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Dynamical polaron Ansatz: A theoretical tool for the ultrastrong-coupling regime of circuit QED
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In this work we develop a semianalytical variational Ansatz to study the properties of few-photon excitations
interacting with a collection of quantum emitters in regimes that go beyond the rotating-wave approximation. This
method can be used to approximate both the static and dynamical properties of a superconducting qubit in an open
transmission line, including the spontaneous emission spectrum and the resonances in scattering experiments.
The approximations are quantitatively accurate for rather strong couplings, as shown by a direct comparison to
matrix-product-state numerical methods, and provide also a good qualitative description for stronger couplings
well beyond the Markovian regime.
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I. INTRODUCTION

The impressive progress in coupling single photons to
single emitters, both in the microwave [1] and in the optical
domains [2], allows us to talk about an emerging field
of propagating-photon quantum technology. This field has
already demonstrated new devices that predict interesting
applications, such as few-photon transistors [3,4], nonclas-
sical states of the radiation field [5,6], or photon-mediated
interactions [7,8].

The development of these technologies has been accom-
panied by numerous analytical and numerical techniques to
model light-matter and light-mediated–matter interactions.
These include single-photon single-qubit effective boundary
conditions [9,10], input-output theory [11,12], and scatter-
ing theory [13–15]. Nonetheless, the degree of control of
some methods, or their computational generality for arbitrary
numbers of photons, remains an open problem. Moreover,
all these methods are restricted to the rotating-wave approx-
imation (RWA) regime, in which counterrotating terms are
neglected. The RWA breaks down, for instance, when the
spontaneous emission rate of a two-level quantum emitter
γ becomes comparable to its energy gap � ∼ γ . Such deep
ultrastrong coupling is now within experimental reach in the
superconducting world [16–19] and we expect that it will also
become feasible in the near future in experiments with single
emitters in contact with optical photons and plasmons.

The microscopic Hamiltonian describing light-matter in-
teractions can be formally mapped, in any coupling regime,
onto the so-called spin-boson model [20]. Hence, in dealing
with strong and ultrastrong interactions, optics can look into
condensed-matter physics for inspiration, generalizing meth-
ods that work with the spin-boson Hamiltonians and adapting
them in order to describe few propagating photon excitations.
Some of these methods, such as the noninteracting-blip
approximation [20] or Wilson’s numerical renormalization
group [21], focus directly on the dynamics of the emitters,
such that one cannot address the scattering of photons. Other
methods, such as the sophisticated numerical techniques based
on the density-matrix renormalization group (DMRG) or
matrix-product states (MPSs), have a greater potential in
dealing with these effects [19,22,23], at the expense of a higher
computational cost.

In this work we study a third family of methods based
on the Lang-Firsov transformation for the polaron problem

[24]. These methods consist of a variationally optimized
unitary transformation that displaces the electromagnetic field
based on the state of the two-level emitter and have already
provided valuable results for the equilibrium properties of
the spin-boson model [25–27]. We introduce a dynamical
polaron Ansatz, which is a time-dependent variational wave
function describing the two-level emitter at zero temperature,
together with the scattering states of the photons. We thus
upgrade this family of variational methods to address relevant
nonequilibrium problems, such as the spontaneous emission or
the ultrastrong spectroscopy of the emitter. Additionally, these
dynamical Ansätze lead to analytical results in certain regimes,
which are valuable to develop a physical intuition about these
complex nonequilibrium effects and can be straightforwardly
generalized to more complex situations with multiple quantum
emitters coupled to propagating photons. The numerical and
analytical methods are simpler than full MPS simulations and
a comparison with these shows good qualitative and even
quantitative agreement up to very large coupling strengths
γ ∼ 0.4� in the Ohmic spin-boson model. This shows the
potential of these conceptually and technically simpler tools
for analyzing and designing future experiments in propagating-
photon quantum technologies.

The outline of this work is as follows. In Sec. II we
introduce the spin-boson model as we use it to describe light-
matter interaction of a few two-level emitters, also referred
to as qubits, with a low-dimensional photonic waveguide
or microwave transmission line. In Sec. III we describe
different variational Ansätze. We start with two variational
Ansätze based on the Lang-Firsov transformation describing
a static and a time-dependent wave function with up to one
hybrid excitation with variational weights in the qubits or
in the photonic modes. We also describe briefly the MPS
methods that we compare with ours. In Sec. IV we apply
all these methods to the study of a single quantum emitter
in the photonic line and its interaction with the propagating
photons. We show how the Ansatz properly describes the qubit
polarization in the open field, the frequency renormalization,
and also the transmission and reflection coefficients for an
incoming low-intensity photonic wave packet with a broad
distribution among the possible photonic modes, even in the
ultrastrong-coupling regime. Finally, in Sec. V we summarize
our work and discuss our conclusions and possible extensions
to treat multiple quantum emitters.
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II. SPIN-BOSON MODEL

The Hamiltonian describing a collection of quantum emit-
ters interacting with a one-dimensional electromagnetic (em)
field in the ultrastrong-coupling regime corresponds to the
well-known few-impurity spin-boson model [20,28], unitarily
transformed to a rotated spin basis, namely,

H =
∑

i

�i

2
σ z

i +
∑

k

ωka
†
kak +

∑
ik

σ x
i (gika

†
k + H.c.).

(1)
Here a

†
k and ak are bosonic operators that create and annihilate

a quantum of the em field with frequency ωk labeled by k (e.g.,
in three dimensions, k contains the photon wave vector and its
polarization). The emitters are modeled as two-level atoms,
also referred to as qubits or spins, σ z

i = |↑i〉 〈↑i | − |↓i〉 〈↓i |,
σ+

i = |↑i〉 〈↓i |, σ−
i = |↓i〉 〈↑i |, and σx

i = σ+
i + σ−

i , and we
have introduced the transition frequency �i .

In the above Hamiltonian, the atom-photon interaction is
defined in terms of the couplings gik , which depend on the
positions of the qubits xi . As customary in the quantum theory
of radiation [29], the em field acts as a bosonic reservoir that
modifies the dynamics of the quantum emitters depending on
the distribution of the atom-photon couplings for different
frequencies, namely, the spectral density

Ji(ω) = 2π
∑

k

|gik|2δ(ω − ωk). (2)

For instance, when the atom-photon couplings are weak and
the correlations of the em bath decay sufficiently fast, a
single excited qubit in contact with the em field will decay
exponentially with a rate γi = Ji(�) [30], while a pair of
qubits will show collective effects due to the exchange [31] or
the spontaneous emission [32] of em photons.

We consider both discrete and continuous descriptions of a
one-dimensional em reservoir, which model the photons in a
transmission line.

(i) Discretized spin-boson model. A transmission line of
length L can be divided into N segments of length δx = L/N ,
which leads to a discretized momentum kn = 2π

L
n, with

n ∈ {0, ± 1, . . . , ± N/2}. The boson frequencies ωk → ωkn
,

which arise due to the couplings between the transmission line
segments, and the spin-boson couplings gik → gikn

correspond
to

ωkn
= ωc

√
2 − 2 cos

(
2πn

N

)
, gikn

= g

√
ωkn

2L
ei(2π/nL)xi .

(3)
Here we have introduced the cutoff frequency ωc = v/δx,
which increases as the number of segments is raised. In the
continuum limit N → ∞ and for energies well below the
cutoff, one recovers the linear dispersion ωk ∼ v|k|, with v

playing the role of the speed of light in the transmission line.
Let us note that this discretized model will be used to perform
numerical calculations.

