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ABSTRACT

Context. Convective core overshooting extends the main-sequence lifetime of a star. Evolutionary tracks computed with overshooting
are very different from those that use the classical Schwarzschild criterion, which leads to rather different predictions for the stellar
properties. Attempts over the last two decades to calibrate the degree of overshooting with stellar mass using detached double-lined
eclipsing binaries have been largely inconclusive, mainly because of a lack of suitable observational data.
Aims. We revisit the question of a possible mass dependence of overshooting with a more complete sample of binaries, and examine
any additional relation there might be with evolutionary state or metal abundance Z.
Methods. We used a carefully selected sample of 33 double-lined eclipsing binaries strategically positioned in the H-R diagram with
accurate absolute dimensions and component masses ranging from 1.2 to 4.4 M�. We compared their measured properties with stellar
evolution calculations to infer semi-empirical values of the overshooting parameter αov for each star. Our models use the common
prescription for the overshoot distance dov = αovHp, where Hp is the pressure scale height at the edge of the convective core as given
by the Schwarzschild criterion, and αov is a free parameter.
Results. We find a relation between αov and mass, which is defined much more clearly than in previous work, and indicates a
significant rise up to about 2 M� followed by little or no change beyond this mass. No appreciable dependence is seen with evolutionary
state at a given mass, or with metallicity at a given mass although the stars in our sample span a range of a factor of ten in [Fe/H],
from −1.01 to +0.01.
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1. Introduction

Convective core overshooting refers to an extension of the
stellar core beyond the boundaries defined by the classical
Schwarzschild criterion. This criterion for stability against con-
vection requires the acceleration of the convective elements to
vanish, but their velocities do not necessarily vanish because of
inertia. As a result, there is penetration of convective cells into
the stable layers above the core. This extra mixing leads to stel-
lar models with longer main-sequence lifetimes, as more fuel
is available within the core. Additionally such models have a
higher degree of mass concentration towards the centre, which
has observable effects as it can influence the rate of apsidal mo-
tion in close eccentric binary systems. Other mechanisms may
increase the size of the stellar core as well, such as internal
gravity waves or rotation. For the purposes of this work we re-
fer to the increase in the convective core size simply as core
overshooting.

Pioneering theoretical studies on the subject of overshoot-
ing date back more than five decades (see e.g. Roxburgh 1965;
Saslaw & Schwarzschild 1965). It has become common to char-
acterize the distance dov to which convective elements penetrate
beyond the classical Schwarzschild core by defining an over-
shooting parameter αov such that dov = αovHp, in which Hp is
the pressure scale height. The following list gives examples of
the overshooting parameters adopted in various published grids
of stellar evolution models:

– Schaller et al. (1992): αov = 0.20;

– Demarque et al. (2004): overshooting starts at 1.2 M� and
ramps up to a maximum of αov = 0.2 at 1.4 M� and larger
masses (metallicity dependent);

– Claret (2004): αov = 0.20;
– Pietrinferni et al. (2004): αov = (M − 0.9 M�)/4 for masses

M in the range 1.1–1.7 M�, and αov = 0.2 beyond 1.7 M�;
– Mowlavi et al. (2012): αov = 0.05 between 1.25–1.70 M�,

and αov = 0.10 for M > 1.7 M�;
– Bressan et al. (2012): overshooting parametrized in terms of

a scale parameter Λc, which ramps up linearly between 1.1
and 1.4 M� (metallicity dependent) to a value of 0.5, corre-
sponding approximately to αov = 0.25, and remains constant
for larger masses.

Other authors have used alternate formulations that take into ac-
count the influence of the radiation pressure on the extension
of the convective core (Pols et al. 1995), prescriptions with a
different adjustable parameter involving an exponential func-
tion that depends on the size of the classical core and on the
pressure scale height (Paxton et al. 2011), or implementations of
the Roxburgh criterion (Roxburgh 1978, 1989) to model the ex-
tent of the convective core, also using a different free parameter
(VandenBerg et al. 2006).

An important question one may naturally ask regarding over-
shooting is whether the extension of the convective core de-
pends on stellar mass, as has often been assumed (but not al-
ways; see above), and if so, how. This is the main subject of
this paper. An even more basic question, actively debated begin-
ning 25 yr ago, is whether overshooting is needed at all to fit
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the observations. On this second issue opinions were initially di-
vided. Andersen et al. (1990) provided strong evidence based on
moderately evolved detached eclipsing binary stars of interme-
diate mass and several open clusters that some degree of over-
shooting is required. On the other hand, Stothers & Chin (1991,
1992) suggested that observations are adequately fitted with lit-
tle or no need for core overshooting. Subsequent investigations
again supported the need for extra mixing (Claret & Giménez
1991; Schaller et al. 1992; Bressan 1992, see references therein),
and further studies of double-lined eclipsing binaries (DLEBs)
presented additional evidence in the same direction by compar-
ing stellar models with accurately measured absolute dimensions
of the components (e.g. Ribas 1999; Lastennet & Valls-Gabaud
2002). A similar conclusion was reached by Claret & Giménez
(2010) and was also based on DLEBs as well as the apsidal mo-
tion test. Recent studies of open clusters have continued to sup-
port the need for extra mixing (see e.g. Mowlavi et al. 2012), as
have numerous studies of individual eclipsing binaries. Virtually
all modern series of stellar evolution calculations now include
some degree of overshooting, although vestiges of earlier hesita-
tions are perhaps reflected in that several of these grids still offer
standard models with no overshooting (at least for solar compo-
sition), which are often used for comparison purposes.

Investigating the possible dependence of overshooting on
stellar mass by means of binaries, as we set out to do here, re-
quires not only an accurate knowledge of the component masses,
but also of the stellar radii (R) and the effective temperatures
(Teff) for a meaningful comparison with stellar evolution mod-
els. These properties are typically best determined in detached
DLEBs. The sample of such binaries with the most accurate de-
terminations of their absolute dimensions has increased steadily
in size in the last few decades, from 45 systems compiled by
Andersen (1991) with mass and radius uncertainties better than
about 3%, to more than twice that number in the more recent
review by Torres et al. (2010). A study of the correlation be-
tween αov and mass by Ribas et al. (2000) used a total of eight
DLEBs with component masses in the range 2–12 M�, and
found a strong dependence of the extra mixing on mass. These
authors relied very heavily on the massive binary V380 Cyg
(M1 ∼ 11 M�, M2 ∼ 7 M�) to establish the slope of the re-
lation, however, fitting the measured properties of this critical
system has always been problematic, as discussed at length by
Claret (2007) and also more recently by Tkachenko et al. (2014).
The latter authors reported a new set of precise determinations of
the mass, radius, temperature, chemical composition, and other
properties of the components that have nevertheless remained
difficult to reconcile with models.

