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ABSTRACT 8 

Granite is found in many world heritage monuments and cities. It continues to be one of the 9 

most widely used stones in today’s construction, given its abundance, uniformity and durability. 10 

Quarrymen traditionally cut this rock along its orthogonal slip planes, where splitting is easier. 11 

Ranked by ease of splitting, these planes are rift, grain and hardway. Granite is traditionally 12 

quarried along the rift plane where coplanar exfoliaton microcracks coalesce developing a flat 13 

surface. This splitting surface minimizes the cost and effort of subsequent hewing. Rift plane 14 

was predominantly used on the fair face of ashlars in heritage buildings worldwide. Determining 15 

the petrographic and petrophysical behaviour of these three orthogonal splitting planes in 16 

granite is instrumental to understanding decay in ashlars and sculptures. The decay of building 17 

granite is different in each splitting plane. 18 

Alpedrete granite was the stone selected for this study based on the orientation and distribution 19 

of exfoliation microcracks and the characterisation of their implications for the anisotropy of 20 

petrophysical properties such as ultrasonic wave propagation, capillarity, air permeability, 21 

micro-roughness and surface hardness. Inter- and intracrystalline microcrack length and spacing 22 

were also measured and quantified.  23 

The findings show that the splitting planes in Alpedrete granite are determined by the 24 

orientation of exfoliation microcracks, which as a rule are generally straight and intracrystalline 25 

and determine the anisotropy of the petrophysical properties analysed. 26 
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Splitting planes are the orientation that should be applied when performing laboratory tests for 27 

the petrographic and petrophysical properties of building granite. 28 

 29 

Keywords: Exfoliation microcracks, dimension stone, anisotropy, granite. 30 

1. INTRODUCTION 31 

Granite has been one of the most widely used construction stones throughout history due to its 32 

abundance, petrophysical characteristics, durability, compositional and textural uniformity. It is 33 

found on building façades, walls and sockets, on plinths for sculptures and as a base for large-34 

scale structures. Microcracks play an essential role in building granite decay, they are due to 35 

genesis, tectonic history and denudation of the rocky massif where quarries are sited (Catlos et 36 

al., 2011). 37 

 38 

The present study addresses exfoliation microcracks, i.e., microscopic fissures located between 39 

what in the literature are termed Bankung, Lägerklufte, exfoliation, sheet, sheeting, pressure-40 

release, stress-release, unloading, offloading and post-uplift joints (Ziegler et al., 2014); 
 41 

generated due to decompression on and near the surface of the granite massif (Gorbatsevich, 42 

2003). Referred to hereunder as exfoliation joints, they are found in all climates and in many 43 

types of rock, with specific characteristics that are common the world over. Flat and open, they 44 

are the youngest natural cracks in outcrops. The width of their openings narrows and their 45 

spacing grows (from millimetres to several metres) with depth. They are normally confined to a 46 

few decametres, i.e., to the quarry depth, although they may extend up to 100 m below the 47 

surface (Goodman, 1993). Their displacement is insignificant and their orientation sub-parallel 48 

to the actual surface of the relief or palaeo-relief. They may coalesce, producing macroscopic 49 

structures. Such exfoliation joints, which may spread laterally across distances of over 100 m, 50 

are used in quarries to define the ‘floor’ or springline in levels or banks. They accelerate 51 

alteration (Sajid et al., 2016) and may induce mass movements in granite slopes (Chigira, 1999). 52 
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Lateral expansion due to vertical or sub-vertical fractures favours the sub-vertical cracking and 53 

microcracking that originate granite tors or boulders, i.e., the remains of solid rock present in 54 

layers of mantle rock. Such regoliths, which may range in depth from a few to 25 m or even 55 

30 m, exhibit a higher degree of alteration than the underlying granite (García-Rodríguez, 56 

2015). The exfoliation microcracks found in tors are normally pseudo-concentric, giving rise to 57 

what is known as spheroid exfoliation. Traditionally, tors were used to hew ashlars for use in 58 

monument construction (Fort et al., 2010).  59 

 60 

In traditional quarrying the slip planes formed by mineral orientations or the presence of 61 

oriented cracks (Chen, 1999)
 
were used to extract and dimension granite blocks. The three 62 

orthogonal splitting planes are known as rift (R), grain (G) and hardway (HW) (Figure 1). Rift is 63 

the plane in which the stone is most readily split, followed by grain and lastly by hardway 64 