(ii) Continuum spin-boson model. Alternatively, we can
model the transmission line directly in the continuum limit
δx → 0, where k ∈ R, and the high-frequencies are exponen-

tially cut off by substituting

ωk = v|k|, gik = ge−ωk/2ωc

√
ωk

2L
eikxi . (4)

Let us note that the cutoff in this model can be set to any
desired value and the dispersion is assumed to be linear for all
frequencies. This continuous model will be exploited to derive
a number of analytical predictions.

Both models of the bosonic bath lead to an Ohmic spectral
density at low-enough frequencies ω 
 ωc, which is identical
for all qubits, namely,

J (ω) := Ji(ω) ≈ παω, α = |g|2
πv

, (5)

where α is a dimensionless spin-boson coupling strength that
plays an important role. In the context of the single-impurity
spin-boson model, ultrastrong couplings lead to the so-called
localization-delocalization quantum phase transition α = 1
[33,34] and the coherent-incoherent dynamical crossover at
α = 1/2 [35,36].

As mentioned above, we explore the consequences of such
effects in the static and dynamical properties for a few quantum
emitters (1) by using two types of variational Ansätze.

(i) Polaron variational Ansatz. This ansatz was originally
developed to understand the ground-state properties of the
Kondo effect through its connection to the spin-boson model
[25,26] and has the nonvariational Lang-Firsov transformation
as its precursor [24]. The polaron ansatz builds on a variational
family of spin-dependent coherent states and correctly captures
the quantum phase transition at α = 1. As shown in [27],
the polaron method also agrees with some of the finite-
temperature properties obtained by other methods [20] and
can be combined with Markovian master equations to study
the spin dynamics, although the predicted coherent-incoherent
crossover does not coincide with α = 1/2. In this work
we introduce a dynamical polaron Ansatz that will allow
us to overcome these limitations and to develop a simple
analytical understanding of how the archetypical quantum-
optical properties of (1) predicted within the RWA [30–32]
are modified in the ultrastrong-coupling regime. Moreover,
this Ansatz will allow us to address the dynamics of the
propagating photons, which is extremely important given their
experimental accessibility.

(ii) Matrix-product-state variational Ansatz. Introduced
in Ref. [37] and connected to the DMRG [38] for one-
dimensional quantum systems in [39], MPS Ansätze have
the nonvariational valence-bond states as their precursor [40].
The MPS Ansatz is defined as the product of a set of
matrices, whose number is determined by the structure of the
problem, and its size determines the accuracy of the variational
procedure. As explained below, in this work we use static
and time-dependent MPSs to study the spin-boson model
in frequency space, generalizing static and time-dependent
techniques introduced in [19].

The comparison between the quasiexact numerical Ansatz
of MPSs and the dynamical polaron Ansatz applied to Eq. (1)
will allow us to assert the regimes of validity of the latter.
In our effort to make the polaron Ansatz more familiar to
the quantum optics community interested in going beyond
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the weak-coupling RWA regime, we determine the regimes of
validity of its simpler analytical predictions.

III. VARIATIONAL METHODS FOR THE
ULTRASTRONG-COUPLING REGIME

In this section we describe in detail the above variational
techniques that can be used to study both static and dynamical
effects for a collection of quantum emitters interacting with a
one-dimensional (1D) em field through the spin-boson model
(1). We describe the general approach and leave its application
to particular settings for the following sections.

A. Static polaron Ansatz

The static polaron Ansatz is a variational method to
approximate the equilibrium properties of a single-impurity
spin-boson model, which has been applied to the Ohmic
[25–27] and sub-Ohmic [41] cases with significant success,
in particular in light of its considerable simplicity. It can be
improved by enlarging the number of variational parameters
[42] and generalized to the two-impurity spin-boson model
[43].

The static Ansatz can be defined in terms of a variational
polaron transformation, which captures the relevant correla-
tions between the spins and the bosons and acts on a product
state where the spins and the bosons are not entangled. For an
arbitrary number of spins Ns, it can be defined as

|	P
g.s.[fik,cσ ]〉 = U

†
P[fik] |0〉 ⊗ |ψs[cσ ]〉 . (6)

Here we have introduced the polaron unitary transformation

UP[fik] =
⊗
i,k

eσx
i (f ∗

ika
†
k−H.c.), (7)

where [fik] is the set of all variational polaron parameters
fik ∈ C. The static polaron ansatz (6) is defined in terms of
the global bosonic vacuum |0〉 and the variational spin state

|ψs[cσ ]〉 =
∑

σ∈{↑,↓}Ns

cσ |σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σNs〉 , (8)

which depends on the set [cσ ] of all variational spin parameters
cσ = cσ1,σ2,...,σNs

∈ C, fulfilling
∑

σ |cσ |2 = 1.
The variational minimization over the spin-boson Hamilto-

nian (1), defined as

εP
g.s. = min[fik,cσ ]{〈	P

g.s.[fik,cσ ]| H |	P
g.s.[fik,cσ ]〉}, (9)

can be expressed in terms of a simpler minimization

εP
g.s. = min[fik,cσ ]{〈ψs[cσ ]| Hs[fik] |ψs[cσ ]〉}, (10)

which requires diagonalizing the following spin Hamiltonian
instead of the original spin-boson model:

Hs[fik] =
∑

i

�i

2
e−�i [fik ]σ z

i +
∑
i,j

Jij [fik]σx
i σ x

j . (11)

This spin Hamiltonian corresponds to a long-range version
of the paradigmatic Ising model in a transverse field [44].
This model displays qubit frequencies that get exponentially

renormalized through

�i[fik] =
∑

k

fikf
∗
ik + c.c. (12)

and photon-mediated Ising interactions with strengths

Jij [fik] =
∑

k

(ωkfikf
∗
jk − gikf

∗
jk − g∗

ikfjk). (13)

Since the variational energy is a quadratic functional of
the spin parameters, their minimization is simple and can be
carried out analytically for the single- or the two-impurity
problem, which fixes the spin parameters in terms of the
polaron ones. Accordingly, the problem reduces to function
minimization and yields the optimal parameters [f 


ik,c


σ ],

which are denoted by a star superindex and will be used in
the following sections. For more than two impurities, since
the Ising interactions can have any particular pattern, an
analytical solution cannot be obtained in general and one must
resort to Lanczos methods to extract the ground state of the
spin Hamiltonian, which can be efficiently implemented for
reasonably high Ns.

B. Dynamical polaron ansatz

Although understanding the static properties of the spin-
boson model is already a nontrivial problem, in particular for
a few impurities, a considerably more challenging task is to
develop an accurate description of nonequilibrium effects and
a number of techniques have been put forth over the years for
that purpose [20]. As already mentioned in the Introduction,
most of these techniques can only address qubit observables,
which is consistent with situations where the bosonic bath
cannot be measured. However, with the advent of the new
propagating-photon quantum technologies, this situation has
been reversed, as the photonic properties of the setup are now
accessible. The goal of this section is to introduce an accurate
yet simple variational Ansatz that captures these dynamical
effects for both the emitters and the photons.

In order to introduce such a dynamical polaron Ansatz, let
us revisit the spin Hamiltonian in Eq. (11), specified for the
optimal parameters [f 


ik,c


σ ] obtained with the static Ansatz.