The study of Claret (2007) revisited the mass dependence of
αov on the basis of masses, radii, and temperatures of 13 DLEBs
between about 1.3 and 27 M�, but these authors chose to use the
ratio of the component effective temperatures rather than the in-
dividual temperatures themselves, arguing that the ratios can be
determined more accurately from light curve analyses. Models
were computed for the exact masses measured in each case. The
main conclusion of that investigation was that the dependence
of overshooting on mass is more uncertain and less pronounced
than that proposed by Ribas et al. (2000).

More recently there has been renewed interest in this sub-
ject, although the results of new studies have been somewhat
inconsistent. Meng & Zhang (2014) investigated four DLEBs
with component masses of 1.4–3.5 M�, and found no significant
dependence of overshooting with mass. Stancliffe et al. (2015)
modelled 12 DLEBs between 1.3 and 6.2 M�, and found that
the 9 for which their models provided satisfactory fits to the

observations also showed no evidence for a trend of the extent
of overshooting with mass. Valle et al. (2016) examined simu-
lated DLEBs over a more limited mass range (1.1–1.6 M�) and
only for evolutionary stages up to central hydrogen depletion.
Rather than addressing the mass dependence issue directly, they
took a step back from the empirical studies of others and focused
instead on quantifying the uncertainties in deriving αov that de-
pend on the observational uncertainties, the adopted helium-to-
metal enrichment ratio ∆Y/∆Z, and other details of the models
such as the amount of diffusion and the mixing length parameter
αMLT. They cautioned that some of these can lead to significant
biases in the inferred efficiency of convective overshooting from
stellar models. Deheuvels et al. (2016) dispensed with binaries
altogether and used diagnostics from asteroseismology of single
stars observed by the Kepler spacecraft to estimate the extent of
the extra mixing for eight relatively low-mass stars (1.3–1.5 M�)
in which this was possible. These authors reported hints that
αov may depend on mass even over this narrow range. Similar
seismic studies of more massive stars (M > 7 M�; Aerts 2013,
2015) reported no obvious mass dependence.

In the present paper we again invoke DLEBs to investigate
the dependence of overshooting on stellar mass along the lines
of the Claret (2007) study, although with the following impor-
tant differences: (i) we employ a significantly enlarged sample
(33 binaries rather than 13) with a range of stellar masses that
spans the entire regime over which current stellar evolution mod-
els ramp up the efficiency of overshooting from zero, and extends
to masses well beyond those at which models typically consider
αov to no longer increase; (ii) we apply a more careful selection
to include only systems that are evolved enough for the effects
of overshooting to be discernible; and (iii) we focus on binaries
with the best measured masses, radii, and effective temperatures,
as well as chemical compositions, when available.

The paper is organized as follows. In Sect. 2 we state our
selection criteria and present our observational sample. The stel-
lar evolution models (Granada series) and methodology to in-
fer values of αov for each star in each binary are described in
Sect. 3. The main results concerning the mass dependence of αov
are given in Sect. 4, followed by a discussion of the significance
of our findings in Sect. 5. Concluding remarks may be found in
Sect. 6. Finally, in Appendix A we apply the virial theorem in the
framework of extra mixing to investigate the size of the enlarged
convective cores.

2. Observational sample

A key requirement for our study of overshooting as a function of
stellar mass is that the binaries in our sample must have precise
and accurate masses, radii, and effective temperatures, and ide-
ally abundance analyses as well. The most recent critical com-
pilation of absolute dimensions for normal stars by Torres et al.
(2010) included 95 systems with mass and radius uncertainties
under 3%, but not all are suitable for our purposes. This is be-
cause a second important requirement is that the stars must be
sufficiently evolved to phases where overshooting has a large
enough influence so that it can be estimated reliably by fitting
models (late stages of the main sequence, or giant phases). Un-
evolved binaries near the zero-age main sequence (ZAMS) carry
no useful information on αov. Fewer than a dozen systems from
Torres et al. (2010) meet this condition and almost all are still
on the main sequence. In the interim a number of other well-
studied detached eclipsing binary systems have been reported,
most notably several located in the Large and Small Magellanic
Clouds (LMC; SMC) containing giant stars. These objects were
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discovered in the course of the Optical Gravitational Microlens-
ing Experiment (OGLE)1, and have served to establish a pre-
cise distance scale to those galaxies (e.g. Pietrzyński et al. 2010,
2013; Graczyk et al. 2012, 2014). They are also ideal for our pur-
poses because they are highly evolved. Although some of these
objects exceed our desired 3% tolerance in the radius errors, we
have chosen to include those slightly less precise results because
of their high value for this investigation and because they are
often accompanied by a metallicity determination, which is rel-
atively rare for eclipsing binaries.

The 33 systems we have selected are listed in Table B.1,
sorted by decreasing primary mass. One (α Aur) is an
astrometric-spectroscopic binary rather than an eclipsing binary,
but it still has useful radius determinations obtained from angu-
lar diameter measurements (see Torres et al. 2015) along with
accurate temperatures and a detailed abundance analysis. As de-
scribed later, in some of our binaries we have swapped the pri-
mary and secondary identifications relative to those published,
after verifying that only this assignment yields reasonable model
fits with the “primary” being more evolved than the “secondary”.
These systems are flagged in the table. A handful of our ob-
jects (most notably YZ Cas, HY Vir, χ2 Hya, and VV Crv) are
especially valuable in that they have mass ratios that are very
different from unity, providing greater leverage for fitting mod-
els. Three others happen to have primary components that are
pulsating stars (classical Cepheids). Finally, it is worth keeping
in mind that temperatures and metallicities are less fundamental
than masses and radii, they are typically more difficult to deter-
mine or depend on external calibrations, and they may be subject
to systematic errors in excess of the formal uncertainties listed
in Table B.1.

