Accepted Manuscript

Multilocus species tree analyses resolve the radiation of the widespread *Bufo bufo* species group (Anura, Bufonidae)

E. Recuero, D. Canestrelli, J. Vörös, K. Szabó, N.A. Poyarkov, J.W. Arntzen, J. Crnobrnja-Isailovic, A.A. Kidov, D. Cogălniceanu, F.P. Caputo, G. Nascetti, I. Martínez-Solano

PII:	\$1055-7903(11)00398-8
DOI:	10.1016/j.ympev.2011.09.008
Reference:	YMPEV 4040
To appear in:	Molecular Phylogenetics and Evolution
Received Date:	5 July 2011
Revised Date:	7 September 2011
Accepted Date:	11 September 2011

Please cite this article as: Recuero, E., Canestrelli, D., Vörös, J., Szabó, K., Poyarkov, N.A., Arntzen, J.W., Crnobrnja-Isailovic, J., Kidov, A.A., Cogălniceanu, D., Caputo, F.P., Nascetti, G., Martínez-Solano, I., Multilocus species tree analyses resolve the radiation of the widespread *Bufo bufo* species group (Anura, Bufonidae), *Molecular Phylogenetics and Evolution* (2011), doi: 10.1016/j.ympev.2011.09.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Multi	locus species tree analyses resolve the radiation of the widespread <i>Bufo</i>
2	<i>bufo</i> s	pecies group (Anura, Bufonidae)
3		
4	E. Rec	uero ^a ; D. Canestrelli ^b ; J. Vörös ^c ; K. Szabó ^c ; N. A. Poyarkov ^d ; J. W. Arntzen ^c ; J.
5	Crnobr	rnja-Isailovic ^{f,g} ; A. A. Kidov ^h ; D. Cog Iniceanu ⁱ ; F. P. Caputo ^b ; G. Nascetti ^b ; I.
6	Martín	ez-Solano ^{j,*}
7		
8	a.	Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, 28006
9		Madrid, Spain
10	b.	Dept. Ecology and Biology, Tuscia University, Largo dell'Università s.n.c., I-01100
11		Viterbo, Italy
12	c.	Hungarian Natural History Museum, 1088 Budapest, Baross u. 13, Hungary
13	d.	Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State
14		University, Leninskiye Gory, GSP-1, Moscow 119991, Russia
15	e.	Netherlands Centre for Biodiversity Naturalis, P.O. Box 9517, 2300 RA Leiden, The
16		Netherlands
17	f.	Department of Biology and Ecology, Faculty of Sciences and Mathematics,
18		University of Niš, Višegradska 33, 18000 Niš, Serbia
19	g.	Institute for Biological Research "Siniša Stankovi", University of Belgrade, Despota
20		Stefana 142, 11000 Belgrade, Serbia
21	h.	Russian State Agrarian University – Moscow Timiryazev Agricultural Academy,
22		Timiryazevskaya Str., 49, 127550 Moscow, Russia
23	i.	University Ovidius Constanta, Faculty of Natural Sciences, Bvd. Mamaia 124,
24		Constanta, Romania
25	j.	(*) Corresponding author: Instituto de Investigación en Recursos Cinegéticos
26		(CSIC-UCLM-JCCM), Ronda de Toledo, s/n, 13005 Ciudad Real, Spain, phone: +34
27		926 295 450; fax: +34 926 295 451; e-mail: inigomsolano@irec.csic.es
28		
29	5	
	7	

30 Abstract

31 New analytical methods are improving our ability to reconstruct robust species trees from 32 multilocus datasets, despite difficulties in phylogenetic reconstruction associated with recent, 33 rapid divergence, incomplete lineage sorting and/or introgression. In this study, we applied 34 these methods to resolve the radiation of toads in the Bufo bufo (Anura, Bufonidae) species 35 group, ranging from the Iberian Peninsula and North Africa to Siberia, based on sequences 36 from two mitochondrial and four nuclear DNA regions (3490 base pairs). We obtained a 37 fully-resolved topology, with the recently described *Bufo eichwaldi* from the Talysh 38 Mountains in south Azerbaijan and Iran as the sister taxon to a clade including: 1) north 39 African, Iberian, and most French populations, referred herein to Bufo spinosus based on the 40 implied inclusion of populations from its type locality; and 2) a second clade, sister to B. 41 spinosus, including two sister subclades: one with all samples of Bufo vertucosissimus from 42 the Caucasus and another one with samples of *Bufo bufo* from northern France to Russia, 43 including the Apennine and Balkan peninsulas and most of Anatolia. Coalescent-based 44 estimations of time to most recent common ancestors for each species and selected subclades 45 allowed historical reconstruction of the diversification of the species group in the context of 46 Mediterranean paleogeography and indicated a long evolutionary history in this region. 47 Finally, we used our data to delimit the ranges of the four species, particularly the more 48 widespread and historically confused B. spinosus and B. bufo, and identify potential contact 49 zones, some of which show striking parallels with other co-distributed species. 50 51 Keywords: Amphibia, Bufo bufo, Bufo spinosus, mitochondrial DNA, nuclear DNA, species

- 52 trees
- 53 54

55 1. Introduction

56 The long-term goal of Systematics is understanding the historical relationships among 57 organisms, and a powerful tool to achieve this goal is to estimate robust species trees 58 (Edwards, 2009). The importance of combining information from multiple, unlinked loci in 59 individuals from a geographically comprehensive sample to obtain robust estimates of 60 phylogenetic relationships has been long recognized. Recently, the increased availability of 61 molecular data and the parallel development of efficient analytical tools to extract the 62 information have increased the accuracy of species tree estimation (Liu et al., 2008; Kubatko 63 et al., 2009; Heled & Drummond, 2010). New analytical tools are improving our ability to 64 reconstruct species trees from multilocus datasets, despite difficulties associated with the 65 processes of recent, rapid divergence, incomplete lineage sorting and/or introgression in 66 phylogenetic reconstruction (Chung & Ané, 2011). For instance, methodological advances 67 related to estimation of the timing of population divergence, and in particular the 68 incorporation in the analyses of the uncertainty associated to estimates of substitution rates 69 and the temporal constraints imposed by the fossil record have greatly improved our 70 understanding about the timescales involved in species formation in a wide variety of 71 taxonomic groups (for example, Aldenhoven et al., 2010; Arora et al., 2010; Blackburn et al., 72 2010). This has also led to taxonomic revision of historically problematic groups, which 73 include widespread and morphologically undifferentiated species (for example, Gvozdík et 74 al., 2010; Salicini et al., in press; Sanguila et al., in press). 75 Until recently, the genus Bufo contained some of the largest number of amphibian 76 species in the world, with a total of 283 described toad species. As a result of its paraphyly it 77 was split by Frost et al. (2006) into several genera. Far from adequately solving the 78 systematics, this highlighted the complexity of the group. As an example, the green toad 79 (Bufo viridis) that is widespread throughout Eurasia and parts of northern Africa, has a 80 complex genetic structure, including differences in ploidy levels across species and 81 populations (Stöck et al., 2006). It was split into several species, with additional changes in 82 green toad taxonomy expected in the near future (Stöck et al., 2006, 2008). Bufo bufo 83 (Linnaeus 1758) (Anura, Bufonidae), another widespread species with an extensive Euro-84 Asiatic distribution, was formerly included in the *B. bufo* species group of Inger (1972), 85 including species from Europe through Asia. Recent studies have recognized a marked 86 distinction between western and eastern species groups, some within the latter now 87 recognized as distinct species, like B. japonicus (Matsui, 1980, 1984; Igawa et al., 2006) and 88 B. gargarizans (Gumilevskij, 1936; Matsui, 1986; Macey et al., 1998; Liu et al., 2000; Fu et 89 al., 2005). Here we focus on the western species group, including *B. bufo* and related species, 90 that ranges from the Iberian Peninsula and North Africa in the west to northern Kazakhstan 91 and eastern Siberia in the east (IUCN, 2009, Fig. 1). However, the boundaries of the different 92 species and their phylogenetic relationships remain poorly known, and a recent study has

