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Abstract  

Lactococcus lactis subsp. cremoris CECT 8666 is a lactic acid bacterium that synthesizes 

the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway. 

The AGDI genes cluster includes aguR. This encodes a transmembrane protein that 

functions as a one-component signal transduction system, the job of which is to sense the 

agmatine concentration of the medium and accordingly regulate the transcription of the 

catabolic operon aguBDAC. The latter encodes the proteins necessary for agmatine 

uptake and its conversion into putrescine. This work reports the effect of extracellular pH 

on putrescine biosynthesis and on the genetic regulation of the AGDI pathway. Increased 

putrescine biosynthesis was detected at acidic pH (pH 5) compared to neutral pH. Acidic 

pH induced the transcription of the catabolic operon via the activation of the aguBDAC 

promoter PaguB. However, the external pH had no significant effect on the activity of the 

aguR promoter PaguR, or on the transcription of the aguR gene. The transcriptional 

activation of the AGDI pathway was also found to require a lower agmatine concentration 

at pH 5 than at neutral pH. Finally, the following of the AGDI pathway counteracted the 

acidification of the cytoplasm under acidic external conditions, suggesting it to provide 

protection against acid stress.  

 

 

Keywords: Lactococcus lactis, Biogenic amines, Putrescine, AGDI cluster, pH induction, 

Acid stress. 
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1 Introduction 

 

Dairy products, especially cheese, can accumulate large amounts of biogenic amines (BA) 

(Linares et al., 2011; Spano et al., 2010) particularly putrescine (Ladero et al., 2012), 

tyramine (Ladero et al., 2010b) and histamine (Fernandez et al., 2006; Ladero et al., 

2008). Putrescine is one of the BAs most commonly found in cheese (Fernandez et al., 

2007b; Ladero et al., 2012). It is mainly produced by lactic acid bacteria (LAB) via the 

enzymatic deimination of agmatine (Linares et al., 2012), a metabolite derived from the 

decarboxylation of arginine (Simon and Stalon, 1982). High concentrations of putrescine 

not only have a negative affect on the organoleptic properties of fermented foods, but can 

induce toxicological reactions, including increased cardiac output, tachycardia and 

hypotension. It might even be involved in the malignant transformation of cells (Ladero et 

al., 2010a; Linares et al., 2011).  

 

The biosynthesis of putrescine by LAB can occur via the ornithine decarboxylase (ODC) 

and agmatine deiminase (AGDI) pathways. The AGDI pathway, via which agmatine is 

deiminated to putrescine with the concomitant production of CO2, ATP and ammonium 

ions, is used by LAB such as Enterococcus faecalis (Ladero et al., 2012), Lactobacillus 

brevis (Lucas et al., 2007), Lactobacillus hilgardii (Alberto et al., 2007), Strepcotoccus 

mutans (Griswold et al., 2004), and even some Lactococcus lactis strains (del Rio et al., 

2015a; del Rio et al., 2015b; Ladero et al., 2011; Linares et al., 2013). Putrescine 

biosynthesis via the AGDI pathway has been suggested a natural defence mechanism 

used by some LAB to withstand acidic environments; it is thought both to provide bio-

energetic advantages to the cells (del Rio et al., 2015b) and to increase their acid 
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resistance (Griswold et al., 2006; Linares et al., 2011; Lucas et al., 2007; Suarez et al., 

2013).  

 

Dairy L. lactis subsp. cremoris CECT 8666 produces putrescine via the AGDI route 

(Linares et al., 2013); this increases its growth and induces the alkalinization of the culture 

medium (del Rio et al., 2015b). The AGDI gene cluster of this strain is composed of aguR 

(a regulatory gene) followed by the aguBDAC operon, which codes for the catabolic 

enzymes of the reaction and the agmatine/putrescine antiporter (Linares et al., 2013). The 

aguR gene is transcribed as a monocistronic mRNA from its own promoter PaguR, 

independently of the aguBDAC genes. These latter genes are co-transcribed in a single 

polycistronic mRNA from the promoter of the first gene of the operon (PaguB) (Linares et al., 

2015). AguR is a transmembrane protein that functions as a one-component signal 

transduction system: it senses the agmatine concentration of the medium and regulates 

the transcription of the aguBDAC operon accordingly via a C-terminal cytoplasmic DNA-

binding domain (Linares et al., 2015). The aguBDAC operon, which contains a cre site in 

the promoter PaguB, is transcriptionally regulated by carbon catabolic repression (CCR) 

mediated by the catabolite control protein CcpA (Linares et al., 2013). The putrescine 

biosynthesis pathway in the strain used in this work (L. lactis subsp. cremoris CECT 8666) 

is regulated by CCR via glucose, but not by other sugars such as lactose or galactose (del 

Rio et al., 2015a; Linares et al., 2013). 