3. Stellar models and methodology

For this work we used the Granada stellar evolution code of
Claret (2004, 2012) to generate evolutionary tracks for the mea-
sured masses of the components of our binaries, which span the
range 1.2–4.4 M�. We fitted these models to the observations
for each system (radii, temperatures, and metallicity when avail-
able) to infer αov separately for each star under a number of as-
sumptions described below. We note that the abundance-related
quantity most often measured and reported for stars is [Fe/H],
whereas the models are usually parametrized in terms of the
overall metallicity Z. Even if [Fe/H] is accurate, the conversion
to Z usually assumes that abundances of other elements scale in
the same way as in the Sun, which is not necessarily true in all
cases. Additionally, a complete specification of the composition
of the models requires knowledge of the hydrogen (X) or helium
(Y) content as well, or equivalently, the adoption of an enrich-
ment law relating Y and Z. Here we adopted a primordial helium
content of Yp = 0.24, and a slope for the enrichment law given by
∆Y/∆Z = 2.0. Convective core overshooting in our models is im-
plemented as described in Sect. 1, expressing the extra distance
travelled by convective elements beyond the limits of the core as
dov = αov Hp, where Hp is the pressure scale height at the edge of
the convective core as given by the Schwarzschild criterion. To
compute the size of the mixed core, rov, and to avoid dealing with
a region of extra mixing that is larger than the classical core, we
adopt the following simple (step-function) algorithm: if rc (clas-
sical radius) is smaller than Hp, the size of the new core is given
by rov = rc + αov Hp; otherwise, rov = rc(1 + αov). The region

1 http://ogle.astrouw.edu.pl/

beyond the classical core is fully mixed and the corresponding
temperature gradient is assumed to be adiabatic.

For stars with convective envelopes we employ the standard
mixing-length formalism (Böhm-Vitense 1958), where αMLT is a
free parameter. Rotation has not been considered for this work.
High-temperature opacities were taken from the tables provided
by Iglesias & Rogers (1996); for lower temperatures we used the
tables of Ferguson et al. (2005). The element mixture adopted in
our models is essentially that of Grevesse & Sauval (1998), giv-
ing a solar metallicity of Z� = 0.0189. Mass loss was accounted
for with the prescription of Nieuwenhuijzen & de Jagger (1990)
for all models except those for red giants with masses smaller
than 4 M�; for the latter we adopted the formalism of Reimers
(1977). Additional details about the code used to generate our
models can be found in the work of Claret (2004, 2012).

For each system in our sample we computed a large grid of
evolutionary models for the measured masses, with overshoot-
ing parameters αov for each component covering the range 0.00–
0.40 in steps of 0.05, as well as mixing length parameters αMLT
between 1.0 and 2.0, in steps of 0.1 (99 models in all, for each
binary component). Each track contained several thousand time
steps, and the calculations were carried out for the observed
chemical composition (iron abundance, transformed to Z) when
available, or for suitable values from the literature or solar metal-
licity in other cases. Initially we required the DLEB compo-
nents to be strictly coeval, i.e. the radii and effective tempera-
tures should be matched simultaneously for the same age, at the
observed masses. As the figure of merit for identifying the best
fits we used a simple χ2 statistic, and performed interpolations
in age within each track for higher accuracy. We found that this
brute-force grid procedure often produced very poor fits or puz-
zling results such as stars of similar masses that are assigned very
different αov or αMLT parameters, or extreme values reaching the
limits of our grid. Similarly disappointing results were obtained
when using the radii along with the temperature ratios instead
of the individual temperatures, when fitting only the radii, or
when setting the mixing length parameters of the hotter (radia-
tive) components to αMLT = 1.7, close to the solar-calibrated
value, in combination with the previous choices. As we expect
neither the observations nor the models to be perfect, we later re-
laxed the condition of strict coevality and allowed the component
ages to differ by up to 5%. This improved the situation in some
cases, but many still produced bad matches to the measurements,
suggesting perhaps a problem with the abundances.

Adding Z as an extra dimension in our grids was considered
too computationally expensive given the number of binaries in
our sample. Therefore, using the above results as a guide, we
performed the adjustments manually system by system, varying
Z (assumed to be the same for the two stars) along with αov and
αMLT. As before, we allowed age differences up to 5%, though
in most cases we found that they came out much closer than
this. Satisfactory fits were obtained for the vast majority of our
DLEBs, though some of them had a preference for Z values that
were not insignificantly different from those assumed initially,
indicating that composition is indeed a critical ingredient for the
fits. We discuss this issue in more detail below. Figure 1 shows a
few representative examples of the fits.

4. Results

As can be inferred from the properties in Table B.1, or more di-
rectly from Fig. 1, some of our systems are in very rapid phases
of evolution where ambiguities can sometimes occur as to the lo-
cation of the components in the H-R (or radius vs. temperature)
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Fig. 1. Sample best fits to six of our binaries in the R vs. Teff diagram. Evolutionary tracks and observations for the primary in each system are
represented with solid lines and open circles, while dashed lines and open squares are used for the secondary. Small dots indicate the best-fit
location on each track and are always within the measurement uncertainties.

diagram. An advantage of our manual adjustments over the blind
grid fits is that they allow us to avoid inconsistencies, such as the
primary appearing near the secondary in the R vs. Teff diagram
in a less evolved state, because of observational errors. Addition-
ally, a few of our binaries have measured primary and secondary
masses that are close or indistinguishable within the uncertain-
ties, but they have very different radii and temperatures. Manual
inspection allowed us to identify several cases in which the pub-
lished identities of the components are reversed (see Table B.1).

Our results for the best-fit overshooting parameters, mix-
ing length parameters, bulk abundances, and mean ages are pre-
sented in Table 1, where the systems are listed in the same order
as in Table B.1. Approximate uncertainties for these values were
estimated through experiments in which we varied αov, αMLT, or
Z and examined the goodness of fit, always requiring the compo-
nent ages to be within about 5% of each other. The uncertainties
are strong functions of the evolutionary state, as this determines
how sensitive the predicted properties (R, Teff) are to the fitted
parameters. Typical theoretical errors for αov were found to be
±0.03 for evolved stars (giants) and ±0.04 for main-sequence
stars, in which overshooting has less of an influence. Mixing
length parameters have larger uncertainties of ±0.20 for each
star. Abundance errors are typically 25–30% in Z. Also the Z er-
rors are very strongly correlated with the uncertainties in αov and
αMLT.

A graphical representation of αov as a function of stellar mass
appears in Fig. 2, which shows the primary and secondary com-
ponents together. Typical uncertainties described above are indi-
cated in the lower right corner for evolved and unevolved stars.