The eigenstates of this Hamiltonian contain, in addition to
the variational ground state |ψg.s.〉 := |ψs[c


σ ]〉, a number Ne

of spin excitations {|ψs
e 〉} with energies {εs

e} that can be
excited if the qubits absorb a photon from the em environment.
Inspired by our previous works on different quantum many-
body models [45], we can define a dynamical variational
ansatz by creating such spin and photonic excitations over
the polaron-transformed ground state, namely,∣∣	P

exc[αs(t),αk(t)]
〉 = U

†
P[f 


ik]Wsp[αs(t),αk(t)] |0〉 ⊗ |ψg.s.〉 ,

(14)
where we have introduced an operator that creates the relevant
spin-photon excitation

Wsp[αs(t),αk(t)] =
Ne∑
s=1

αs(t)
∣∣ψs

e

〉 〈ψg.s.| +
∑

k

αk(t)a†
k,

(15)
with a certain set [αs(t),αk(t)] of time-dependent variational
parameters αs(t) ∈ C,αk(t) ∈ C.
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By rearranging these parameters in a complex-valued
vector α(t) = [α1(t), . . . ,αNe (t),αk1 (t),αk2 (t), . . .]t fulfilling
α†(t)α(t) = 1, we can construct a Lagrangian that leads to
a time-dependent variational principle [46], namely,

LP[α†,α] = i

2
(α†∂tα − ∂tα

†α) − EP[α†,α], (16)

where we do not write the explicit time dependence to
ease notation α = α(t). Here we have introduced the energy
functional associated with the spin-boson Hamiltonian (1),
namely,

EP[α†,α] = 〈
	P

exc[α]
∣∣ (H − εP

g.s.

) ∣∣	P
exc[α]

〉
, (17)

which is a quadratic functional of the variational parameters.
Building a variational action from the above Lagrangian,
the principle of minimal action [46] leads to a system of
Euler-Lagrange equations that describes the dynamics of the
system restricted to the region of the Hilbert space spanned
by the states parametrized by Eq. (14). The accuracy of this
variational method thus depends on our physically motivated
choice of the dynamical Ansatz (14) and will be benchmarked
by comparing it to well-known properties for qubit observables
of the single-impurity spin-boson model [20] and to our results
of photon scattering using time-dependent MPS simulations.

For the simple parametrization (14), the Lagrangian leads
to a linear system of first-order differential equations i∂tα =
HPα. Here the matrix HP can be obtained by evaluating the
matrix elements

〈0| ⊗ 〈ψg.s.| W †
sp[α]

(
HP[f 


ik] − εP
g.s.

)
Wsp[α] |0〉 ⊗ |ψg.s.〉

(18)
for the polaron-transformed spin-boson Hamiltonian

HP[f 

ik] =

∑
i

�i

2

(
σ z

i cos �i[f


ik] − σ

y

i sin �i[f


ik]

)

+
∑

k

ωka
†
kak +

∑
i,j

Jij [f 

ik]σx

i σ x
j

+
∑
ik

σ x
i [(gik − ωkf



ik)ak + H.c.], (19)

which depends on the operator

�i[f


ik] = −2i

∑
k

(f 

ikak − H.c.). (20)

By diagonalizing the matrix HP, one finds the excitation
energies and eigenstates, which are an admixture of the spins
and photons and can be understood as some sort of spin-photon
waves. However, if one is interested in the reduced dynamics
of either the spins, as is customary in studies of the spin-
boson model [20], or an incoming photonic wave packet for
transmission-reflection experiments, one may try to develop
a Weisskopf-Wigner-type theory [30] for the above system of
first-order differential equations. These equations can always
be rewritten as

i∂tαs(t) = �sαs(t) +
∑

k

gksαk(t),

(21)
i∂tαk(t) = ωkαk(t) +

∑
s

g∗
ksαs(t) +

∑
k′

f∗kk′αk′(t),

where we have introduced the energy of the spin excitations
�s = εs

e − εP
g.s. and the couplings gks , and fkk′ , which can

be obtained from the matrix elements of HP. Note that the
couplings fulfill fkk′ = fk′k and can be thus diagonalized by an
orthogonal transformation �ωkδkk′ = ∑

k1,k
′
1
Mk1kfk1k

′
1
Mk′

1k
′ .

Accordingly, we can transform the variational parameters
α̃k(t) = ∑

k′ Mk′kαk′(t) and the remaining couplings g̃ks =∑
k′ Mk′kgk′s such that

i∂tαs(t) = �rαs(t) +
∑

k

g̃ks α̃k(t),

(22)
i∂t α̃k(t) = (ωk + �ωk)α̃k(t) +

∑
s

g̃∗
ksαs(t).

This system of equations resembles the Weisskopf-Wigner
equations of spontaneous emission of two-level atoms cou-
pled to the em field [30]. Let us highlight, however, that
they are valid beyond the RWA intrinsic to the standard
Weisskopf-Wigner theory due to the polaronic variational
methods. If one is interested in the reduced dynamics of
the quantum emitters, as is usual in the spin-boson model
or in the theory of quantum radiation, one can develop a
Weisskopf-Wigner-type [30] theory by formally integrating
the equations for the bosonic amplitudes and substituting them
in the equations for the qubit amplitudes. Conversely, one
may be interested in the scattering of propagating photons
from the collection of quantum emitters, which would require
the opposite process. In the following sections, we use
both approaches, highlighting the importance of taking into
account non-Markovian effects in the ultrastrong-coupling
regime.

Let us note at this point that if the initial state contains
some atomic coherences, the ansatz (14) must be gener-
alized to include also an amplitude in the ground state
Wsp[αs(t),αk(t)] → Wsp[αs(t),αk(t)] + αg.s.(t). However, this
amplitude does not contribute with any term in the eval-
uation of Eq. (18) and thus αg.s.(t) = αg.s.(0), whereas the
time evolution of the remaining variational parameters is
still described by Eq. (22). Yet including this ground-state
amplitude may be necessary to calculate the dynamics of
certain observables, such as the atomic coherences that are im-
portant for the coherent-incoherent transition of the spin-boson
model.

At this stage, it is worth pointing out that our dynamical
Ansatz (14) differs from the application of the so-called
Davidov Ansatz, which arises in the study of exciton-phonon
interactions, to the spin-boson model [47]. There are two
crucial differences: (i) Our Ansatz is built in two steps,
such that the polaron parameters are already fixed during the
computation of the dynamical properties. This contrasts with
the Davidov Ansatz, which consists of time-dependent polaron
parameters with additional time-dependent variational weights
for each spin state. (ii) Our Ansatz considers also additional
single-photon excitations, which are absent in the Davidov
Ansatz [47]. Property (i) will be crucial to be able to derive
analytical expressions for the dynamics, whereas property (ii)
will be crucial to describe the effect of spontaneous emission
and photon scattering.
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C. Matrix-product-state Ansatz

The previous Ansätze will be compared with a well-
established method [19] for the numerical simulation of the
spin-boson model, which combines ideas from the quantum
impurity Ansatz [48], matrix product operators [49], and
Arnoldi-type evolution methods [50]. More precisely, we write
down a variational wave function for the qubit-photon system
as

|ψA〉 = tr(As1An1 · · ·AnM ) |s1,n1, . . . ,nM〉, (23)

where s1 is the quantum state of the qubit, ni are the Fock
states of M different photon modes in frequency space, and
the A are different matrices with a size of up to χ2 × nmax,
where χ is the bond dimension of the MPS Ansatz and nmax

is the maximum occupation of the bosonic modes. In addition
to this encoding of the wave function, we efficiently write the
spin-boson model as a long-range-interaction matrix product
operator (MPO), which has a rather small bond dimension
O(3).

Combining the efficient representation of the Hamiltonian
with the MPS wave function, we can either compute approxi-
mations to the ground state of spin-boson model or implement
a time-evolution algorithm. In the first case we work by
minimizing the energy functional

E[{A}] = 〈ψA|H |ψA〉
〈ψA|ψA〉 , (24)

with respect to the collection of numbers in all the matrices
or tensors A. The minimization procedure is efficient due
to the MPO representation of the Hamiltonian, even when
it contains long-range interactions, and it is implemented with
a generalization of the DMRG sweeping technique.