 

The aims of the present work were to analyze the effect of extracellular pH on putrescine 

biosynthesis and its genetic regulation in L. lactis, and to examine the involvement of the 

AGDI pathway in the homeostasis of the cytosolic pH under acidic external conditions.  
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2 Material and Methods 

 

2.1 Bacterial strains, plasmids and culture conditions 

 

Table 1 shows the lactococcal strains and plasmids used in this study. L. lactis subsp. 

cremoris CECT 8666 (formerly L. lactis subsp. cremoris GE2-14) - the putrescine-

producing strain used in this study - was previously isolated from Genestoso cheese, a 

Spanish artisanal cheese made from raw milk without the addition of any commercial 

starter culture (Fernandez et al., 2011; Ladero et al., 2011). L. lactis CECT 8666 (referred 

to as wild-type "wt") and the agmatine deiminase mutant L. lactis ∆agdi (referred to as 

"∆agdi") (del Rio et al., 2015b) were grown in M17 (Oxoid, Basingstoke, UK) 

supplemented with 0.5% (w/v) glucose (GM17) or 1% galactose (GalM17) (with no CCR 

regulation in either case) at 32ºC without aeration. Where indicated, the medium was 

supplemented with agmatine (Sigma-Aldrich, Madrid, Spain). L. lactis subsp. cremoris 

NZ9000 strains harbouring plasmids pAG1, pAG2 or pAGDI were grown in GM17 medium 

supplemented with 5 µg ml-1 chloramphenicol (Sigma-Aldrich). Overnight cultures of L. 

lactis strains were used as inocula (1% v/v) in 30 ml of culture medium. Microbial growth 

was monitored by measuring the optical density of cultures at 600 nm (OD600) using a 

spectrophotometer (Eppendorf, NY, USA). pH-controlled cultures were produced in a Six-

Fors® bioreactor (Infors AG, Bottmingen, Switzerland) containing 300 ml of culture medium 

supplemented with agmatine at the concentration indicated in each case, at a fixed pH (pH 

5 or 7, maintained by the automatic addition of 1 N NaOH or 1 N HCl as needed). The 

reactor was maintained at 32°C, stirring at 50 rpm and with zero air input. 

 

The pAG1, pAG2 and pAGDI plasmids were constructed as previously reported (Linares et 

al., 2013; Linares et al., 2015). pAG1 bears a fusion of the aguR promoter PaguR and the 
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reporter gene gfp (coding for green fluorescent protein GFP), pAG2 bears a fusion of the 

aguB promoter (PaguB) and gfp, and pAGDI bears a fusion of the AGDI cluster cassette 

PaguR-aguR-PaguB and gfp.  

 

2.2 Putrescine analysis by ultra-high performance liquid chromatography 

 

Culture supernatants were obtained by centrifugation (2000 g for 5 min). Putrescine was 

analyzed by ultra-high performance liquid chromatography (UHPLC) using a Waters H-

Class ACQUITY UPLC® apparatus controlled by Empower 2.0 software and employing a 

UV-detection method based on derivatization with diethyl ethoxymethylene malonate 

(Sigma-Aldrich), following the protocol of Redruello et al. (2013). 

 

2.3 Quantification of gene expression by reverse transcription quantitative PCR  

For all reverse transcription quantitative PCR (RT-qPCR) experiments, L. lactis cultures 

were grown in pH-controlled conditions in a Six-Fors® bioreactor as described in section 

2.1. Total RNA was extracted from 2 ml of cultures collected at the end of the exponential 

phase of growth as previously described (del Rio et al., 2015a). RNA samples (2 µg of 

total RNA) were treated with 2 U of DNase (Fermentas, Vilnius, Lithuania) for 30 min at 

37°C to eliminate any contaminating DNA. The reaction was stopped by adding 3 µl of 25 

mM EDTA at 65ºC for 1 h. The absence of contaminating DNA was checked for by 

quantitative real-time PCR (qPCR) using the corresponding RNA as a template, Power 

