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Abstract

Statistical techniques constitute useful approaches to investigate atom-diatom reactions mediated

by insertion dynamics which involves complex-forming mechanisms. Different capture schemes

based on energy considerations regarding the specific diatom rovibrational states are suggested to

evaluate the corresponding probabilities of formation of such collision species between reactants

and products in an attempt to test reliable alternatives for computationally demanding processes.

These approximations are tested in combination with a statistical quantum mechanical method

for the S+H2(v = 0, j = 1) → SH+H and Si+O2(v = 0, j = 1) → SiO+O reactions, where this

dynamical mechanism plays a significant role, in order to probe their validity.
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I. INTRODUCTION

Since the pioneering work by Light [1–6] and Miller [7], statistical techniques have become

useful methods to investigate the dynamics of atom-diatom reactive collisions mediated

by the formation of an intermediate complex between reactants and products. The main

assumption in these approaches relies on the possibility to treat the whole process separated

in two stages: first the formation of the complex after the collision between the initial atom

and the diatomic molecule and second, the fragmentation of the collision species to yield

the products of the reaction. One of the key issues is then to calculate the probabilities for

the complex to be formed just before reaching the intermediate region for different initial

rovibrational states of the diatomic reactant. Different criteria, usually taken into account in

order to estimate those capture probabilities simply as the unity or zero, depend on whether

or not (i) the orbital angular momentum takes allowed values [8]; (ii) the impact parameter

exceeds certain maximum value [5, 7, 9, 10] or (iii) the corresponding molecular state was

energetically open. More elaborate approaches employ the microcanonical flux through

the surface dividing the configuration space between reactants, the intermediate complex

and products [11, 12]. More recently a stastistical quantum mechanical (SQM) model was

developed [13, 14] in which the capture probabilities were calculated in the most accurate

way employing exact quantum approaches on ab initio potential energy surfaces (PESs).

The method, succesfully employed in a large range of different atom-diatom reactions [15],

implies the time-independent propagation of the wave function but versions which considered

wave packet propagations in the time domain [16–19] and even quasi-classical trajectories

(QCT) simulations [20–22] were soon reported.

Despite the noticeable reduction of computational effort gained with the neglection of

the intermediate region in the calculations, there are situations which comprise considerable

numerical difficulties. Thus, diatoms supporting a large number of rovibrational can still

make SQM reactive scattering calculations expensive. In some cases, such as the O(1D)+HCl

reaction [23], approximations limiting the number of rotational states in one of the product

arrangements (ClO+H) have been employed. Due to the large number of ClO(v′′, j′′) states,

the SQM calculations were performed over different [j′′a , j
′′

b ] subsets and the convergence of

the corresponding capture probabilities was tested by variations of the actual dimensions of

such interval. For more complex reactions involving four atoms, such as CH+H2 → CH3+H,
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a procedure combining the calculation of capture probabilities by means of time dependent

approaches and estimates based on the number of available channels was attempted [24].

The main goal of this work is to test different possibilities to estimate the capture prob-

abilities based on assumptions regarding energy values of the diatomic states and their

rotational quantum number. The comparison with the actual values obtained by means

of the above mentioned SQM method will enable us to validate the suggested approaches

and to analyze the intrinsic perfomance of statistical techniques regarding these specific

aspects. One of the examples chosen for this test is the S(1D)+H2 → SH+H process, con-

sidered as an exothermic prototipical insertion reaction with a potential well about 4.23

eV depth between reactants and products. The collision has been studied in different oc-

casions by means of statistical methods [14–16, 22, 25, 26], and the comparison with both

exact quantum mechanical (QM) and experimental results provide solid evidences of the

complex-forming character of the process on the ground electronic state. In particular, both

differential cross sections (DCSs) and product translational energy (PTE) distributions of

S+H2 at a collision energy, Ec, of 97 meV calculated by means of a exact time independent

QM approach [27] and measured experimentally [28] were fairly well reproduced with the

SQM method [15]. The agreement was extended to theoretical rotational distributions [27]

and to the experimental DCS and PTE for the S+D2 isotopic variant at Ec = 230 meV [29].

