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Footnote1: The genetic nomenclature used in this manuscript follow the guidelines of 22 

Zebrafish Nomenclature Committee (ZNC) for fish genes and proteins and the HUGO 23 

Gene Nomenclature committee for mammalian genes and proteins. 24 

Footnote2: 11-ketotestosterone (11KT), 17β-estradiol (E2), 4% paraformaldehyde in PBS 25 
(PAF), 5-bromo-2'-deoxyuridine (BrdU), aromatase gene (cyp19a1a), body mass (BM), 26 
chlropheniramine (Chr), cholesterol side chain cleavage cytochrome P450 gene (cyp11a1), 27 
cimetidine (Cim), days post-injection (dpi), dimaprit (Dm), double sex-and mab3-related 28 
transcription factor 1 gene (dmrt1), famotidine (Fam), fetal bovine serum (FBS), gonad 29 
mass GM), gonadosomatic index (GSI), histamine receptors (HRs), in situ detection of 30 
DNA fragmentation (TUNEL), intraperitoneally (ip), monoclonal antibody (mAb), mAb 31 
specific to gilthead seabream acidophilic granulocytes (G7), phorbol myristate acetate 32 
(PMA), polyclonal antibody (pAb), pyridilethylamine (Peth), ribosomal protein S18 gene 33 
(rps18), steroid 11-beta-hydroxylase gene (cyp11b1), steroidogenic acute regulatory protein 34 
gene (star). 35 

 36 

37 
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Abstract 38 

The importance of histamine in the physiology of the testis in mammals and reptiles has 39 

been recently shown. Histamine receptors (Hrs) are well conserved in fish and are 40 

functional in several fish species. We report here for the first time that histamine and the 41 

mRNA of Hrh1, Hrh2 and Hrh3 are all present in the gonad of the hermaphrodite teleost 42 

fish gilthead seabream. Moreover, cimetidine, which acts in vitro as an agonist of Hrh1 and 43 

Hrh2 on this species, was intraperitoneally injected in one and two years old gilthead 44 

seabream males. After three and five days of cimetidine injection, we found that this 45 

compound differently modified the gonadal hrs transcript levels and affects the testicular 46 

cell renewal and the gene expression of steroidogenesis-related molecules as well as the 47 

serum steroid levels. Our data point to cimetidine as a reproductive disruptor and elucidate 48 

a role for histamine in the gonad of this hermaphrodite fish species through Hr signalling. 49 

 50 

Keywords: Cimetidine, histamine receptors, hermaphrodite fish, testis.  51 

 52 

53 



 4 

1. Introduction 54 

Cimetidine (Cim) is a pharmacological compound found in surface watercourses and 55 

recently in a coastal marine lagoon (Mar Menor, Spain) (Kolpin et al., 2002; Moreno-56 

González et al., 2014; Ternes et al., 2001), Although no information exits on the presence 57 

of Cim in the open marine environment, it could be an emerging contaminant, as 58 

pharmaceuticals are consume all over the word, mainly in seas with little water exchange 59 

such as the Mediterranean Sea or nearly to the coast where fish farming occurred. In that 60 

sense, the assessment of how Cim can influence or disrupt marine living species physiology 61 

is important to define effective constrains measures. Measures that becomes highly 62 

important for commercial species with an important economic value for aquaculture such as 63 

the marine gilthead seabream (Sparus aurata L.). Cim has been reported in mammals as a 64 

potent antagonist of histamine H2-receptor (HRH2), but also as a partial agonist or as an 65 

inverse agonist of HRH2 depending on the ability of the cell to regulate the amount of 66 

HRH2 upon long term exposure to Cim (Smit et al., 1996; Takahashi et al., 2006; van der 67 

Goot and Timmerman, 2000). In mammals, Cim enhances tumor infiltrating lymphocytes 68 

responses, the antigen presenting capacity of dendritic cells and the interleukin 18 (IL18) 69 

production of monocytes, showing a potent anti-oxidative activity while also reducing pro-70 

inflammatory cytokines production (Kubecova et al. 2011; Kubota et al., 2002; Takahashi 71 

et al., 2006). Moreover, Cim triggered the apoptosis of several testicular cell types and has 72 

been reported as a reproductive toxicant in male rats (Franca et al., 2000; Sasso-Cerri and 73 

Cerri, 2008). Recently, it has been reported that the dietary intake of Cim alters the non 74 

specific immunity in carps (Hosseinifard et al., 2013). Moreover, the exposure of adult 75 
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zebrafish to environmental concentrations range from 3 to 300 mg/L of Cim alters several 76 

reproductive parameters (Lee et al., 2015).  77 

 Histamine receptors (Hrs) are well conserved in fish (60% amino acid similarity 78 

between fish and mammals). Thus, homologues for Hrh1, Hrh2 and Hrh3 have been 79 

identified in the zebrafish and shown to be functional (Peitsaro et al., 2007). Moreover, 80 

recent studies have shown that histamine is present in fish belonging to the Perciformes 81 

order, the largest and most evolutionarily advanced order of teleosts. Concretely, the 82 

gilthead seabream (Sparus aurata L.), a hermaphrodite species, shows eosinophilic 83 

granules cells that differ from acidophilic granulocytes (the professional phagocytes of 84 

gilthead seabream) in the presence of histamine stored in their granules (Mulero et al., 85 

2007). Moreover, in the gilthead seabream, histamine is biologically active and is able to 86 

regulate the inflammatory response by acting on professional phagocytes (Mulero et al., 87 

2007).  88 

Histamine has also a relevant role in the physiology of the testis in mammals 89 

(Mayerhofer et al., 1989) and reptiles (Khan and Rai, 2007; Minucci et al., 1995). In fact, in 90 

mammals, histamine has been reported to regulate Leydig cell physiology through HRH1 91 

and HRH2 (Albrecht et al., 2005; Mondillo et al., 2005; Pap et al., 2002). Although 92 

macrophages, granulocytes and lymphocytes have been described in the testis of teleosts 93 

(Cabas et al., 2011; Chaves-Pozo et al., 2003; Liarte et al., 2007; Lo Nostro et al., 2004), 94 

which are physiologically involved in the development of some reproductive stages 95 