SYBR® Green PCR Master Mix (Applied Biosystems, UK), and a primer pair to amplify 

tufA (the reference gene) (Table 2) (Linares et al., 2013). cDNA was then synthesized from 

DNase-treated RNA samples using the iScript™ cDNA Synthesis Kit (Bio-Rad, Barcelona, 

Spain) following the manufacturer’s recommendations. cDNA samples were analyzed by 

qPCR using the primers listed in Table 2. The primer pairs used to amplify the aguR and 
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aguB genes of the AGDI cluster of L. lactis CECT 8666 and the tufA reference gene were 

those previously described (Linares et al., 2013). The primer pair used to amplify the rpoA 

reference gene was that previously described by Taibi et al. (2011). All qPCR reactions 

were performed following the protocol described by del Rio et al. (2015a). Threshold cycle 

(Ct) values were calculated automatically using 7500 Software v.2.0.4 (Applied 

Biosystems). No-template samples were included in each run as negative controls. 

Relative gene expression was calculated using the ΔΔCt comparative method as 

previously described (Livak and Schmittgen, 2001).  

 

2.4 Whole-cell fluorescence measurements 

 

L. lactis NZ9000 cells harbouring the pAG1, pAG2 or pAGDI plasmids were grown in the 

bioreactor at pH 5 or pH 7 (see section 2.1) in GM17 supplemented with 1 mM agmatine 

and 5 µg ml-1 chloramphenicol, for 7 h at 32ºC. Whole-cell fluorescence was examined 

following the protocol described by Linares et al. (2013). Background fluorescence levels 

of L. lactis NZ9000 harbouring pAG1, pAG2 or pAGDI were assessed in cultures grown in 

GM17 supplemented with chloramphenicol in the absence of agmatine; these basal values 

were subtracted from the fluorescence results of the corresponding culture. 

 

2.5 Measurement of cytosolic pH 

 

Cytosolic pH measurements were performed using carboxyfluorescein succinimidyl ester 

(cFSE) (Sigma-Aldrich) (an internally conjugated fluorescence pH probe) following the 

protocol described by Perez et al. (2014) with minor modifications. The wt and Δagdi 

strains were grown in GM17 in the presence or absence of 20 mM agmatine for 7 h. Cells 

collected by centrifugation from 1 ml of culture were washed twice in CPK buffer (citric acid 
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50 mM, disodium phosphate 50 mM and potassium chloride 50 mM) at pH 7.0. They were 

resuspended in 1 ml of CPK buffer at pH 4.5, pH 5, pH 5.5, pH 6.0, pH 6.5 or pH 7.0, and 

incubated at 32°C for 30 min in the presence of the cFSE probe (1 µM). The cells were 

then washed with CPK buffer at the required pH and resuspended in 1 ml of the same 

buffer supplemented with 10 mM lactose, and maintained for 15 min at 32°C. They were 

then washed once again in CPK buffer at the required pH. The cells grown in GM17 

without agmatine were resuspended in 100 µl of CPK buffer at the required pH, while 

those that were grown in GM17 with agmatine were resuspended in 100 µl of CPK buffer 

at the required pH and supplemented with 20 mM agmatine. Fluorescence intensities were 

monitored for 10 min in a Cary Eclipse fluorescence spectrophotometer (Varian Inc., Palo 

Alto, CA, USA) (excitation wavelengths 490 and 440 nm, emission wavelength 525 nm, 

excitation and emission slit widths 5 and 10 nm respectively). The value shown for each 

condition is the mean of three independent replicates (each the mean of values obtained 

over 10 min of monitoring). Background fluorescence levels were assessed in control cells 

not incubated with the cFSE probe; these values were subtracted from the fluorescence 

results. Cytosolic pH values were determined from the ratio of the fluorescence signal at 

440/490 nm taken from a calibration curve constructed using buffers in the pH range 4.5-

8.0 after equilibrating the cytosolic pH (pHin) and external pH (pHout) with 1µM valinomycin 

and 1µM nigericin respectively (Breeuwer et al., 1996). 

 

2.6 Statistical analysis 

 

Means ± standard deviations were calculated from at least three independent replicates. 

