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Abstract

This work presents an experimental picture of molecular ballistic diffusion on a sur-

face, a process which is difficult to pinpoint since it generally occurs at very short length

scales. By combining neutron-time-of-flight data, with molecular dynamics simulations

and density functional theory calculations, we provide a complete description of the bal-

listic translations and rotations of a poly-aromatic hydrocarbon (PAH) adsorbed on the

basal plane of graphite. Pyrene, C16H10, adsorbed on graphite is a unique system where

at relative surface coverages of about 10-20 %, its mean free path matches the experi-

mentally accessible time/space scale of neutron time-of-flight spectroscopy (IN6 at the
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Institut Laue-Langevin). The comparison between the diffusive behavior of large and

small PAHs such as pyrene and benzene adsorbed on graphite, brings a strong experi-

mental indication that the interaction between molecules is the dominating mechanism

in the surface diffusion of poly-aromatic hydrocarbons adsorbed on graphite.
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Carbon based materials play a central role in the search for low-friction building blocks

in nanotechnology.1–4 The high economical impact of wear, friction (energy dissipation) and

lubrication in industry and transport5 has fostered intensive research in friction free or

super-diffusive systems.6 Super-diffusivity has been observed in systems involving graphitic

compounds: fullerenes,7,8 metallic clusters9 or graphene flakes adsorbed on graphite.10,11

The existence of quadrupole or higher order interactions may cause the super-diffusivity

between graphene and graphite observed with atomic force microscopy (AFM).10,12,13 Inter-

actions of the same nature exist in poly-aromatic hydrocarbons (PAH) adsorbed on graphitic

substrates,14,15 which are characterized by a very low energy barrier for lateral diffusion16

and can act as nano-sized lubricants.2

Scattering techniques such as quasi-elastic helium atom scattering (QHAS) and quasi-

elastic neutron scattering (QENS) are powerful tools to investigate very fast molecular dy-

namics (pico-second time scale and atomistic length scale).17 Their combination provided

the first unambiguous experimental observation of Brownian diffusion of molecules adsorbed

on surfaces (benzene/graphite) as well as the first precise measurement of the kinetic friction

parameter.16,18 The sensitivity of QENS and QHAS to the dynamics of adsorbates on weakly

corrugated surfaces (diffusion energy barrier in the meV range) turns them into the ideal

probe for research into the origin of energy dissipation on graphite.17,19,20
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At strong dilution, Brownian dynamics can transform into ballistic motion, i.e., molec-

ular collisions where linear and angular momentum is exchanged, become negligible and

molecules move in a linear fashion. Hints of ballistic dynamics were already found at very

low relative coverages of benzene on graphite (0.1 monolayers (ML), corresponding to 10 %

occupancy of the effective surface adsorption sites).18 However, the observation of the pure

ballistic regime requires an even lower density of adsorbates, which, in turn requires the use

of molecules with a bigger size and a large scattering cross section to preserve an adequate

signal-to-noise ratio. In the present work, we explore the diffusion of pyrene (C16H10) on

graphite in the low coverage regime of 0.1 and 0.2 ML and for temperatures between 80

K and 350 K. We compare its diffusive behavior to benzene (C6H6) on graphite at equiva-

lent relative coverages and temperatures. By combining the experimental data with density

functional theory (DFT) calculations, molecular dynamics (MD) simulations and a new an-

alytical model which predicts the signature of ballistic translations and rotations in QENS

data, we achieve a full characterization of pyrene’s diffusive behavior.

QENS measurements of 0.2 ML of pyrene and benzene at equivalent kinetic temperatures

(where the ratio temperature to mass, T/m is the same) show how the molecular size allows

to adjust the mean free path l̄ for ballistic diffusion to the time and length scale covered

by the neutron spectrometer. The values for the molecular radius and the mean free path

expected for 0.2 ML of pyrene and benzene are summarized in Tab. 1. Accordingly, benzene’s

ballistic diffusion will be visible at momentum transfers of Qball > 0.9 Å−1, while pyrene’s

ballistic diffusion is already visible at Qball > 0.6 Å−1. Fig. 1 displays the distribution of

neutron intensity, the so-called scattering function S(Q,∆E) (SF),21 as a function of the

energy transfer ∆E, at a momentum transfer of Q = 0.8 Å−1 for 0.2 ML of benzene (at 60

K and 140 K) and 0.2 ML of pyrene (at 160 K and 320 K) respectively.