(Vasconcelos et al., 2009). Table 1 lists the names of these three planes in several languages.  65 

The traditional quarrymen needed the existence of exfoliation microcracks to make the artisanal 66 

splitting of granite blocks easier. In historic granite quarries the presence of well-defined R was 67 

essential to operation, to ensure that blocks could be cut with less effort by hammering wedges 68 

into the granite in direction R. Quarrymen traditionally identified the rift plane touching the 69 

granite planes on the grounds of surface roughness, for plane R is smoother than planes G and 70 

HW. A granite quarry with no or a weak R is usually not productive. 71 

Today ground penetrating radar (GPR) is used to locate blocks and exfoliation joints and to 72 

identify fresh rock in ornamental granite quarries (Porsani et al., 2006). As the granite is 73 

normally cut with diamond-blade tools or jet flames (Baltuille et al., 2004), R no longer 74 

conditions the quarry, although joints and microcracks continue to be help define the banks and 75 

extract large blocks (Sousa, 2007, 2010; Yarahmadi, 2015).  76 

Stone anisotropy can be defined as the difference of measure when a property is measured along 77 

different axes. Due to the anisotropy, the granite position on buildings define its hydraulic and 78 

mechanical behavior (Fort et al., 2011) as well as its resistance to decay, particularly when it, 79 
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and hence the microcracks it bears, are subject to temperature change (Gómez-Heras et al., 80 

2009; Freire-Lista et al., 2015a). 81 

The exfoliation microcracks had never been studied from the point of view of the anisotropy 82 

applied to building ashlars. This paper aims to instrumentally determine the role of exfoliation 83 

microcracks in the anisotropy in granite used in construction and characterise the anisotropy of 84 

petrophysical properties when measured along the three splitting planes (rift, grain and 85 

hardway) in Alpedrete granite. It has been observed that these microcracks have great 86 

importance in the building granite decay processes. With the findings in hand, this orientation 87 

can be reproduced in new constructions, restorations and petrophysical tests, particularly in 88 

accelerated ageing tests conducted to study granite specimen durability.  89 

 90 

2. MATERIAL AND METHODS  91 

 92 

2.1 Granite samples 93 

The stone quarried in the Guadarrama Mountains (Spanish Central System) is generically 94 

known as Piedra Berroqueña (Freire-Lista and Fort, 2016a). One of the varieties is Alpedrete, a 95 

medium-to-fine grained, sub-automorphic, equigranular monzogranite (Fort et al., 2011). It has 96 

been widely used as a building material in Madrid and surrounding areas, as well as in France. It 97 

has been nominated as a Global Heritage Stone Resource (Freire-Lista et al., 2015b) given its 98 

traditional use in emblematic monuments and its export potential. The literature contains many 99 

references to its origin tectonic deformation (Villaseca et al., 2009), historic quarries, 100 

petrological characteristics, durability and use in buildings (Fort et al., 2010, 2013; Pérez-101 

Monserrat et al., 2013).  102 

The samples were taken from a historic granite quarry at Alpedrete (40°39'45.7"N 103 

4°00'47.7"W), approximately 40 km northwest of Madrid. A quarryman cut a single block in the 104 

traditional manner, along the orthogonal rift, grain and hardway planes (Figure 2). Three chips 105 

(<1 cm
2
) were also taken from each splitting plane for electron microscope observation. Surface 106 
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micro-roughness was measured on each splitting plane (rift, grain, hardway) of the traditionally 107 

quarried block. Ten 7×7×7 cm specimens were cut from the block by disk saw at low speed 108 

(120 rpm) and low voltage. A thin section was taken on each splitting plane from one of the 109 

specimens for observation under an optical microscope. The following parameters were 110 

measured in the remaining nine specimens: surface hardness, P- and S-wave velocity (Vp and 111 