Means were compared using the Student t test. Significance was set at p<0.05. 
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3 Results 

 

3.1 Acidic pH increases putrescine production in L. lactis CECT 8666  

 

The influence of the pH of the medium on putrescine biosynthesis was studied in L. lactis 

CECT 8666 wt and Δagdi cultures grown in a bioreactor in GM17 supplemented with 20 

mM agmatine for 12 h at 32°C and at a fixed pH of 5 or 7. Putrescine production and 

bacterial growth (OD600) were monitored every hour (Fig. 1). The wt culture grown at pH 5 

accumulated 16.7 mM putrescine 12 h after inoculation (Fig. 1A), while in the culture 

grown at pH 7 only 0.5 mM was accumulated (some 33 times less) (Fig. 1B). As expected, 

no putrescine production was observed in the Δagdi cultures, either at pH 5 or pH 7 (Fig. 

1A and 1B, respectively). The wt culture showed greater growth compared to the Δagdi 

mutant at pH 5 (Fig. 1A), while no differences in growth were observed between the wt 

and the Δagdi cultures when the fermentation was performed at pH 7 (Fig. 1B).  

 

3.2 The transcription of aguBDAC, but not aguR, is activated at acidic pH 	  

 

Figure 2 shows the influence of the pH of the medium on the transcriptional activity of the 

AGDI cluster. The expression profiles of aguR and aguB (the first gene of the aguBDAC 

operon and used to represent the entire aguBDAC mRNA) were analyzed by RT-qPCR 

using RNA obtained from the wt cultures described in section 3.1. The reference condition 

was that for cultures grown at pH 7; tufA was chosen as the reference gene. No difference 

was seen in aguR expression when growth proceeded at pH 5 or pH 7 (Fig. 2A). 

Transcriptional analysis of the aguB mRNA showed a 170-fold up-regulation at pH 5 

compared to that recorded in cultures grown at pH 7 (p<0.001) (Fig. 2B). Similar results 

were obtained using rpoA as the reference gene (data not shown). These results indicate 
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the transcriptional induction of the catabolic genes of the AGDI cluster at pH 5, with no 

upregulation of aguR. 

 

3.3 The aguB promoter PaguB is induced at acidic pH  

 

The effect of pH on the activity of the aguR and aguB promoters (PaguR and PaguB) was 

examined using the PaguR-gfp and PaguB-gfp fusions, in which the aguR or aguBDAC genes 

respectively were substituted by the gfp reporter gene (Linares et al., 2015). Constructs 

were assayed in strain L. lactis NZ9000 grown in GM17 with agmatine (in a bioreactor) 

grown at pH 5 or 7 for 7 h at 32°C, measuring whole-cell fluorescence (Fig. 3). Neither 

PaguR-gfp nor PaguB-gfp showed any detectable activity at either pH 5 or pH 7 (Fig. 3A and 

3B). However, detectable activity was recorded for the PaguR-aguR-PaguB-gfp construct 

(which includes PaguR, the aguR gene and PaguB attached to the gfp gene) at both pH 5 and 

pH 7, an activity that was significantly greater (p<0.05) at the acidic pH (Fig. 3C). 

 

3.4 Effect of the pH of the medium on the concentration of agmatine required to activate 

the transcription of the aguBDAC genes 

 

L. lactis CECT 8666 cultures were grown in GalM17 in a bioreactor at pH 5 or pH 7 in the 

presence of small amounts of agmatine (0, 0.05, 0.1 or 0.2 mM) for 10 h at 32°C. The 

expression profiles of aguR and aguB were then analyzed by RT-qPCR in samples taken 

at the end of the exponential phase of growth (the reference condition was that of cultures 

grown with 0 mM agmatine at pH 7; tufA was set as reference gene); putrescine 

production was also determined at the end fermentation. Figure 4A shows that a lower 

agmatine concentration was needed to activate the transcription of the catabolic genes at 

pH 5 than at pH 7. Cultures grown in the presence of 0.05 mM agmatine showed little 
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transcription of the aguBDAC operon at pH 7, but 10 times as much at pH 5. In the 

presence of 0.1 mM agmatine, transcription at pH 5 was about 30 times that detected at 

pH 7, and about 6 times that seen in cultures grown with 0.2 mM agmatine (*p<0.05). The 

transcriptional activation of the aguBDAC operon at acidic pH correlated with a greater 

accumulation of putrescine in cultures grown at pH 5 than at pH 7 (Fig. 4B). The 

comparative transcriptional analysis of aguR confirmed that, independent of the pH of the 

medium, the agmatine concentration had no influence on the transcription of aguR (data 

not shown). 