(Chaves-Pozo et al., 2005a, b; Liarte et al., 2007), nothing is known about the presence 96 

and/or ability of histamine to influence fish gonad physiology or steroidogenesis. 97 
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As a protandrous hermaphrodite teleost, the gilthead seabream develops as male 98 

during the first 2-3 years depending on different environmental conditions. Although 99 

testicular area is quickly differentiated and spermatozoa are produced in less than one year 100 

old fish, those fish are not spermiogenic active males (Chaves-Pozo et al., 2009). As a 101 

seasonal breeder, its annual reproductive cycle is divided into four stages: spermatogenesis, 102 

spawning, post-spawning, and resting or involution; this last stage occurs only when fish 103 

are ready to undergo sex change. During the resting or involution stages, the testicular area 104 

is characterized by a densely populated tissue, mainly formed by spermatogonia and Sertoli 105 

cells whose high rates of proliferation guaranty the next gametogenic stage (Chaves-Pozo et 106 

al., 2005a; Liarte et al., 2007). Leukocytes are located in the gonad and have a prominent 107 

role in the reproductive physiology (Chaves-Pozo et al., 2009; Chaves-Pozo et al., 2003, 108 

2005a; Liarte et al., 2007). Interestingly, the disruption of the reproductive functions due to 109 

natural and synthetic estrogen exposure alters the main activities of leukocytes, their 110 

recruitment into the gonad and the expression of immune relevant-molecules in the gonad 111 

(Cabas et al., 2011; Liarte et al., 2011a, b, c). 112 

In this framework, we have firstly addressed whether Cim acts on HRH1 and HRH2 113 

in gilthead seabream leukocytes, and secondly we analysed the presence of histamine and 114 

the expression of HRH1, HRH2 and HRH3 coding genes in the gonad and the ability of 115 

Cim to regulate some reproductive functions, mainly cell renewal and steroidogenesis.  116 

2. Materials and Methods 117 

2.1. Animals and experimental design 118 

Healthy gilthead seabream (Sparus aurata L., Actinopterygii, Perciformes, Sparidae) fish 119 

were bred and kept at the Centro Oceanográfico de Murcia (IEO, Mazarrón, Murcia). The 120 
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fish were kept in 0.17 m3 tanks with natural water temperature with a flow-through circuit, 121 

suitable aeration and filtration system and natural photoperiod.  122 

 To test the effect of Cim (purity 98%; Sigma, St. Louis, USA) in the testicular 123 

physiology, 50 one year old fish (98.51±0.45 g body mass, BM) and 50 two years old fish 124 

(155.27±3.18 g BM) of gilthead seabream males at the resting stage were used (Fig. 1). The 125 

environmental parameters, mortality and food intake, were recorded daily. Cim was 126 

intraperitoneally (ip) injected at doses of 0 (control), 50, 100 or 200 mg/kg BM in PBS as a 127 

vehicle. The fish were kept and fed ad libitum three times at day and fasted during 24 h 128 

before sampling which was carried out at days 3 and 5 after Cim injection (days post-129 

injection, dpi). Two hours prior sampling, all the fish (n=4 fish/Cim concentration and 130 

sampling time) were ip injected with 50 mg/kg BM of 5-bromo-2'-deoxyuridine (BrdU, 131 

Sigma, St. Louis, USA). Afterwards, fish were tranquilized with 20 µL/L of clove oil and, 132 

immediately, anesthetized using 40 µL/L of clove oil, weighed, decapitated, and blood, 133 

gonad and head kidney were removed. The serum samples were obtained from trunk blood 134 

by centrifugation (10,000 g, 1 min, 4ºC) and immediately frozen and stored at -80ºC. The 135 

gonads were weighed and processed for light microscopy and gene expression analysis, and 136 

head kidneys were used to obtain cell suspensions, as described below.  137 

 The experiments described comply with the Guidelines of the European Union 138 

Council (2010/63/EU), the Bioethical Committee of the University of Murcia (Spain) and 139 

the Instituto Español de Oceanografía (Spain) for the use of laboratory animals. 140 

2.2. Reactive oxygen intermediates production assay 141 

The head kidneys were washed in sRPMI medium (RPMI-1640 culture medium (Life 142 

Technologies, Madrid, Spain) adjusted to gilthead seabream serum osmolarity (353.33 143 
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mosmol) with 0.35% NaCl) and supplemented with 100 units/mL penicillin and 100 μg/mL 144 

streptomycin (P/S, Life Technologies, Madrid, Spain). Cell suspensions were obtained by 145 

forcing fragments of the organ through a nylon mesh (mesh size 100 μm). In order to 146 

determine whether Cim acts as an agonist or antagonist of Hrh1 or Hrh2, aliquots of 106 147 

cells in 100 μL sRPMI containing 1% of fetal bovine serum (FBS, Life Tecnologies, 148 

Madrid, Spain) were incubated in the presence of 0.1 mM histamine (Sigma, St. Louis, 149 

USA), pyridilethylamine (Peth, a Hrh1 agonist, Sigma, St. Louis, USA), dimaprit (Dm, a 150 

Hrh2 agonist, Sigma, St. Louis, USA), 1 mM Cim or medium sRPMI alone during 1 hour 151 

previously to reactive oxygen intermediates (ROIs) production measurement. Similarly, 152 

aliquots of 106 cells in 100 μL sRPMI containing 1% of FBS (Life Tecnologies, Madrid, 153 

Spain) were incubated in the presence or absence of 0.1 mM Cim, and 10 minutes later 1 154 

mM chlropheniramine (Chr, a Hrh1 antagonist, Sigma, St. Louise, USA) or famotidine 155 