Whereas exact QM calculations are feasible for S+H2, the theoretical investigation of

Si+O2(v = 0, j = 1) → SiO+O is hindered by the existence of a multiwell structure in

the PES which characterizes the reaction and a large number of O2(v
′, j′) rovibrational

states [30, 31]. The process is exothermic with a difference of about 0.93 eV between the

Si+O2 reactants and the SiO+O product arrangement and the overall dynamics is strongly

mediated by minima of 2.65 eV for the Si–O–O structure, 4.78 eV for a ÔSiO geometry

and of about 7.11 eV for the O–Si–O linear arrangement. In fact, all investigations on the

reaction consist on QCT calculations and no QM studies have been reported to date. In

addition, the SQM calculation performed in Ref. [32] was limited to the computationally

cheaper centrifugal sudden (CS) approximation version in which couplings between different

values of Ω the third component of the rotational angular momemtum is neglected. The

dynamics of the process is found to be the result of a competition between abstraction and

insertion mechanisms. Thus, as either the collision energy or the initial rotational excitation

of O2 is increased, the direct reaction pathway starts to shift towards a complex-forming
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mediated process [32]. A similar dynamical transition was also reported for the H+O2

reaction [33, 34].

Results obtained by means a SQM and phase-space theory approaches are seen to agree

with QCT calculations as the energy increases from Ec = 5 meV up to 400 meV. The

analysis of possible simplifying schemes to evaluate the capture probabilities for these kinds

of systems without losing any of the overall features reproduced by the SQM approach

becomes then a very interesting task.

This paper is organized as follows: First, general details of the SQM method and the

procedures to estimate capture probabilities are given in Section II; Results are shown in

Section III and discussed in Section IV. Conclusions are presented in Section V.

II. THEORY

According to the SQM approach of Ref. [13, 14] the total state-to-state reaction proba-

bility for an atom-diatom process for the total angular momentum J and at an energy E,

can be approximated as:

| SJ
vj→v′j′(E) |2≈

pJvj(E)pJv′j′(E)
∑

v′′j′′ p
J
v′′j′′(E)

, (1)

where pJvj refers to the capture probability to form the intermediate complex from the re-

actant diatom, BC, in its (v, j) rovibrational state and pJv′j′ the corresponding probability

for the complex to fragmentate to the product diatom, AB, in its (v′j′) rovibrational state.

The sum in the denominator of Eq. (1) runs for all energetically open rovibrational states

both for reactants and products.

These capture probabilities are obtained by solving the corresponding coupled channel

equations resulting from the standard time-independent Schrödinger equation for the rela-

tive motion between the atom A and the diatomic molecule BC by means of a log derivative

method. In particular, and after imposing the corresponding initial conditions for the cou-

pling matrix at R = Rc, the capture radius which defines the region where the intermediate

complex exists, the individual probabilities are obtained via the lack of unitarity of the

corresponding scattering matrix:
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pi(E) = 1−
∑

ii′

| Sii′(E) |2 . (2)

One of the main differences of this SQM method with respect to some other cruder

statistical approaches is that the calculation of these capture probabilities is performed

by means of accurate QM methods and using fully converged ab initio potential energy

surfaces. In an attempt to reduce the computational cost it is possible to envisage further

approximations to estimate the value of the individual capture probabilities following either

energetic or kinematic considerations. Figure 1 depicts the energy diagram corresponding to

potential curves of a general process for a specific rovibrational state of the product diatom

defined as:

V J
vjΩ(R) = V̄ (R) + V JΩ

cent(R) + Evj (3)

where first term corresponds to the total potential integrated in the angle as in Ref. [35] as

follows:

V̄ (R) =
1

2

∫ π

0

dθ sinθ V (R, req, θ) (4)

where req is the diatom equilibrium distance , Evj is its energy and

V JΩ
cent(R) =

~2 [J(J + 1)− 2Ω2]

2µR2
(5)

refers to the centrifugal term, being µ the reduced mass of the A+BC system. The figure

also includes the total energy at which we are performing the calculation, E, the values of the

some rovibrational states, and the capture radius Rc considered in the statistical approach.

The different schemes assumed to calculate the values of pJvj(E) in Eq. (1) for the product

arrangement are the following:

• St(E): The (vj) channel is energetically open if E > V J
vjΩ(Rc) and pJvj(E) = 1; It is

taken as 0 if the energy condition is not satisfied;

• St(Ω): Capture probabilities for rovibrational channels with Ω > 0 are neglected if the

above energy condition was not fulfilled for the corresponding Ω = 0 case;
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• St(Ω,∆): For those states which satisfy the two above conditions, the capture prob-

ability is taken as 1 if E − V J
vjΩ(Rc) > ∆ and 0.5 if E − V J

vjΩ(Rc) < ∆, where ∆ is

certain cutoff range which in this case is assumed as 0.1 eV.

In this work capture probabilities for the reactants are calculated by means of the SQM

approach for each collisional energy. In these calculations, the maximum value of the total

angular momentum, Jmax, accessible at that Ec is employed as a limiting parameter for

the product arrangement, where the capture probabilities are obtained by means of the

approximations discussed above.