A clear pattern is seen in αov with a significant rise up to about
2 M� followed by little or no change beyond this mass. The size
of the symbols has been drawn proportional to Z. While this con-
veys in a more visual way the fact that the higher mass stars in
our sample are all metal poor (and belong to the LMC or SMC,
as seen in Table B.1) and that most low-mass stars have higher
abundances (they are typically solar neighbourhood field stars),
we see no significant difference in αov with Z at a given mass, at
least in the present sample. The straight dashed lines in the figure
delineate the apparent trend with mass. Four systems (V885 Cyg,
χ2 Hya, VV Crv, and YZ Cas) have best fits yielding compo-
nent ages that are different by more than 5%. The age discrep-
ancies are7%, 15%, 15%, and 29%, respectively. The most egre-
gious case of YZ Cas has been notoriously difficult to fit in the
past, and remains so despite the recent observational efforts by
Pavlovski et al. (2014), who redetermined the masses, radii, tem-
peratures, and chemical composition. These four peculiar sys-
tems are represented with triangles in Fig. 2, but otherwise seem
to follow the same trend as the other binaries. Also, as noted ear-
lier, the primary components of OGLE-LMC-ECL-CEP-0227,
OGLE-LMC-ECL-CEP-2532, and LMC-562.05-9009 are clas-
sical Cepheids (the first and last are fundamental-mode pul-
sators, and the second is a first-overtone pulsator), although
again their overshooting parameters do not seem out of the ordi-
nary for their mass.

As mentioned before, our manual fits to the observations
yield Z values that are often rather different from the corre-
sponding spectroscopically measured composition for systems
in which this is available. We show this in Fig. 3, where we
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Table 1. Fitted parameters for our sample of DLEBs.

Primary Secondary
Name αov αMLT αov αMLT Z Mean age (Myr)
SMC-108.1-14904 0.250 2.10 0.240 1.95 0.0020 133
OGLE-LMC-ECL-CEP-0227 0.220 1.90 0.232 2.05 0.0018 142
OGLE-LMC-ECL-06575 0.230 1.90 0.230 1.92 0.0060 161
OGLE-LMC-ECL-CEP-2532 0.228 1.81 0.220 1.60 0.0017 164
LMC-562.05-9009 0.170 1.95 0.165 1.95 0.0020 196
χ2 Hya 0.200 1.80 0.200 1.80 0.0110 214*
OGLE-LMC-ECL-26122 0.200 1.90 0.200 1.75 0.0050 214
OGLE-LMC-ECL-01866 0.185 1.70 0.185 1.78 0.0045 224
OGLE-SMC-113.3-4007 0.250 2.00 0.250 1.90 0.0030 230
OGLE-LMC-ECL-10567 0.200 1.70 0.200 1.75 0.0040 255
OGLE-LMC-ECL-09144 0.250 2.10 0.250 2.10 0.0030 256
OGLE-051019.64-685812.3 0.230 1.95 0.150 2.00 0.0040 278
OGLE-LMC-ECL-09660 0.200 1.75 0.250 1.75 0.0030 346
SMC-101.8-14077 0.200 1.75 0.200 1.90 0.0015 372
α Aur 0.230 1.54 0.230 1.60 0.0100 569
WX Cep 0.170 1.80 0.170 1.80 0.0200 527
V1031 Ori 0.205 1.80 0.160 1.80 0.0200 616
V364 Lac 0.210 1.80 0.210 1.80 0.0200 622
SZ Cen 0.210 1.80 0.210 1.80 0.0090 665
YZ Cas 0.190 1.80 0.030 1.80 0.0100 645*
OGLE-LMC-ECL-25658 0.194 1.81 0.194 1.81 0.0043 819
V885 Cyg 0.190 1.80 0.190 1.80 0.0130 736*
AI Hya 0.208 1.80 0.208 1.80 0.0300 955
VV Crv 0.180 1.80 0.080 1.80 0.0350 1052*
AY Cam 0.160 1.80 0.160 1.80 0.0200 1071
HY Vir 0.075 1.80 0.020 1.80 0.0300 1363
SMC-130.5-04296 0.180 1.90 0.100 2.05 0.0020 1020
OGLE-LMC-ECL-03160 0.100 1.74 0.100 1.82 0.0025 1080
EI Cep 0.140 1.80 0.140 1.80 0.0150 1405
SMC-126.1-00210 0.100 1.92 0.100 1.88 0.0025 1373
HD 187669 0.100 1.68 0.100 1.70 0.0100 2493
OGLE-LMC-ECL-15260 0.050 1.90 0.050 1.80 0.0030 2299
AI Phe 0.040 1.70 0.000 1.85 0.0120 4995

Notes. Systems marked with asterisks have components with age differences greater than 5% (see text).

transformed the fitted values of Z to the corresponding [Fe/H]
measure assuming solar-scaled abundances and Z� = 0.0189 to
enable a more direct comparison in the observational plane. We
also segregated the systems from the LMC, the SMC, and the
field, as stars within these groups tend to have similar measured
abundances. Only about half of the systems in our sample have
a measured composition (see Table B.1).

Our fitted Z values (open circles) are often systematically
lower than the corresponding spectroscopic [Fe/H] values (most
noticeably in the LMC systems), sometimes by as much as a fac-
tor of two or three. In many cases this is well beyond the formal
observational uncertainties. The reasons for this are unclear. Un-
recognized biases in the measured [Fe/H] values or in the tem-
peratures (which would need to be too hot by some 150 or 200 K,
depending on the system) could explain these differences, but
they would have to be systematic in nature as no instances of sig-
nificantly overestimated best-fit Z values were found. We also in-
vestigated the impact of the abundance scale in our models. Tests
showed that changing the reference solar abundances from those
of Grevesse & Sauval (1998) to those of Asplund et al. (2009)
does not make a significant difference in the corresponding fit-
ted Z values. It is also possible that some of our objects (partic-
ularly the more metal-poor objects) are enhanced in α elements

so that [α/Fe] > 0, which would change the way we convert the
model-fitted Z values to the inferred model-fitted [Fe/H] values
shown in Fig. 3 (e.g. D’Antona et al. 2013). However, this effect
goes in the wrong direction to explain what we see. Additional
tests indicate that it is in fact possible to match the measured
[Fe/H] values but only at the price of increasing αMLT to val-
ues significantly larger than 2.0, and even approaching 3.0 in
some cases. There is no precedent for such high values of the
mixing length parameter, however. Finally, it may also be that
the discrepancy illustrated in the figure has to do with one or
more of the physical ingredients in the models. A comparison of
our fitted Z values with those fitted by others for systems where
this check is possible gave mixed results: in some cases there is
agreement, but in others our values are either higher or lower.

