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Abstract 

Experiments performed in actively proliferating plant cells both in space and simulated 

microgravity have evidenced a common effect: cell proliferation appears enhanced whereas 

cell growth is depleted. Coordination of cell growth and proliferation, called 

meristematic competence, is a major feature of meristematic cells and its disruption may 

lead to important alterations in the developmental pattern of the plant. Auxin is known 

to be a mediator of the transduction of the gravitropic signal and a regulator of the rates of 

growth and proliferation in meristematic cells, as well as of their further differentiation. 

Therefore, gravity sensing, gravitropism, auxin levels and meristematic competence are 

mutually interrelated. However, our experiments in simulated microgravity, using both 

mechanical and magnetic levitation technologies, have revealed that this interdependence 

is neither strict nor univocal and may include additional factors and mechanisms. Available 

data indicate that altered gravity may affect cell growth and proliferation by 

mechanisms alternative to the transduction of the gravitropic signal perceived by 

columella cells in the root tip. These mechanisms would include gravity sensing 

independent from statolith displacement and transduction mediators other than polar 

auxin transport.  
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TEXT 

The study of the effect of gravity on biological functions and mechanisms, e.g. those 

related to plant development, is largely facilitated by avoiding the persistent effect of 

Earth gravity. For this purpose, it is necessary to perform real microgravity experiments 

in orbiting space facilities such as the International Space Station (ISS), since this is the 

only way to obtain durable good quality microgravity1. However, access to the ISS is 

compromised in quantity and quality of the experimental approaches that can be developed 

in each scientific mission. Alternatively, Ground Based Facilities (GBF) can be used on 

ground to achieve simulated microgravity conditions using both mechanical/inertial 

technologies such as the one used in 2D-clinostat and random positioning machines 

(RPM)2, or magnetic levitation facilities3, but risking that the observed effect is the sum 

of the microgravity effects and the artefacts or side-effects of the simulation technology 

involved1. 

A previous experiment was designed in our laboratory to be performed in real microgravity 

conditions (during the ISS Cervantes mission in 2003), in parallel with a simulated 

microgravity experiment (RPM) and with a ground 1g control. Cell proliferation and 

growth in root meristematic cells were analyzed in the different samples. In both real 

and simulated microgravity, a similar enhanced rate of cell proliferation was revealed, 

accompanied by a reduction of ribosome biogenesis per cell, compared to 1g controls4; 

ribosome biogenesis is generally recognized as a reliable indicator of cell growth in 

highly proliferative meristematic cells5, 6. These were relevant findings, since the 

alteration of cell growth and proliferation in the root meristem (the so-called 

“meristematic competence”7) may have consequences at the level of development and 

shaping of the whole plant8. Furthermore, auxin regulation may link these cellular 

alterations in the meristem with the gravitropic signal perceived by columella cells in 
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the root tip. When the environmental gravity conditions change, a transduction cascade 

results in the modification of the levels and distribution of auxin throughout the root9, 10. 

Auxin is a phytohormone that influences multiple aspects of growth and differentiation 

in plants, among which the coordination between cell growth and cell division. Low 

levels of auxin induce cell elongation, enlargement and differentiation; whereas high 

levels of auxin stimulate cell proliferation and cell cycle progression8, 11. As a 

consequence, the role of auxin as a mediator of the maintenance of meristematic 

competence under normal gravity conditions would be modified in response to the 

change in the environmental gravity conditions9. 

 

The strict link between cell growth and cell proliferation is uncoupled by the 

synergistic contribution of both altered gravity and high energy magnetic fields 

required for levitation 

The results of a magnetic levitation experiment with a similar design to the Cervantes 