Once the capture probabilities are obtained, the state-to-sate cross sections are calculated

according to the standard formulation:

σvj;v′j′(E) =
π

(2j + 1)k2
vj

∑

J

(2J + 1) | SJ
vj;v′j′(E) |2 . (6)

The calculation of the DCSs however, requires an additional approximation, in particular,

the random phase approximation which neglects the cross terms between different partial

waves in the expression usually employed in QM approaches. Within the SQM context the

DCSs are obtained as follows:

σv,j;v′,j′(θ, E) ≃
1

8k2
vj

1

(2j + 1)

∑

JΩ′Ω

(2J + 1)2
[

dJΩ′,Ω(π − θ)
]2

∣

∣

∣

∣

SJ
v,j,Ω;v′,j′,Ω′(E)

∣

∣

∣

∣

2

, (7)

where the dJΩ′,Ω(θ) quantities correspond to reduced Wigner rotation matrices.

III. RESULTS

Capture calculations as discussed in the previous sections have been carried out for the

product arrangements of two processes: S+H2 and Si+O2. The differences regarding the

complexity of the calculations for both processes are remarkable thus representing interesting

benchmarks for the validity of the assumptions behind the above proposed approximations.

The total reaction probability of Eq. (1) is obtained with individual probabilities for reac-

tants pJvj(E) calculated with the SQM approach and product probabilities pJv′j′(E) estimated

with the St(E), St(Ω) and St(Ω,∆) approaches.
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A. The S+H2 reaction

We have started with the calculation of the reaction probabilities as a function of the

total angular momentum J at Ec = 97 meV. Results obtained with the SQM method for the

total probability for S+H2(v = 0, j = 1) are in almost a perfect agreement with estimates

from the other approaches as shown in Figure 2. The main differences are manifested when

the final-state-selected process S+H2(v = 0, j = 1) → SH(v′)+H is investigated. None of

the capture schemes under consideration seem to reproduce correctly the formation of the

SH diatom in its first vibrational excited state, with null probabilities for partial waves

beyond Jmax = 14. Up to J ≈ 5, the comparison with the SQM results for the production

of SH(v′) both on its ground state and vibrationally excited reveals that the St(E) and

St(Ω,∆) approaches are in perfect accord with the QM method, but beyond that value of

the total angular momentum, the probability for SH(v′ = 1) decays much more rapidly. The

SQM result for that channel, on the contrary, extends up to Jmax = 25. The overestimation

of the SH(v′ = 0) case by the St(E) and St(Ω,∆) results for J & 5 compensates the

differences to yield an overall agreement with the total probability. Interestingly, the state-

to-state probabilities calculated by means of the St(Ω) procedure are the results exhibiting

the largest differences with respect to the SQM values, overestimating the formation of

vibrationless SH but underestimating the prediction for the vibrationally excited product

diatom. As for the range of partial waves in which the other suggested approximations also

differ from the SQM values, the P J
v′ estimates compensate to yield total probabilities in good

accord with such a method.

A much finer detail can be obtained via the rovibrational cross sections shown in Figure

3. None of the methods provide a perfect qualitative description of the SQM distributions,

which display a maximum at a higher rotational state, j′ = 14, than the rest: 9, the St(Ω∆)

calculation, and 10 the two other approaches St(E) and St(Ω). Moreover, all cross sections

extend to larger SH(v′ = 0, j′) states, and in fact, the sudden cutoff seen for both the

St(Ω) and St(Ω,∆) approaches invites to think on a too crude limitation of contributing

rovibrational states with a non null capture probabilities. The purely energetic criterion

assumed within the St(E) framework produces on the contrary population on too high

rotational states.

Some of the behaviour observed for the reaction probabilities is recovered for the ICSs
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and thus the agreement between the SQM and the other statistical approaches for σtot seems

to be the result of an almost perfect compensation between the differences observed for the

state-to-state probabilities. Table I shows that the predictions for the total ICS at Ec = 97

meV are almost identical in all cases but, on the contrary, the production of SH in its

vibrational ground state seems to be overestimated with the statistical approximations with

respect to the SQM result for σv′=0 whereas noticeably less SH(v′ = 1) is predicted with

these methods.

The interesting result regards then more averaged quantities with no specified rovibra-

tional final state of the SH product diatom. Figure 4 shows the corresponding DCSs for the

S+H2(v = 0, j = 1) → SH+H reaction at the collision energy here under study. The SQM

angular distribution, which conveniently averaged with the result for the reaction initiated

from SH(v = 0, j = 0) in its ground state, was in such a good agreement with both exact

QM and experimental cross sections [15], is well reproduced by all statistical approxima-

tions. Despite slight deviations at specific values of the angle, the results shown in Figure 4

certainly validate the approximations as even cheaper counterparts of the SQM approach.