93 shown that the actual species diversity in the group is underestimated (Litvinchuk et al., 94 2008), highlighting the need for more work. 95 Litvinchuk et al. (2008) described a new species from the Talysh Mountains in south 96 Azerbaijan and Iran, B. eichwaldi, which is morphologically and genetically distinct from B. 97 bufo, and discussed its relationships with B. bufo and B. verrucosissimus. However, their 98 study lacked comprehensive sampling and did not include populations from western Europe, 99 which in turn prevented a thorough re-evaluation of the status of B. bufo - in particular, the 100 delineation of the ranges of the most widespread subspecies: B. b. bufo and B. b. spinosus, 101 whose type localities are in Sweden and southern France, respectively (Frost, 2011). The three 102 subspecies traditionally recognized in B. bufo (B. b. bufo, B. b. gredosicola, and B. b. 103 spinosus) (Dubois & Bour, 2010) were originally described based on morphological 104 differences. Additionally, Litvinchuk et al. (2008), based on allozyme data, suggested that the 105 available name B. b. palmarum be used for the Italian populations of this species. In any case, 106 the relative ranges and potential areas of overlap between the different subspecies remain 107 unknown and their taxonomic status is disputed because of the lack of consistence of 108 purported diagnostic characters across populations (see for instance De Lange, 1973; Lüscher 109 et al., 2001; García-París et al., 2004). Preliminary mtDNA studies based on partial sequences 110 of the control region did not find evidence for geographical structuring of populations of B. 111 *bufo* in the Iberian Peninsula, where up to three subspecies have been reported; instead, the 112 Iberian populations form a well-supported clade with respect to north African samples 113 (Martínez-Solano & González, 2008). Within the Caucasian species Bufo verrucosissimus, 114 three to four morphological subspecies are currently recognized (B. v. verrucosissimus, B. v. turowi, B. b. circassicus, and B. b. tertyschnikovi; see Orlova, Tuniyev, 1989; Kidov, 2009); 115 116 but their taxonomic status remains questionable (Kuzmin, 1999; Litvinchuk et al., 2008). 117 Also, the distribution limits of B. verrucosissimus and B. bufo in North Anatolia are unclear 118 (Eiselt, 1965; Baran & Atatur, 1998). 119 In this paper, we present a comprehensive assessment of the diversification history of 120 the Bufo bufo species group in Europe using molecular data from the mitochondrial and 121 nuclear genomes, including all described species and subspecies with full geographic 122 coverage. In particular, the objectives of our study are: 1) resolving phylogenetic relationships 123 between species in the widespread Bufo bufo species group; 2) reconstructing well-dated and 124 robust paleobiogeographic scenarios for the evolution of the group, and 3) use this 125 information to delineate the ranges of the species and identify potential contact zones. 126 127 2. Material and methods 128 2.1. Sampling and sequencing

- 129 A total of 232 individuals of *B. bufo sensu lato* (i. e., including all currently recognized
- 130 subspecies) and related species (*B. verrucosissimus* and *B. eichwaldi*, including all currently

131 recognized subspecies, see Kutrup et al., 2006; Litvinchuk et al., 2008; Sinsch et al., 2009) 132 were included in the study (Table 1, Fig. 1). We collected samples across all the species 133 ranges, with a focus in the three main southern peninsulas in Europe, and including 134 populations from North Africa (Morocco and Tunisia), Caucasian isthmus and Anatolia. As 135 outgroups we included nine samples from other species previously considered part of the B. 136 bufo species group (in the "eastern species group" cited above): B. bankorensis, B. 137 gargarizans, B. japonicus, and B. torrenticola (Table 1). 138 Genomic DNA was extracted from tissues (tail or toe clips), preserved in 95% ethanol 139 or frozen, using commercial kits (Nucleospin). We amplified by polymerase chain reaction 140 (PCR) and sequenced fragments of two mitochondrial genes (16S and cytochrome b, cyt-b) in 141 all 241 samples, and four nuclear genes (proopiomelanocortin: POMC, chemokine (C-X-C) 142 receptor 4: CXCR4, brain-derived neurotrophic factor: BDNF, and ribosomal protein L3: 143 RPL3) in 52-55 samples representing all major mtDNA clades (see Table 1). PCR conditions 144 followed standard procedures (see Martínez-Solano & González, 2008), with primers and 145 annealing temperatures listed in Table 2.

146

147 2.2. Molecular diversity, neutrality and recombination tests

- 148 Number of haplotypes and values of mean haplotype (h) and nucleotide diversities (π) (Nei,
- 149 1987) for mtDNA (16S + cyt-b) were estimated within and between species using DnaSP v5.0
- 150 (Librado & Rozas, 2009). Genetic distances within and between species were calculated with
- 151 MEGA5 (Tamura et al., 2011). To test whether the data were consistent with neutral
- 152 expectations, we also calculated Tajima's D statistic (Tajima, 1989) and Fu & Li's (1993) D
- 153 and F statistics for each locus using DnaSP. Recombination in the nuclear markers was
- assessed using the pairwise homoplasy index (PHI - statistic, Bruen et al., 2006)
- 155 implemented in Splitstree v.4.11 (Huson & Bryant, 2006).
- 156

157 2.3. Phylogenetic analyses

- 158For each data set (16S, cyt-b, POMC, CXCR4, BDNF and RPL3), the best-fit model of
- 159 evolution was estimated based on the Bayesian Information Criterion (BIC) as implemented
- 160 in jModeltest 1.0 (Guindon & Gascuel, 2003; Posada, 2008). Phylogenetic analyses were
- 161 based on Bayesian inference, maximum likelihood (ML) and maximum parsimony (MP)
- 162 methods as implemented in MrBayes v3.1.2 (Huelsenbeck & Ronquist, 2001), Garli version
- 163 2.0 (Zwickl, 2006) and PAUP* v4.10 (Swofford, 2001) respectively. Several independent
- analyses were run: 1) a combined mtDNA (16S + cyt-b) dataset including only one
- representative of each haplotype in the dataset; 2) a combined nDNA (POMC, CXCR4,
- 166 BDNF and RPL3) dataset; and 3) a combined mtDNA + nDNA dataset. Bayesian and ML
- 167 analyses were run with the different genes set as independent partitions, with the models
- 168 selected by jModeltest. Support for branches was based on Bayesian posterior probabilities