 

3.5 The AGDI pathway counteracts the acidification of the cytosol under acidic external 

conditions 

 

Changes in cytosolic pH (pHin) in the wt and the Δagdi mutant strains were monitored 

when cells were incubated at different extracellular pHs (pHout) (from 7.0 to 4.5), in the 

presence and absence of agmatine. Figure 5 shows the variations detected in pHin at 

different pHout. The wt cultures grown in the presence of agmatine maintained a 

significantly higher pHin (0.3 to 0.4 pH unit) when exposed to an acidic pHout (6.0, 5.5, 5.0 

or 4.5) than cultures grown in the absence of agmatine (p<0.05) (Fig. 5A). In contrast, the 

Δagdi cultures grown with or without agmatine showed no significant differences in pHin at 

any pHout tested (Fig. 5B). These results reveal the involvement of the L. lactis AGDI 

pathway in the maintenance of cytosolic pH when cells are exposed to acidic external 

environments.  
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4 Discussion 

 

In dairy fermentations, the metabolism of lactose into lactic acid leads to the production of 

acidic external environments, which in turn are associated with greater BA production 

(Fernandez et al., 2007b; Marcobal et al., 2006). There has always been much interest, 

therefore, in how the external pH affects the regulation of pathways leading to the 

production of different BAs. Certainly, it is known that an acidic pH activates the 

expression of genes involved in different BA biosynthesis pathways (Arena et al., 2011; 

Griswold et al., 2006; Linares et al., 2009; Perez et al., 2014), and that some enzymes 

(decarboxylases and deiminases) are active at acidic but not at neutral or alkaline pHs 

(Griswold et al., 2006; Moreno-Arribas and Lonvaud-Funel, 2001; Schelp et al., 2001).  

 

The present work examines the effect of the external pH on putrescine biosynthesis in L. 

lactis - undoubtedly the most important dairy starter. The results show that putrescine 

production is higher in acidic media (pH 5) than neutral media (Fig. 1). The increase in 

putrescine production at pH 5 suggests that the AGDI cluster is regulated by the pH of the 

culture medium, and indeed, an acidic pH was found to significantly increase the 

expression of the aguBDAC catabolic genes (Fig. 2B). In addition, the transcriptional 

activity of the aguBDAC operon promoter was found to be increased when the 

transcriptional fusion PaguR-aguR-PaguB-gfp was assayed in L. lactis NZ9000 cells growing 

at pH 5 compared to those growing at pH 7 (Fig. 3C). These results show that acidic pH 

activates the transcription of the aguBDAC catabolic genes, increasing the production of 

putrescine. A stimulatory effect of acidic pH on the production of putrescine has previously 

been described in S. mutans (Griswold et al., 2006). In contrast, Suarez et al. (2013) found 

the AGDI route of E. faecalis JH2-2 not to be induced by acidic pH. To our knowledge, the 

effect has not been studied in any other LAB, although it has been verified that acidic pH 
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induces transcriptional activity involved with other BA production pathways (e.g., tyramine 

biosynthesis) in E. durans 655 (Linares et al., 2009) and E. faecalis V583 (Perez et al., 

2014). 

 

The present work also examined the possible role of aguR, the regulatory gene of the 

AGDI cluster, in the regulation of cytosolic pH. The extracellular pH had no effect on the 

expression of aguR (Fig. 2A) or on the activity of its promoter PaguR (Fig. 3A). Neither did it 

have any effect on the activity of PaguB in the absence of aguR (Fig. 3B). These results 

agree with the previously proposed constitutive expression of aguR in L. lactis (Linares et 

al., 2015). Thus, regardless of the environmental conditions, AguR is constantly present at 

the cell surface of L. lactis AGDI-positive strains, sensing the agmatine concentration of 

the medium and regulating the transcription of the catabolic operon aguBDAC via the 

activation of PaguB. The effect of pH on catabolic gene expression might occur via 

conformational changes in the structure of AguR, as proposed by Liu and Burne (2009) for 

its orthologue in S. mutans UA159. It may be that an acidic pH favours an AguR 

conformation that renders signal transduction to the DNA binding domain more efficient. 