The time evolution is implemented using an approxima-
tion of the exponential of the Hamiltonian for short times.
More precisely, we construct exp(−iH�t) |ψA〉 as a linear
combination of MPSs

∑
n cn |φn〉, where the vectors |φn〉 form

a Krylov basis built with MPSs themselves, as explained in
Ref. [50]. The use of Arnoldi expansions allows us to profit
from the MPO expansion of the Hamiltonian and work with
the long-range interactions, something that is much harder
with Trotter expansions.

It has to be remarked that, while more accurate than the
dynamical polaron Ansatz, the MPS method is more complex
in terms of the implementation and computation. The number
of parameters in an MPS variational wave-function scale as
N × χ2nmax, while in our few-photon dynamical Ansatz with
one qubit, we have at most (N + 1) × 2 degrees of freedom.
It is therefore interesting to use the MPS as a benchmark with
which to assert the range of validity of the polaron Ansatz,
with the idea of both having a flexible and simpler tool and
also a way to implement potential analytical approximations
and effective models.

IV. SINGLE-QUANTUM-EMITTER APPLICATIONS

Once the different variational Ansatzë have been described,
we will apply them to the simplest possible scenario: a single
quantum emitter ultrastrongly coupled to a 1D em field. We
will exploit the analytic polaron predictions based on the
continuum model (4) to offer physical insight and benchmark

the numerical polaron results based on the discretized model
(3) with MPS simulations for an identical discretization. The
main objective is to prove that the simple polaron Ansatz, in
comparison to the more involved MPS technique, provides a
sufficiently accurate description of both static and dynamical
phenomena, with the hope that it will be established as a simple
theoretical tool within the quantum optics community dealing
with the ultrastrong-coupling regime.

A. Static predictions

1. Continuum spin-boson model

Let us consider the solution of the variational system of
equations for the continuum single-impurity spin-boson model
in Eqs. (1) and (4) [25–27]. For Ns = 1, the Ising Hamiltonian
(11) reduces to a single-spin problem and the energy functional
is

εP
g.s. = min[f1k ]{J11[f1k] − 1

2�r[f1k]}, (25)

where we have introduced the renormalized frequency

�r = �1e
−�1[fik ]. (26)

The function minimization yields

f1k = g1k

ωk + �r[f1k]
, (27)

which amounts to a nonlinear system of equations for the po-
laron parameters. In this case, the variational spin parameters
are

cσ1 = δσ1,↓θ (�r[f1k]), (28)

where θ (x) is the Heaviside step function (i.e., if the
renormalized qubit frequency vanishes, the variational ground
state corresponds to the twofold degenerate Lang-Firsov
transformed state). Therefore, by solving the system of implicit
equations (27) and substituting in Eq. (28), we can recover the
variational ground state (6) and calculate any observable. Let
us note that by applying a nonvariational perturbative approach
in the polaron-transformed picture, the same condition (27)
has been found by imposing that the first-order perturbations
vanish [51], as is customary in spin-wave approaches [52].

Note that the system of equations (27) can be rewritten in
terms of a single implicit equation for the renormalized qubit
frequency

�CP
r = � exp

{
−

∫ ∞

0
dω

J (ω)

π (ω + �r)2

}
, (29)

where the superindex CP stands for the continuum polaron
model and the exact spectral function corresponding to
Eq. (4) is J (ω) = παωe−ω/ωc . This equation can be solved
analytically in the so-called scaling limit ωc � � � �r, where
one finds

�CP
r = �

(
p�

ωc

)α/(1−α)

, (30)

with p = e1+γ and γ as Euler’s constant. Therefore, the
polaron Ansatz predicts that the frequency of the quantum
emitter gets renormalized as a consequence of its coupling to
the photonic excitations (i.e., a photonic polaron cloud dresses
the quantum emitter and leads to a renormalized transition
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frequency). This agrees with adiabatic renormalization-group
arguments [20] and locates the localization-delocalization
transition at α = 1, where the qubit frequency vanishes. This
is an example of the so-called boundary quantum phase
transitions that also arise in other condensed-matter contexts
[28].

Using this result, we can recover the polaron (27) and spin
(28) optimal parameters, which are be denoted by [f 


1k,c


σ1

],
and calculate any static observable by constructing the polaron
ground state (6), such as

〈
σx

1

〉CP
g.s. = 〈

σ
y

1

〉CP
g.s. = 0,

〈
σ z

1

〉CP
g.s. = −�CP

r

�
. (31)

For weak spin-boson interactions α 
 1, 〈σ z
1 〉 → −1, as

expected from the ground state of a bare qubit |↓〉. However,
as the coupling to the bosonic bath is raised, the ground state
starts populating also the excited bare state |↑〉, until 〈σ z

1 〉 → 0
for α → 1. In the usual rotated basis of the spin-boson model
[20], this corresponds to the localized phase.

2. Discretized spin-boson model

As emphasized previously, the continuum model serves
to gain analytical insight into the static effects. However, it
is the discrete version that can be benchmarked with MPS
simulations and, more importantly, the model that provides a
more accurate microscopic description of the bosonic bath in
the physical transmission line. The solution of the variational
problem in this discretized spin-boson model requires the use
of numerics.

In the discretized model in Eqs. (1) and (3), the transmission
line is divided into coupled segments such that the cutoff
frequency depends on the input parameters L and N , being
L the total physical length of the line and N the number of
segments of length δx = L/N in which it is divided. We are
interested in raising the number of segments N for a fixed
length L such that the cutoff ωc = v/δx can be maximized
towards the above scaling limit and the linear region of the
dispersion relation ωk ∼ v|k| around the qubit frequencies �i

contains as many photonic modes as possible. However, we
also note that the computational complexity of the polaron-
MPS Ansatz grows with N as the number of bosonic modes
also increases kn = 2π

L
n, with n ∈ {0, ± 1, . . . , ± N/2}, and

we cannot consider an arbitrarily large N .
In the discretized polaron Ansatz, we numerically diago-

nalize the transformed Hamiltonian (11) to obtain the state of
minimum energy as a function of the variational parameters
[f1kn

,cσ1 ]. Then we obtain the optimal parameters [f 

1kn

,c

σ1

]
by using a numerical optimization routine, minimizing this
energy with respect to the variational parameters. Once these
optimal parameters are obtained, we can calculate numerically
parameters such as the renormalized qubit frequency, taken
directly from the displaced Hamiltonian (11),

�DP
r = � exp

(
−2

∑
n

|f 

1kn

|2
)

, (32)

where the index DP stands for the discretized polaron.
In order to benchmark these static predictions with the

MPS simulations, we should focus on some expectation values
that can also be obtained through MPSs. An observable

FIG. 1. Qubit polarization in the single-impurity spin-boson
model: ground-state polarization 〈σ z

1 〉η
g.s. as a function of the spin-

boson coupling α = |g|2/πv. The dotted red line represents the value
from MPS simulations 〈σ z

1 〉MPS
g.s. for N = 301 and L = 10λ0. The blue

solid line represents 〈σ z
1 〉DP

g.s. for the discrete Ansatz, with L = 10λ0

and N = 301.

of interest might be the qubit polarization, whose calcu-
lation is simple using the polaron ground-state 〈σ z

1 〉DP
g.s. =

〈ψs[c

σ1

]| U †
P[f 


1kn
]σ z

1 UP[f 

1kn

] |ψs[c

σ1

]〉. After the numerical
optimization, which yields |ψs[c


σ1
]〉 for the discretized spin-

boson model, we obtain the polarization by calculating

〈
σ z

1

〉DP
g.s. = 〈ψs[c



σ1

]| σ z
1 |ψs[c



σ1

]〉 exp

(
−2

∑
n

|f 

1kn

|2
)

. (33)

Note that the eigenvectors are displaced by the polaron
transformation (7), but so is the spin operator (hence the
exponential due to the renormalization), so the result will be
on the correct frame of reference. We represent these results in
Fig. 1 with the same results from the MPS simulations 〈σ z

1 〉MPS
g.s. ,

where we observe reasonably good agreement between the
polaron and MPS results for the same discretization with
N = 301 bosonic modes, which still lies far away from the
scaling limit. We note that the discrete polaron results can be
extended to a finer discretization with N = 601 and approach
the prediction of the continuum polaron (31) in the scaling
limit. Such a high number of bosonic modes compromises the
accuracy of the MPS simulation and highlights the ultimate
power of the computationally less expensive polaron methods.

