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Abstract

This paper presents a fully-integrated NEMS resonator together with a compact

built-in CMOS interfacing circuitry. The proposed low-power CCII circuit allows

measuring the mechanical frequency response of the nanocantilever structure in the

MHz range. Detailed experimental results at different DC biasing conditions and

pressure levels are presented for a real mixed electro-mechanical system integrated

through a combination of in-house standard CMOS technology and nanodevice post-

processing based on nanostencil lithography. The proposed read out circuit can be

adapted to operate the nanocantilever in closed loop as a stand alone oscillator.

1 Introduction

Recently, nanotechnology has become a promising approach to integrate both sensors [1,2]

and actuators [3,4] in CMOS technologies. Also, electromechanical devices can save power

consumption and silicon area for specific functions compared to their purely electronic

counterparts, specially in mobile applications. In particular, the possibility of using nano-

electromechanical systems (NEMS) to replace the costly and bulky quartz crystal devices

is of high interest for the implementation of integrated oscillators [5, 6].

However, in order to take advantage of the emerging nanotechnologies, the resulting

nanodevices must be compatible with standard CMOS processing, and specific circuits
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have to be developed either for testing these NEMS or simply for their interfacing within

the final mixed electromechanical system-on-chip.

This paper presents both, a fully-integrated nanocantilever operable at frequencies in

the MHz range, together with a specific low-power and compact CMOS read out circuit for

its experimental characterization and interfacing. From a technological point of view, the

NEMS fabrication is based on nanostencil lithography [7], while from the design side a new

low-power CMOS interface topology is proposed based on second generation current con-

veyors (CCII) [8]. Finally, the mixed electro-mechanical system is fully integrated through

a combination of in-house standard CMOS technology and nanodevice post-processing [9].

Next section introduces a general overview of the mixed NEMS-CMOS system. Then,

the modeling of the nanoresonator device is explained in Section 3, while the novel low-

power CCII CMOS topology for its interface is proposed in Section 4. Experimental results

of the resulting mixed integrated circuit are reported in Section 5, and conclusions are

finally summarized in Section 6.

2 NEMS Read Out Scheme

Schematically, NEMS resonators based on nanocantilevers include the main parts shown

in Figure 1(a). The device consists of a driver, mechanically anchored, and a cantilever

placed very close to the driver and clamped at one end only, so it can freely bend around

the static position at a given oscillation frequency.

[Figure 1 about here.]

Following the ideal read out scheme illustrated in the same Figure 1(a), the fixed driver

is used to bias the required DC voltage Vstatic (typically between 1V and 20V) and to act

as the input terminal for the frequency stimulation Vosc (typically from -30dBm to 0dBm).

On the other hand, the cantilever acts as the output terminal, allowing the read out of the

NEMS resonator output current Ires (typically in the nA range) and the corresponding

voltage signal Vmeas across the load resistor Rload. The resonance frequency fres (typically

from 1MHz to 10MHz) depends on the cantilever material and dimensions, as detailed

later on in Section 3.

Unfortunately, the ideal read out scheme of Figure 1(a) is not feasible in practice

due to the MΩ range values of the NEMS resonator at fres, which limits the allowed

output capacitance Cload far below the pF range. Hence, a built-in interface circuit is
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required. Several implementations based on the passive integration of Ires through Cpar

have been reported in the literature [6, 10, 11]. However, the resulting integration gain

is still strongly dependent on the layout parasitics. In order to solve this drawback, the

alternative strategy of Figure 1(b) is proposed, where a built-in CMOS CCII is inserted in

between the NEMS resonator and the output. This new scheme is equivalent to Figure 1(a)

for Vstatic = Vbias − Vref , but it addresses the previous drawback in two directions: the

new resonator output capacitance Cpar can be easily kept in the sub-pF range as it is no

more related with Cload, and also its effects are minimized by ensuring a constant voltage

bias at the output of the resonator. Furthermore, the proposed CCII interface amplifies

Ires for either external measurement at Vmeas or internal feedback to Vosc (e.g. stand alone

oscillator), as detailed in Section 4.

3 NEMS Resonator

The basis of the fabrication process is described in [10] and consists of post-processing

standard CMOS wafers, where a polysilicon area for nanodevice integration has been re-

served. However, the novelty here is the lithography technique employed for patterning the

nanodevices: an enhanced resolution down to 200nm and full-wafer parallel processing are

obtained [9] by applying nanostencil lithography (nSL) [7]. In this new process, and after

concluding the fabrication of the CMOS circuits, nanodevice areas are selectively patterned

with a 80nm thick aluminum layer by nSL. Subsequent process steps consist on reactive

ion etching of silicon to transfer the aluminum pattern to the polysilicon structural layer,

wafer dicing and silicon oxide wet etching to release the mechanical structure, combined

with a critical point drying process (CO2 dryer) in order to avoid stiction phenomena.