Similarly, in L. lactis, an acidic pH might induce conformational changes in AguR that 

enhance the activator signal of PaguB and consequently the transcription of the aguBDAC 

operon. In fact, the present results show that, at acidic pH, the concentration of agmatine 

needed for maximum transcriptional activation of the aguBDAC operon is lower than at 

neutral pH (Fig. 4A).  

 

Putrescine biosynthesis in L. lactis at pH 5 correlated with an increase in bacterial growth 

(Fig. 1), as previously described in cultures grown at uncontrolled pH (del Rio et al., 

2015b). Agmatine catabolism via the AGDI pathway produces ATP, but also ammonium 

ions, the accumulation of which in the extracellular medium leads to its alkalinization (del 



14	  
	  

Rio et al., 2015b). The ATP generated, rather than the alkalinization of the culture 

medium, is the main factor behind the increase in bacterial growth (del Rio et al., 2015b). 

However, the induction of the AGDI pathway at acidic pH supports the hypothesis that the 

system may be a component of an adaptive acid tolerance response in L. lactis, as has 

been described for other LAB such as L. brevis IOEB 9809 (Lucas et al., 2007), E. faecalis 

JH2-2 (Suarez et al., 2013) and S. mutans UA159 (Griswold et al., 2006; Liu and Burne, 

2009). In the last of these, the AGDI route is involved in the increase of acid resistance, 

and thus in improving the competitive fitness of the organism at low pH, via the generation 

of ammonium ions which alkalinize the cytoplasm, and via the production of ATP, which 

could be used for growth and for powering proton extrusion (Griswold et al., 2006). 

Alkalinization induced by ammonium ions has been suggested to contribute towards acid 

resistance in E. faecalis JH2-2 (Suarez et al., 2013) and L. hilgardii (Alberto et al., 2007). 

The present results indicate that, when agmatine is available, the AGDI pathway 

participates in the maintenance of the cytosolic pH in L. lactis cells faced with an acidic 

(pH 4.5-6) culture medium (Fig. 5A). This effect was abolished in the ∆agdi cultures (Fig. 

5B), further implicating the involvement of the pathway. A role in cellular pH homeostasis 

has also been suggested for the arginine deiminase (ADI) pathway of L. lactis, via which 

arginine is catabolized to ornithine by reactions that closely resemble those of the AGDI 

pathway. The ADI route has been widely studied and is considered to be a pathway via 

which L. lactis obtains additional ATP while at the same time combating acid stress 

through ammonium ion production (Larsen et al., 2004). Similarly, in Staphylococcus 

epidermidis, the ammonium ions generated via the ADI pathway have been linked to the 

alkalinization of the cytosolic pH as a response to acidic external environments (Lindgren 

et al., 2014). Thus, the ADI and AGDI pathways appear to be similar and to have similar 

functions.  
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While the AGDI pathway provides important advantages to L. lactis growing in acidic 

environments such as dairy fermentations, the product is putrescine, an unwanted product 

from a food safety point of view. The L. lactis strains used in starter cultures therefore 

need to be thoroughly examined to make sure that no AGDI-positive strains are present. 
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7 Figure legends 

 

Figure 1. Effect of external pH on putrescine production. wt and ∆agdi mutant strains were 

grown in a bioreactor at pH 5 (A) or pH 7 (B) in GM17 in the presence of 20 mM agmatine 

for 12 h. Supernatants of samples taken each hour were analyzed by UHPLC to determine 

the concentrations of putrescine in the extracellular medium. Bacterial growth was 

determined by measuring the absorbance of the culture at 600 nm (OD600). A 

representative experiment of the duplicates performed is shown. 

 

Figure 2. Effect of external pH on the transcriptional activity of the AGDI cluster, as 

determined by RT-qPCR. L. lactis CECT 8666 was grown in a bioreactor at pH 5 or pH 7 

in GM17, in the presence of 20 mM agmatine. The relative gene expression of aguR (A) 

and aguB (B) (representing the whole aguBDAC operon) was determined by RT-qPCR. 

The data represent the mean of three RNA extractions; error bars represent standard 

deviations. *Significantly different from cells grown at pH 7 (p<0.001). 

 

Figure 3. Effect of external pH on the activity of the PaguR and PaguB promoters as 

determined by whole-cell fluorescence. L. lactis NZ9000 cells harbouring either the PaguR-

gfp (A), the PaguB-gfp (B), or the PaguR-aguR-PaguB-gfp (C) genetic fusion, were grown in a 

bioreactor at pH 5 or pH 7 in GM17 supplemented with 5 µg ml-1 chloramphenicol, in the 

presence of 1 mM agmatine for 7 h (after which time GFP fluorescence was monitored). 