(Fam, a Hrh2 antagonist, Sigma, St. Louise, USA) were added to the culture, which were 156 

incubated during 1 hour previously to ROIs production measurement. The ROIs production 157 

was then measured as the luminol-dependent chemiluminescence triggered by phorbol 158 

myristate acetate (PMA, Sigma, St. Louis, USA) (Mulero et al., 2001). Cell viability was 159 

checked in parallel samples by flow cytometry analysis of cells stained with 40 μg/mL 160 

propidium iodide in all treatments.  161 

2.3. Analysis of gene expression 162 

Mammals and fish HRH1 gene sequences (Danio rerio NM_001042731.1; Dicentrarchus 163 

labrax CBN80867.1; Bos taurus NP_776508; Equus caballus NP_001075388; Cricetulus 164 

griseus ERE66926; Mus musculus AAK71654; Pan troglodytes NP_001107637; Rattus 165 

norvegicus AAK71644; Homo sapiens NP_000852; Macaca fascicularis EHH51138; 166 
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Macaca mulatta EHH16174) were used to determine a conserved region useful to design 167 

primers (Table 1) and clone a partial sequence of the hrh1 of gilthead seabream using PCR 168 

techniques and head kidney cDNA as a template. The sequence obtained was launched 169 

using the BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi) within teleost databases 170 

to verify its identity (Table 2). The sequence obtained was published at the GenBank 171 

database with an accession number LN875558 and protein sequence accession number 172 

CTQ87325.1. Then, specific primers for gene expression analysis were design (Table 1). 173 

The hrh2 and hrh3 were identified after blast searches in the IATS-CSIC transcriptomic 174 

database (www.nutrigroup-iats.org/seabreamdb). Partial sequences of 932 and 1815 175 

nucleotides in length were unequivocally annotated as hrh2 (E = 5e-50) and hrh3 (E = 9e-176 

169), respectively. The resulting nucleotide sequences were uploaded to GenBank with the 177 

accession numbers KP728255 (hrh2) and KP728256 (hrh3). 178 

Total RNA was extracted from gonad fragments with TRIzol Reagent (Life 179 

Technologies, Madrid, Spain). Gonads were homogenised in 1mL of Trizol in an ice bath, 180 

and mixed with 200 µL of chloroform. The suspension was then centrifuged at 12,000 xg 181 

for 15 min. The clear upper phase was aspirated and placed in a clean tube. Five hundred 182 

microliters of isopropanol were then added, and the samples were again centrifuged at 183 

12,000 xg for 10 min. The RNA pellet was washed with 75% ethanol, dissolved in 184 

diethylpyrocarbonate (DEPC)-treated water and stored at -80 ºC. The RNA was quantified 185 

with a spectrophotometer (Cecil Instruments Ltd) and the amount of RNA define as one 186 

unit of absorbance at 260 nm correspond to 40 µg/µL de RNA. The absorbance at 280 and 187 

320 was also analyzed to determine the grade of purity of total RNA. One µg of the total 188 

RNA was then treated with DNase I (amplification grade, 1 unit/µg RNA, Life 189 

http://www.nutrigroup-iats.org/seabreamdb
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Technologies, Madrid, Spain) to remove genomic DNA traces that might interfere in the 190 

PCR reactions, and the SuperScript III RNase H−Reverse Transcriptase (Life 191 

Technologies, Madrid, Spain) was used to synthesize first strand cDNA with oligo-dT18 192 

primer at 50ºC for 60 min. 193 

Real-time PCR was used to analyse the expression of the genes coding for 194 

histamine receptor H1 (hrh1), H2 (hrh2) and H3 (hrh3), the testicular specific protein, 195 

double sex-and mab3-related transcription factor 1 (dmrt1), and some testicular 196 

steroidogenesis-related molecules as (i) the steroidogenic acute regulatory protein (star), 197 

(ii) the cholesterol side chain cleavage cytochrome P450 (cyp11a1), (iii) the steroid 11-198 

beta-hydroxylase (cyp11b1), and (iv) the aromatase (cyp19a1a). Real-time PCR was 199 

performed with an ABI PRISM 7500 instrument (Life Technologies, Madrid, Spain) using 200 

SYBR Green PCR Core Reagents (Life Technologies, Madrid, Spain) as previously 201 

described (Chaves-Pozo et al., 2008b). For each sample, gene expression levels were 202 

corrected by the ribosomal protein S18 gene (rps18) content presented as 2-ΔCt, where ΔCt 203 

is determined by subtracting the rps18 Ct value from the target Ct. The gilthead seabream 204 

specific primers used are shown in Table 1. In all cases, each PCR was repeated at least 205 

twice. Less than 2% variation in rps18 gene expression was observed between samples. 206 

Before the experiments, the specificity of each primer pair was studied using positive and 207 

negative samples. A melting curve analysis of the amplified products validated the primer 208 

for specificity. Negative controls with no template were always included in the reactions.  209 

2.4. Light microscopy and immunocytochemical staining 210 

Gonads, fixed in Bouin’s fixative solution or 4% paraformaldehyde in PBS (PAF), were 211 

embedded in paraffin (Paraplast Plus; Sherwood Medical, Athy, Ireland), and sectioned at 5 212 
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µm. After dewaxing and rehydratation, some sections were stained with haematoxylin-213 

eosin in order to determine the developmental state of each animal. Some serial sections 214 

fixed with Bouin’s solution were subjected to an indirect immunocytochemical method 215 

using two antibodies: a polyclonal antibody (pAb) against histamine (Sigma) which has 216 

been previously used in the characterization of mast cells of gilthead seabream (Mulero et 217 

al., 2007) and a monoclonal Ab (mAb) specific to gilthead seabream acidophilic 218 

granulocytes (G7) (Sepulcre et al., 2002) which has been previously used in the 219 

characterization of testicular AGs (Chaves-Pozo et al., 2005b). Some sections fixed with 220 

PAF were subjected to an indirect immunocytochemical method using a mAb specific to 221 

BrdU (Becton Dickinson, San Jose, USA), at the optimal dilution of 1:100, that revealed 222 

the proliferative cells which have incorporated the BrdU, previously injected, during their 223 

DNA synthesis phase. Negative controls were done by omitting the first antiserum or in the 224 

case of the BrdU detection by using tissue sections from fish that had not been injected with 225 

BrdU. Some other sections fixed with PAF were subjected to in situ detection of DNA 226 

fragmentation (TUNEL) assay to identify apoptotic cells (in situ cell death detection kit; 227 