A closer look at the results in Table 1 seems to indicate a
slight tendency for the fitted αMLT values to be higher in the LMC
and SMC compared to the field binaries. The Magellanic Cloud
populations are more metal poor than the field, on average, sug-
gesting there may be a dependence of the mixing length param-
eter on metallicity. We note, however, that this apparent trend
of higher αMLT values at lower abundances is opposite to that
reported by Bonaca et al. (2012), who based their study on mea-
sured seismic oscillation frequencies in a sample of single dwarf
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Fig. 2. Semi-empirical determination of the overshooting parameter αov
as a function stellar mass for the stars in the 33 systems of our sample.
Primary and secondary components are plotted together. The size of
the points is proportional to Z, the bulk composition (metal-poor stars
have smaller symbols). Stars indicated with triangles are those in which
the inferred age difference within the binary exceeds our 5% tolerance
(see text), but which give otherwise acceptable fits to the observations.
Typical error bars for dwarfs and giants are shown on the bottom right.

and subgiant stars observed by the Kepler spacecraft. There are
significant differences between their study and our study, which
makes it difficult to pinpoint the reason(s) for the disagreement.
For example, the stellar masses and radii in our analysis are
strictly empirical (model independent) as they were derived from
DLEBs, whereas those of Bonaca et al. (2012) were inferred
from an initial fit to stellar evolution models, and used again
in a subsequent fit to infer αMLT. Additionally, the Teff , [Fe/H],
and log g ranges in our sample are all considerably larger than
in the asteroseismic sample. In particular, Bonaca et al. (2012)
have only one star with log g < 3.6, while our sample contains
many. In fact, it is possible that the tentative differences we see in
αMLT between the field binaries and the LMC/SMC binaries are
related in part to evolutionary effects, as all of our systems in the
LMC/SMC are red giants, in addition to being metal poor. De-
ficiencies in the stellar evolution models that may influence the
fitted αMLT values cannot be ruled out at the present time (par-
ticularly in light of the fitted/measured abundance discrepancy
discussed above), and the same holds for potential systematic
errors in the measurement of Teff and/or [Fe/H], as noted earlier.
For these reasons it may be premature to claim a firm detection
of a correlation between αMLT and [Fe/H] or log g, although the
hints we see certainly warrant further investigation.

5. Discussion

The dependence of the overshooting parameter αov on stellar
mass presented in Fig. 2 is much more clearly established than
in previous work, including that of Ribas et al. (2000) and Claret
(2007), which suffered from a lack of suitable binary systems.
Not only is the overall size of our binary list significantly larger,
but the critical 1.2–2.0 M� range in which αov ramps up from
zero to an apparent maximum is much better sampled as well.
The negative results of some of the more recent DLEB studies
that did not see any mass dependence of αov can generally be un-
derstood in terms of the binary systems they used. For instance,
of the four objects examined by Meng & Zhang (2014), some
are similar regarding their component masses and this makes

Fig. 3. Comparison between the available measured metallicities for
the DLEBs in our sample (points with error bars) and the best-fit metal-
licities from our modelling (open circles), converted from Z to [Fe/H]
as described in the text. Within each subgroup the binary systems are
sorted as in Table B.1 by decreasing primary mass.

the sample effectively smaller. Furthermore, overshooting is as-
sumed to be the same for the two components in each system,
which would make it more difficult to detect any real change as
a function of mass, especially since those binaries all have mass
ratios that are significantly different from unity. For reasons that
are not understood, unequal binaries such as these tend to be
problematic to model, as we ourselves have found for χ2 Hya,
VV Crv, and YZ Cas, which are three of the four objects in the
Meng & Zhang (2014) sample. A similar modelling challenge
was mentioned earlier for the unequal-mass binary V380 Cyg,
which weighed heavily in the results of Ribas et al. (2000). The
stars analysed by Stancliffe et al. (2015), on the other hand,
cover a fairly wide range of masses, although most are clustered
around 2 M� and several are relatively unevolved and are there-
fore less sensitive to the effects of overshooting.

An interesting feature of our sample is that it spans a wide
range of measured metallicities equivalent to a full factor of ten,
from [Fe/H] of −1.01 to +0.01. Despite this, we are unable to
discern any dependence of αov on Z at a given mass, suggesting
perhaps that the precision of our αov determinations would need
to be considerably better to detect such an effect, if it exists, or
that the sample needs to be even larger.

Many current stellar evolution models implement overshoot-
ing with a built-in dependence on stellar mass (and sometimes
metallicity), even though the exact shape of that dependence has
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Fig. 4. Our semi-empirical determinations of αov as a function of stellar
mass, compared with published prescriptions. Symbols are as in Fig. 2,
with sizes drawn here proportional to the surface gravity log g of each
star. Top: mass dependence of αov adopted in some recent grids of stel-
lar evolution models. Bottom: comparison with previous semi-empirical
relationships by Ribas et al. (2000) and Claret (2007).

so far been poorly constrained by observations, except in the
general sense that overshooting is irrelevant below 1.1–1.3 M�,
then grows, and seems to level off at some larger mass. The top
panel of Fig. 4 shows how some of those model prescriptions
fare against our new results. In the Demarque et al. (2004) over-
shooting implementation the rise in αov from zero is steeper than
indicated by our measurements, but eventually reaches a simi-
lar maximum around 0.2. The Pietrinferni et al. (2004) formula
appears to have the right slope, but the rise starts and ends at
lower masses. The models of Mowlavi et al. (2012) use a recipe
for αov that grows to only half the peak value indicated by our
analysis. It is worth mentioning here that our measurements of
αov are semi-empirical in nature because they are based on the
observed properties of binary systems but they also depend on
models, specifically the Granada series of Claret (2004, 2012).
Although this may suggest our results have limited applicabil-
ity, the key physical ingredients in most modern stellar evolution
codes (standard mixing-length approximation, radiative opaci-
ties, etc.) are rather similar, so we expect our conclusions to be
valid for other models as well.

Previous semi-empirical results are compared with our re-
sults in the lower panel of Fig. 4. As noted earlier, the Ribas et al.
(2000) mass dependence of αov is steeper than indicated by our
measurements, while that of Claret (2007), which was based on
a smaller sample than ours and had much larger uncertainties in
αov, is fairly close to the trend indicated by our results. This is
the case except possibly at the very lowest masses, where that
study had only one star (the secondary of YZ Cas). This study

also suggested a slight increase in αov for stars more massive
than 10 M�, a regime our sample does not address.