Mission one, but involving some more complexity, have recently been published12. The 

novel aspects were the use of the transgenic line CYCB1::GUS, allowing the in situ 

detection of the expression of the cyclin B1 gene, and the sequential character of the 

study, comprising two sampling points in the seedling development, namely at two and 

four days after seed hydration. Apart from this, the magnet architecture and the properties 

of the applied magnetic field allowed us the use of three different positions for placing 

the samples, each one characterized by a different level of effective gravity (g*). The 

gravity levels used were 0g*, 1g* and 2g*. For each position and for each sampling 

time, the analysis consisted of biometrical estimations of the seedling and root length, 

quantitative measurements at the cellular level, including number of cells per millimeter 

in specific cell files, in order to get an estimate of the cell proliferation rate, quantitative 
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densitometric estimations of the expression of cyclin B1 gene, and morphometric, 

ultrastructural and immunocytochemical study of the nucleolus, in order to know the rate 

of ribosome biogenesis, which, as previously indicated, is a fully reliable marker of cell 

growth in the root meristem. All these results were in agreement with the previous 

findings in spaceflight4, thus validating the magnetic levitation technology as a 

microgravity simulation facility. Certainly, the high magnetic field responsible for the 

gravity alteration perceived by samples was capable of partially masking some of the 

levitation effects. In addition, parallel reports analyzing cell growth and proliferation in 

seedlings exposed to simulated microgravity and hypergravity conditions obtained by 

mechanical means have been released13 with similar conclusions to those obtained from 

spaceflight and magnetically levitated samples. 

 

Magnetic levitation, polar auxin transport and gravitropism 

An additional methodological novelty of the magnetic levitation experiment, in comparison 

to previous studies, was the use of the DR5::GUS strain to reveal the auxin distribution 

pattern in the root tip in the different conditions existing inside and outside the magnet. 

In samples exposed to magnetic levitation, auxin distribution always appeared abnormal 

at all three levels of effective gravity12, with a pattern resembling the distribution observed 

after drug-induced inhibition of polar transport14 (Fig. 1, first row). The same staining 

pattern was observed under RPM-simulated microgravity, but not during mechanical 

hypergravity exposure to 2g13 (Fig. 1, second row).  

To understand the different effects of the mechanical and magnetic methods of altering 

gravity on the polar auxin transport, we should consider two important limitations of 

magnetic levitation, when biological materials are exposed to it: firstly, this technology 

requires magnetic fields of very high magnitude (around 12 Tesla) concentrated in a 
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small area to maximize magnetic field gradient. This magnetic field itself leads to 

effects on cell components, as observed in the 1g* samples in which gravity is not 

compensated, but the high energy magnetic fields are still present. The result is that 

polar auxin transport is affected by this high energy magnetic field. However, as shown 

in Fig. 1, the effect is maximized in the 0g* position, associated with other alterations in 

cell proliferation and cell growth parameters; in this position, samples are supporting a 

synergy between magnetic field and microgravity simulation12. Secondly, diamagnetic 

levitation acts at the molecular level and depends on diamagnetic properties and density 

of each material; since the setting of the 0g* position within the magnet corresponds to 

the diamagnetic levitation of water, there will be different materials in the cells which 

will not levitate in these conditions. Specifically, this is the case of starch granules 

which are the main component of statoliths, the starch-based organelles in the columella 

cells responsible of the gravitropism15. The consequences of this fact are multiple: in 

general, the different susceptibility to the magnetic field of various organelles may lead 

to an overall cellular readjustment, affecting differentially to the various cellular 

components; in particular, if statoliths do not levitate under water levitation conditions, 

seedlings will show conventional gravitropic responses at the 0g* position in the 

magnet. This means that disruption of meristematic competence in root meristematic cells 

resulting from magnetic levitation-induced effective microgravity is independent of statolith 

movements in columella cells and of gravitropic alterations in the root growth, but it is 

associated with auxin delocalization in the root tip. 

An additional interesting consideration that can be extracted from this result is that the 

behavior of statoliths in the 0g* position in the magnet could resemble the response of 

these organelles to a scenario of partial (fractional) gravity. The magnetic field exerts a 

force on statoliths in the opposite sense to the gravity force, which is not capable of 
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totally counteracting the Earth gravity. More investigation is needed to know exactly the 

resulting g* received by statoliths in these conditions and to compare the situation in the 

magnet with a real or simulated environmental scenario including a similar gravity 

level.    

 

The complex mechanism of transduction of gravity mechanosignals: different 

systems and different mediators 

In a previous paper in this journal, published as an addendum to the article reporting the 

results of our first spaceflight experiment, we stressed the crucial role played by auxin 

as the key mediator between the altered gravitational mechanosignal and the response of 

root meristematic cells involving the disruption of meristematic competence9. Now, the 

main lesson learned from our experiment on magnetic levitation, apart from the 

confirmation of the effect of gravity alteration on meristematic cells, is that the 

mechanisms of sensing and transduction of this signal in the root are more complex than 

initially considered and may involve different players in addition to auxin.  