Roche, Basel, Switzerland) (Chaves-Pozo et al., 2007). Negative controls were processed in 228 

an identical manner, except that the TdT enzyme was omitted. Positive controls were also 229 

performed treating the sections with DNase I (3–3000 U/mL; Sigma) in 50 mM Tris-HCl 230 

(pH 7.5), 10 mM MgCl2, and BSA (1 mg/mL) for 10 min at room temperature to induce 231 

DNA strand breaks before labelling. Positive controls for anti-histamine immunostaining 232 

were performed using gut sections, in which histamine positive cells has been described in 233 

the connective tissue (Mulero et al., 2007). Positive controls for G7 immunostaining was 234 
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performed using head-kidney sections, in which AGs cells has been described in the 235 

myelopoiesis areas of the tissue (Chaves-Pozo et al., 2005c).  236 

Slides were examined with an Eclipse E600 (Nikon) light microscope using 200, 400 and 237 

600x magnifications. The images were obtained with an Olympus SC30 digital camera 238 

(Olympus soft imaging solutions GMBH) and Spot 3.3 software (Diagnostic instruments, 239 

Inc). 240 

2.5. Analytical techniques 241 

Serum levels of 17β-estradiol (E2) and 11-ketotestosterone (11KT) were quantified by 242 

ELISA, following the method previously used in gilthead seabream (Chaves-Pozo et al., 243 

2008a). Steroids were extracted from 30 μL of serum in 1.3 mL of methanol (Panreac, 244 

Barcelona, Spain). Then, methanol was evaporated at 37ºC and the steroids were 245 

resuspended in 600 μL of reaction buffer [0.1 M phosphate buffer with 1 mM EDTA 246 

(Sigma, St. Louis, USA), 0.4 M NaCl (Sigma, St. Louis, USA), 1.5 mM NaN3 (Sigma, St. 247 

Louis, USA) and 0.1% albumin from bovine serum (Sigma, St. Louis, USA)]. Of this 248 

solution, 50 μL were used for each ELISA reaction (2.5 μL of serum per reaction). A 249 

standard curve from 6.13 x 10-4 to 5 ng/mL (0.03-250 pg/well), a blank and a non specific 250 

binding control (negative control) were established in all the assays. E2 and 11KT 251 

standards, mouse anti-rabbit IgG mAb, and specific anti-steroid antibodies and enzymatic 252 

tracers (steroid acetylcholinesterase conjugates) were obtained from Cayman Chemical. 253 

Microtiter plates (MaxiSorp) were purchased from Nunc. The reaction was revealed using 254 

Ellman’s reagent (Cayman Chemical) and the absorbance of the samples was measured at 255 

405 nm every 2 min intervals during 5 h at 25 ºC using a Thermo Scientific Multiskan GO 256 

plate reader. Standards and extracted plasma samples were run in duplicate and all the 257 
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readings were corrected with the blank and negative control. The lower detection limit for 258 

all the assays was 12.2 pg/mL. The inter-assay coefficients of variation at 50% of binding 259 

were 6.4% for E2 (n=3) and 4.8% for 11KT (n=3). The intra-assay coefficients of variation 260 

(calculated from sample duplicates) were 8.2 ± 2.3% for E2 and 6.9 ± 1.3% for 11KT 261 

assays. Details on cross-reactivity for specific antibodies were provided by the supplier 262 

(0.01% of anti-11KT reacts with T; and 0.1% of anti-E2 reacts with T). 263 

2.6. Calculation and statistics 264 

The gonadosomatic index (GSI) was calculated as an index of the reproductive stage [100 × 265 

(GM/BM) (%)] where GM is gonad mass (in grams) and BM is body mass (in grams). 266 

The quantification of anti-BrdU immunostained and TUNEL stained indexes were 267 

calculated as the mean value ± SEM of the stained area/total area of 24 randomly 268 

distributed optical areas at 200 x magnification. The stained areas were measured by image 269 

analysis using a Nikon eclipse E600 light microscope, an Olympus SC30 digital camera 270 

(Olympus soft imaging solutions GMBH), and Image Tool 3.00 software (The University 271 

of Texas Health Science Center).  272 

Data were analysed by one-way ANOVA and a post hoc test (Tukey Honestly 273 

Significant Difference or Waller Duncan) to determine differences between groups 274 

(P≤0.05). Normality of the data was previously assessed using a Shapiro–Wilk test and 275 

homogeneity of variance was also verified using the Levene test. All data related to sex 276 

steroid serum levels and gene expressions did not meet parametric assumptions, and they 277 

were subjected to a non-parametric Kruskal–Wallis test, followed by a multiple comparison 278 

test. The critical value for statistical significance was taken as P≤0.05. Statistical analyses 279 
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were conducted using SPSS 12.0 (SPSS, Chicago, IL, USA). All data are presented as 280 

mean ± standard error to the mean (SEM).  281 

3. Results 282 

3.1. Identification of a partial sequence of hrh1 gene 283 

A partial sequence of the hrh1 gene of 295 base pair have been cloned and published in the 284 

genebank with the accession number LN875558. This sequence coded for a 98 amino acid 285 

peptide that had a 93% of homology with the hrh1 gene of several teleosts species (Table 286 

2). Moreover, this sequence coded for 7 transmembrane receptor (rhodopsin family) 287 

domain, which is present in the most of the HRH1 orthologes.   288 

3.2. Cim acts as an agonist of HRH1 and HRH2 in gilthead seabream leukocytes 289 

First of all, the ability of Cim to act through gilthead seabream HRH1 or HRH2 by 290 

determining the modification on the ROIs production of head kidney leukocytes in the 291 

presence or absence of specific HR agonists or antagonists was analysed. The results 292 

showed that 1 mM Cim increased leukocyte ROI production as 0.1 mM His did, while 0.1 293 

mM of Peth (HRH1 agonist) or 0.1 mM of Dm (HRH2 agonist) failed to do so (Fig. 2a). 294 