The molecule’s diffusive behavior can be characterized qualitatively by analyzing the

energy profile of the scattering function: A Gaussian form of the quasi-elastic spectrum is
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Table 1: Summary of the relevant physical parameters for benzene and pyrene adsorbed on
graphite for a relative coverage of θ = 0.2 ML.

Physical Parameter C6H6 C16H10

Area:1 σ (Å2) 37 ∼ 85

Molecule radius:2 a =
√
σ/π (Å) 3.5 5.2

Pair correlation:3 g(d+) 2.6 2.6*

Molecular density:4 ρ = θg(d+)/(σ) (molecules.Å−2) 1.4×10−2 0.6×10−2

Mean free path: l̄ = 1/(2
√

2ρa) (Å) 7.2 10.9

Corresponding momentum transfer: Qball = 2π/l̄ (Å−1) 0.9 0.6

Energy for adsorption5 (eV) -0.64 -1.56

Energy barrier for diffusion5 (eV) 0.012 0.011

1 The value for the area occupied by a molecule lying flat on the basal plane of
graphite σ (see Ref.22 for benzene and DFT calculations for pyrene).

2 The radius a of the adsorbed molecule.
3 The pair correlation value at the first neighbour distance g(d+) (*we assume
that benzene and pyrene have the same value, see Ref.18 ).

4 The molecule density at the contact distance ρ
5 The energy for adsorption and the barrier for diffusion have been calculated
with DFT.

4



Table 2: Summary of the fit results of the benzene and pyrene experimental SFs at equivalent
experimental conditions and for a relative coverage of θ = 0.2 ML and a momentum transfer
of Q = 0.8 Å−1.

Physical Parameter C6H6 C16H10

Temperature (K) 60 140 160 320

Shape parameter: χ(Q = 0.8 Å−1) 0.3+0.5
−0.3 0.3+0.5

−0.3 0.9 ± 0.4 1.0 ± 0.3

GoF1, for Eq. 1 1.2 2.9 2.0 2.1

GoF for Lorentzian function fit 1.0 1.5 1.6 1.7

GoF for Gaussian function fit 2.6 2 .5 1.8 1.9

1 Goodness of fit.

characteristic for ballistic diffusion. Conversely, a Lorentzian like profile of the energy transfer

is the signature of Brownian diffusion.20 In order to quantify the degree of ballistic/Brownian

diffusion (Gaussian/Lorentzian like quasi-elastic profile) we fit the experimental SF to the

convolution of the experimental resolution function (the vanadium scattering function) with

a model function for diffusion on a flat potential energy surface:23

Sinc(Q,∆E) = y0 + Sres(Q,∆E)⊗[
exp[χ2(Q)]× A(Q)

∞∑
n=0

(−χ2(Q))
n

πn!

(n+ χ2(Q))η

[(n+ χ2(Q))η]2 + ∆E2

]
.

(1)

Here, y0 is the background arising from processes which are too fast to be observed in

the current time window (phonons for instance) and instrumental noise; A(Q) is the global

amplitude of the quasi-elastic signal, χ(Q) =
√
〈v2〉Q/η is the shape parameter, defined as

the ration between the mean square velocity 〈v2〉 and the friction parameter η.23 Its value

determines the energy dependence of the quasi-elastic profile:23 i) for large η (Brownian

diffusion) χ � 1, and only the first term n = 0 of the summation in Eq. 1 contributes to

the scattering function. ii) Conversely, if η is very small and χ � 1, then Eq. 1 can be

approximated by a Gaussian function which is the typical signature of ballistic diffusion.20
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Figure 1: Comparison of the experimental scattering function S(Q = 0.8Å−1,∆E) for 0.2 ML
of benzene at 60 K (top left) and 140 K (top right) and 0.2 ML of pyrene at 160 K (bottom
left) and 320 K (bottom right). On the top of each graph we indicate the temperature/mass
ratio: 4× 1026 K.kg−1 (left) and 10× 1026 K.kg−1 (right). The thick black line is the fitting
of the experimental data to Eq. 1. The yellow area is the fit of the experimental data to
a Gaussian function and the blue area is the fit of the experimental data to a Lorentzian
function. The dotted black line is the elastic profile. The open circles mark the data points
excluded from the GoF calculation.