Vs), capillary absorption and air permeability. The tests were conducted on the three splitting 112 

planes on all nine specimens, after they had been dried at 70 C to a constant weight (<1 ‰ 113 

variation in two consecutive weighings over 24 h) and cooled to ambient temperature in a 114 

desiccator with silica gel. 115 

 116 

2.2 Analytical techniques 117 

2.2.1 Optical surface micro-roughness (OSR) 118 

Optical surface micro-roughness was measured non-destructively along the three splitting 119 

planes (R, G and HW) on the unsawn, unpolished sample. The TRACEiT handheld roughness 120 

meter used delivered high precision 3D topography with a resolution of 1 micrometre on the Z 121 

axis and 2.5 micrometres on the X and Y axes. Measuring field dimensions were 5×5 mm. A 122 

total of 2000 data points on the X/Y axes were recorded for each measurement. Roughness 123 

parameters were computer calculated as laid down in European and international standard DIN 124 

EN ISO 4287. These Roughness parameters are Ra, it is the arithmetic mean of the absolute 125 

values of the deviations from the mean; Rq, it is the square root of the deviation and Rz, it is the 126 

sum of the vertical distances between the five highest and five lowest values found for the 127 

sample. 128 

 129 

Fifteen micro-roughness readings were taken on the freshly cut, unsawn, unpolished surface 130 

along planes R, G and HW and the mean was calculated for each plane.  131 

 132 
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2.2.2 Scanning electron microscope (SEM) 133 

The morphological study of the surfaces on small Alpedrete granite chips (planes R, G and HW) 134 

that were unexposed prior to detachment (hereafter ‘unexposed surfaces’) was conducted with a 135 

JEOL JSM 6400 scanning electron microscope. The operating conditions were: voltage 136 

acceleration, 0.2
-40

 kV; current, 6×10
10

 A; vacuum, 10
-5
 Torr; resolution, 35 Ǻ at a distance of 137 

8 mm; and voltage acceleration for imaging, 35 kV and 20 kV. The microscope was used in 138 

conjunction with an Oxford Inca energy dispersive spectrometer (EDS) with a resolution of 139 

133 eV to 5.39 kV. The samples (<1 cm
3
) were sputter coated with gold to enhance their 140 

conductivity; observation focused primarily on the microcracks. 141 

 142 

2.2.3 Fractography 143 

Three thin sections, one parallel to each plan (R, G and HW) were taken from a Alpedre granite 144 

sample soaked in fluorescine (Figure 3). 145 

 146 

The samples were petrographically characterised on an Olympus BX 51 polarised light 147 

microscope (PM) attached to an Olympus DP (6 V / 2.5 Å) digital camera running on (version 148 

3.2) DP-Soft Olympus software. The microcracks were characterised with the same instruments 149 

using an Olympus U-RF-T mercury lamp for fluorescence microscopy (FM). 150 

The three thin sections were micrographed under polarised and mercury lamp light. A mosaic 151 

covering approximately 10 cm
2
 was built with the micrographs of each thin section and 152 

microscopic technique. Polarised microscopy was used for the mineralogical study and 153 

fluorescent microscopy to study the microcracks. 154 

These two mosaics (obtained with crossed polarised light and mercury lamp or fluorescent light) 155 

for each plane (R, G and HW) were then merged into a single image over which five equidistant 156 

15 mm parallel lines have been drawn were divided into two groups. The number of 157 

microcracks cutting across these lines was counted to calculate linear microcrack density 158 

(Sousa, 2014). The microcracks were grouped by the type of crystal (quartz (Qz), plagioclase 159 
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(Pl), potassium feldspar (K-Fsp) or biotite mineral (Bt)) affected and their location (inter- or 160 

intracrystalline). Intracrystalline microcracks appears as straight lines in the analysed thin 161 

sections. They were divided into two groups, those parallel to plane R and no parallel to plane 162 

R. The former were regarded as exfoliation microcracks. Linear microcrack density was 163 

determined by counting the microcracks and dividing the total number by the sum of the length 164 

of all the lines (75 mm). The distance between exfoliation microcracks was also measured and 165 

the mean found. 166 

 167 

2.2.4 Surface hardness 168 

Surface hardness was measured with an Equotip 3(D) electronic rebound tester, which, with an 169 

impact energy of just 11 Nmm, did not harm the samples (Kawasaki et al., 2002; Aoki and 170 

Matsukura, 2007; Viles et al., 2011). Ten readings were taken on each sawn side parallel to 171 

planes R, G and HW of all nine cubic Alpedrete granite specimens and the mean for each plane 172 

was calculated. The measurements were taken with the instrument facing downward, vertically 173 

and perpendicularly to the plane and at least 5 mm from the edge to avoid possible edge effects. 174 