However, 1 mM Chr (HRH1 antagonist) or Fam (HRH2 antagonist) inhibited or stimulated 295 

the ROI production, respectively (Fig. 2b). When the cells were incubated with 0.1 mM 296 

Cim in the presence of 1 mM Chr or Fam, both antagonist inhibited the Cim-stimulated 297 

ROIs production (Fig. 2b). The assessment of cell viability, as assayed by propidium iodide 298 

staining, demonstrated that this parameter was not significantly affected by the treatments 299 

employed. The non staining cells range between 95.89 ± 0.22 and 96.54 ± 0.23% of total 300 
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cells for all compounds except for 1 mM Chr, which reduced cell viability to 94.88 ± 301 

0.37%.  302 

3.3. The hrh1, hrh2 and hrh3 genes are expressed in the gonad although their expressions 303 

were differently modified by Cim 304 

All three HRs were expressed in the gonad of gilthead seabream (Fig. 3). In 1 year old fish, 305 

their expression levels were not modified by Cim treatment (Fig. 3a,c,e). However, in 2 306 

year old fish hrh1 was up-regulated at 5 dpi of 50 mg Cim/kg BM treatment (Fig. 3b), 307 

while the expression of hrh2 and hrh3 were up-regulated at 5 dpi of 200 mg Cim/kg BM 308 

treatment (Fig. 3d,f).  309 

3.4. Histamine positive cells were present in the testis 310 

Histamine was immunodetected in some interstitial cells of the testis (Fig 4a) and in the 311 

connective tissue that limited the testicular and the ovarian areas and around the efferent 312 

ducts (Fig. 4b). These cells are granular cells that differ from acidophilic granulocytes (Fig. 313 

4c), as previously described (Mulero et al., 2007), and as has been confirmed by negative 314 

(Fig. 4d, for histamine) and positive (Fig. 4 e, for histamine; f, for G7) controls. 315 

3.5. Cim differentially affects the GSI, the testicular cell proliferation and apoptotic rates 316 

and the dmrt1 gene expression in both ages analysed 317 

Cim treatment was unable to affect the GSI in 1 year old fish while diminished it in 2 years 318 

old fish (5 dpi with all Cim concentrations assayed) (Table 3).  319 

BrdU and TUNEL staining determined that the Cim altered the renewal rates of 320 

testicular cells. Thus, the BrdU immunostaining index decreased (at 3 dpi with 100 and 200 321 

mg Cim/kg BM) or increased (at 5 dpi with all the Cim concentrations assayed) in the 322 
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gonad of 1 year old males (Table 3). However, this index decreased in the gonad of 2 years 323 

old males (at 5 dpi with all the concentrations assayed) (Table 3). Interestingly, the size, 324 

morphology and localization of the nuclei immunostained with anti-BrdU determined that 325 

although in control fish both germ and Sertoli cells proliferate, Cim increase the Sertoli cell 326 

proliferation (Fig. 5a,b,c). In the other hand, the TUNEL staining index diminished in the 327 

testis of 1 year old males (at 3 dpi with 200 mg Cim/kg BM and at 5 dpi with 50 mg 328 

Cim/kg BM) and in 2 years old males (at all times and Cim concentrations assayed) except 329 

after 5 dpi of 100 mg Cim/kg BM treatment where an increase was recorded (Table 3). 330 

Most of the apoptotic cells resembled the location and the nuclear shape characteristic of 331 

Sertoli cells in both control and Cim treated testis, although some spermatogonia were also 332 

observed (Fig. 5d,e).  333 

Dmrt1 gene expression was down-regulated in the gonad of 1 and 2 years old males 334 

with 100 mg Cim/kg BM, although the exposure time needed varied with the age of the fish 335 

(5 dpi in 1 year old animals, Fig. 6a, and 3 dpi in 2 years old animals, Fig. 6b, respectively). 336 

3.6. Cim differentially modifies testicular steroidogenesis depending on the fish age 337 

Cim altered differentially the E2 and 11KT serum levels of 1 and 2 years old gilthead 338 

seabream males. Regarding the E2 serum levels, an increase was observed in fish of both 339 

ages, although the Cim concentration and the exposure time needed varied between both 340 

groups (at 3 dpi with 100 and 200 mg Cim/kg BM in 1 year old animals, Fig. 6c, and with 341 

all Cim concentration assayed in 2 years old animals and at 5 dpi with 100 and 200 mg 342 

Cim/Kg BM in 2 years old animals, Fig. 6d). In contrast, 11KT serum levels decreased in 1 343 

year old males (at 3 dpi with 200 mg Cim/kg BM and at 5 dpi with 100 and 200 mg Cim/kg 344 
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BM, Fig. 6e), while increased in 2 years old males (at 3 dpi with all the Cim concentrations 345 

used, Fig. 6f). 346 

Differences in the transcriptional levels of several steroidogenic molecule genes in 347 

the gonad were recorded between 1 and 2 years old males after Cim injection (Fig. 7). In 1 348 

year old fish, star, cyp11a1 and cyp11b1 gene expression were down-regulated (star at 3 349 

dpi with all the concentrations assayed and at 5 dpi with 100 and 200 mg Cim/kg BM, Fig. 350 

7a; cyp11a1 at 3 dpi with 50, 100 and 200 mg Cim/kg BM and at 5 dpi with 50 and 100 mg 351 

Cim/kg BM, Fig. 7c; and cyp11b1 at 3 dpi with 50 and 200 mg Cim/kg BM and at 5 dpi 352 

with 100 and 200 mg Cim/kg BM, Fig. 7e). However, no differences were observed in the 353 

expression pattern of cyp19a1a gene (Fig. 7g). In the other hand, in the gonad of 2 years 354 

old males, the transcription of star and cyp11b1 was up-regulated (5 dpi with 50 mg 355 

Cim/kg BM, Fig. 7b,f, respectively) and the transcription of cyp11a1 and cyp19a1a was 356 

down regulated (cyp11a1 at 3 and 5 dpi with 100 mg Cim/kg BM, Fig. 7d, and cyp19a1a at 357 