Tab. 2 summarizes the result of the best fit while Fig. 1 shows the best fit for each

experimental profile in comparison with a single Lorentzian and Gaussian function (further

details can be found in the supplementary information). We observe that the fitted shape

parameter χ for pyrene is equal to one while for benzene it is clearly below. Accordingly the

benzene quasi-elastic profile is best fitted by a Lorenzian function and the pyrene quasi-elastic

profile could be fitted with either a Gaussian or a Lorentzian function. Both options yield a

very similar goodness of fit, GoF, in the range of energies which excludes the points within

[-0.2,0.2] meV where the elastic signal dominates over the quasi-elastic signal. Therefore,

benzene diffuses in a Brownian fashion (significant value of η) while pyrene displays hints
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of ballistic diffusion at Q = 0.8 Å−1 (η � 1 and high degree of Gaussian-like quasi-elastic

profile). In addition, the very low corrugation of the substrate potential energy surface cal-

culated by DFT for both molecules, suggests that the role of the substrate in the friction

dissipative process is small. The observation of a ballistic diffusive behavior in a dilute sys-

tem (pyrene) and a Brownian diffusive regime in a denser system (benzene) supports the

hypothesis that the origin of friction in PAH adsorbed on graphite is mostly due to collisions

between molecules which act as rough hard disks and exchange linear and angular momen-

tum.18 The main channel for the translational kinetic energy dissipation is therefore the

conversion of linear motion into rotations and other internal degrees of freedoms: tumbling

for benzene and internal vibrations for pyrene (see the last section of supplementary informa-

tion). In the following paragraph we attempt to fully characterize pyrene’s diffusive behavior.

Fig. 2 displays the quasi-elastic neutron spectra measured in pyrene/graphite samples

at two different relative coverages: 0.1 ML and 0.2 ML, at 320 K, and calculated from

molecular dynamics simulations of a full molecule and its center of mass (C.o.M) trajectories.

The energy profiles are fitted to a model which combines an elastic peak (in the case of

experimental data), a quasi-elastic peak arising from ballistic translations and rotations

and an inelastic contribution whose origin we have explored with DFT calculations (see

supplementary information):1

Sfit(Q,∆E) = y0+[
Ael(Q)δ(∆E)A(Q) + A(Q)SBTR(Q,∆E) +

Ap(Q)

(∆E −∆Ep(Q))2 + Γp(Q)2

]
(2)

The free parameters in the fitting are the flat background y0, the elastic peak amplitude

Ael(Q) (in the case of the experimental data), the global amplitude of the quasi-elastic

profile A(Q), the energy ∆Ep(Q), the amplitude Ap(Q) and the width Γp(Q) of the inelastic
1Note that for the experimental data, Eq. 2 needs to be convoluted with the resolution function (the

vanadium scattering function): Sres(Q,∆E)⊗ Sfit(Q,∆E)
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Figure 2: Simulated and experimental scattering functions (SF) at a momentum transfer of
0.8 Å−1 and at 320 K. 1st and 2nd panel : Simulated SFs extracted from the center of mass
(CoM) and the full molecule trajectories in the MD simulation, respectively. 3rd and 4th
panel : Experimental SFs of 0.1 ML and 0.2 ML of pyrene/graphite.

peak. SBTR(Q,∆E) stands for the ballistic translational rotational (BTR) model consisting

in the convolution of a classical Gaussian function, typical for ballistic translations, with

an adaptation of the scattering function for uniaxial rotational diffusion24 to the ballistic

regime (see Eq. 14 in the supplementary information):

SBTR(Q,∆E) = ST (Q,∆E)⊗ SR(Q,∆E)