Care was also taken to not measure near visible hollows on the rock surface. 175 

Hardness is expressed here as the Leeb (L) or Leeb hardness (LH) number, i.e., the ratio of the 176 

rebound velocity to the impact velocity multiplied by 1000.  177 

 178 

2.2.5 Ultrasound wave velocity (Vp and Vs) 179 

Vp ultrasonic pulse measurement is a very useful technique for determining microcracks 180 

(Vasconcelos et al., 2009). In this study Vp was measured as specified in Spanish and European 181 

standard UNE EN 14579, 2007, using a CNS Electronics PUNDIT pulser (precision: ±0.1 μs). 182 

Its 11.82 mm diameter, 1 MHz transducers were secured to the Alpedrete granite surface with a 183 

carboxymethyl cellulose glue and water.  184 
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S-wave velocity was measured on a Panametrics high voltage Model 5058 PR pulser-receiver 185 

connected to a phosphorous digital Tektronix oscilloscope. Its 25.4 mm diameter, 0.5 MHz 186 

V151 Panametrics transducers were secured to the samples with a gel containing 80 % sugar 187 

(primarily fructose and glucose) and (approximately) 20 % water. The pulse frequency used was 188 

20 Hz with 200 Ω attenuation. 189 

Vp and Vs were measured four times each on the sides parallel to planes R, G and HW of all 190 

nine cubic specimens on opposite faces (direct measurement). The mean for each side was 191 

calculated. 192 

 193 

2.2.6 Capillarity water absorption 194 

The capillarity test was conducted as laid down in Spanish and European standard UNE-EN 195 

1925, 1999, with slight modifications. The specimens were weighed after drying (md) to a 196 

precision of 0.01 g and the area of the base (expressed in m
2
) was calculated to a precision of 197 

0.1 mm. 198 

The nine Alpedrete granite specimens were placed in a tank with a 31 mm film of water: three 199 

resting on plane R, three on plane G and three on plane HW. The tank was then lidded with an 200 

air-tight seal to prevent evaporation. The specimens were periodically weighed to determine the 201 

amount of water absorbed during the 38 day trial, finding the mean for each group of three 202 

specimens. The 24 hour and 38 day water absorption coefficients (Weight of water gain per area 203 

by time) were calculated for each splitting plane of the Alpedrete granite.  204 

 205 

2.2.7 Air permeability  206 

Air permeability was measured with a hand-held, non-destructive NER TinyPerm II 207 

minipermeater (MTP). The findings, i.e., the time it took the granite to absorb a given volume of 208 

air, were then converted into air permeability expressed in millidarcys (mD).  209 
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The instrument’s 22 mm rubber nozzle was pressed against the rock specimen to ensure 210 

airtightness. As air was withdrawn from the rock it was expelled through the 9 mm aperture on 211 

the nozzle, connected to a microcontroller unit that monitored the transient vacuum pulse 212 

created at the sample surface. After the vacuum filled up with air, the unit calculated the 213 

characteristic value of the parameters measured. Its software delivered a value t (time), related 214 

to air permeability K (in millidarcys), as per Equation (1): 215 

  216 

t = -0.8206 × log10 (K) + 12.8737                          (1) 217 

 218 

Permeability was measured with the instrument in a static vertical position on the flat surface of 219 

each splitting plane, to which it was secured with a clamp to ensure uniform contact pressure 220 

during the test. 221 

Five permeability readings were taken on each splitting plane in the nine specimens. Lastly, the 222 

mean of the readings was found for each plane (R, G and HW). 223 

 224 

2.2.8 Anisotropy 225 

Anisotropy in rock depends on the specific physical property measured. The anisotropy index 226 