169 (BPPs) and bootstrap values for ML and MP analyses. For analyses with Garli, 100 bootstrap 170 replicates were run, with five search replicates per bootstrap replicate. In PAUP, bootstrap 171 values were estimated from 1000 replicates, with a maximum of 1000 (mtDNA, dataset 1) or 172 20000 (datasets 2 and 3) trees saved per random addition replicate in order to keep 173 computation time within reasonable bounds. Sequence alignments were deposited in 174 TreeBase under accession number 11885. 175 We also estimated time to most recent common ancestor (TMRCA) of selected 176 haplogroups in the mtDNA dataset, corresponding to each species as well as geographically 177 based haplogroups where relevant using BEAST v1.6.1 (Drummond & Rambaut, 2007). For 178 these analyses, we considered two partitions, one for each gene (16S and cyt-b), with 179 substitution models selected based on jModeltest results, and a relaxed (uncorrelated-180 lognormal) clock model, since preliminary runs showed it fit the data better than a strict clock 181 model (i.e., the 95% highest posterior density (HPD) interval for the parameter "coefficient of 182 variation" did not include zero). We specified a substitution rate sampled from a normal 183 distribution with a mean of 0.0069 and a standard deviation of 0.0017 substitutions per site 184 per million years, based on rates estimated by Macey et al. (1998) in related species. We used 185 fossil data as prior information to set bounds on some TMRCAs, based on the oldest fossil 186 remains of B. bufo (sensu lato) and B. verrucosissimus in Europe (see Martín & Sanchiz, 187 2011). There are Miocene records from fossil sites in Moldavia (9.7-11.1 million years ago – 188 Mya-) that have been assigned to *B. bufo*. Since at present there are no diagnostic osteological 189 features distinguishing between species in the B. bufo group (except for B. verrucosissimus, 190 Chkhikvadze, 1984; Ratnikov, 2001; Pisanets et al., 2009), the precise taxonomic assignment 191 of these remains is uncertain, so we conservatively used this information to place a minimum 192 age for the TMRCA of all species in the group. We implemented this by setting a prior 193 distribution for their TMRCA following a lognormal distribution with an offset of 9.7 Mya, 194 and 95% of the values between 10.1 and 22.2 Mya. On the other hand, the oldest fossil 195 remains confidently assigned to *B. verrucosissimus* are from the Pliocene of Russia (1.81-2.59 196 Mya), so we used this information to set a lognormal prior with an offset of 1.81 Mya and 197 95% of the values between 2 and 4.5 Mya. The birth-death process was specified for the tree 198 prior, since it is well suited to a multi-species dataset with deep genetic divergence across 199 clades and species. Four independent runs of 25 million generations, sampling every 2,500 200 generations, were combined, after checking for convergence and adequate effective sample 201 sizes (ESSs) of parameters of interest using the software Tracer (Rambaut & Drummond, 202 2007), to derive the median values and 95% highest posterior density intervals (HPDIs) of the 203 corresponding TMRCAs. 204 Finally, we used the species tree reconstruction method implemented in *BEAST 205 (Drummond & Rambaut, 2007; Heled & Drummond, 2010) to address phylogenetic 206 relationships in the *B. bufo* species group. *Bufo* gargarizans was used as an outgroup. This

207 analysis considered five independent partitions: 16S + cyt-b, POMC, CXCR4, BDNF and 208 RPL3. For each of them, models of substitution were based on results of jModeltest. Clock 209 rate and topology were unlinked in the five partitions. The birth-death process was chosen as 210 the coalescent prior for the species tree. Three independent analyses were run for 50 million 211 generations each, sampling every 5,000 generations. Results were visualized in Tracer to 212 check for convergence and adequate effective sample sizes (ESSs) of parameters. 213 214 3. Results 215 3.1. mtDNA 216 The mtDNA alignment contained 1239 sites across the 241 specimens studied (335 of them 217 polymorphic), defining 123 haplotypes. Those more widespread and found at higher 218 frequencies include haplotype 2 (N=11), found in samples from the Netherlands, northern 219 France, Germany, Belgium and Hungary (samples BB002, BB142, BB143, BB144, BB149, 220 BB164, BB170, BB171, BB186, BB188, BB189); haplotype 6 (N=11), in samples from 221 southern France and north-eastern Spain (Pyrenees) (samples BB006, BB012, BB117, 222 BB118, BB147, BB166, BB191, BB193, OBYX6, OBYX9 and OBYX19); and haplotype 9 223 (N=25), in samples from Serbia, Hungary, Slovakia, Ukraine, Russia, and Romania (samples 224 BB14, BB33, BB34, BB35, BB44, BB52, BB53, BB74, BB75, BB76, BB105, BB123, 225 BB126, BB127, BB128, BB159, BB160, BB161, BB162, BB163, BB180, BB181, BB185, 226 RO1, RO3) (Table 1). Phylogenetic analyses based on mtDNA data produced a well-resolved 227 tree (Fig. 2A), with B. eichwaldi as the sister group of two clades (BPP=1.0/ MP 228 bootstrap=100/ ML bootstrap=100). Clade 1 (subsequently referred to as *Bufo spinosus*, see 229 below) includes samples from North Africa, the Iberian Peninsula and France (1.0/100/100). 230 Bufo spinosus is sister (1.0/97/100) to Clade 2 (1.0/100/100), which includes two subclades: 231 one comprising samples from all other populations of *B. bufo*, from northern France to 232 Siberia, including the Apennine peninsula and Sicily, the Balkan Peninsula and most of 233 Anatolia (1.0/96/91), and another, weakly supported clade (<0.90/64/52), including all 234 samples of B. verrucosissimus. At least three major subclades are recovered within B. 235 spinosus: 1) samples from Morocco (1.0/100/100); 2) samples from Tunisia (1.0/100/99); and 236 3) samples from the Iberian Peninsula and most of France (1.0/100/100). Samples from 237 Morocco and Tunisia are closely related to one another (1.0/100/99). Within B. bufo there are 238 several well-supported clades, including: 1) southern Italy and Sicily (1.0/90/82); 2) the 239 remaining samples from Italy (center and north) plus samples from the Balkans in Serbia, 240 Montenegro, Albania, Macedonia and Greece (0.95/73/58); and 3) the remaining samples 241 (1.0/84/79), including haplotypes also found in the Balkans (Greece, Serbia, Montenegro), 242 Anatolia, and also all samples from central, western and northern Europe (Germany, 243 Netherlands, northern France, Belgium, Hungary, England, Poland, Russia, Ukraine, Sweden, 244 Romania, Slovakia), which form a well-supported subclade (1.0/80/92) that also includes

245 samples from the Balkans (Serbia, Montenegro, Croatia) (Fig. 2A, Table 1). Finally, within B. 246 *verrucosissimus* there are two well-supported subclades: one mainly distributed north of the 247 Caucasus and comprising all samples from Russia plus one sample from Abkhazia, Georgia 248 (BB059, Malaya Ritza lake) (1.0/80/73); and a second one including the remaining samples 249 from southern Georgia and Turkey (0.99/94/91), south of the Caucasus. These groups do not 250 reflect current subspecific assignments (Table 1), but rather allopatric groups of populations 251 in the northwestern slopes of the Great Caucasus versus Lesser Caucasus and southern slope 252 of the Great Caucasus, respectively (Fig. 1, Table 1). 253 Mean pairwise (p-uncorrected ± standard deviations) genetic distances between 254 species are presented in Table 3 and range from $1.6 \pm 0.3\%$ (between *B. bufo* and *B.* 255 *verrucosissimus*) to 7.7 \pm 0.7% (between *B. spinosus* and *B eichwaldi*). Within *B. bufo* the 256 mean uncorrected distance was $0.8 \pm 0.1\%$; within *B. spinosus* it was $1.5 \pm 0.1\%$, and within 257 B. eichwaldi and B. verrucosissimus, $0.1 \pm 0.07\%$ and $0.2 \pm 0.08\%$, respectively. The B. bufo 258 clade included 171 individuals, with 98 variable sites defining 70 haplotypes (haplotype 259 diversity, h = 0.933). Nucleotide diversity (π) was 0.008, and the average number of 260 nucleotide differences (k) was 9.5. The B. spinosus clade included 43 individuals, with 102 261 variable sites defining 24 haplotypes, with similar values of haplotype diversity (h = 0.910) 262 and higher nucleotide diversity ($\pi = 0.016$ and k = 19.4). The corresponding values for B. 263 eichwaldi (N=5) and B. verrucosissimus (N=13) were, respectively, h = 0.800, $\pi = 0.001$ and 264 k = 1.4; and h = 0.692, $\pi = 0.002$ and k = 2.7. Neutrality test results (Tajima's D, Fu and Li's 265 D and F statistics) were not significant (results not shown). 266 Estimated TMRCAs (in Mya) for selected clades and subclades (median and 95% 267 HPDIs) are as follows: *B. eichwaldi*: 0.19 (0.0364-0.53); *B. spinosus*: 5.18 (2.48-9.00); *B.* 268 bufo: 1.70 (0.89-2.88); B. bufo + B. verrucosissimus: 2.75 (1.90-4.27); B. spinosus + B. bufo 269 + B. verrucosissimus: 9.19 (5.37-15.76); B. spinosus (North Africa): 2.20 (0.81-4.23); B. 270 spinosus (Iberia + France): 1.09 (0.50-2.05); B. verrucosissimus (NW Caucasus): 0.18 271 (0.0373-0.50); B. verrucosissimus (SW Caucasus): 0.11 (0.0079-0.36). 272 273 3.2 nDNA 274 The number of polymorphic sites in the nuclear markers was nine for POMC, nine for 275 CXCR4, five for BDNF and 65 for RPL3. Results of neutrality (Tajima's D, Fu & Li's F and 276 D) and recombination (PHI) tests were not significant (results not shown). Nuclear DNA 277 topologies can be found in the Supplementary content section. In all cases, haplotypes 278 grouped together according to species designations. For instance, haplotypes in B. eichwaldi 279 were well differentiated from those found in the other species and always formed a 280 monophyletic group. On the other hand, haplotypes in *B. spinosus* were also well

281 differentiated: they were not found in other species and represent considerable diversity.