An assumption that is implicit in the present work, and in-
deed in all stellar evolution codes we are aware of, is that αov
does not depend on the evolutionary state of the star at a given
mass, i.e. it does not vary with time. With the usual expression
dov = αov Hp for the distance travelled by convective cells above
the boundary of the core, it is clear that dov changes as a star
evolves because Hp does, but αov could well vary independently
in some fashion (as speculated, e.g. by Torres et al. 2014). Our
measurements allow a first look into this issue. In Fig. 4 we
represented the αov measurements with symbols whose size is
proportional to the surface gravity of the star (log g) to more
easily distinguish dwarfs from giants. While most stars on the
rising part of the αov versus mass trend (M < 2 M�) are main-
sequence stars, some are low mass giants (smaller symbols), and
there seems to be no significant difference between the over-
shooting parameters of dwarfs and giants of similar mass. The
behaviour at higher masses cannot be addressed with the present
sample for lack of sufficiently evolved main-sequence binaries
with M > 2 M�.

The clear evidence from our semi-empirical measurements
that the influence of overshooting initially rises as the mass in-
creases from about 1.2 M� carries some interest in itself from
the theoretical point of view, as it must contain quantitative in-
formation about the implied growth of the convective core. We
investigated this using the same best-fit models for the stars in
our sample from which we obtained αov. As the size (mass) of
the core also changes with time as stars evolve, we chose to elim-
inate the time dependence by extracting the mass of the convec-
tive core at the ZAMS from each model used to generate Fig. 2,
and we then normalized it to the total mass of the star. The results
for the fractional core mass Qc obtained in this way are shown
in the top panel of Fig. 5, shown as a function of stellar mass.
For reference we added a solid curve representing the predicted
change in Qc in the absence of overshooting, also at the ZAMS.
While this last curve clearly indicates, as expected, that the core
mass grows with stellar mass even without overshooting, the in-
crease is considerably more pronounced with overshooting, and
our semi-empirical measurements of Qc allow us to quantify the
degree to which this is the case. The lower panel shows the frac-
tional increase in Qc as a function of stellar mass, and indicates
that for stars beyond about 2 M� it converges towards an enlarge-
ment of about 50% above the core mass that would result in the
absence of overshooting. This differential increase raises addi-
tional questions of interest. What is the maximum possible size
of the convective core for a given stellar mass? How does αov
influence the size of the core at different stellar masses? With
relatively simple arguments and the use of the virial theorem it
can be shown that there is in fact an upper limit to the size of the
mixed core, implying a limit to αov, as we see from our measure-
ments. Thus, it is possible to understand the general features of
Fig. 2, at least over the mass range explored here. The details of
these calculations are provided in the Appendix.

6. Conclusions

We have used the measured masses, radii, and effective temper-
atures of more than 30 carefully selected double-lined eclips-
ing binary systems to infer semi-empirical values of αov for
each of the components by comparison with stellar evolution
models. Importantly, the sample includes a substantial number
of highly evolved systems (red giants, mostly in the LMC and
SMC) that are more sensitive to the effects of overshooting. This
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Fig. 5. Top: semi-empirical values Qc of the convective core mass at
the ZAMS (normalized to the total mass) for each of the stars in our
sample. Triangles represent components of systems with age differences
exceeding 5%. The dashed line is a third-order polynomial fit drawn
to guide the eye. The solid line shows the trend of Qc with mass for
solar-metallicity ZAMS models having αov = 0, for reference. Bottom:
fractional increase in Qc over that indicated by the solid line in the top
panel, expressed as a percentage.

significantly larger and more suitable sample compared to previ-
ous studies has allowed us to calibrate the dependence of over-
shooting on stellar mass. This dependence has traditionally been
assumed to be present, and has been implemented in various
ways in current stellar evolution models, but until now it has not
been well constrained by observations. We find a clear and fairly
linear increase in αov beginning at about 1.2 M� and reaching
αov ∼ 0.2 around 2.0 M�, with little change beyond this mass
up to the limit of our sample (4.4 M�). This trend is similar to,
but much better defined than that proposed by Claret (2007), and
differs in various ways from prescriptions currently used in other
model sets that adopt the same formulation for the extension of
the convective core as dov = αov Hp. Our results may serve as a
guide for future implementations of overshooting in model grids.
We also find no significant variance in αov for giants and dwarfs
at a given mass, suggesting αov does not depend very strongly
on evolutionary state. Three of our LMC systems are Cepheids,
although no significant difference is found in their αov values ei-
ther compared to other stars of similar mass. The main features
of the αov versus mass trend, which is the main result of this
work, can be understood by simple physical arguments as laid
out in Appendix A.

We also made use of the same best-fit models for our 33 bi-
nary systems to calibrate the extent of the convective core as a
function of stellar mass. We find that for stars more massive than
about 2 M� the growth of the fractional core mass Qc converges
to a level of about 50% above the values predicted by models
without overshooting.

All of our binary systems yield satisfactory fits when com-
pared with the models, with the exception of four (V885 Cyg,
χ2 Hya, VV Crv, and YZ Cas) in which the component ages dif-
fer by more than 5% (particularly YZ Cas), although their other
properties are well matched. The last three of these have mass ra-
tios that are appreciably different from unity; the fact that another
similarly unequal system (V380 Cyg) has also been difficult to
model in past studies by other investigators suggests either un-
recognized measurement errors in such systems, or some other
problem that has yet to be identified, and is perhaps related to
their origin.

Half of the binaries in our sample have a spectroscopically
measured [Fe/H] abundance in the literature. In about half of
those cases we find curious systematic differences between the
measured composition and the Z values from our best fits, af-
ter conversion to the [Fe/H] scale: the fitted values tend to be
smaller, often significantly so. Most of these systems belong to
the LMC. There are no examples with opposite discrepancies of
much significance, and the reasons for this are not understood. In
some cases other authors have found similar deviations, although
this has not been emphasized. There are also hints in our sample
that the fitted αMLT values may be higher for stars that are more
metal poor and/or more evolved, although this may be related to
the Z differences just noted, and needs to be investigated further.