(dM) (Guydader and Denis, 1986) was obtained for each of the petrophysical properties, 227 

measured in the three directions (R, G and HW). 228 

 229 

dM = [1− (2 PPmin / (PPmean + PPmax))] × 100           (2)   230 

 231 

where PPmax, PPmin and PPmean are respectively the maximum, minimum and mean values of the 232 

petrophysical property measured in the three spatial directions. 233 

 234 

3. RESULTS 235 
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3.1 Optical surface micro-roughness 236 

Optical surface micro-roughness varied in each splitting plane. As shown in Table 2, the 237 

parameters analysed were highest in plane HW and lowest in plane R.  238 

 239 

3.2 Scanning electron microscopy (SEM) 240 

Figure 4 shows the (uncut and unpolished) unexposed surfaces along planes HW (a) and R (b) 241 

in Alpedrete granite. The HW unexposed surface exhibited an en echelon pattern: the 242 

microcracks tended to be perpendicular, generating a rough surface. The micrograph of plane R 243 

in (b), in contrast, showed a flatter surface.   244 

 245 

3.3 Fractography 246 

Figure 5 shows the micromosaics made from the thin sections taken in the three Alpedrete 247 

granite splitting planes. Figure 5R is the micromosaic parallel to plane R, in which most of the 248 

microcracks were found to be intercrystalline. Figure 5G, the micromosaic parallel to the grain 249 

plane, exhibited a considerable number of straight and pseudo-parallel intracrystalline 250 

microcracks. The micromosaic parallel to the hardway plane depicted in Figure 5HW had 251 

straight, parallel microcracks, although they were smaller than the exfoliation microcracks 252 

parallel to plane R.  253 

Intracrystalline microcracks were observed primarily in the G and HW planes; in other words, 254 

as they were parallel to plane R, the thin section running in that direction would not cut across 255 

intracrystalline microcracks (table 3). 256 

 257 

By mineral content, quartz accounted for most of the microcracks, followed by plagioclase, 258 

potassium feldspar and the biotite group minerals. The linear exfoliation microcrack density was 259 
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highest for the grain plane and lowest for the rift plane; the exfoliation microcracks were spaced 260 

at a mean distance of 0.69 mm. 261 

 262 

 263 

 264 

3.4 Surface hardness 265 

The surface hardness data for each plane of Alpedrete granite are listed in Table 4. The three 266 

planes exhibited similarly high L values, with the highest recorded for plane HW and the lowest 267 

for plane R. The anisotropy index for hardness was found to be dM=2.8 %. 268 

 269 

3.5 Ultrasonic wave velocity (Vp and Vs) 270 

The Vp and Vs values are given in Table 5. The P-wave velocity reading perpendicular to plane 271 

R was 17.5 % lower than when the direction was perpendicular to plane HW and 12.2 % lower 272 

than when perpendicular to plane G. The Vs value measured perpendicular to plane R was 2 % 273 

lower than when perpendicular to plane HW and 5.7 % lower than when perpendicular to plane 274 

HW. The anisotropy index, dM, for Vp was 12.9 % and for Vs 3.7 %.  275 

 276 

3.6 Capillary water absorption 277 

The granite studied exhibited a very low water absorption coefficient. The data in Figure 6 and 278 

Table 6 for the capillarity coefficient on the first and 38
th
 days show that the capillary 279 

coefficient declined and anisotropy rose over time. 280 

 281 

3.7 Air permeability 282 
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Air permeability in granite is favoured by microcracks and conditioned by their distribution.  283 

The air permeability values obtained were very low, nearly negligible in plane R (0.4 284 

millidarcys) and somewhat higher for planes HW (2.2 millidarcys) and G (2.5 millidarcys). The 285 

anisotropy index, dM, for air permeability was calculated to be 83.0 %. 286 

4 DISCUSSION 287 

 288 

Anisotropies due to microstructure, textural and mineral orientation or stratification 289 

(Siegesmund, 1996) can determine the splitting planes in some types of rocks. However, like 290 

many other building granites around the world, Alpedrete granite does not present a marked 291 

mineralogical orientation (figures 3 and 5) and ease of splitting is determined by exfoliation 292 

microcracks. Rift plane, with its coalescent coplanar exfoliation microcracks, affords a 293 

straighter and smoother cut than the other granite orientations (Yin and Wong Chau, 2014). 294 

Exfoliation microcracks may be inter-, intra- or transcrystalline. In Alpedrete granite exfoliation 295 

microcracks were predominantly intracrystalline, straight and not always interconnected. Those 296 

features distinguished them from the open microcracks found at depths of hundreds of metres, 297 

attributable to tectonic forces and so meaningful in hydrocarbon and water prospecting (Hooker 298 

et al., 2015).  299 

Intercrystalline microcracks are formed more readily when the crystal surface is oriented 300 

perpendicularly to stress-release because the boundary between crystals may be brittle. In 301 

biotites, when the exfoliation planes are perpendicular to stress-release, they widen more readily 302 