282 Finally, haplotypes from *B. bufo* and *B. verrucosissimus* were closely related and in most 283 cases formed well-supported clades (Supplementary content). The combined nDNA topology 284 is consistent with these results and similar to the mtDNA tree (Fig. 2B), with B. eichwaldi 285 sister to (B. spinosus + (B. bufo + B. verrucosissimus)) (1.0/100/100). Bufo eichwaldi 286 (1.0/89/91) and B. spinosus (1.0/84/89) were recovered as monophyletic groups. A sister 287 group between B. spinosus and (B. bufo + B. verrucosissimus) was also well supported 288 (1.0/89/86). Samples of B. verrucosissimus were nested within B. bufo (Fig. 2B) and were 289 most similar to samples of *B. bufo* from Turkey (BB070) and Greece (BB117), with which 290 they form a subclade (0.99/-/52) that, in turn, includes another subclade with samples from 291 central and southern Italy and Sicily (OGAM2, OMON5, ORAG3, 5, see Table 1 and Fig. 1) 292 (1.0/-/76).293

294 3.3. Combined mtDNA + nDNA analyses

The combined mtDNA + nDNA topology (Fig. 3A) is very similar to the mtDNA tree, with *B. eichwaldi* as sister to (*B. spinosus* + (*B. verrucosissimus* + *B. bufo*)), with BPPs=1.0 and
bootstrap values=100 in all cases. However, whereas the monophyly of *B. eichwaldi*

298 (1.0/100/100), *B. spinosus* (1.0/100/100) and *B. verrucosissimus* (1.0/76/82) is also well

supported, the monophyly of *B. bufo* is well supported in MP (88) but not in ML (where *B.*

300 *verrucosissimus* is nested within *B. bufo*) or Bayesian (<0.9) analyses (Fig. 3A). On the other

301 hand, results of *BEAST analyses produced a fully resolved topology, with B. eichwaldi

sister to (*B. spinosus* (*B. bufo* + *B. verrucosissimus*)), with all nodes having BPPs>0.95 (Fig.
303 3B).

304

305 4. Discussion

306 Our combination of comprehensive geographic sampling and choice of molecular markers 307 with different substitution rates and patterns of inheritance has produced a fully resolved 308 phylogenetic hypothesis for Eurasian and north African species in the *B. bufo* species group. 309 Our results indicate an old (Miocene) origin for the current species diversity in the group, 310 with the initial split of the ancestors of B. eichwaldi in the Caucasus, and of B. bufo (sensu 311 *lato*) in the western Mediterranean region around 9-13 Mya. The congruence between the 312 results of analyses based on mtDNA, nDNA, concatenated analyses of mitochondrial and 313 nuclear DNA, and species trees based on the multispecies coalescent (Figs. 2-3) strongly 314 support our phylogenetic hypothesis. 315 The inferred species tree and time estimates derived from coalescent-based analyses

316 of mtDNA data can be used to reconstruct the evolutionary history of the *B. bufo* species

317 group (B. bufo sensu lato plus B. eichwaldi and B. verrucosissimus). In doing so, two facts

318 must be kept in mind. First, TMRCA estimates refer to coalescence times in currently

319 observed haplotype variants, and thus necessarily predate population divergence times.

320 Although the magnitude of this difference between coalescence times and population 321 divergence is hard to calculate (Rosenberg & Feldman, 2002), our estimates can still be 322 informative about the relative timing of splitting events. Second, our TMRCA estimates are 323 dependent on our choice of nodes for fossil calibration; in this respect the decision to use 324 Miocene fossils to calibrate the minimum time for the deepest divergence between the four 325 species seems the most appropriate with the data at hand (i. e., in the absence of diagnostic 326 osteological characters distinguishing species). The scenarios derived from our analyses 327 suggest a long evolutionary history of the *B. bufo* species group in western Europe, which is 328 consistent with the fossil record, that includes abundant Pliocene sites in central Europe 329 (Germany, Romania, Poland, Hungary, Slovakia) and the Apennine and Iberian peninsulas, 330 and Pleistocene fossils in North Africa (Morocco) (see Martín & Sanchiz, 2011) (Fig. 4). 331 According to our median TMRCA estimates, and taking into account the uncertainty 332 reflected in their corresponding HPDIs, the initial split between *B. eichwaldi* and the other 333 species would have taken place in the Miocene, between about 13 and 9 Mya [which are the 334 estimated TMRCAs of (*eichwaldi* + *spinosus* + *bufo* + *verrucosissimus*) and the latter three 335 species, respectively], considerably older that previously estimated based on allozyme data 336 (Litvinchuk et al., 2008) (Fig. 4A). This biogeographic pattern (Europe-Caucasus split) is 337 recurrent across groups, with other amphibian examples including Parsley frogs (genus 338 Pelodytes), which have species in the Iberian Peninsula, France and northwestern Italy (P. 339 *punctatus* and *P. ibericus*) and in the Caucasus (*P. caucasicus*) (García-París et al., 2003; 340 Veith et al., 2006); and salamanders (the Iberian Chioglossa lusitanica and Mertensiella 341 *caucasica* in the Caucasus) (Veith et al., 1998; Zhang et al., 2008). The uplift of the Armenian 342 Plateau and the opening of the Mid-Aegean Trench during the Miocene, which have been 343 invoked to explain similar patterns in other groups (see Wielstra et al., 2010, and references 344 cited therein), might also be associated with this split in the Bufo bufo species group. Our data 345 show contrasting patterns of genetic diversity in the current descendants of these two ancient 346 lineages. Bufo eichwaldi presents low intraspecific genetic diversity, although perhaps denser 347 sampling across its range (particularly towards the Iranian end of the distribution) might 348 reveal the existence of additional sublineages. On the other hand, species with restricted 349 ranges are especially sensitive to major climate fluctuations, and Pleistocene glaciations may 350 have had a major impact on genetic diversity in *B. eichwaldi*, as has been the case for other 351 species that were marginally distributed in refugium areas during that period (Recuero & 352 García-París, 2011). This isolation might have also prevented secondary contact and 353 introgression with other species in the group. At present at least 250 km of unsuitable 354 woodless lowland area separates populations of *B. eichwaldi* from the nearest populations of 355 B. verrucosissimus (a few records of B. bufo species group from central Azerbaijan require 356 confirmation). However, there is no evidence of introgression between both species based on 357 our nDNA analyses. Litvinchuk et al. (2008) reported seven diagnostic allozyme loci out of