Although our sample is much larger than previous lists of
binaries used to calibrate overshooting, it is still limited in that
it contains no systems with component masses beyond 4.4 M�.
Therefore, we are unable to verify claims by other investigators
about possible changes in αov for more massive stars. While our
objects do cover a range of about a factor of ten in metal abun-
dance, and we find no significant dependence of αov on Z within
our measurement uncertainties, a larger metallicity range is de-
sirable to confirm this conclusion and perhaps track down the
deviations mentioned above.
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Appendix A: A study of extra mixing using the virial
theorem

In order to investigate the consequences of extra mixing on the
internal physical conditions of a star, we have selected a model
of a 3 M� star with composition X = 0.751 and Z = 0.003 that
is representative of our observational sample. A first point of
interest is the issue of how the extra mixing depends on the αov
parameter, defined as in the main text by dov = αovHp, where Hp
is the pressure scale height. Figure A.1 shows the behaviour of
the fractional mixed core mass Qc = Mc/M as a function of αov
at the ZAMS, in which Mc is the mass of the convective core and
M the total mass of the star. It can be seen that up to αov ≈ 1.0
the increase in Qc is essentially linear, and tests reveal that the
slope dQc/dαov ≈ 0.3 is almost independent of stellar mass. For
higher αov values the figure suggests that a limit to the size of the
mixed core is eventually reached, such that for αov higher than
about 2.5 the fractional core mass Qc is practically independent
of the overshooting parameter. For a closer look into this limit we
make use here of the virial theorem, a very useful but frequently
overlooked analytical tool for stellar physics.

The virial theorem for a star may be written as

ζEi + Ω = 0, (A.1)

in which Ei =
∫ M

0 u dm is the total internal energy, Ω =

−G
∫ M

0 m/r dm ≡ −αGM2/R is the gravitational potential en-
ergy, and R is the stellar radius. In addition, for an ideal gas we
have u = cvT and ζu = 3P/ρ = 3(γ − 1), and γ = cP/cv, where
u is the specific internal energy, P the pressure, T the tempera-
ture, and cv and cP are the specific heats at constant volume and
constant pressure.

However, Eq. (A.1) derives from the hydrostatic differential
equation assuming that the pressure at the boundary vanishes.
In the more general case we may write the virial for the mixed
core as

G
∫ Mc

0

m
r

dm = 3
∫ Mc

0

P
ρ

dm − 4πr3Pc, (A.2)

where Pc denotes the pressure at the boundary of the core. Equa-
tion (A.1) then becomes

ζEi + Ω = 4πr3Pc. (A.3)

Equation (A.3) may be used to study the consequences of the
extension of the core due to extra mixing under the condition of
hydrostatic equilibrium. To proceed we assume for simplicity a
non-degenerate ideal gas. As the extra mixing increases (corre-
sponding to higher adopted values of αov in our framework), the
pressure at the border of the core decreases. We may estimate
the maximum extent of the extra mixing (in terms of the radial
coordinate and pressure) by solving dP/dr = 0, that is,

dP
dr

=
αGM2

c

4πr5 −

3
(
−αGM2

c
r −

3kMcTc
(γ−1)µ +

3γkMcTc
(γ−1)µ

)
4πr4 = 0. (A.4)

From this, the critical radius rcrit is given by

rcrit =
4αGMcµ

9kTc
, (A.5)

where µ is the mean molecular weight, k is the Boltzmann con-
stant, and Tc = 1/Mc

∫ Mc

0 T dm. Correspondingly, there is a crit-
ical value for the pressure at the border of the mixed core, Pcrit,

Fig. A.1. Dependence of the fractional mass of the mixed core as a
function of the overshooting parameter αov, for models with 3 M� and
composition X = 0.751 and Z = 0.003. Note the linear behaviour of Qc
for αov ≤ 1.0.

Fig. A.2. Pressure on a logarithmic scale at the bottom of the enve-
lope (solid line), compared with the critical pressure Pcrit given by equa-
tion A.6 (dashed line), as a function of the overshooting parameter αov.
The models are the same as those in Fig. A.1.

which can hydrostatically support the weight of the envelope as
follows:

Pcrit =
2187k4Tc

4

1024πG3α3M2
cµ4
· (A.6)

The expression above shows that Pcrit decreases as the core mass
increases, as expected. On the other hand, the pressure at the
bottom of the envelope is Pe ∝ Tc

4
/M2. The condition of hydro-

static equilibrium at the interface implies that

Pcrit ≥ Pe. (A.7)

The pressure at the bottom of the envelope can be extracted from
the models shown in Fig. A.1, and compared with Pcrit. This
comparison appears in Fig. A.2. Despite the simplicity of the
assumptions adopted for our use of virial theorem (ideal non-
degenerate gas, no radiation pressure, non-rotating models, etc.),
the results in Fig. A.2 are in good agreement with those shown
in Fig. A.1: the curves in Fig. A.2 meet at approximately the
same value of αov at which the trend in Fig. A.1 levels off. Ap-
plying Eq. (A.7) to Fig. A.2 we may infer a limit to the size of
the mixed core (for the present case, Qc,max ≈ 0.75) and conse-
quently a critical value for αov around 2.0–2.5, although given
our assumptions and simplifications, this limit value could be as
low as αov ≈ 1.5. Mutatis mutandis, we expect the same should
occur for other masses typical of our observational sample. The
critical values of the radius and pressure are also influenced by
the initial chemical composition, not only through changes in
the internal structure (for example, the convective core for a
Z = 0.02 model is slightly smaller than for one with Z = 0.003),
but also directly in the calculation of Pcrit (see above).
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Appendix B: Additional table

Table B.1. Binaries systems in our sample.

Name Mass (M�) Radius (R�) Teff (K) [Fe/H] Source

SMC-108.1-14904 4.416 ± 0.041 46.95 ± 0.53 5675 ± 105 −0.80 ± 0.15 1
4.429 ± 0.037 64.05 ± 0.50 4955 ± 90

OGLE-LMC-ECL-CEP-0227 4.165 ± 0.032 34.92 ± 0.34 6050 ± 160 2
4.134 ± 0.037 44.85 ± 0.29 5120 ± 130

OGLE-LMC-ECL-06575 4.152 ± 0.030 39.79 ± 1.35 4903 ± 72 −0.45 ± 0.10 3
3.966 ± 0.032 49.35 ± 1.45 4681 ± 77

OGLE-LMC-ECL-CEP-2532 3.90 ± 0.10 28.95 ± 1.4 6345 ± 150 4
3.83 ± 0.10 37.7 ± 1.7 4800 ± 220

LMC-562.05-9009 3.70 ± 0.03 28.6 ± 0.2 6030 ± 150: 5
3.60 ± 0.03 26.6 ± 0.2 6030 ± 150:

χ2 Hya 3.605 ± 0.078 4.390 ± 0.039 11750 ± 190 6
2.632 ± 0.049 2.159 ± 0.030 11100 ± 230