(Siegesmund et al., 1991). Macles and perthites may exert microstructural control in feldspars, 303 

and the alteration of plagioclase cores to form sericite modifies exfoliation microcrack 304 

propagation due to the more plastic behaviour of the latter mineral. In contrast, no clear 305 

microstructural control of microcrack development is present in quartz crystals and in this study 306 

quartz was the crystal with the largest number of exfoliation microcracks. Consequently, a 307 

larger fraction of quartz crystals generates a larger rift. Although each stone has a characteristic 308 
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rift, studies on Inada granite (Chen et al., 1999) also showed that intercrystalline microcracks 309 

prevailed in the rift plane, while the grain plane concurred with the orientation of the 310 

intracrystalline microcracks.  311 

In accelerated ageing tests on granite (Freire-Lista et al., 2016)
 
pre-existing microcracks were 312 

observed to play an instrumental role in freeze-thaw- or thermal shock-induced decay (Vázquez 313 

et al., 2015; Liu et al., 2015; Jyh-Chau et al., 2015). Few accelerated ageing tests on granite 314 

have been performed considering exfoliation microcracks. Granite samples have been cutted 315 

according to the splitting planes in this study and exfoliation microcracks have been 316 

differentiated from others microcracks. The orientation of exfoliation microcracks should be 317 

borne in mind, both in ancient ashlars often oriented in keeping with these microcracks or in 318 

cladding on today’s buildings. That is why the samples used for ageing tests should be cut 319 

according to the splitting planes to reproduce the orientation of historic granite ashlars. 320 

As shown by the micromosaics in Figure 5, the length of exfoliation microcracks depends on the 321 

splitting plane and is shorter in the hardway than in the grain plane. These microcracks are 322 

depicted schematically as ellipsoids in Figure 7. Plane R is parallel to the largest and median 323 

axes of the ellipsoids, plane G to the smallest axis and plan HW to the smallest and median 324 

axes. It has been observed that the exfoliation microcracks are small and not connected. 325 

 326 

Bromblet et al. (1996) reported that granite scaling is determined by petrophysical factors 327 

including total porosity, capillary water absorption kinetics, evaporation kinetics, air 328 

permeability and water vapour conductivity, which are also the source of the greater durability 329 

of crystalline rocks with small crystals. They made no mention of the relationship between 330 

exfoliation microcracks and these properties, however. Exfoliation microcracks play a 331 

significant role in the hydraulic properties of granites (Maréchal et al., 2004). Capillary 332 

absorption favours salt crystallisation- or freeze-thaw-induced material decay in much granitic 333 

ancient monuments (Momeni et al., 2015). Alpedrete granite exhibited very low capillary 334 

absorption, although the capillarity coefficient was higher on the first day and subsequently 335 



14 
 

declined. That finding may be attributed to the narrow opening and scant interconnection 336 

between the microcracks. They are larger and more interconnected in plane G (Figures 5 and 7), 337 

however.  338 

Further to the micro-roughness findings, the unexposed plane parallel to R was the smoothest, 339 

followed by the plane parallel to G, while plane HW was the roughest. Jessel et al. (1995) and 340 

Fujii et al. (2007), using digital photogrammetric techniques, reported results consistent with the 341 

present findings. In traditional quarries splitting planes could consequently be identified by 342 

touch: plane R, the smoothest, was the easiest to hew and the one that delivered an essentially 343 

flat surface (Figure 4). Greater surface roughness yields a greater specific surface, favouring 344 

interaction with the agents of decay (Moses et al., 2014). The (rougher) surfaces perpendicular 345 

to R may be subject to more microbial colonisation and intense soiling. 346 

Microcracks affect granite fragility (Přikryl, 2006; Wong and Einstein, 2009; Cuccuru et al., 347 

2012)
 
 and even induce pathologies such as scaling or flaking, preferentially parallel to plane R 348 

in historic ashlars (Freire-Lista and Fort, 2016b).  349 

Each petrophysical property in the Alpedrete granite studied here exhibited a different 350 

anisotropy index. Takemura et al. (2003) and Takemura and Oda (2004) studied the splitting 351 

planes of granite to determine how open microcracks affected anisotropy. Using ultrasonic wave 352 

velocity and uniaxial compression tests, they observed that anisotropy was caused by pre-353 

existing open, not by pre-existing closed, microcracks. In ascending order of their anisotropy 354 

index, the properties analysed here can be ranked as follows: first day capillarity (dM=0.1%); 355 

surface hardness (dM=2.8 %); Vs (dM=3.7 %); Vp (dM=12.9 %); capillarity from day 2 to day 356 