358 24 analyzed between the two species. The Hyrcanian broad-leaved subtropical forests of 359 Talysh and Elburz mountains are known as a relic of the Tertiary vegetation, which formerly 360 had a much broader distribution in NW Eurasia (see Tuniyev, 1999 and references cited 361 therein). This area harbors a number of endemic amphibian and reptile species and lineages 362 (e.g. Paradactylodon persicus, Rana pseudodalmatina, Darevskia chlorogaster, D. defilippii, 363 Zamenis persicus, Gloydius (halys) caucasicus). Our phylogenetic scenario for the B. bufo 364 species group provides further evidence that the Hyrcanian refugium played an important role 365 in the formation of modern herpetological diversity of the Caucasus, Anatolia and Europe. 366 After the initial split, the ancestor of western European species gave rise to a much 367 more genetically and morphologically diverse lineage, where three extant species can be 368 readily identified. Most variation in these species is concentrated in the three major 369 Pleistocene refugia in Western Europe: the Iberian, Apennine and Balkan peninsulas, as 370 typically found in other widely distributed organisms in the western Palearctic (e.g., Zeisset & 371 Beebee, 2008). This pattern can be explained by the isolation and persistence through climatic 372 cycles of old (Miocene and Pliocene) toad lineages, mainly in North Africa, the Caucasus and 373 the Mediterranean peninsulas. The splitting of B. spinosus from the ancestor of B. bufo + B. 374 verrucosissimus might be associated with the different phases of the uplift of the Pyrenees, 375 which isolated the Iberian peninsula from the rest of western Europe during most of the 376 Tertiary and ended about 5 million years ago (Plaziat, 1981; Oosterbroek & Arntzen, 1992) 377 (Fig. 4B). Based on our TMRCA estimates, the split between north African and Iberian 378 populations of *B. spinosus* probably took place at the end of the Messinian Salinity Crisis 5.3 379 Mya or slightly thereafter (see Hewitt, 2011, and references cited therein) (Fig. 4C). Busack 380 (1986) found three fixed allozyme differences between populations on both sides of the Strait 381 of Gibraltar, with a genetic distance $(D_{N_{el}})$ of 0.16, which is consistent with this hypothesis, 382 although more detailed assessments of north African populations, which are small and 383 fragmented, are needed. Although no obvious pattern of genetic structure was found in 384 Iberian populations of *B. bufo*, as reported by Martínez-Solano and González (2008), 385 populations in southern Iberia and the Sistema Central Mountains in central Spain (including 386 Gredos, from where B. b. gredosicola was described) do seem to harbor considerable genetic 387 diversity. Future studies should use more variable markers from the nuclear genome and 388 denser population sampling in order to further unravel the evolutionary history of B. spinosus 389 across its range. 390 Finally, B. bufo and B. verrucosissimus appear to have split recently, in the 391 Pleistocene (Fig. 4D). Mitochondrial DNA distances are low with respect to typical values 392 found in other amphibian species pairs (but see also T. marmoratus / T. pygmaeus or 393 Pelodytes punctatus / P. ibericus, García-París et al., 2001, 2003; Veith et al., 2006; Wielstra 394 & Arntzen, 2011), but this may reflect recent divergence (as indicated by incomplete lineage 395 sorting in nuclear markers), perhaps with some gene flow (some of the patterns observed in

396 the nuclear DNA topologies are consistent with this interpretation, with shared alleles 397 between *verrucosissimus* and Anatolian *B. bufo* in some markers, see also the combined 398 nDNA tree in Fig. 2B). In spite of these patterns, previous studies have documented the 399 distinctiveness of B. verrucosissimus based on morphological, ecological, and biochemical 400 characters (Birschtein & Mazin, 1982; Orlova & Tuniyev, 1989; Kuzmin, 1999; Pisanets et 401 al., 2009), and there is some evidence that, whereas both species can interbreed in laboratory 402 conditions, hybrid survival may not exceed the second generation (see Pisanets, 2001, 2002; 403 Pisanets et al., 2009). 404 During the Pleistocene, major haplogroups within *B. spinosus* in North Africa and the 405 Iberian Peninsula originated (Fig. 4D), and the same is true for well-resolved subclades within 406 B. bufo and B. verrucosissimus. Within the latter up to four morphological subspecies were 407 recognized, with B. v. verrucosissimus occupying the major part of the species distribution in 408 Georgia and along the southern slopes of the Great Caucasus, and B. v. turowi, B. v. 409 circassicus, and B. v. tertyschnikovi occupying mountain areas in the northwest periphery of

410 the species range (Orlova & Tuniyev, 1989; Kidov, 2009). Despite significant interspecific 411 variation of certain morphological characters, their validity has been doubted recently 412 (Litvinchuk et al., 2008; Pisanets et al., 2009). The subclades of *B. verrucosissimus* we 413 recovered do not correspond to current subspecific designations, rather they correspond to the 414 two major allopatric population groups from southern and northern parts of the species range 415 and, pending more detailed morphological and ecological studies, may be regarded as 416 independent management units in conservation planning. Our results also provide the first 417 genetic evidence for the presence of *B. verrucosissimus* in Turkey (Karagol), which was not 418 yet confirmed (Eiselt, 1965; Baran & Atatur, 1998; Kutrup, 2006), and also clearly indicate 419 that most of Anatolia is inhabited by B. bufo (s. str.), in contrast with Litvinchuk et al.'s 420 (2008) assumption that the name B. v. verrucosissimus should be applied to all Anatolian 421 populations.

422 In *B. bufo* there is a sharp contrast between the high genetic diversity observed in the 423 south (especially in the Apennine and Balkan peninsulas) and the genetic homogeneity of 424 populations in the north, with haplotype sharing in samples from central and northern Europe 425 being fairly common. Brede & Beebee (2006) found remarkably little genetic differentiation 426 in *B. bufo* populations across most of Europe based on microsatellite markers. Although they 427 did not find a deep break between populations of *B. bufo* and *B. spinosus* in their study, 428 samples from Iberia and south France showed deviations from Hardy-Weinberg equilibrium 429 that could reflect the occurrence of null alleles in these populations and some of them were 430 thus not included in interpopulation comparisons. In any case, their results also suggest a very 431 rapid colonization potential for the species, since the areas that are now occupied by 432 populations nested in the less genetically diverse clade within B. bufo were covered by 433 glaciers and tundra until the end of the Last Glacial Maximum (Hewitt, 1999; CGMW-

434 ANDRA, 1999). Based on our phylogenetic analyses, the source of this colonization could 435 have been the Balkan Peninsula (Fig. 2) - in a pattern very similar to that observed in other 436 amphibians, like Lissotriton vulgaris (see Babik et al., 2005) - or some neighboring area (see 437 e.g. Hofman et al., 2007; Sotiropoulos et al., 2007; Canestrelli & Nascetti, 2008). 438 Our results also allow delineation of the ranges of *B. bufo* and *B. spinosus*, which has 439 long been an issue in morphological, ecological, genetic and conservation studies (Daudin, 440 1803; Mertens & Wermuth, 1960; Hemmer & Böhme, 1976; Lüscher et al., 2001; IUCN, 441 2009). The type locality of *B. spinosus* is "aux environs de Brives et de Bordeaux", in 442 southern France (Frost, 2011), well within the range of our *spinosus* clade. According to our 443 data, therefore, B. spinosus includes all populations in the Maghreb, the Iberian Peninsula and 444 parts of France. The genetic distinctiveness in all markers examined with respect to B. bufo 445 support its recognition at the species level, although a reappraisal of morphological and 446 ecological variation within and between species in the group, based on current species limits, 447 is still desired. Preliminary location of contact zones with *B. bufo* based on spatial patterns of 448 mtDNA haplotype sharing points to: 1) the Maritime Alps between SE France and NW Italy 449 (sample codes: OBYX, see Table 1 and Fig. 1), which is a well-known suture zone (sensu 450 Swenson & Howard, 2005) for other species (see for example, Canestrelli et al., 2006), and 2) 451 northern France, where there is a striking parallelism with the contact zone between the newts 452 Triturus cristatus and T. marmoratus (Arntzen & Wallis, 1991; Arntzen et al., 2009). These 453 areas are worth of further fine-scale studies on the formation and maintenance of reproductive 454 barriers between species. On the other hand, B. bufo would be distributed in northern France 455 and the rest of Western Europe to Siberia, including the Apennine and Balkan peninsulas and 456 most of Anatolia. The eastern limits and the potential existence of contact zones with B. 457 verrucosissimus are still unclear, although our study will also help identify relevant areas for 458 further study.