In any case, this novel assumption, experimentally supported, should not lead us to 

minimize the central role played by auxin. As discussed in our previous paper, polar 

auxin transport is an unequivocal target of the transduction of the gravitropic signals 

originated in the root cap cells when they are converted from mechanical into 

chemical16, 17; moreover, auxin controls the continuous activity of growth and 

proliferation in meristematic cells, and its distribution in roots sets up distinct zones for 

cell division, cell expansion or elongation and cell differentiation and determines the 

balance between them18, 19. However, in our magnetic levitation experiment, we have 

shown that it is possible to find alterations in cellular functions induced by a gravity 

change which has not been perceived by the statolith-containing columella cells of the 
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root cap. Actually, in both plant and animal cells it has been reported the perception of 

mechanical signals by cells not apparently specialized in gravity sensing20-22 and, in 

several laboratories, different research groups, including us, have reported genomic and 

proteomic effects of an altered gravity environment (even of spaceflight) on 

Arabidopsis callus cell cultures23-27.  

In the case of the magnetic levitation, the response at the meristematic cell level is 

associated to an altered polar auxin transport; this means that there should be an 

intermediate factor capable of linking the signal sensed in the cell by the diamagnetic 

levitation of water and the alteration of the polar auxin transport. In turn, cell cultures 

lack both, gravitropic signals induced by statolith movements and polar auxin transport 

However, gravity alteration is sensed by cells and results in cellular and molecular 

effects, also including disruption of meristematic competence (unpublished results). 

Therefore, in this case, a factor (single or multiple) should be found capable of linking 

the gravity alteration signal and the regulation of cell growth and proliferation, without 

any involvement of any change of the auxin levels. 

 

The conclusion of this analysis is that gravity sensing may or may not involve statolith 

movement and, consequently it may or may not produce gravitropic effects; 

furthermore, the transduction of the signal may or may not affect the polar auxin 

transport, in order to induce in meristematic cells the alterations in growth and 

proliferation capable of disrupting meristematic competence. It is conceivable that 

different mechanisms of gravity sensing and signal transduction (within a cell or 

throughout cells) involving different molecular and cellular players and mediators may 

exist in different biological systems and even co-exist in a biological model (plants or 

cell cultures; real or simulated microgravity; mechanical or magnetic simulation, see 
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Fig. 2). In fact, it has been proposed that cells outside the cap root area are capable of 

producing a partial gravitropic response in maize28, 29. Consequently, sensing of altered 

gravity and its downstream effects involve multiple cell types and several different intra 

cellular mechanisms.  

 

An interesting example of a molecular factor that could be inserted in this complex 

model is casein kinase 2 (CK2). This highly conserved ubiquitous protein kinase plays 

critical roles in a large variety of processes of animals, plants and yeast. In plants, it has 

been shown to participate in the regulation of different developmental pathways, as well 

as in mechanisms of stress response30. Recently, a role of CK2 in the regulation of polar 

auxin transport has been reported31, 32, resulting in an enhanced gravitropic response of 

mutant plants depleted in CK2 activity, which re-orient their root growth after rotation 

towards the new gravity vector faster than wild-type plants32. Independent of this auxin-

related function, CK2 is known to play a major role in the regulation of the cell cycle at 

different levels, specifically in the G2/M transition33 and also in ribosome biogenesis, 

since phosphorylation of nucleolin by CK2 is necessary for a normal processing of pre-

ribosomal precursors34, 35. Therefore, although there is no direct evidence of the 

involvement of CK2 in the response to gravity alteration, the known functions of this 

essential protein kinase appoint it as a suitable candidate for this functional role. The use 

of the CK2 negative mutant in experiments of real or simulated microgravity could help 

in discerning this problem. In any case, the functions of CK2 in auxin transport, cell 

cycle and ribosome biogenesis are a good example of the suitability of a model 

involving different mechanisms of gravity sensing and different signal transduction 

pathways to produce the same final result, namely the disruption in the cell proliferation 

and cell growth (Fig. 2).  
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Future prospects 