Following this procedure, surrounding CMOS circuits show no degradation of their analog

performance.

As a result of the above CMOS post-processing, the polysilicon structure of Figure 2(a)

is obtained, where W , L, H and D stand for the cantilever width, length, height and gap

to driver, respectively. In our case, typical dimensions for the NEMS device are listed in

Table 1.

[Figure 2 about here.]

[Table 1 about here.]
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According to [12, 13], the use of continuum mechanics is still valid to predict the me-

chanical behavior of resonating structures with cross-sectional areas larger than few nm2.

As a result, the analytical expression of the natural (i.e. without any electrostatic force)

resonance frequency for undamped (i.e. ideal vacuum) lateral flexion is found to be:

fres =
1.015
2π

√
E

ρ

W

L2
(1)

where E and ρ stand for the Young’s modulus and the density of the nanocantilever ma-

terial, respectively. Around the resonance frequency of the considered mode, the nanocan-

tilever moves laterally and its mechanical motion is translated into an electrical signal. In

fact, the read out is based on capacitive detection according to:

Ires =
dQres

dt

= (Cstat + Cmot)
dVosc

dt
+ (Vbias − Vref + Vosc)

dCmot

dt

' Cstat
dVosc

dt
+ (Vbias − Vref )

dCmot

dt

(2)

where Cstat and Cmot are the static plate and the motion capacitances, respectively.

Thus, the NEMS output current is a sum of two contributions: one arising from the static

structure (i.e. Cstat
dVosc

dt ) and the other coming from the nanocantilever motion itself (i.e.

(Vbias−Vref )dCmot
dt ). This second part allows the measure of the frequency response of the

mechanical resonator.

In practice, either due to air environment or other second order effects, the NEMS

resonator can exhibit important losses that translate into a decrease of its quality factor

Q. In these cases, the nanomechanical resonator can be described through a small signal

equivalent RLC model [5], as depicted in Figure 2(b). The main physical parameters of this

model are the cantilever dissipation, mass and elasticity, which are electrically equivalent

to Rres, Lres and Cres respectively, and the static plate capacitance Cstat. In addition,

the cantilever output capacitance Ccant and the fringing coupling to the driver Ccoup are

included here, while the driver own capacitance Cdriv can be neglected according to the

read out scheme of Figure 1(b). It is important to note that Rres depends on the Q

factor, whose theoretical calculation is difficult to obtain. Therefore, Rres is estimated

from experimental data of Q, as illustrated in Section 5.
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4 Current Conveyor Circuit

As already argued, the purpose of the CMOS interfacing circuit in Figure 1 is to ensure a

constant bias at the output of the NEMS resonator and to read out its capacitive current.

In this sense, the compact CMOS circuit shown in Figure 3 is proposed, which consists of

an input low-impedance stage (M1-M4) and an output current scaler (M5-M12).

[Figure 3 about here.]

Firstly, the input low-impedance is achieved by the cascode transistor M4, which is

continuously controlled by the telescopic differential amplifier M1-M3. According to the

advanced EKV MOSFET model [14], the resulting small-signal input resistance at X is

found to be:

rin =

(
1

n + gmg1

gmd1

)
1

gmg4
(3)

where n stands for the subthreshold slope factor. Hence, the error amplifier M1 scales

down rin by the gain factor gmg1

gmd1
compared to the impedance of the single M4 transistor

1
gmg4

. As a result, this stage generates an input voltage VX that follows VY .

Secondly, the NEMS current sensed by M4 is amplified by the geometry scaling factors

M = (W/L)7,8

(W/L)5,6
and N = (W/L)11,12

(W/L)9,10
of the two-stage cascode current mirrors M5-M8 and

M9-M12 biased at Vcasp and Vcasn, respectively. In order to reduce the overall power

consumption, a K/M fraction of the biasing is subtracted before the second amplification

stage.

In conclusion, the proposed circuit qualitatively behaves like a classic CCII- [8], but

with an extra gain from the IX to IZ signals:


IY

VX

IZ

 =


0 0 0

1 0 0

0 −MN 0




VY

IX

VZ

 (4)

In fact, the new CCII- topology introduced in Figure 3 is an improvement of the

input stage [15] in order to allow a wider voltage range for both VX and VY thanks to

the symmetry of the M1 and M2 drain connections. Also, compared to other similar

CCII- evolutions like [16], the proposed circuit saves power consumption by minimizing

the transistor count of the input stage.
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Applying the above circuit model to the general read out scheme of Figure 1, we obtain

the final design equations:

∆Vmeas = RloadMN∆Ires and Vcant ≡ Vref (5)

where Vcant stands for the voltage biasing at the NEMS resonator output. The MOS

device dimensions for the proposed CCII- are listed in Table 2, while the simulated per-

formance is summarized in Table 3 and illustrated in Figure 4 for a typical set of design

values. Thanks to the low transistor count of the proposed CCII-, the CMOS interfacing

circuit is compatible with low-power operation and compact integration.