459 Our study is the first to analyze a geographically comprehensive sampling including 460 all described species and subspecies in the *B. bufo* species group. The combined use of 461 molecular markers from the nuclear and mitochondrial genomes and the adoption of a variety 462 of analytical approaches including species tree estimation produced a fully resolved topology 463 which will set the basis for the clarification of the taxonomy, systematics, and evolutionary 464 history of the group and will serve as a foundation for further studies on the process of species 465 formation.

466

467 Acknowledgments

468 Special thanks to M. Tuschek and the late Á. Major for technical support. D. Buckley

469 provided helpful comments on the manuscript. L. J. Barbadillo, B. Baudin, J. Ben Hassine, T.

470	Burke, Y-H. Chang, M. Denoël, V. V. Dernakov, E. Dunayev, J. Dinov, A. Fouquet, M.
471	García-París, P. Geissler, A. Grande, C. Grande, J. Gutiérrez, G. Herczeg, K. lizuka, R. Jehle,
472	D. Jeli , A. Kotán, M. Kuro-o, P. Lymberakis, K. A. Matushkina, P. Mikuli ek, T. Németh, S.
473	Nouira, A. Ogrodowczyk, L. Pongó, I. Serbinova, T. Shibata, N. Smiljkovi , F. Spallone, F.
474	Speranza, J. van Alphen, A. Vassilieva, G. Wallis, B. Wielstra, O. Zinenko, and A.
475	Zuiderwijk provided samples and/or support during field trips, and I. Rey and B. Álvarez
476	(Colección de Tejidos y ADN, MNCN) provided samples under their care. IMS is a "Ramón
477	y Cajal'' postdoctoral fellow supported by the Spanish Ministerio de Ciencia e Innovación
478	and the Universidad de Castilla la Mancha. The Synthesis Project
479	(http://www.synthesys.info/) of the European Union partially supported this study (Ref.: HU-
480	TAF-181). Partial funds were also provided by the Spanish Ministerio de Ciencia e
481	Innovación (Ref: CGL2008-04271-C02- 01 • BOS) and Junta de Comunidades de Castilla la
482	Mancha (Ref.: PPII10-0097-4200) to IMS, Hungarian Scientific Research Fund (OTKA
483	K77841) to JV and Ministry of Education and Science of Republic of Serbia (Grant nr.
484	173025) to JCI.
485 486	References

485

486 References

- 487 Aldenhoven, J., Miller, M., Corneli, P., Shapiro, M., 2010. Phylogeography of ninespine 488 sticklebacks (Pungitius pungitius) in North America: glacial refugia and the origins of 489 adaptive traits. Mol. Ecol. 19, 4061-4076.
- 490 Arntzen, J.W., Wallis, G.P., 1991. Restricted gene flow in a moving hybrid zone of the newts 491 Triturus cristatus and T. marmoratus in Western France. Evolution 45, 805-826.
- 492 Arntzen, J., Jehle, R., Bardakci, F., Burke, T., Wallis, G., 2009. Asymmetric viability of 493 reciprocal-cross hybrids between crested and marbled newts (Triturus cristatus and T. 494 marmoratus). Evolution 63, 1191-1202.
- 495 Arora, N., Nater, A., Van Schaik, C., Willems, E.P., Van Noordwijk, M., Goossens, B., Morf, 496 N., Bastian, M., Knott, C., Morrogh-Bernard, H., Kuze, N., Kanamori, T., Pamungkas, 497 J., Perwitasari-Farajallah, D., Verschoor, E., Warren, K., Krützen, M., 2010. Effects of 498 Pleistocene glaciations and rivers on the population structure of Bornean orangutans 499 (Pongo pygmaeus). Proc. Natl. Acad. Sci. USA 107, 21376-21381.
- 500 Babik, W., Branicki, W., Crnobrnja-Isailovic, J., Cog Iniceanu, D., Sas, I., Olgun, K., 501 Poyarkov, N.A., García-París, M., Arntzen, J.W., 2005. Phylogeography of two 502 European newt species. Discordance between mtDNA and morphology. Mol. Ecol. 14,
- 503 2475-2491.

504 505	Baran, I., Atatur, M.K., 1998. Turkish herpetofauna (Amphibians and Reptiles). Ankara: Republic of Turkey Ministry of Environment. 214 p.
506 507	Birschtein, V.J., Mazin, A.L., 1982. Chromosomal polymorphism of <i>Bufo bufo</i> : karyotype and C-banding pattern of <i>B. b. verrucosissima</i> . Genetica 59, 93-98.
508 509 510	Blackburn, D.C., Bickford, D.P., Diesmos, A.C., Iskandar, D.T., Brown, R., 2010. An ancient origin for the enigmatic flat-headed frogs (Bombinatoridae: <i>Barbourula</i>) from the islands of southeast Asia. PLoS ONE 5, e12090.
511 512 513	Brede, E.G., Beebee, T.J.C., 2006. Consistently different levels of genetic variation across the European ranges of two anurans, <i>Bufo bufo</i> and <i>Rana temporaria</i> . Herpetological Journal 16, 265-271.
514 515	Bruen, T.C., Philippe, H., Bryant, D., 2006. A simple and robust statistical test for detecting the presence of recombination. Genetics 172, 2665-2681.
516 517	Busack, S.D., 1986. Biogeographic analysis of the herpetofauna separated by the formation of the Strait of Gibraltar. National Geographic Research 2, 17-36.
518 519 520	Canestrelli, D., Nascetti, G., 2008. Phylogeography of the pool frog <i>Rana (Pelophylax)</i> <i>lessonae</i> in the Italian peninsula and Sicily: multiple refugia, glacial expansions and nuclear-mitochondrial discordance. J. Biogeogr. 35, 1923-1936.
521 522 523 524 525	CGMW-ANDRA, 1999. Maps of the world environments during the last two climatic extremes: 1. The last glacial maximum (ca 18000 + 2000 yrs BP), 2. the Holocene optimum (ca 8000 + 1000 yrs BP) (1:25,000,000 scale). Commission for the Geological Map of the World (CGMW), Paris and the Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA), Chatenay-Malabry, France.
526 527	Chkhikvadze, V.M., 1984. Review of fossil urodeles and anurans of the USSR. Izv. AN GrSSR Ser. Biol. 10, 5-13.
528 529 530	Chung, Y., Ané, C., 2011. Comparing two Bayesian methods for gene tree/species tree reconstruction: simulations with incomplete lineage sorting and horizontal gene transfer. Syst. Biol. 60, 261-275.
531 532	Daudin, F.M., 1803. Histoire Naturelle, génerale et particulière des Reptiles. T. 8, Imprimerie de F. Dufart, Paris.
533 534	De Lange, L., 1973. A contribution to the intraspecific systematics of <i>Bufo bufo</i> (Linnaeus, 1758) (Amphibia). Beaufortia 21, 99-116.
535 536	Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214.