=

NH∑
k=1

[
J2
0 (Qak)ST (Q,∆E) + 2

∞∑
l=1

J2
l (Qak)ST (Q,∆E)⊗ SR(l,∆E)

] (3)

The ballistic rotational scattering function is a summation of Gaussian profiles SR(l,∆E),

whose half-width-at-half-maximum (HWHM) is determined by the angular mean square

velocity (in analogy to the translational case) but is independent of the momentum transfer
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(due to confinement24,25). Each term of the sum is weighted by the cylindrical Bessel function

Jl(Qak) of the l-th order which takes into account the geometry of the motion. ak is the

radius of the circle on which each scatterer moves when the molecule rotates. In the case

of hydrogenated pyrene, C16H10, the scattering intensity is dominated by the incoherent

scattering cross section of the protons, and therefore k accounts only for the NH hydrogen

atoms in the molecule.20

The fit of the experimental data to the model (Eq. 3) yields an excellent agreement, for

the values of 〈v2〉 and 〈ω2〉 predicted by the equipartition theorem for 2D translations and

uniaxial rotation: 2.69 Å2.ps−2 and 0.18 ps−2, respectively. The translational and rotational

quasi-elastic profiles have a distinct HWHM due to their different time scale: ∼15 ps for a 2π

rotation of the molecule versus ∼ 5 ps for a distance of 8 Å (corresponding to Q ∼ 0.8 Å−1).

The MD simulations show a similar behavior where translations and rotations also display

separable time scales. The values obtained for 〈v2〉 and 〈ω2〉, 1.26 ± 0.02 Å2.ps−2 and 0.075

± 0.001 ps−2 respectively, are smaller than the predictions of the equipartition theorem, but

their ratio of 16.8 is in accordance with the theoretical ratio of 13.6, which is determined

by the ratio between the mass and the moment of inertia of pyrene. Therefore, we obtain

qualitatively the same behavior of the quasi-elastic profile for simulated and experimental

data.

The signature of the molecular diffusive regime can also be found in the quasi-elastic

broadening Γ,20 taken as the HWHM of the quasi-elastic profile. Fig. 3 shows the quasi-

elastic broadenings extracted from the fit of 0.1 ML, 0.2 ML and simulations to Eq. 2 as

a function of coverage, the momentum transfer (panels A and B) and temperature (panel

C)2. It also compares them with the predictions of the BTR model. Panel D shows a scheme

of the translational-rotational dynamics of the molecules generated from the MD simulated

trajectories.26

2The error in the quasi-elastic broadening is calculated by evaluating Eq. 2 in the limits of the confidence
band of the fitted parameters. The resulting error bar is of the size of the symbol.
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Figure 3: Panel A: Quasi-elastic broadening versus the momentum transfer, extracted from
the fitted profile of the experimental data to Eq. 2. Panel B : Quasi-elastic broadenings
extracted from the fit to Eq. 2 of the simulated SF. Panel C : The experimental quasi-elastic
broadening for 0.1 and 0.2 ML versus the temperature. In all the three panels, the solid lines
are the prediction for the quasi-elastic broadening of the BTR model. Panel D : Schematic
representation of the dynamics of the molecule as observed in the MD simulation:26 with a
green line we represent the center of mass motion and with a blue line, the trajectory of one
of the protons of the molecule. The red area represents the graphite unit cell.

We observe the following: i) the quasi-elastic broadening is independent of coverage, in

all the momentum transfer range (panel A), and also in a very wide thermal range (panel C).

ii) Panel A shows how rotations deviate the quasi-elastic broadening dependence on Q from

the linear law. iii) Panel C confirms that the quasi-elastic broadening is proportional to
√
T .

Thus, we conclude that the main part of the quasi-elastic intensity comes from the ballistic

translations and rotations of the pyrene molecules on the surface and is well reproduced by

the BTR model. The panel B displays the quasi-elastic broadenings extracted from the fit of

the MD simulated scattering functions to Eq. 2. Qualitatively, the MD simulations deliver

a picture of the diffusive behavior of a single pyrene molecule matching the experimental

observations. The center of mass (C.o.M) of the molecule follows a linear law of the momen-
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tum transfer, as expected for ballistic translations, while the total quasi-elastic broadening

(calculated from the trajectories of the full molecule) deviates from the linear law of Q and

follows the BTR model. Note, that for the MD simulations the agreement with the model is

achieved by considering either an effective mass and an effective momentum of inertia which

are larger than the real values of the pyrene molecule, or an effective temperature which is

below 320 K.