B. The Si+O2 reaction

Besides the test shown in the previous subsection for the S+H2 reaction, it is interesting to

analyze the feasibility of the proposed approximative capture schemes for computationally

more demanding processes, such as Si+O2. We start our study of this collision initiated

with molecular oxygen on its ground rovibrational state O2(v = 0, j = 1) at a similar energy

as in the above discussion. Figure 6 shows the corresponding reaction probabilities as a

function of the total angular momentum, P (J), at Ec = 100 meV obtained by means of

the statistical treatments under consideration in this work. The agreement for the total

probability among all theoretical approaches is remarkable but the results shown for specific

final vibrational states of the SiO(v′) product diatom (in particular v′ = 1 and 5) reveal that

some sort of compensation is also taking place for the St(Ω,∆) calculation. More precisely,

the probability predicted by this procedure for the case of formation of SiO(v′ = 1) is

noticeable larger at some partial waves in comparison with the SQM method, whereas is

slightly smaller for v′ = 5. The interesting result however is that, as opposed to the case

of S+H2, the rest of capture approximations seem to start in good accord with the SQM
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predictions.

The analysis at the rotational state level is performed via the corresponding state-to-state

cross sections for the Si+O2(v = 0, j = 1) → SiO(v′, j′) + O reaction. The corresponding

comparison with the SQM distributions shown in Figure 6 for the specific case v′ = 0 reveals

the trend of the approximative capture schemes to produce rotational ICSs extending to

larger excited j′ levels. St(E) and St(Ω) are found to yield ditributions with the maximum

located at slightly higher rotational states, and are almost identical apart of the sudden cutoff

displayed by the latter around j′ ∼ 110. The same forced trend at the tail of the distributions

is observed for the St(Ω,∆) calculation. The remarkable point is that populations for lower

rotational states, j′ . 90, predicted with this approach are in an overall good agreement

with the SQM cross sections.

This general good result obtained for the rotational cross sections extends to the vi-

brational distributions. In Figure 7 we show the corresponding cross sections for the

Si+O2(v = 0, j = 1) → SiO(v′)+O at three different collision energies: 5 meV (top panel);

100 meV (middle panel) and 400 meV (bottom panel). The sum on all rotational states of

distributions shown in Figure 6 leads to the first point of the middle panel for vibrational

cross sections for v′ = 0 at 100 meV. The agreement observed for this specific case certainly

comprises the balance between slight discrepancies regarding the populations according to

the different approximations with respect to the SQM predictions, but the comparison is

much more favourable that the S+H2 case. The good performance of the St(E), St(Ω) and

St(Ω,∆) schemes extends both to other vibrational states of SiO(v′) for the same collision

energy and to other collision energies. Specially good in the case of Ec = 5 meV, slight

deviations from the SQM cross sections are noticed for some vibrational distributions ob-

tained at 400 meV. In particular, the lowest SiO(v′) states are less populated in the St(E)

calculation than in the rest.

The total DCSs for the Si+O2 reaction at Ec = 100 meV calculated with the statistical

approaches considered in this work are compared in Figure 8. The agreement near the

sideways scattering direction θ ∼ 90◦ is noticeable, but outside the angular range between

∼ 45◦ and ∼ 135◦ some deviations in comparison with the SQM distribution are manifested.

The rest of capture approaches yield DCSs which are slightly below the SQM result, about

1.1 times larger at the strict peaks along 0◦ and 180◦.
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IV. DISCUSSIONS

Given that the proposed approximations are only applied to the calculation of capture

probabilities for the products arrangement, it is an expected result that the observed dif-

ferences with respect to the SQM method are mainly observed when the final rovibrational

state is specified. More averaged quantities however have been found in a reasonably good

agreement which in general prove the validity of the tested approaches. The selection of

the right parameter to use as criterion in the approximations constitutes one of the cru-

cial issues in this kind of study. In view of the present results one would say that purely

energetic considerations, as considered in the St(E) option, are not sufficient as they yield

the most significant deviations in rotational distributions (see Figs. 3 and 6) and the high-

est collisional energy considered for the Si+O2 case (see bottom panel of Fig. 7). This

seems to be consistent with the procedures followed for instance in the phase space theory

by Larrégaray et al. [25] where limitations on the total angular momentum are imposed

in order to assign the unity to the corresponding capture probability. Analogously, Miller

considered the impact parameter as the determining factor to discriminate between 0 and

1 for these probabilities [7]. The procedures which add an extra requirement on the final

rotational states, that is St(Ω) and St(Ω,∆), produce distributions with usually too abrupt

endings. In this sense, the examples under consideration here, suggest that the result can

differ depending on the number of final states sharing the capture probabilities.