The values shown are the means of triplicates. Vertical bars show the standard deviation. 

*Significantly different from L. lactis NZ9000 harbouring the construction PaguR-aguR-PaguB-
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gfp and grown at pH 7 (p<0.05). PaguR: aguR promoter, PaguB: aguB promoter, gfp: gene 

encoding green fluorescent protein (GFP). a.u.: arbitrary units.  

 

Figure 4. Effect of the pH of the medium on the concentration of agmatine required to 

activate the transcription of the aguBDAC catabolic genes, as determined by RT-qPCR. L. 

lactis CECT 8666 cultures were grown in a bioreactor at pH 5 or pH 7 in GalM17 medium 

supplemented with 0 mM, 0.05 mM, 0.1 mM or 0.2 mM agmatine for 10 h at 32°C. (A) The 

expression of aguB was assessed by RT-qPCR and calculated relative to the transcript 

level detected in samples grown in GM17 with no agmatine and at pH 7. The data 

represent the mean of three different RNA extractions; error bars represent standard 

deviations. (B) Putrescine production was determined by UHPLC in supernatants of 

cultures collected after 10 h of fermentation. The data represent the mean of three 

different cultures; error bars represent standard deviations. *Significantly different from the 

transcriptional activation of aguB at pH 7 (p<0.05). 

 

Figure 5. Variations in the cytosolic pH (pHin) at different external pHs (pHout) (7, 6.5, 6, 

5.5, 5 and 4.5), measured using a cFSE probe in resting wt (A) or ∆agdi (B) cells grown in 

the absence (white circles; control condition) or presence of 20 mM agmatine (black 

circles). The data represent the mean of triplicates; error bars represent standard 

deviations. *Significantly different from wt cultures grown in the absence of agmatine 

(p<0.05). GM17+A: GM17 medium supplemented with 20 mM agmatine. 
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8 Tables 

 

Table 1. Bacterial strains and plasmids used in this study 

  
Material  Relevant properties Reference 

  

Bacterial Strains   

L. lactis subsp. cremoris CECT 8666 AGDI cluster, putrescine producer (Fernandez et al., 2011), CECTa 

L. lactis CECT 8666 ∆agdi CECT 8666 knock-out for the AGDI cluster (del Rio et al., 2015b) 

L. lactis subsp. cremoris NZ9000 L. lactis subsp. cremoris MG1363 (Kuipers et al., 1998) 

  containing nisRK genes, non-putrescine producer 

Plasmids   

pAG1 pNZ8048 derivative bearing the PaguR-gfpfusion, Cmr (Linares et al., 2015) 

pAG2 pNZ8048 derivative bearing the PaguB-gfp fusion, Cmr (Linares et al., 2015) 

pAGDI  pNZ8048 derivative bearing the PaguR-aguR-PaguB-gfp (Linares et al., 2013) 

  fusion, Cmr 

  
aCECT: Colección Española de Cultivos Tipo (Spanish Collection of Type Cultures) 

PaguR: aguR promoter; PaguB: aguB promoter; gfp: gene encoding green fluorescent protein; Cmr: chloramphenicol resistance 
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Table 2. Primers used for gene expression quantification by reverse transcription 

quantitative PCR (RT-qPCR) 

  

Gene  Primer Sequence (5’-3’) Reference 

   

 

aguRa qAguR-F CTATCGACAGGTTAAGCAAAGCAGTT (Linares et al., 2013) 

 qAguR-R TCCAAAGATGATGGCCATTATGC (Linares et al., 2013) 

aguBa AguB-F ACTTGGTGGACATGAAACAATAGAAGAT (Linares et al., 2013) 

 AguB-R GTCAACACGTGCCATTATGATATCG (Linares et al., 2013) 

tufAb qtufF TCTTCATCATCAACAAGGTCTGCTT (Linares et al., 2013) 

 qtufR GAACACATCTTGCTTTCACGTCAA (Linares et al., 2013) 

rpoAb rpoA-F CACGGGCAGGTTCAACTTG (Taibi et al., 2011) 

 rpoA-R TTCCGGCTGACGAAAATAAAG (Taibi et al., 2011) 

  
a Target genes 
b Reference genes  
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