B. Spontaneous emission

So far, we have been concerned with the static properties
of an ultrastrongly coupled qubit, although an even richer
phenomenology arises out of equilibrium. In the context of
the quantum theory of radiation, the typical situation is to
study the evolution of an initially excited quantum emitter,
whose population decays irreversibly as a consequence of the
photonic reservoir. By looking at the coherences, one may find
the analog of the coherent-incoherent dynamical crossover of
the spin-boson model, where the spin displays a transition
between damped oscillations and overdamped decay as the
spin-boson coupling strength is increased beyond α = 1/2.
The correct prediction of this dynamical effect is more
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challenging than the localization-delocalization transition and
requires more involved techniques [35,36] than the combina-
tion of the polaron static Ansatz with a Markovian master
equation [27,41]. From previous nonvariational techniques
[53], it becomes clear that the Markovian assumption must
be abandoned if one wants to capture the correct dynamical
behavior.

The objective of this section is to study the evolution of the
populations and coherences of an initially excited quantum
emitter, ultrastrongly coupled to the 1D em field by applying
the dynamical Ansatz introduced previously, and we will show
that the above previous limitations can be overcome with our
method.

1. Continuum spin-boson model

For the single-impurity case Ns = 1, the situation simplifies
as the Ising Hamiltonian (11) reduces to a single-spin problem
and we have a simple ground state |ψg.s.〉 = |↓〉 together with
a single-spin excitation |ψ1

e 〉 = |↑〉, provided �CP
r > 0. We

can thus easily build the dynamical Ansatz (14) and obtain
the corresponding differential equations (21), which are the
variational analog of the Weisskopf-Wigner theory [30] of
spontaneous emission

i∂tα1(t) = �CP
r α1(t) +

∑
k

gk1αk(t),

(34)
i∂tαk(t) = ωkαk(t) + g∗

k1α1(t) +
∑
k′

f∗kk′αk′(t).

Here the couplings between the spin and photonic excitations
arise,

gk1 = 2�CP
r

ωk + �CP
r

g1k, (35)

together with the additional couplings between the bare
photonic modes

fkk′ = �CP
r(

ωk + �CP
r

)(
ωk′ + �CP

r

) (g1kg
∗
1k′ + c.c.), (36)

which are symmetric fkk′ = fk′k , as announced in the section
introducing the dynamical Ansatz. Hence, this coupling matrix
can be diagonalized by an orthogonal transformation leading
to the general equations (22), which read in this case

i∂tα1(t) = �CP
r α1(t) +

∑
k

g̃k1α̃k(t),

(37)
i∂t α̃k(t) = (ωk + �ωk)α̃k(t) + g̃∗

k1α1(t).

We integrate out the photonic modes by first changing
to a rotating frame with α′

1(t) = ei�CP
r tα1(t) and α̃′

k(t) =
ei(ωk+�ωk )t α̃k(t) and then substituting the expression

α̃′
k(t) = −i

∫ t

0
dτ g̃∗

k1e
i(ωk+�ωk−�CP

r )τ α′
1(τ ), (38)

where we have assumed that there are no photonic excitations
in the initially excited state, except for those intrinsic to the
polaron cloud dressing the emitter. This leads to an integro-

differential equation of the convolution type

∂tα
′
1(t) = −

∫ t

0
dτ K1(t − τ )α′

1(τ ), (39)

where we have defined the memory kernel

K1(t) =
∑

k

|gk1|2e−i(ωk+�ωk−�CP
r )t . (40)

Since we are interested in deriving some analytical formulas,
we need to replace all the sums by integrals over the spectral
density. To do so, we note that the frequency shifts of the
photons �ωk contribute at a higher order of the spin-boson
coupling and neglecting them yields

K1(t) =
∫ ∞

0

J (ω)

2π

(
2�CP

r

ω + �CP
r

)
e−i(ω−�CP

r )t . (41)

(a) Markovian approximation. As is customary in the
Weisskopf-Wigner theory [30], we perform a change of
variables τ ′ = t − τ in the convolution (39) and a Markovian
approximation to extend the integration domain to τ ′ ∈ R+
and substitute α′

1(τ ) → α′
1(t) in Eq. (39). In this case, after

using
∫ ∞

0 dτ ′e−iωτ ′ = πδ(ω) − iP(ω−1), where P stands for
Cauchy’s principal value, the differential equation for the qubit
can be expressed as

i∂tα
′
1(t) =

(
δ1 − i

γ1

2

)
α′

1(t), (42)

where we have introduced the single-qubit decay rate γ1 and
the single-qubit Lamb shift δ1. The decay rate within this
Markovian approximation can be easily evaluated

γ1 = J (�CP
r ) = πα�

(
p�

ωc

)α/(1−α)

. (43)

This yields a very sensible result: The decay rate, which is
given by the value of the spectral function evaluated at the
bare qubit frequency γ RWA

1 = J (�) within the usual RWA
and weak-coupling assumptions [29], must be substituted by
the value of the spectral function at the renormalized qubit
frequency (30) according to Eq. (43). In agreement with more
involved methods [20], our simple dynamical polaron Ansatz
predicts that the localization-delocalization transition at α =
1, where the renormalized qubit frequency vanishes, is also
accompanied by a vanishing decay rate γ1 = 0.

As a way to understand qualitatively this transition it is
useful to use the picture of the polaron dressed states, which
suggests that the atomic states get dressed by a cloud of photons
that affect its polarization 〈σ z

1 〉 and its dynamical response. In
the static regime and for sufficiently strong α, the ground
state is roughly a Schrödinger cat state and the polarization
〈σ z

1 〉 measures the coherence between the two states |+〉 , |−〉,
which gets degraded due to the vanishing overlap of the
different photonic coherent states that are dressing each of
these states. In the dynamical regime, the effect of this photonic
cloud dressing the qubits is to “freeze” their dynamics, which
is quantified by a renormalized transition frequency that
tends to zero as the qubit-photon coupling is increased. As
a consequence, the qubit would spontaneously emit photons
at smaller frequencies, but the density of modes at those
frequencies decreases for Ohmic environments (5). This is
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the qualitative reason that underlies the fact that the decay
rate tends to zero as the localization-delocalization transition
is crossed.

In this Markovian regime and in the scaling limit, the Lamb-
type shift can be calculated after solving the principal value
integral and yields

δ1 = −α�CP
r . (44)

It is interesting to note that, in analogy to the original
calculation of the Lamb shift of the em field where the
self-energy is subtracted, the variational polaron formalism
includes this self-energy directly in the ground state energy
instead of the Lamb shift. This contrasts the calculations within
the RWA [54], where the self-energy is not subtracted, and
the Lamb shifts diverge with the cutoff frequency δRWA

i =
−α[ωc − 1

2� ln(�/ωc)] + α
2 γ�.

If we take the Lamb shift (44) together with the po-
laron renormalization, the frequency of the quantum emitter
becomes �CP

r (1 − α), which predicts that the evolution of
coherences will stop at α = 1, instead of the prediction α =
1/2 of the coherent-incoherent transition by other methods
[20]. As we argue below, this is an artifact of the Markovian
approximation and can be resolved by a more careful analysis.