Finally, we consider several possibilities for the origin of the inelastic feature in the quasi-

elastic spectrum of pyrene. The inelastic feature may be caused by the low energy phonons

of graphite along the [0001] direction,27 which we are observing due to the misalignment of

graphite crystallites in the Papyex substrate.28 We have also explored the effect of molec-

ular tumbling (librations around the x or y axis resulting into a motion along the z axis).

DFT calculations provide a potential well for the tilting of pyrene with respect to the sub-

strate plane (see the supplementary information). From the quadratic part of the well, we

estimate the frequency of an oscillatory motion along the z axis whose ground energy is

∆E = h̄ω/2 = 0.4 meV. Another possibility are external vibrations of the whole molecule

with respect to the surface, which can also give rise to vibrations within this energy range

as observed on metal substrates.29

In summary, we have studied the diffusive behavior of pyrene adsorbed on exfoliated

graphite using quasi-elastic neutron scattering over a large thermal range (80 K up to 320

K) and for a coverage of 0.1 ML and 0.2 ML. The dependency of the quasi-elastic signal

on energy transfer momentum transfer, coverage and temperature, suggests that pyrene

diffuses ballistically on the basal plane of graphite. The comparison with the Brownian

diffusion observed for benzene under equivalent experimental conditions, brings a strong

support for the description of friction processes in PAH/graphite systems as the result of

molecular collisions: we observe how surface friction vanishes at strong dilution.

To fully characterize the ballistic diffusive regime of the pyrene molecule on the basal
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plane of graphite, we have developed a new model (BTR) to identify the experimental

signature of friction free-translations and rotations. DFT calculations complement the in-

terpretation of the experimental data by providing a very low energy barrier for diffusion of

11 meV and a potential well for the tumbling of the molecule on the substrate. Finally MD

simulations of a single pyrene molecule on graphite reproduce qualitatively the experimental

observations and allow to separate the purely translational part from the rotational part of

the scattering function.

Thus the study of PAH on graphitic surfaces represents a wide territory for the investiga-

tion of different diffusive motions. The present work leaves several open questions which we

hope will encourage further studies of the surface dynamics of weakly physisorbed systems:

The role of tumbling in the friction dissipation process of PAH’s kinetic energy is still an

open issue. Moreover, measurements of even larger PAH such as coronene could provide a

deep insight into the role of size and rotations in the diffusion of PAH on graphite.

1 Experimental procedure

The measurements were performed at the IN6 time-of-flight spectrometer of the ILL. The

incoming neutron wavelengths was set to 5.12 Å with an energy resolutions at full width,

half maximum of 70 µeV. The neutron scattering signal of the adsorbate molecules was en-

hanced by using Papyex exfoliated graphite substrates (grade N998, > 99.8 % C, Carbone

Lorraine), which have a high specific surface area of the order of 23 m2g−1 28 and a preferen-

tial orientation of the graphite crystallites with their basal plane parallel to the scattering

plane (in–plane scattering geometry).28,30 In addition, the coherent length of the crystallites

extracted from the x-ray diffraction pattern is, on average, 600 Å.28 Hence, we expect the

impact of edges and defects to be negligible for the diffusion process, given that the pyrene

mean free path is of 10 Å. The specific surface area of the samples was verified by the
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Brunauer-Emmett-Teller (BET) nitrogen adsorption isotherms. We used liquid He cryostats

as sample environment to control the temperature within the range of 1.7-320 K. We have

performed measurements of 0.1 and 0.2 ML pyrene in the thermal range of 80 K to 320 K

and of 0.2 ML of benzene at 60 K and 140 K. In addition, we have measured also the scat-

tering function of the clean graphite substrate (before adsorption) as reference for substrate

contributions and the resolution function of the instrument was measured using a sample of

vanadium with the same geometry as the actual sample.
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