection mecha-
nism. It might be that these quantum fluctuations would
prevent us from building an effective wormhole spacetime
or from trying to turn it into a time machine. Thus, our
quantum simulator could shed light on the operating
principles of a chronology-protection mechanism.
If the quantum fluctuations are not strong enough to

prevent microwave photons from traveling along effective
closed geodesics, this would pave the way to the pos-
sibility of using this effect for quantum computing [18]
with continuous variables. Moreover, by coupling super-
conducting qubits to the transmission line we could
analyze the entanglement properties of a pair of qubits
in the presence of a wormhole background, which would
shed light on the conjectured analogy between entangle-
ment and wormholes [40]—in this case, nontraversable
ones.
In summary, we provide a recipe to build up an analog

quantum simulator of a traversable wormhole 1D back-
ground by means of a suitable strongly inhomogeneous
external magnetic flux bias along a dc-SQUID array.
Furthermore, we show as well how to transform this
spacetime in order to allow, in principle, the existence of
CTCs. The construction is limited by the quantum fluctua-
tions of the superconducting phase triggered by the array
impedance, which might be considered as an analog of a
chronology-protection mechanism trying to preserve cau-
sality in this tiny 1D effective spacetime for microwave
photons.

I am indebted to Borja Peropadre for helpful discus-
sions and comments. Special thanks are given to Kip
Thorne’s book Black Holes and Time Warps: Einstein’s
Outrageous Legacy and Christopher Nolan’s movie
Interstellar. Financial support by Fundación General
CSIC (Programa ComFuturo) is acknowledged.
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FIG. 4. Elapsed time t ¼ R xf
xi dx=cðxÞ (blue solid line) vs the

final position xfðmmÞ for initial position xi ¼ 10 cm and throat
radius b0 ¼ 0.1 mm and compared to the corresponding time in
the absence of a wormhole ðxi − xfÞ=c (yellow dashed line). In
both cases, c ¼ 108 m=s.
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