[Table 2 about here.]

[Table 3 about here.]

[Figure 4 about here.]

5 Experimental Results

Following the proposals of Sections 3 and 4, a compact 1.5MHz NEMS resonator together

with the CMOS interfacing circuit has been integrated through the in-house standard

CMOS double polysilicon technology and the full-wafer post-processing steps based on

nanostencil lithography described in [9]. As shown in Figure 5, the resulting size of the com-

plete mixed electromechanical circuit without pads is around 800µm×400µm (0.32mm2).

Since the in-house CMOS technology is a 2.5µm lithography process, a considerably smaller

implementation can be obtained using modern submicron CMOS technologies.

[Figure 5 about here.]

Taking advantage of the built-in interfacing circuit, the NEMS resonator has been

characterized. In this sense, the typical transfer function of the nanoresonator measured in

vacuum is depicted in Figure 6. As it can be easily seen, the NEMS device exhibits a clear

and narrow mechanical resonance around fres=1.5MHz, which matches with theoretical

estimations within ±5%, showing important magnitude losses outside this band. The

mechanical Q factor is estimated around 8500 in these vacuum conditions. All magnitude

transfer functions in this section are normalized to RloadMN/Rres. However, in case of

fully integrated closed loop operation (e.g. stand alone oscillator), this attenuation factor

7



can be compensated up to 0dB by choosing larger M , N and Rload design values, as the

CCII- load capacitance is then Cdriv � Cload.

From the Q factor and the Vbias-Vref DC biasing of Figure 6, the model parameters

of Table 4 are deduced. The validity of the circuit model described in Section 3 has been

tested for different cantilever widths, thicknesses and cantilever/driver gaps. Apart from

extracting the equivalent RLC parameters, the interfacing CMOS circuit also allowed the

experimental study of the nanoresonator under different pressure and biasing conditions.

[Figure 6 about here.]

[Table 4 about here.]

In the first case, different environment pressure levels were applied in Figure 7, returning

very good quality factors at vacuum levels below 10Pa, as illustrated in Figure 8. The most

pronounced evolution occurs above 10Pa, where the Q factor can be enhanced by three

orders of magnitude, while it tends to saturate not far below 10Pa. These results confirm

that viscous damping plays a key role regarding the value of the quality factor of nano and

microresonators, whereas at low pressure intrinsic loss mechanisms dominate.

[Figure 7 about here.]

[Figure 8 about here.]

Finally, different biasing levels has been tested in Figure 9 using the same circuit. These

results fit the dependence of the resonance frequency on the square of the DC biasing, as

depicted in Figure 10. The negative slope here corresponds to a classical spring-softening

case, which means that the electrostatic effect dominates over mechanical stiffening when

applying an electrostatic driving force.

[Figure 9 about here.]

[Figure 10 about here.]

6 Conclusions

A compact NEMS resonator together with its CMOS interfacing circuitry has been success-

fully integrated and experimentally characterized. The new low-power CCII read out cir-

cuit allows detailed measurements in the MHz range of the nanodevice for model extraction
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under different pressure and DC biasing conditions. In this sense, the proposed interfacing

circuit can be easily adapted (e.g. choosing a larger value for Rload and scaling factors) to

allow the close loop operation of the nanocantilever as a mixed electro-mechanical stand

alone oscillator.
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Parameter Value Units

W 260 nm
L 14.5 µm
H 570 nm
D 820 nm

Table 1: Physical dimensions of the NEMS resonator of Figure 2.

24



Transistor W
L [µm

µm ]

M1-2 4× 30/5
M3 2× 15/10
M4 30/3
M5-6 10/5
M7-8 M × 10/5
M9-10 50/5
M11-12 N × 50/5

Table 2: Device dimensions for the CCII- of Figure 3
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Parameter Value Units

Transresistance 70 KΩ
Bandwidth 4.5 MHz
In-band input impedance <3 KΩ
In-band input current noise 0.5 pA/

√
Hz

Supply voltage 5 V
Current consumption 185 µA

Table 3: Overall performance of the read out circuit for Ibias=8µA, M=N=10, K=9,
Rload=700Ω and Cload=30pF.
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Parameter Value Units

Rres 84 MΩ
Lres 76 kH
Cres 0.15 aF
Cstat + Ccoup 90 aF
Ccant <50 fF

Table 4: Equivalent RLC parameters extracted from the experimental results of Figure 6.

27