OGLE-LMC-ECL-26122 3.593 ± 0.055 32.71 ± 0.51 4989 ± 80 −0.15 ± 0.10 3
3.411 ± 0.047 22.99 ± 0.48 4995 ± 81

OGLE-LMC-ECL-01866 3.574 ± 0.038 46.96 ± 0.61 4541 ± 85 −0.70 ± 0.10 3*
3.575 ± 0.028 28.20 ± 1.06 5327 ± 72

OGLE-SMC-113.3-4007 3.561 ± 0.025 48.4 ± 0.7 4813 ± 100 7*
3.504 ± 0.028 45.8 ± 0.7 4800 ± 100

OGLE-LMC-ECL-10567 3.345 ± 0.040 25.6 ± 1.6 5067 ± 73 −0.81 ± 0.20 3
3.183 ± 0.038 36.0 ± 2.0 4704 ± 80

OGLE-LMC-ECL-09144 3.303 ± 0.028 26.18 ± 0.31 5288 ± 81 −0.23 ± 0.10 3
3.208 ± 0.026 18.64 ± 0.30 5470 ± 96

OGLE-051019.64-685812.3 3.278 ± 0.032 26.05 ± 0.29 5300 ± 100 6
3.179 ± 0.029 19.76 ± 0.34 5450 ± 100

OGLE-LMC-ECL-09660 2.988 ± 0.018 43.87 ± 1.14 4677 ± 75 −0.44 ± 0.10 3*
2.969 ± 0.020 23.75 ± 0.66 5352 ± 70

SMC-101.8-14077 2.835 ± 0.055 23.86 ± 0.31 5170 ± 90 −1.01 ± 0.15 1*
2.725 ± 0.034 17.90 ± 0.50 5580 ± 95

α Aur 2.5687 ± 0.0074 11.98 ± 0.57 4970 ± 50 −0.04 ± 0.06 8
2.4828 ± 0.0067 8.83 ± 0.33 5730 ± 60

WX Cep 2.533 ± 0.050 3.996 ± 0.030 8150 ± 250 6
2.324 ± 0.045 2.712 ± 0.023 8900 ± 250

V1031 Ori 2.468 ± 0.018 4.323 ± 0.034 7850 ± 500 6
2.281 ± 0.016 2.978 ± 0.064 8400 ± 500

V364 Lac 2.333 ± 0.014 3.309 ± 0.021 8250 ± 150 6
2.295 ± 0.024 2.986 ± 0.020 8500 ± 150

SZ Cen 2.311 ± 0.026 4.556 ± 0.032 8100 ± 300 6
2.272 ± 0.021 3.626 ± 0.026 8380 ± 300

YZ Cas 2.263 ± 0.012 2.525 ± 0.011 9520 ± 120 +0.01 ± 0.11 9
1.325 ± 0.007 1.331 ± 0.006 6880 ± 240

OGLE-LMC-ECL-25658 2.230 ± 0.019 27.57 ± 0.24 4721 ± 75 −0.63 ± 0.10 10*
2.229 ± 0.019 21.41 ± 0.15 4860 ± 70

V885 Cyg 2.228 ± 0.026 3.387 ± 0.026 8150 ± 150 6
2.000 ± 0.029 2.346 ± 0.017 8375 ± 150

AI Hya 2.140 ± 0.038 3.916 ± 0.031 6700 ± 60 6
1.973 ± 0.036 2.767 ± 0.019 7100 ± 65

VV Crv 1.978 ± 0.010 3.375 ± 0.010 6500 ± 200 11

Notes. The first line for each system corresponds to the primary, and the next to the secondary. Sources flagged with an asterisk indicate cases
where we have swapped the primary/secondary identification relative to the original publication (see text). Temperatures for LMC-562.05-9009
are listed as uncertain in the original source. The [Fe/H] value adopted here for OGLE-LMC-ECL-25658 is the average of the individual estimates
reported.
References. 1 – Graczyk et al. (2014); 2 – Pilecki et al. (2013); 3 – Pietrzyński et al. (2013); 4 – Pilecki et al. (2015); 5 – Gieren et al. (2015);
6 – Torres et al. (2010); 7 – Graczyk et al. (2012); 8 – Torres et al. (2015); 9 – Pavlovski et al. (2014); 10 – Elgueta et al. (2016); 11 – Fekel et al.
(2013); 12 – Sandberg Lacy & Fekel (2011); 13 – Hełminiak et al. (2015).
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Table B.1. continued.

Name Mass (M�) Radius (R�) Teff (K) [Fe/H] Source

1.513 ± 0.008 1.650 ± 0.008 6638 ± 200

AY Cam 1.905 ± 0.040 2.772 ± 0.020 7250 ± 100 6
1.709 ± 0.036 2.026 ± 0.017 7395 ± 100

HY Vir 1.838 ± 0.009 2.806 ± 0.008 6850 ± 130 12
1.404 ± 0.006 1.519 ± 0.008 6550 ± 120

SMC-130.5-04296 1.805 ± 0.027 46.00 ± 0.35 4515 ± 75 −0.88 ± 0.15 1*
1.854 ± 0.025 25.44 ± 0.25 4912 ± 80

OGLE-LMC-ECL-03160 1.792 ± 0.027 16.36 ± 1.06 4954 ± 83 −0.48 ± 0.20 3
1.799 ± 0.028 37.42 ± 0.52 4490 ± 82

EI Cep 1.7716 ± 0.0066 2.897 ± 0.048 6750 ± 100 6
1.6801 ± 0.0062 2.330 ± 0.044 6950 ± 100

SMC-126.1-00210 1.674 ± 0.037 43.52 ± 1.02 4480 ± 70 −0.86 ± 0.15 1
1.669 ± 0.039 39.00 ± 0.98 4510 ± 70

HD 187669 1.505 ± 0.004 22.62 ± 0.50 4330 ± 70 −0.25 ± 0.10 13*
1.504 ± 0.004 11.33 ± 0.28 4650 ± 80

OGLE-LMC-ECL-15260 1.440 ± 0.024 23.51 ± 0.69 4706 ± 87 −0.47 ± 0.15 3
1.426 ± 0.022 42.17 ± 0.33 4320 ± 81

AI Phe 1.2336 ± 0.0045 2.932 ± 0.048 5010 ± 120 −0.14 ± 0.10 6
1.1934 ± 0.0041 1.818 ± 0.024 6310 ± 150
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