38 (dM=18 %); air permeability (dM=83 %). 357 

Oriented microcracks affect ultrasound wave velocity (Siegesmund et al., 1993). Nonetheless, 358 

the anisotropy of ultrasound wave velocity in stone deep into the crust where confining pressure 359 

is high and no exfoliation microcracking is present is controlled by preferred mineral orientation 360 

(texture) and tectonic fractures. 361 
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The three planes exhibited similarly high surface hardness values. The low anisotropy of this 362 

property is due to the fact that the exfoliation microcracks are very narrow and not connected, 363 

the samples were unaltered and without textural orientation. 364 

According to readings reported by Lin (2002) in a sound granite with characteristics similar to 365 

those of Alpedrete granite, the lowest Vp value was perpendicular to plane R, an indication that 366 

the many exfoliation microcracks parallel to plane R induced a decline in Vp. Inasmuch as Vp is 367 

lowest in the direction perpendicular to plane R, granite used in building façades should be 368 

oriented with plane R parallel to the ground to enhance its durability. In such a position its 369 

mechanical strength is greater (Sajid and Arif, 2015) and capillary absorption lower. Although 370 

that arrangement lowers stone resistance to rainwater absorption, the result is much less 371 

aggressive than in the capillary suction of salt-bearing ground water. 372 

The low air permeability observed in Alpedrete granite denotes high resistance to air pollution-373 

induced decay. Polluted air penetration is confined to very shallow depths, affecting the surface 374 

only, provided the stone is positioned on plane R where permeability is lowest. The higher 375 

permeability in any other arrangement would intensify air pollution-induced decay. 376 

Another consideration not addressed until recently in connection with granite exfoliation 377 

microcracks is the effect in cutting parameters of dimension granites (Yurdakul, 2015) graffiti 378 

cleaning (Pozo-Antonio et al., 2016) or damage by acidic chemical solutions (Miao et al., 2016). 379 

The microcrack-determined anisotropy of granite petrophysical properties also affects the 380 

readiness with which splitting planes can be damaged.  381 

 382 

5 CONCLUSIONS 383 

 384 

Requisite to an understanding of decay in ashlars and sculptures hewn from crystalline rock is 385 

the study of the orientation and distribution of exfoliation microcracks, which are determined by 386 

the position of the stone in the quarry. The microscopic techniques and petrophysical analysis 387 
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show that exfoliation microcracks play a significant role in granite anisotropy and that the 388 

splitting planes are controlled by these types of microcracks. Fluorescence microscopy allowed 389 

the study of exfoliation microcrack characteristics. The thin section parallel to the rift plane 390 

showed an abundance of intercrystalline microcracks, whereas the thin sections parallel to grain 391 

and hardway planes most of such microcracks were intracrystalline, straight and parallel to the 392 

ground surface, which were exfoliation microcracks. 393 

 394 

The orientation of exfoliation microcracks determines the granite ashlars durability. The angle 395 

between the splitting plane and the exfoliation microcracks defines the surface micro-roughness 396 

in granite. The grain and hardway planes are rougher than the rift plane and hence more 397 

vulnerable to soiling and microbial colonisation. The ultrasonic P-wave velocity, air 398 

permeability as well as capillary water absorption is lower in the perpendicular direction to the 399 

rift plane. The penetration of conservation treatments consequently varies depending on whether 400 

they are applied to the rift or the other two planes. 401 

Samples of crystalline rocks without texture orientation should be cut according to exfoliation 402 

microcracks, especially when ageing tests are to be conducted to reproduce the orientation of 403 

historic ashlars used in built heritage. Also, the direction of exfoliation microcracks should be 404 

taken into consideration when granite cladding slabs are cut and polished. The face side must be 405 

the surface parallel to such microcracks. If the face side is perpendicular to the exfoliation 406 

microcracks, the cladding slab will be more brittle and polishing will be worse. 407 

 408 
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