537	Dubois, A., Bour, R., 2010. The nomenclatural status of the nomina of amphibians and
538	reptiles created by Garsault (1764), with a parsimonious solution to an old
539	nomenclatural problem regarding the genus Bufo (Amphibia, Anura), comments on the
540	taxonomy of this genus, and comments on some nomina created by Laurenti (1768).
541	Zootaxa 2447, 1-52.
542	Edwards, S.V., 2009. Is a new and general theory of molecular systematics emerging?
543	Evolution 63, 1-19.
544	Eiselt, J., 1965. Einige Amphibien und Reptilien aus der Nordoslichen Turkei, gesammelt von
545	Hern H. Steiner. Annu. Natur Histor. Mus. Wien 67, 387-389.
546	Frost, D., Grant, T., Faivovich, J., Bain, R., Haas, A., Haddad, C.F.B., De Sa, R.O., Channing,
547	A., Wilkinson, M., Donnellan, S.C., Raxworthy, C., Campbell, J., Blotto, B., Moler, P.,
548	Drewes, R., Nussbaum, R., Lynch, J., Green, D., Wheeler, W., 2006. The amphibian
549	tree of life. Bull. Am. Mus. Nat. Hist. 297, 1-370.
550	Frost, D., 2011. Amphibian Species of the World: an Online Reference. Version 5.5 (31
551	January, 2011). Electronic Database accessible at
552	http://research.amnh.org/vz/herpetology/amphibia/. American Museum of Natural
553	History, New York, USA.
554	Fu, YX., Li, WH., 1993. Statistical tests of neutrality of mutations. Genetics 133, 693-709.
555	Fu, J., Weadick, C., Zeng, X., Wang, Y., Liu, Z., Zheng, Y., Li, C., Hu, Y., 2005.
556	Phylogeographic analysis of the Bufo gargarizans species complex: a revisit. Mol.
557	Phylogenet. Evol. 37, 202-213.
558	García-París, M., Arano, B., Herrero, P., 1991. Molecular characterization of the contact zone
559	between Triturus pygmaeus and T. marmoratus (Caudata: Salamandridae) in Central
560	Spain and their taxonomic assessment. Rev. Esp. Herp. 15, 115-126.
561	García-París, M., Buchholz, D., Parra-Olea, G., 2003. Phylogenetic relationships of
562	Pelobatoidea re-examined using mtDNA. Mol. Phylogenet. Evol. 28, 12-23.
563	García-París, M., Montori, A., Herrero, P., 2004. Amphibia, Lissamphibia, in: Ramos, M.A.
564	et al. (Eds.), Fauna Iberica, vol. 24. Museo Nacional de Ciencias Naturales, CSIC,
565	Madrid, Spain, pp. 1-640.
566	Guindon, S., Gascuel, O., 2003. A simple, fast and accurate method to estimate large
567	phylogenies by maximum-likelihood. Syst. Biol. 52, 696-704.
568	Gumilevskij, B.A., 1936. Notes on some Batrachia of the Eastern Palearctic Fauna. Trudy
569	Zoologicheskogo Instituta. USSR Acad. Sci. Leningrad 4, 167-171.

 571 Eastern tree frogs (<i>Hyla</i>, Hylidae, Amphibia) as inferred from nuclear and 572 mitochondrial DNA variation, with a description of a new species. Mol. Phylogenet. 573 Evol. 55, 1146-1166. 574 Heled, J., Drummond, A.J., 2010. Bayesian inference of species trees from multilocus data. 575 Mol. Biol. Evol. 27, 570-580. 576 Hemmer, H., Böhme, W., 1976. Zwischenbericht über die innerartliche Variabilität der 577 Erdkröte (<i>Bufo bufo</i> L.) (Amphibia: Salentia: Bufonidae). Salamandra 12, 194-201. 578 Hewitt, G.M., 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87- 579 112. 580 Hewitt, G.M., 2011. Mediterranean Peninsulas—the evolution of hotspots, in: Zachos, F.E., 581 Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, Amsterdam (in press). 582 Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007. 583 Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories 584 inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. 585 Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. 586 Bioinformatics 17, 754-755. 587 Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. 588 Mol. Biol. Evol. 23, 254-267. 	570	Gvozdík, V., Moravec, J., Klütsch, C., Kotlík, P., 2010. Phylogeography of the Middle
 mitochondrial DNA variation, with a description of a new species. Mol. Phylogenet. Evol. 55, 1146-1166. Heled, J., Drummond, A.J., 2010. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570-580. Hemmer, H., Böhme, W., 1976. Zwischenbericht über die innerartliche Variabilität der Erdkröte (<i>Bufo bufo</i> L.) (Amphibia: Salentia: Bufonidae). Salamandra 12, 194-201. Hewitt, G.M., 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87- 112. Hewitt, G.M., 2011. Mediterranean Peninsulas—the evolution of hotspots, in: Zachos, F.E., Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, Amsterdam (in press). Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007. Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	571	Eastern tree frogs (Hyla, Hylidae, Amphibia) as inferred from nuclear and
 573 Evol. 55, 1146-1166. 574 Heled, J., Drummond, A.J., 2010. Bayesian inference of species trees from multilocus data. 575 Mol. Biol. Evol. 27, 570-580. 576 Hemmer, H., Böhme, W., 1976. Zwischenbericht über die innerartliche Variabilität der 577 Erdkröte (<i>Bufo bufo</i> L.) (Amphibia: Salentia: Bufonidae). Salamandra 12, 194-201. 578 Hewitt, G.M., 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc, 68, 87- 579 112. 580 Hewitt, G.M., 2011. Mediterranean Peninsulas—the evolution of hotspots, in: Zachos, F.E., 581 Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, Amsterdam (in press). 582 Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007. 583 Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories 584 inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. 585 Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. 586 Bioinformatics 17, 754-755. 587 Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. 588 Mol. Biol. Evol. 23, 254-267. 	572	mitochondrial DNA variation, with a description of a new species. Mol. Phylogenet.
 Heled, J., Drummond, A.J., 2010. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570-580. Hemmer, H., Böhme, W., 1976. Zwischenbericht über die innerartliche Variabilität der Erdkröte (<i>Bufo bufo</i> L.) (Amphibia: Salentia: Bufonidae). Salamandra 12, 194-201. Hewitt, G.M., 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87- 112. Hewitt, G.M., 2011. Mediterranean Peninsulas—the evolution of hotspots, in: Zachos, F.E., Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, Amsterdam (in press). Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007. Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	573	Evol. 55, 1146-1166.
 Mol. Biol. Evol. 27, 570-580. Hemmer, H., Böhme, W., 1976. Zwischenbericht über die innerartliche Variabilität der Erdkröte (<i>Bufo bufo</i> L.) (Amphibia: Salentia: Bufonidae). Salamandra 12, 194-201. Hewitt, G.M., 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87- 112. Hewitt, G.M., 2011. Mediterranean Peninsulas—the evolution of hotspots, in: Zachos, F.E., Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, Amsterdam (in press). Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007. Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	574	Heled, J., Drummond, A.J., 2010. Bayesian inference of species trees from multilocus data.
 Hemmer, H., Böhme, W., 1976. Zwischenbericht über die innerartliche Variabilität der Erdkröte (<i>Bufo bufo</i> L.) (Amphibia: Salentia: Bufonidae). Salamandra 12, 194-201. Hewitt, G.M., 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87- 112. Hewitt, G.M., 2011. Mediterranean Peninsulas—the evolution of hotspots, in: Zachos, F.E., Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, Amsterdam (in press). Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007. Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	575	Mol. Biol. Evol. 27, 570-580.
 Freinder, I., Bounte, W., 1970. Enholementerient doet die innerdatiene Valuatiene valuatie	576	Hemmer, H. Böhme, W. 1976, Zwischenbericht über die innerartliche Variabilität der
 Hewitt, G.M., 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87- Hewitt, G.M., 2011. Mediterranean Peninsulas—the evolution of hotspots, in: Zachos, F.E., Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, Amsterdam (in press). Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007. Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	577	Erdkröte (<i>Bufo bufo</i> L.) (Amphibia: Salentia: Bufonidae). Salamandra 12, 194-201.
 Hewitt, G.M., 1999. Post-glacial re-colonization of European blota. Biol. J. Linn. Soc. 68, 87- 112. Hewitt, G.M., 2011. Mediterranean Peninsulas—the evolution of hotspots, in: Zachos, F.E., Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, Amsterdam (in press). Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007. Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	570	Hereitt C.M. 1000 Best slevislar seleviseting of Francesco bists Disl I Ling Sp. (2, 97
 Hewitt, G.M., 2011. Mediterranean Peninsulas—the evolution of hotspots, in: Zachos, F.E., Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, Amsterdam (in press). Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007. Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	570	Hewitt, G.M., 1999. Post-glacial re-colonization of European blota. Blol. J. Linn. Soc. 68, 87-
 Hewitt, G.M., 2011. Mediterranean Peninsulas—the evolution of hotspots, in: Zachos, F.E., Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, Amsterdam (in press). Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007. Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	579	112.
 Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, Amsterdam (in press). Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007. Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	580	Hewitt, G.M., 2011. Mediterranean Peninsulas—the evolution of hotspots, in: Zachos, F.E.,
 Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007. Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	581	Habel, J.C. (Eds.), Biodiversity Hotspots. Springer, Amsterdam (in press).
 583 Phylogeography of the fire-bellied toads <i>Bombina</i>: independent Pleistocene histories 584 inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. 585 Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. 586 Bioinformatics 17, 754-755. 587 Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. 588 Mol. Biol. Evol. 23, 254-267. 	582	Hofman, S., Spolsky, C., Uzzell, T., Cog Iniceanu, D., Babik, W., Szymura, J., 2007.
 inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316. Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	583	Phylogeography of the fire-bellied toads Bombina: independent Pleistocene histories
 Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	584	inferred from mitochondrial genomes. Mol. Ecol. 16, 2301-2316.
 Bioinformatics 17, 754-755. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	585	Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny.
 Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267. 	586	Bioinformatics 17, 754-755.
588 Mol. Biol. Evol. 23, 254-267.	587	Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies.
	588	Mol. Biol. Evol. 23, 254-267.
580 Jaawa T. Kurabayachi A. Nichicka M. Sumida M. 2006 Molecular phylogenetic	580	Jaawa T. Kurabayashi A. Nichioka M. Sumida M. 2006 Molecular phylogenetic
500 relationship of toads distributed in the Ear East and Europe inferred from the nucleotid	590	relationship of toads distributed in the Ear East and Europe inferred from the nucleotid
591 sequences of mitochondrial DNA genes Mol Phylogenet Evol 38 250-260	591	sequences of mitochondrial DNA genes Mol Phylogenet Evol 38 250-260
	500	
592 Inger, R.F., 1972. Bufo of Eurasia, in: Blair, W.F. (Ed.), Evolution in the Genus Bufo. Univ.	592	Inger, R.F., 1972. Bufo of Eurasia, in: Blair, W.F. (Ed.), Evolution in the Genus Bufo. Univ.
593 Texas Press, Austin–London, pp. 102-118.	593	Texas Press, Austin–London, pp. 102-118.
594 IUCN Red List of Threatened Species. Version 2009.1. <www.iucnredlist.org>. Downloaded</www.iucnredlist.org>	594	IUCN Red List of Threatened Species. Version 2009.1. <www.iucnredlist.org>. Downloaded</www.iucnredlist.org>
595 on 16 June 2011.	595	on 16 June 2011.
596 Kidov, A.A., 2009. Caucasus common toad Bufo verrucosissimus (Pallas, [1814]) (Amphibia,	596	Kidov, A.A., 2009. Caucasus common toad Bufo verrucosissimus (Pallas, [1814]) (Amphibia,
597 Anura, Bufonidae) in Western and Central pre-Caucasia: notes on distribution and	597	Anura, Bufonidae) in Western and Central pre-Caucasia: notes on distribution and
taxonomy. Scientific Research in Zoological Parks 25, 170-179.	598	taxonomy. Scientific Research in Zoological Parks 25, 170-179.
599 Kubatko, L.S, Carstens, B.C, Knowles, L.L., 2009. STEM: species tree estimation using	599	Kubatko, L.S, Carstens, B.C, Knowles, L.L., 2009. STEM: species tree estimation using
600 maximum likelihood for gene trees under coalescence. Bioinformatics 25, 971-973.	600	maximum likelihood for gene trees under coalescence. Bioinformatics 25, 971-973.
601 Kutrup, B., Yilmaz, N., Canakci, S., Belduz, A., Doglio, S., 2006, Intraspecie c variation of	601	Kutrup, B., Yilmaz, N., Canakci, S., Belduz, A., Doglio, S., 2006, Intraspeci• c variation of
602 <i>Bufo bufo</i> , based on 16S Ribosomal RNA sequences. Amphibia-Reptilia 27. 268-273.	602	Bufo bufo, based on 16S Ribosomal RNA sequences. Amphibia-Reptilia 27. 268-273.