The use of different altered gravity conditions to better understand the mechanisms of the 

disruption of meristematic competence has been successful, but providing more questions 

that need to be answered with more experiments. Apart from the specific experiment 

mentioned above, in order to test the effective involvement of CK2 in the process, we 

would need, in general, to keep exploring altered gravity effects in cell cultures, trying 

to uncover how many particular mechanisms of the alteration of meristematic 

competence are acting, and their dependence (or not) on auxin and/or on gravitropism-

specialized organelles. On the other hand, further spaceflight missions are required to 

confirm these findings by using different mutants affecting auxin-responsive elements 

as well as cell proliferation and cell growth markers, e.g., nucleolin mutants. In the 

balance between ground-based facilities and spaceflight experiments in the International 

Space Station we expect to obtain further developments to be extrapolated to 

sustainable agriculture in suboptimal environmental conditions including life support 

systems for space exploration in the forthcoming years. 
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Figure Legends 

Figure 1 

Auxin distribution in root tips revealed by GUS staining.  

The use of the reporter gene line DR5::GUS allowed the microscopical visualization of 

the auxin distribution. Whole mount preparation of roots were stained and observed by 

light microscopy. In the upper row, microscopical images of DR5::GUS-stained root 

meristems from seedlings grown for 4 days in the magnetic levitation facilities;12 From 

left to right: samples from the 1g external control, 0g*, 1g* and 2g* positions in the 

magnet. In the lower row, the same approach was used in experiments using 

mechanical/inertial facilities for altered gravity simulation. From left to right: samples 

from the 1g external control and samples grown under simulated microgravity in the 

Random Positioning Machine (RPM), followed by the 1g external control and samples 

grown under hypergravity (2g) in the long-diameter centrifuge (LDC).13 The GUS 

staining shows the distribution of auxin in the root tip. The area limited by dotted lines 

in each image corresponds to the quiescent center. Two patterns of staining can be 

distinguished in the images: the first one comprises the quiescent center and the 

columella and can be found in images corresponding to 1g controls and in the 2g LDC-

grown sample. The second pattern shows the same stained areas, but the staining 

extends to the whole root tip, including at least a part of the root meristem, with a faint 

extension towards the central cylinder of the root. These patterns have been described in 

the literature as corresponding, respectively, to normal and drug-inhibited polar auxin 

transport14 Bars indicate 50 µm. 
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Figure 2 

Schematic model of the main factors and functional processes playing a role in the 

regulation of the functionality of meristematic cells by environmental gravity.  

Solid arrows represent experimentally supported connections, whereas dashed arrows 

indicate suitable processes, compatible with experimental data, but still pending of 

further investigation for their demonstration. The scheme is based on a previously 

published model9. Sensing of the parameters of the gravity vector (magnitude, direction) 

may occur in different cellular types of the root by different mechanisms. In cells of the 

columella, in the root cap, gravity induces displacement (sedimentation) of statoliths, 

which is a requisite for establishing the gravitropic growth of the root. In fact, those 

environmental alterations which do not change the statolith position do not result in 

gravitropic changes. Gravitropic signals are transduced from the root cap to other 

regions of the root, resulting in alterations of the polar auxin transport. The mechanism 

of transduction of this signal is not totally understood and not all the mediators of this 

process have been experimentally identified. However, it is well known that the levels 

of auxin in root meristematic cells regulate the rates of cell growth and proliferation and 

establish the close coordination of these functions, that is, meristematic competence. In 

root cells other than columella cells, gravity can be sensed by mechanisms different from 

the statolith sedimentation. This alternative mechanism of gravity sensing can also be 

functional in proliferating in vitro cultured cells. Interestingly, in absence of statolith 

displacements, the effects of gravity alteration on cell growth and proliferation also 

produce the disruption of meristematic competence. Furthermore, this effect may occur 

in absence of any alteration of auxin levels, as it is the case of cells in culture. Whereas 

cell wall has been proposed as a gravity receptor36, mediators of the transduction of 

gravity mechanosignal sensed in this way are experimentally unknown. The protein 
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kinase CK2 is proposed as a candidate to be part of this scheme in view of the 

experimental findings that put it in close relationship with some physiological and 

cellular processes involved, such as polar auxin transport, ribosome biogenesis and cell 

cycle. 

 



Figure 1

Figure 2


	PSB_merist-compet_FJMedina.pdf
	Figures.pdf