One of the key issues of these types of approximations regards the computational time

saved with respect to a more complete calculation. In this sense, the performance of the

proposed approaches is clearly unbeatable. One of the hardest cases shown in this paper,

the Si+O2 reaction at Ec = 400 meV, can be solved in less than one hour whereas the

corresponding SQM calculations can take an entire week. The difference becomes even

more remarkable when the system under study gets more demanding in terms of numerical

effort. Preliminary investigations on reactions such as Si+OH reveals that several months

calculations can be approximated by means of these cheaper methods with runs of less than

a couple of hours of computing time.

Improvements and refinements are clearly possible. Thus, for example, it might be argued

that the calculation of the average potential in Eq. (4) could be carried out by the explicit

solution of the involved integrals instead of choosing the equilibrium distance of the product
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diatom. That would indeed provide a better average description of the potential energy

landscape for the reaction but in turn, would cause a significant increase of the computational

difficulty and therefore, out of the scope of the simplicity as a main goal of this work. Similar

considerations can be taken into account when the proposed methods employs merely the

value of the entire potential written in Eq. (3) at the capture radius, Rc. This choice,

which in some way, supports the choice of such a parameter within the context of the SQM

approach defining the region at which the intermediate complex is assumed to form, can

lead to a not necessarily good value of the potential when one is trying to know if a specific

rovibrational state is energetically open or not. Potential curves displayed in Figure 1 show

how different the conclusion can be depending on the precise value of R. In this sense, the

actual calculation performed in the SQM method provides a much better picture with the

complete V (R) potential involved in the log-derivative propagation. In addition to this, and

given the different contributions introduced by the centrifugal terms with values of J and Ω

the definition itself of an unique Rc seems too restrictive. It would be desirable to develop a

procedure to choose the capture radius for each set of (J,Ω) values, depending, for instance,

on the presence of centrifugal barriers.

One of the most interesting applications of these approaches could be the framework of

more complicated systems such as four atoms collisions [24]. AB+CD or A+BCD reactions

constitute an ideal scenario to employ approximations which may help to simplify the cal-

culations. Procedures to assign capture probabilities to asymptotic bound states of either

reactants or products based on energetic and kinematic considerations in terms of the energy

of the specific states can become an useful alternative to sometimes prohibitive exact QM

calculations.

V. CONCLUSIONS

Different approaches to estimate the capture probabilities within the context of statistical

techniques have been tested with two atom-diatom reactions: S+H2(v = 0, j = 1) → SH+H

and Si+O2(v = 0, j = 1) → SiO+O. Reaction probabilities, rovibrational distributions, in-

tegral and differential cross sections have been calculated by means of these approximations

and compared with results obtained with a statistical quantum mechanical method previ-

ously employed for these same processes. Total magnitudes are in general well described
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with the proposed methods and only at the state-to-state level some differences are man-

ifested with respect to the quantum mechanical method, with compensations between the

predictions for the different final vibrational state of the product diatoms. Rotational cross

sections are perhaps the most sensitive magnitudes to the precise approximation assumed,

with relevant deviations when only energy considerations on the diatom rovibrational states

(v′, j′) are taken into account to assign non-null probabilities. In turn, distributions with

possibly too abruptly ended tails are obtained when extra considerations regarding rota-

tional quantum numbers and their third components are included in the estimation of the

capture probabilities. The interesting thing is that the comparison between the performance

of the different schemes in the two processes under consideration suggests that in fact the

approximations work better for those cases mediated by a large number of rovibrational

states. It is precisely for those computationally more demanding reactions in which these

kinds of simplistic capture techniques can be more useful.
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of the SQM method (black lines) and the different statistiscal approaches proposed in this paper:
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Å2 and black lines and full squares are for the SQM approach; red lines and empty circles ate

cross sections obtained with the St(E) version; blue lines and empty triangles with the St(Ω)

approximation and green lines and empty diamonds are for results with the St(Ω,∆) method.
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Figure 4.
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TABLE I: Total and final-vibrational-state-selected ICSs for S+H2(v = 0, j = 1) → SH(v′) at

Ec = 97 meV obtained by means of the different statistical approaches. Units are Å2.

σtot σv′=0 σv′=1

SQM 27.89 25.44 2.45

St(E) 27.82 26.82 1.00

St(Ω) 27.82 26.84 0.98

St(Ω,∆) 27.51 26.86 0.65
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