(b) Non-Markovian approximation. Let us reconsider the
integro-differential equation using resolvent-operator tech-
niques [29,55,56]. By a Laplace transform and using the
Bromwich contour to invert it, one can express the solution
as α′

1(t) = i
2π

∫ ∞
−∞ dε e−iεtG(ε), where we have introduced

the propagator

G(ε) = 1[
ε − �CP

r + δ(ε)
] + i

γ (ε)
2

(45)

and we have defined the so-called level-shift operator

δ(ε) = −2α
(
�CP

r

)2

�CP
r + ε

, (46)

obtained from the principal value integral, and the so-called
level broadening operator

γ (ε) = J (ε)

(
2�CP

r

ε + �CP
r

)2

. (47)

Note that, if one simply substitutes ε → �CP
r in both operators,

which is known as the single-pole approximation, one can
easily perform the integral recovering the Markovian rate (43)
and Lamb-type shift (44). However, if we are interested in
the coherent-incoherent transition, a more careful analysis is
required. In particular, by looking at solutions of ε − �CP

r +
δ(ε) = 0 where the propagator becomes maximal, one finds
εm = √

1 − 2α�m. A Taylor expansion about this solution
shows that the propagator at α = 1/2 only leads to an expo-
nential damping. Therefore, this non-Markovian treatment is
capable of locating the coherent-incoherent transition at the
correct spin-boson coupling strength α = 1/2.

2. Discretized spin-boson model

Let us now consider the dynamics under the discretized
spin-boson model, which describes the spontaneous emission
in the physical transmission line by using numerical means and

can be benchmarked again with MPS simulations, serving thus
as a test of the validity of our method. Regarding the dynamical
polaron Ansatz with such a discretized model, a clear advan-
tage is that the vector of time-dependent variational parameters
becomes finite α(t) = [α1(t),αk1 (t),αk2 (t), . . . ,αkN

(t)]t and
one can directly solve the Schrödinger equation i∂tα = HPα

without making any connections to the Weisskopf-Wigner
typical approximations. From a numerical perspective, we
can extend this Ansatz, at the same computational effort, to
consider also the amplitudes of the ground state in the presence
or absence of one additional photonic excitation for the
different modes. We thus obtain a 2(N + 1) × 2(N + 1) matrix
HP by evaluating numerically Eq. (18) for the different matrix
elements. Then the system of differential equations is solved
numerically after specifying a particular initial condition, such
as α1(0) = 1.

In order to study the spontaneous emission rate, we know
that the probability amplitude of the qubit in the excited state
α1(t) oscillates with frequency �r + δ1 and decays with γ1/2.
If we consider the expectation value of the excitation number
operator σ+

1 σ−
1 , we are able to directly extract the spontaneous

emission rate via exponential fitting of

α(t)†(σ+
1 σ−

1 )α(t) = |α1(t)|2 = e−γ1t , (48)

which we plot as a function of the coupling strength in
Fig. 2, along with the same quantity obtained with the
MPS Ansatz. The agreement between both approaches is
remarkable and serves as a test of the validity of the proposed
dynamical polaron Ansatz. Let us remark that, by solving
directly the variational Schrödinger equation, no Markovian
approximations are taken with the discretized Ansatz and it
should thus give more accurate predictions than the continuum
results based on this assumption.

Although we have used a general exponential approxima-
tion (48) for the decay of the initial state with our Ansatz,
for large values of the qubit-photon coupling α, the evolution
of the excited-state population can actually be decomposed
in two terms: The first one is a fast prethermalization, which
can be understood from the decoherence of the macroscopic
superposition of the atomic states |+〉 , |−〉 present in the initial

FIG. 2. Spontaneous emission rate. The blue solid line represents
the calculated with the discrete polaron Ansatz for N = 301 and
L = 10λ0. The red dotted line represents the MPS data for the same
input parameters.
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FIG. 3. Different polarization decay regimes: dynamics of the
polarization of the qubit in the MPS numerics for three different
values of the spin-boson couplings α ∈ {0.051,0.204,0.929}. Two
regimes of evolution can be distinguished: For small times there is a
fast cutoff-dependent prethermalization depicted by a shaded region,
followed by an exponentially damped regime due to photon emission.

state |ψ(0)〉 = |↑〉 ⊗ |0〉 = 1√
2
(|+〉 + |−〉) ⊗ |0〉 . In the limit

α → ∞, this initial state evolves into a Schrödinger cat state
where each of the |+〉 , |−〉 is dressed by a photonic coherent
state. In this regime, the excited-state probability can be shown
to decay algebraically

P (t) = 1

1 + (ωct)2
, (49)

which is an exact result for the Ohmic spin-boson model at
α → ∞ [57]. For finite α, in addition to the previous fast decay,
the excited-state probability can decay due to the emission of
real photons onto the environment. This leads to an exponential
decay with a rate that can be approximated by our Ansatz in
Eq. (43) and is displayed in Fig. 2.

In the scaling limit, where the cutoff is sent to ωc → ∞, the
algebraic decay (49) is almost instantaneous. The dynamical
polaron Ansatz cannot account for such small time scales,
as it is limited to t � 1/ωc, and models this decay as an
instantaneous process encoded in the polaron unitary (7).
Conversely, the MPS techniques can in fact account for this
very fast transient state, where the decay is not exponential, as
shown in Fig. 3. Therefore, to extract the exponential decay
(48) from the MPS numerics, one has to consider a time
window [t1,t2], where t1 is sufficiently large t1 � 1/ωc such
that the above transient where Eq. (49) plays a role is not
included in the fit.

An important and crucial advantage of the discretized model
is that, for the same effort, one can get information about the
dynamics of the photons. As emphasized previously, this is
rather unique to our method and very important in light of
the current experiments. For instance, it may be of interest
to study the photon number density 〈a†

kak〉 after the qubit
has relaxed completely. It will give an indirect measure of
the qubit frequency akin to a spectroscopy experiment, since
the emitted photon is expected to have the same energy as the
qubit excitation.

FIG. 4. Photon density in the spontaneous emission for the
discrete polaron Ansatz (left) and the MPS Ansatz (right). The z

axis in these plots has a logarithmic scale (with base 10) and so does
the common color bar. The white dashed line shows the renormalized
qubit frequency over the surface plots, confirming visually that the
bosonic resonances coincide with it. Both models display oscillations
in ωk caused by the boundary conditions and the nonequilibrium
initial condition, which gives two possible field states that interfere
with each other. Having different initial states in each model, these
oscillations appear far more noticeable in the MPS simulations, but
they also occur in the discrete polaron ones.

We have calculated the photon distribution as a function of
the coupling strength and the frequency of the modes within
our discrete polaron Ansatz and compared the predictions to
another simulation with the same parameters using the MPS
Ansatz. As shown in Fig. 4, both methods show clearly a peak
in the distribution around the renormalized qubit frequency
calculated through the static Ansatz in the previous section and
thus confirm the above intuition that this photonic observable
serves as a spectroscopy probe. Let us note that, since we
are using periodic boundary conditions for the transmission
line, time must be long enough for the spin excitation to
have decayed, but sufficiently short that the photon cannot get
around the line and scatter with the emitter again (revival time).

C. Single-photon scattering

The other type of experiment that can be simulated with
these tools is the scattering of one photon traveling in the trans-
mission line with one qubit impurity. The photon distribution,
after the collision has occurred, will give information about
the transmission and reflection coefficients of the photons in
the transmission line (T and R, respectively).