3 dpi with 50 mg Cim/kg BM and at 5 dpi with 200 mg Cim/kg BM, Fig. 7h).  358 

4. Discussion 359 

Our data demonstrate that Cim is able to differentially modify the cell renewal rates and the 360 

steroidogenesis of gilthead seabream, a hermaphrodite fish species of important 361 

commercial value in the Mediterranean area. Moreover, the alteration observed depended 362 

on the maturational stage of the fish. These data allow us to consider the fish population as 363 

a potential target for this pharmacological compound that has been detected in the surface 364 

watercourses and recently in a coastal marine lagoon (Mar Menor, Murcia, Spain) (Kolpin 365 

et al., 2002; Moreno-González et al., 2014; Ternes et al., 2001). Although nothing is known 366 

about Cim concentration in open marine sea waters, Cim is a pharmaceutical compound 367 
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consumes all over the world. The assessment of how Cim can affect marine fish species 368 

became important in order to determine the needed of future constrain measures mainly in 369 

areas with low exchange water flow or with intensive aquaculture activity.  370 

 In mammals, Cim has been reported to be an antagonist of HRH2 with virtually no 371 

affinity for HRH1 and a very weak affinity for HRH3 (van der Goot and Timmerman, 372 

2000). We have previously demonstrated that histamine is biologically active in gilthead 373 

seabream leukocytes where it is able to regulate the inflammatory response by acting on 374 

professional phagocytes mediating through the engagement of HRH1 and HRH2 (Mulero et 375 

al., 2007). Our data demonstrated now that Cim is able to act through gilthead seabream 376 

HRH1 and HRH2 modulating the ROI production of head kidney leukocytes. Thus, Cim, 377 

when administrated alone, has similar effects than histamine. Moreover, when leukocytes 378 

were incubated with Cim in the presence of specific HRH1 or HRH2 antagonist (Chr or 379 

Fam, respectively), Cim-induced ROIs production was inhibited or down regulated. Our 380 

data determined that Cim acts through HRH1 receptor, as Chr decreased Cim stimulated 381 

ROIs production to control levels, but also through HRH2 receptors as Fam down regulated 382 

the Cim stimulated ROIs production to the same levels of Fam treated group. That means 383 

that part of the action of Cim is being blockaged by Fam. All these data disclose that Cim 384 

exerts its effects on gilthead seabream leukocytes by means of HRH1 and HRH2 385 

interaction. In addition, further studies to clearly characterize the HRH1 and HRH2 binding 386 

affinities in gilthead seabream will help in understanding their individual contribution in the 387 

Cim/histamine mediated response.  388 

In mammals and reptiles, histamine has been shown to modulate testicular 389 

steroidogenesis through HRH1 and HRH2 in a biphasic manner depending upon its 390 
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concentration (Albrecht et al., 2005; Khan and Rai, 2007; Mondillo et al., 2005). In fact, 391 

testicular mast cells has been described as a potential source of histamine and HRH1 and 392 

HRH2 have been detected in all compartment of the human testis (Albrecht et al., 2004). 393 

Moreover, the alterations observed on histamine descarboxilase-deficient knockout mice 394 

indicate that peripheral histamine is an important factor in male gonad development (Pap et 395 

al., 2002). We have demonstrated for the first time that histamine is stored in a cell type 396 

located in the connective tissue between the seminiferous tubules, different to the 397 

acidophilic granulocytes, as it has been previously described in the gills and intestine of 398 

gilthead seabream (Mulero et al., 2007). Moreover, HRs (hrh1, hrh2 and hrh3) are 399 

expressed in the gonad of this hermaphrodite species although at very low levels. 400 

Moreover, our data suggest that Cim acts directly on the gonad of gilthead seabream 401 

although further studies will be needed in order to exactly determine its effect on cell 402 

renewal and steroidogenesis. Our in vivo data clearly point to Cim as an endocrine disruptor 403 

for gilthead seabream and probably for other fish species, although further studies will be 404 

needed to determine the regulatory mechanisms involved in the testicular disruption 405 

produced by Cim. Thus Cim affected the testicular physiology by promoting an increase on 406 

cell proliferation in the gonad of 1 year old fish and a decrease in the gonad of 2 years old 407 

fish. Interestingly, Cim down-regulated the apoptotic rates in gilthead seabream while in 408 

mammals Cim induces the apoptosis of peritubular cells producing, in turn, the detachment 409 

and apoptosis of Sertoli and germ cells (Sasso-Cerri and Cerri, 2008; Sasso-Cerri and 410 

Miraglia, 2002). The main cell type affected by Cim in the gilthead seabream testis were 411 

Sertoli cells, although the affection of other cell types such as peritubular or Leydig cells 412 

cannot be discarded. It is worth to note that Sertoli cells lost their capability to proliferate in 413 

the mature mammalian testis while in teleosts, Sertoli cells proliferate in mature fish testis 414 
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(Chaves-Pozo et al., 2005a; Hess, 1999; Schulz et al., 2012). This could explain why the 415 

main effect observed in the mammalian testis upon Cim treatment so far is related to 416 

apoptosis of several testicular cell types (Franca et al., 2000; Sasso-Cerri and Cerri, 2008; 417 

Sasso-Cerri and Miraglia, 2002). Moreover, and in contrast to mammals, in the gilthead 418 

seabream, the changes observed in the renewal (proliferation and apoptosis) of the 419 

testicular cells upon Cim treatment, did not compromise the functionality of the testis as 420 

indicated by the slight recorded alteration in the dmrt1 gene expression, a gene related to 421 

testicular maintenance in fish (Marchand et al., 2000). Although further studies will be 422 

needed, our data suggest that the effect of Cim on reproduction in fish are not so toxic as 423 

reported in mammals, probably due to the ability of the different cell types of the fish testis 424 

to proliferate after puberty.  425 

In mammals, histamine induces a dual concentration-dependent effect on Leydig 426 

cell steroidogenesis through HRH1 and HRH2 activation (Mondillo et al., 2009). In the 427 

gilthead seabream, Cim treatment triggered an increase in E2 serum levels at both ages 428 

analysed while the 11KT levels were down-regulated in 1 year old fish and up-regulated in 429 