In the polaron-transformed frame, we can consider the
initial state as a product of its two components, the qubit in
the ground state and the photon distribution specified by the
probability amplitudes αkn

(0), namely,

|ψexc(0)〉 =
∑

n

αkn
(0)a†

kn
|0〉 ⊗ |ψg.s.〉. (50)

During the collision and some time after it has happened, the
photon and qubit interact such that the wave function is no
longer in a product state. However, for long-enough times, the
qubit will have decayed completely and we can describe the
state again as

|ψexc(∞)〉 =
∑

n

αkn
(∞)a†

kn
|0〉 ⊗ |ψg.s.〉, (51)

with a different photon distribution specified by the probability
amplitudes αkn

(∞). This enables us to define the transmission
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FIG. 5. Normalized photon density in the single-photon scatter-
ing. (a) The horizontal axis does not display the frequency ω but
the product of ω and the sign of the momentum, to tell apart modes
with the same energy but opposite traveling direction. White lines
represent the renormalized photon frequency, which coincides with
the resonances as expected. The right side of the graph corresponds
to the norm of the transmission coefficient |T|2 and the left side to the
norm of the reflection coefficient |R|2. (b) Phase shift of the reflection
coefficient in the single-photon scattering simulation.

and reflection coefficients as

rkn
= |α−kn

(∞)|
|α+kn

(0)| eiθ r
kn eiωkn t ,

tkn
= |α+kn

(∞)|
|α+kn

(0)| eiθ t
kn eiωkn t ,

(52)

where θ t
kn

and θ r
kn

are the complex phases of the coefficients
and the eiωkn t include all the phases due to the evolution. The
calculation of transmission and reflection coefficients Tkn

=
|tkn

|2 and Rkn
= |rkn

|2, respectively, can be achieved from the
expectation value of the photon number operator.

Instead of having an initially excited qubit, this time we
initialize the system with one single photon traveling in one
direction of the line with the qubit in its ground state, which
corresponds to Eq. (50) for a particular set of probability
amplitudes. This photon will be very localized and will have a
flat frequency distribution, but only in the positive momentum.
After the scattering, some of the modes will be absorbed
by the qubit and reemitted afterward in both directions,
effectively being reflected or transmitted from the qubit. This
will be depicted by modes with positive momentum vanishing
and some other modes with the same energy but opposite
momentum appearing. To check that our polaron predictions
for this scattering experiment are consistent, we compare the
photon density resonances with the renormalized qubit gap
obtained through the static Ansatz. We can confirm this in
Fig. 5, which also shows that for high enough couplings, the
qubit stops interacting with the photons because its dynamics
gets frozen.

This analysis of the probability density of the photons
gives the norm of the transmission and reflection coefficients.
Additionally, we can also calculate the phase shift as the
difference between the final and initial phases, by subtracting
the phase due to the time evolution. To perform this task, we
run two simulations, the first one with the qubit connected to
the line and the second one without it (equivalent to setting
the coupling strength to zero). We then extract the phase shift
of each mode as the division between the amplitude of that

mode in the scattered and in the free case as in Eq. (52). Figure
5(b) shows this scattering phase for different values of the
coupling strength. As expected, the phase jump occurs around
the renormalized qubit frequency.

V. CONCLUSION AND OUTLOOK

In this work we have introduced a simple and general
technique based on a time-dependent variational principle to
describe dynamical aspects of a system of quantum emitters ul-
trastrongly coupled to the 1D em field beyond the RWA regime.
The dynamics of the system is described within a region of
the Hilbert space that is relevant for the typical experimental
situations encountered in spontaneous emission of initially
excited emitters or scattering of an incoming photon wave
packet by the quantum emitters. By a physically motivated
parametrization of this relevant region of the Hilbert space,
these dynamical variational Ansätze become computationally
less expensive than matrix-product-state simulations and allow
us to develop some physical insight in certain regimes where
analytical results can be derived. More importantly, they allow
us to address the dynamics of the photonic degrees of freedom,
which becomes very relevant in light of the recent experimental
progress.

In order to benchmark the accuracy of our variational
techniques, we have performed a detailed comparison of
static and dynamical predictions for a single quantum emitter
ultrastrongly coupled to the em field. In this context, we have
compared the predictions of these simple polaron methods
with the numerical results of the quasiexact MPS methods
for both equilibrium and nonequilibrium scenarios, showing
remarkable agreement in typical situations of spontaneous
emission and photon scattering. Given the computational
simplicity of the introduced Ansatz, as compared to the
complexity of MPS methods, and its demonstrated reasonable
accuracy, we believe that it can become a useful theoretical
tool for the quantum optics community interested in the
ultrastrong-coupling regime.

The computational advantage of the introduced Ansatz
becomes even more important as the number of quantum
emitters is increased. Although we have focused in the present
paper on single-emitter applications, the general scheme
presented in Sec. III can be applied to any number of emitters.
For instance, we can start from the static polaron Ansatz
for a couple of quantum emitters Ns = 2 [43] and build our
dynamical Ansatz to analyze photon-mediated interactions and
collective effects in the spontaneous emission. To illustrate
some of the power of our dynamical Ansatz, let us advance
some of the predictions that will be detailed elsewhere.

Outlook for two-emitter applications

The static variational problem for two identical emitters
can be reduced to a couple of implicit equations, one of
the renormalized qubit frequencies �r and another one for
the photon-mediated Ising interactions JI, which display an
interesting dependence on the interqubit distance [43]. Let us
discuss two particularly simple limits. (a) At large distances,
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the interactions are vanishingly small, such that

JI → 0, �r = �

(
p∞

�

ωc

)α/(1−α)

, (53)

where p∞ = p coincides with the single-emitter predictions
(30). We thus see that for α = 1, the frequencies of both
qubits renormalize to zero in the scaling limit, such that the
localization-delocalization transition of both impurities occurs
at the same critical coupling as the single-impurity Ohmic
spin-boson model (30). (b) Conversely, at short distances
d 
 v/ωc, the interactions are ferromagnetic and increase
with the cutoff

JI → −αωc, �r = �

(
p0

�

ωc

)2α/(1−2α)

, (54)

where p0 = (p/α)1/2, provided αωc/� � 1. In this case,
the renormalized frequency vanishes at a smaller spin-boson
coupling α = 1

2 , which was used in [43] to locate the
localization-delocalization phase transition.

Turning our attention to the dynamical effects, let us note
that the qubits can also exchange real photons beyond the
virtual photons associated with the polaron clouds and this
leads to collective effects in the two-impurity spin-boson
model. In order to account for these effects, we note that the
variational spin Hamiltonian (11) evaluated at [f 


ik] leads to
two spin-wave excitations that can be excited from the ground
state if the spins absorb a real photon from the em environment.
In the Markovian limit of the Weisskopf-Wigner-type theory
analogous to the single-emitter case (42), we find that the
amplitudes of the excitations fulfill

i∂tα
′
1(t) =

(
δ1 − i

γ1

2

)
α′

1(t) +
(

g12 − i
γ12

2

)
α′

2(t),

(55)

i∂tα
′
2(t) =

(
δ2 − i

γ2

2

)
α′

2(t) +
(

g21 − i
γ21

2

)
α′

1(t),

where we have introduced the single-qubit γi and collective
relaxation rates γ12 = γ21 as well as the single-qubit δi Lamb
shifts and collective interactions g12 = g21. Let us comment
on the particular expressions for these parameters in order.

1. Spontaneous decay rates

The incoherent spontaneous emission is given by the decay
rates

γi = J (�rζ )χ2, γ12 = γ1 cos

(
�rζ

v
d

)
, (56)

where we introduced ζ = (1 + J 2
I /�2

r )1/2, χ = ζη/(1 + ζ 2),
and η = {√ζ + 1(ζ−1 + 1) + √

ζ − 1(ζ−1 − 1)}/√2ζ .
These expressions allow us to study how the spontaneous

emission of the pair of qubits gets modified as the coupling
to the em field increases, eventually entering the ultrastrong-
coupling regime. Regarding the individual decay rates, their
change with respect to the weak-coupling value is caused by
both the renormalization of the qubit frequency �r < � and
the Ising interactions due to virtual photon exchange ζ > 1.
As a consequence, the individual decay rates will also depend
on the interqubit distance. In the scaling limit � 
 ωc, using

the results form the previous section (53) and (54), we find

γi =
{

πα�
(
p∞ �

ωc

)α/(1−α)
, d → ∞

παχ2
0 ζ0�

(
p0

�
ωc

)2α/(1−2α)
, d → 0,

(57)

where we have introduced ζ0 = [1 + (αωc/�r)2]1/2 and χ0,η0

are the above parameters evaluated at ζ = ζ0.
Let us first comment on the regime where the qubits are

so far apart that the Ising interaction is negligible. When the
spin-boson coupling is sufficiently weak α 
 1, we recover
the result expected from the usual Weisskopf-Wigner theory of
spontaneous emission γi = J (�) = πα�, which rests on the
RWA. Regarding the collective spontaneous emission in this
weak-coupling regime, we observe that it gets suppressed for
distances d = v(2n + 1)π/2� with n ∈ Z+, which coincides
again with the predictions based on the RWA [54,58,59].
In contrast, the collective spontaneous emission attains a
maximum at d = vnπ/� with n ∈ Z+, leading to subradiant
(superradiant) channels related to the singlet (triplet) Bell
states being dark states [58].

These predictions are modified as the spin-boson coupling
is raised or as the qubits get closer. By raising the spin-
photon couplings, still at large distances, we see that the
individual emission rates depend on the spectral density
evaluated at the renormalized qubit frequencies γi = J (�r) =
πα�(p∞�/ωc)α/(1−α). Therefore, the individual and col-
lective spontaneous emissions get totally suppressed in the
localized regime α = α∞

c = 1 at sufficiently large distances.
In the delocalized regime α < α∞

c = 1, both individual and
collective incoherent decay channels contribute to the dy-
namics. In contrast to the RWA, the collective rates get
suppressed (enhanced) at distances that are also controlled
by the renormalized frequency d = v(2n + 1)π/2�r (d =
vnπ/2�r) with n ∈ Z+. Therefore, in order to exploit such
collective decay to engineer entangled states dissipatively,
as proposed in [58,59], it is very important to estimate the
correct distance dependence by a careful calculation of the
renormalized frequency.

Let us now move onto the other regime where the standard
Weisskopf-Wigner predictions are modified: short interqubit
distances. Even in the weak-coupling regime where �r ≈ �,
the strength of the individual decay rates γi = J (�ζ0)χ2

0 =
πα�(χ2

0 ζ0) is different from the RWA predictions γi =
J (�) = πα� as a consequence of the ferromagnetic Ising
interactions χ2

0 ζ0 �= 1. The distance where the collective decay
rates get suppressed (enhanced) is also modified by the pres-
ence of interactions d = v(2n + 1)π/2�ζ0 (d = vnπ/2�ζ0)
with n ∈ Z+. Hence, in order to exploit these collective decays
to engineer entangled states dissipatively, it is also important
to estimate the correct distance by a careful calculation of the
interactions due to virtual photon exchange. The differences
with respect to the standard Weisskopf-Wigner theory become
more important as the spin-boson coupling is increased. As
shown in Eqs. (57) and (56), the individual and collective
spontaneous emissions are suppressed in the localized regime,
which at short distances occurs for a weaker coupling α =
α0

c = 1/2.
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2. Lamb shifts and photon-mediated interactions

In addition to the above incoherent decay rates, the qubits
will also suffer a frequency shift and a coherent interaction due
to the exchange of real photons (i.e., on-shell contribution).
The frequency shifts (i.e., Lamb shifts) of the qubits due to the
photonic environment can be expressed as

δ1 = δ2 = −α
ηχ

2
�r

[
1 − fL

(
�r

ωcζ

)]
, (58)

where fL(x) = ζ 2

1+ζ 2 Re{exE1(x) − e−xζ 2
E1(−xζ 2)} is defined

in terms of the exponential integral E1(z) = ∫ ∞
z

dte−t /t . In the
scaling limit and according to Eqs. (53) and (54), the Lamb
shifts become

δi =
{−α�

(
p∞ �

ωc

)α/(1−α)
, d → ∞

−α
η0χ0

2

(
1 − ζ 2

0 log ζ 2
0

1+ζ 2
0

)
�

(
p0

�
ωc

)2α/(1−2α)
, d → 0,

(59)
As occurs for the single-emitter case, a calculation beyond
the Markovian approximation should be performed to locate
exactly the coherent-incoherent transition.

Let us now focus on the coherent photon-mediated in-
teractions g12, which have two contributions. As argued in
the previous section, JI is caused by the exchange of virtual
off-shell photons. The remaining contribution corresponds to
the exchange of real on-shell photons. In particular, again in
the scaling limit, we find

g12 = JI + π

2
ζχ2α�r sin

(
�rζ

v
d

)
+ δg12

(
i
�r

vζ
d + �r

ζωc

)
,

(60)
where we have introduced

δg12(z) = −χ2α�r

2
{1 + ImzfI(z) − ζ [fR(z) − fR(−z∗ζ 2)]}

and we have used the functions

fI(z) = Im{E1(z)ez}, fR(z) = Re{E1(z)ez}. (61)

At large distances, where the Ising contribution JI due
to virtual photon exchange vanishes (53), the qubit-qubit
interaction is due to the exchange of real photons. Moreover,

δg12 also vanishes at large distances and we obtain

g12 = π

2
α�r sin

(
�r

v
d

)
. (62)

Let us first consider the weak-coupling limit α 
 1, where
the qubit frequencies approach the bare value �r ≈ �. In
this case, we obtain g12 = π

2 α� sin (�
v
d), in accord with

the results based on the RWA [54]. We thus recover the
result that the photon-exchange interactions are suppressed for
the distances d = vnπ� with n ∈ Z+, where the collective
spontaneous decay (56) is maximal, and vice versa [58].
As the spin-boson coupling is increased, these distances are
changed as a consequence of the renormalization of the
qubits frequency d = vnπ�r with n ∈ Z+. However, when
the spin-photon coupling is sufficiently large, the interactions
are totally suppressed since

|g12| � π

2
α�

(
p∞

�

ωc

)α/(1−α)

→ 0, α → α∞
c = 1 (63)

and no coherent swap of the excitation can occur. We thus
see that in the localized phase, all coherent and incoherent
processes are inhibited.

The situation changes considerably at very short distances,
where the coherent Ising part JI given by Eq. (54) becomes the
leading term in the scaling limit. In this case, the interactions

g12 = −αωc − 1
2αχ2

0 �r ≈ −αωc (64)

become independent of the renormalized qubit frequency and
diverge with the cutoff frequency. Such behavior is consistent
with the results based on the RWA and predicts that the
excitation can always be coherently swapped between the
qubits, provided they are close enough. In the localized regime
α � α0

c = 1
2 , the decay channels are suppressed such that the

qubits continue swapping the excitation indefinitely.
Let us finally highlight that, just as the simple Markovian

approximation leading to Eqs. (55) can be improved to predict
the coherent-incoherent transition by taking into account
non-Markovian effects, it can also be improved by taking
into account retardation times for the exchange of photons
[60], thus making an interesting connection with the emerging
causality for spin-boson models discretized on a lattice [61].
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