2 years old fish. The effect on 11KT serum levels observed in 1 year old fish correlated 430 

with the down-regulation of gene expressions involved in androgen production, while 431 

cyp19a1a gene expression was unaltered. Moreover, despite of the changes observed in E2 432 

and 11KT serum levels in 2 years old fish, the expression the genes coding for 433 

steroidogenetic molecules scarcely varied in the gonad. Interestingly, differences between 1 434 

and 2 years old fish were observed in all the processes studied, suggesting that the role of 435 

Cim in reproductive tissues depends on fish maturity, as one year old fish at resting stage 436 
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are still pre-puberal fish, while two years old fish at resting stage have gone through one 437 

spawning season (Chaves-Pozo et al., 2009; Chaves-Pozo et al., 2005a).  438 

5. Conclusion 439 

In conclusion, our data clearly demonstrate that Cim acts through Hrh1 and Hrh2 in 440 

gilthead seabream head kidney leukocytes and that these receptors coding genes, together 441 

with the Hrh3, are expressed in the gonad of this species, as well as histamine is present in 442 

the gonad. Cim might act by Hrs to trigger the effects observed on testicular cell renewal 443 

and steroidogenesis. Interestingly, and although some effects of Cim observed in fish are 444 

less pronounced than those described in mammals, Cim showed a clear disrupter effect on 1 445 

and 2 years old gilthead seabream fish.  446 
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9. Figure legends 589 

Figure 1: Schematic illustration of the timing of the different reproductive stages of the 590 

gilthead seabream related to the age (years). Arrows indicate the timing of cimetidine 591 

injection. SG, spermatogenesis; S, spawning; PS, post-spawning; R, resting; TI, testicular 592 

involution. Data obtained from this manuscript and from Chaves-Pozo et al. (2005a, 2009) 593 

and Liarte et al. (2007). 594 

Figure 2: Head kidney leukocyte suspensions were incubated during 1 h with: (a) 0.1 mM 595 

histamine (His), pyridilethylamine (Peth, a Hrh1 agonist), dimaprit (Dm, a Hrh2 agonist) or 596 

1 mM cimetidine (Cim) or medium sRPMI alone, or (b) 0.1 M Cim in the presence or 597 

absence of 1 mM chlropheniramine (Chr, a Hrh1 antagonist) or Famotidine (Fam, a Hrh2 598 

antagonist) or medium sRPMI alone. The respiratory burst activity was then measured as 599 

the luminol-dependent chemiluminescence triggered by PMA (1 µg/mL). Data are 600 

presented as mean ± S.E.M. of quadruplicate cultures and are representative of four 601 

independent experiments. Letters determine significant differences between groups (*P ≤ 602 

0.05). 603 

Figure 3: Expression levels of genes that code for histamine-receptors (Hr) in the gonad of 604 

1 (a,c,e) and 2 (b,d,f) years old gilthead seabream fishs at resting stage. The expression of 605 

hrh1 (a,b), hrh2 (c,d) and hrh3 (e,f) in fish injected with 0 (control), 50, 100 or 200 mg 606 

Cim/kg body mass (BM) after 3 and 5 days of injection was analysed by real time PCR. 607 

Data represent the means ± S.E.M. of duplicate samples corresponding to four independent 608 

fish. Asterisks indicate significant differences between treated and control groups (*P ≤ 609 

0.05). 610 

Figure 4: Gonad (a-d), gut (e) and head-kidney (f) sections of gilthead seabream of one 611 

year old at resting stage immunostained with anti-histamine antibody (a,b,e) or G7 serum 612 
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(c,f) were located in interstitial cells between seminiferous tubules (a) and in the connective 613 

(b,c) tissue of the gonad. Negative control (d) and gut section inmunostained with anti-614 

histamine serum (e) and head-kidney section immunostained with G7 antibody (f) 615 

determine the specificity of the antibodies used. Cells containing histamine (black arrows) 616 

are not immunostained with G7 serum (white arrows and surrounded with a dark line) and 617 

viceversa (b,c). Scale bar = 15 μm (a), 8 μm (b,c), 10 μm (d,e) or 50 μm (f). 618 

Figure 5: Testis sections of gilthead seabream at resting stage of a 1 year old fish untreated 619 

(C) (a, 5 days; d,f,g 3 days) or treated (b,c, 100 mg Cim/kg body mass, BM, 5 days; e, 200 620 

mg Cim/kg BM 3 days) immunostained with anti-BrdU serum (a,b,c) or subjected to 621 

TUNEL (d,e,f,g). Positive control of TUNEL was performed treating the section with 622 

DNase I before labelling (f) and negative control was performed omitting TdT enzyme in 623 

the reaction (g). Proliferative spermatogonia (asterisks) and Sertoli cells (arrows). 624 

Apoptotic Sertoli cells (white arrows) and spermatogonia (white arrowheads). Scale bar = 625 

25 µm (a,b), 10 µm (c) or 50 µm (d,e,f,g). 626 

Figure 6: Dmrt1 gene expression in the gonad of 1 (a) and 2 (b) years old fish and serum 627 

levels of 17β-estradiol (E2) (c,d) and 11-ketotestosterone (11KT) (e,f) in 1 (c,e) and 2 (d,f) 628 

years old fish at resting stage. Animals were injected with 0 (control), 50, 100 or 200 mg 629 

Cim/kg body mass (BM). Sampling was carried out after 3 and 5 days of Cim injection. 630 

The gene expression was analysed by real time PCR and data represent the means ± S.E.M. 631 

of duplicate samples corresponding to four independent fish. The serum levels were 632 

analysed by ELISA and data represent the means ± S.E.M. of duplicate samples 633 

corresponding to four independent fish. Asterisks indicate significant differences between 634 

treated and control groups (*P ≤ 0.05). 635 
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Figure 7: Expression levels of genes that code for steroidogenic-relevant molecules in the 636 

gonad of 1 (a,c,e,g) and 2 (b,d,f,h) years old gilthead seabream fish at resting stage. The 637 

expression of star (a,b), cyp11a1 (c,d), cyp11b1 (e,f) and cyp19a1a (g,h) in fish injected 638 

with 0 (control), 50, 100 or 200 mg Cim/kg body mass (BM) after 3 and 5 days of injection 639 

was analysed by real time PCR. Data represent the means ± S.E.M. of duplicate samples 640 

corresponding to four independent fish. Asterisks indicate significant differences between 641 

treated and control groups (*P ≤ 0.05).  642 

643 
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Table 1: Gene accession numbers and primer sequences used for gene cloning and 644 
expression analysis by real time PCR. 645 

 646 
Gene Accession 

 
Name Sequence (5`-3’) Use 

hrh1  

Hrh1-F1 CACACTGTTGGGAACCTCTA 

cloning 
Hrh1-R1 GTGCTAGCCACGTAGTCCAT 
Hrh1-F2 GATCGGTATCGCTCTGT 
Hrh1-R2 AAAGCGGAAATCTGTGTCACA 

hrh1 LN875558 
F CTTGCCTCTGAACCTGGTGT 

SYBR 
real time 

PCR 

R AAATTGAGGCTGTGCTTGCC 

hrh2 KP728255 
F CCTAACACGCTTCACTCCGT 
R AGCTGCAGTTTTCTGTGGGA 

hrh3 KP728256 
F CTGTTTCAGCACACGGCTTC 
R GGCACACACGTACCACTACA 

dmrt1 AM493678 
F GATGGACAATCCCTGACACC 
R GGGTAGCGTGAAGGTTGGTA 

star AM905934 
F1 ACATCGGGAAGGTGTTCAAG 
R1 TCTCTGCAGACACCTCATGG 

cyp11a1 FM159974.1 
F CGCTGCTGTGGACATTGTAT 
R CATCATGTCTCCCTGGCTTT 

cyp11b1 FP332145 
F GCTATCTTTGGACCCCATCA 
R CTTGACTGTGCCTTTCAGCA 

cyp19a1a AF399824 
F2 CAATGGAGAGGAAACCCTCA 
R2 ATGCAGCTGAGTCCCTGTCT 

rps18 AM490061 
F AGGGTGTTGGCAGACGTTAC 
R CTTCTGCCTGTTGAGGAACC 

 647 
 648 

649 
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Table 2. Identification of the interest sequence in the teleost databases and their relation 650 
with fish orthologs. 651 

Predicted 
protein 

Fish specie Gene acc. number Protein 
homologya 

E valueb 

HRH1 Sparus aurata 
Larimichthys crocea 
Pundamilia nyererei 
Dicentrarchus labrax 
Oreochromis niloticus 
Fundulus heteroclitus 
Oryzias latipes 
Salmo salar 

CTQ87325.1 

XP 010729625.1 

XP_005724720.1 

CBN80867.1 

XP_005459084.1 

XP_012724745.1 

XP_011473142.1 

XP_013989581.1 

 

93% 

93% 

93% 

93% 

90% 

90% 

85% 

 

1e-52 

7e-52 

8e-52 

1e-51 

3e-50 

2e-49 

1e-47 

Percentage of homology (a) and E value (b) of the predicted proteins respect to the 652 
CTQ87325.1 sequence. 653 

 654 
655 
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 656 

Table 3: Gonadosomatic index (GSI) and the gonad anti-BrdU immunostaining and 657 
TUNEL staining of 0 (Control), 50, 100 and 200 mg Cim/kg body mass (BM) injected 658 
gilthead seabream fish of 1 and 2 years old at 3 and 5 days post-injection (dpi). 659 
 660 

 661 
Data represent means ± SEM of four independent fish/cimetidine (Cim) concentration and 662 
dpi. Asterisks denote statistically significant differences between different concentrations of 663 
Cim in the same time-groups according to Waller-Duncan post-hoc test (P≤0.05). 664 
 665 
 666 
 667 

 668 

 669 

 670 

  
    

1 year old 2 years old 
3 dpi 5 dpi 3 dpi 5 dpi 

GSI (%) 

Control 0.043 ± 0.017 0.041 ± 0.007 0.267 ± 0.066 0.279 ± 0.047 
50 mg Cim/kg BM 0.039 ± 0.003 0.046 ± 0.008 0.182 ± 0.022 0.135 ± 0.020* 

100 mg Cim/kg BM 0.053 ± 0.004 0.045 ± 0.013 0.295 ± 0.057 0.113 ± 0.010* 
200 mg Cim/kg BM 0.032 ± 0.003 0.040 ± 0.004 0.176 ± 0.012 0.169 ± 0.025* 

Anti-BrdU 
staining index 

Control 5.794 ± 0.702 4.251 ± 0.681 0.130 ± 0.050 1.715 ± 0.638 
50 mg Cim/kg BM 5.518 + 0.934 7.152 ± 0.901* 0.288 ± 0.053 0.666 ± 0.121* 

100 mg Cim/kg BM 1.549 ± 0.3964* 9.874 ± 1.729* 0.146 ± 0.070 0.788 ± 0.155* 
200 mg Cim/kg BM 2.897 ± 0.657* 6.826 ± 0.859* 0.107 ± 0.044 0.796 ± 0.107* 

TUNEL staining 
index 

Control 1.125 ± 0.268 0.382 ± 0.138 1.7025 ± 0.681 0.2438 ± 0.040 
50 mg Cim/kg BM 0.760 ± 0.092 0.096 ± 0.026* 0.138 ± 0.051* 0.150 ± 0.032* 

100 mg Cim/kg BM 1.205 ± 0.397 0.143 ± 0.087 0.416 ± 0.171* 0.357 ± 0.069* 
200 mg Cim/kg BM 0.528 ± 0.109* 0.294 ± 0.065 0.130 ± 0.038* 0.164 ± 0.046* 

















Highlights: 

1. Cimetidine acts through Hrh1 and Hrh2 in gilthead seabream leukocytes.  

2. Histamine is present in the gonad of gilthead seabream. 

3. The hrh1, hrh2 and hrh3 genes are expressed in the gonad of gilthead seabream. 

4. Cimetidine affects cell renewal and steroidogenesis in gilthead seabream gonad.  
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