603	Kuzmin, S.L., 1999. The Amphibians of the Former Soviet Union. KMK, Moscow.
604 605	Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452.
606 607 608	Litvinchuk, S., Borkin, L., Skorinov, D.V., Rosanov, J.M., 2008. A new species of common toads from the Talysh mountains, south-eastern Caucasus: genome size, allozyme, and morphological evidences. Russian Journal of Herpetology 15, 19-43.
609 610 611	Liu, W., Lathrop, A., Fu, J., Yang, D., Murphy, R., 2000. Phylogeny of East Asian bufonids inferred from mitochondrial DNA sequences (Anura: Amphibia). Mol. Phylogenet. Evol. 14, 423-435.
612 613	Liu, L., Pearl, D.K., Brumfield, R.T., Edwards, S.V., Knowles, L.L., 2008. Estimating species trees using multiple-allele DNA sequence data. Evolution 62, 2080-2091.
614 615	Lüscher, B., Grossenbacher, K., Scholl, A., 2001. Genetic differentiation of the common toad (<i>Bufo bufo</i>) in the Swiss Alps. Amphibia-Reptilia 22, 141-154.
616 617 618 619	 Macey, J.R., Schulte, J.A., Larson, A., Fang, Z., Wang, Y., Tuniyev, B.S., Papenfuss, T.J., 1998. Phylogenetic relationships of toads in the <i>Bufo bufo</i> species group from the eastern escarpment of the Tibetan Plateau: a case of vicariance and dispersal. Mol. Phylogenet. Evol. 9, 80-87.
620 621 622	Martín, C., Sanchiz, B., 2011. Lisanfos KMS. Version 1.2. Online reference accessible at http://www.lisanfos.mncn.csic.es/. Museo Nacional de Ciencias Naturales, MNCN-CSIC. Madrid, Spain.
623 624 625	Martínez-Solano, I., González, E.G., 2008. Patterns of gene flow and source-sink dynamics in high altitude populations of the common toad <i>Bufo bufo</i> (Anura: Bufonidae). Biol. J. Linn. Soc. 95, 824-839.
626 627	Matsui, M., 1980. Karyology of the Eurasian toads of the <i>Bufo bufo</i> complex. Annotationes Zoologicae Japonenses/ Nihon dbutsugaku ih. Tokyo 53, 56-68.
628 629 630	 Matsui, M., 1984. Morphometric variation analyses and revision of the Japanese toads (genus <i>Bufo</i>, Bufonidae). Contributions from the Biological Laboratory, Kyoto University 26, 209-428.
631 632	Matsui, M., 1986. Geographic variation in toads of the <i>Bufo bufo</i> complex from the Far East, with a description of a new subspecies. Copeia 1986, 561-579.
633 634	Mertens, R., Wermuth, H., 1960. Die Amphibien und Reptilien Europas (Dritte Liste, nach dem Stand vom 1. Januar 1960), Waldemar Kramer, Frankfurt am Main.

635 636	Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, USA.
637 638	Oosterbroek, P., Arntzen, J.W., 1992. Area-cladograms of Circum-Mediterranean taxa in relation to Mediterranean palaeography. J. Biogeogr. 19, 3-20.
639	Orlova, V.F., Tuniyev, B.S., 1989. On the taxonomy of the Caucasian common toads
640	belonging to the group <i>Bufo bufo verrucosissimus</i> (Pallas) (Amphibia, Anura,
641	Bufonidae). Bull. Mosk. Obshch. Isp. Prirody Ser. Biol. 94: 13-24.
642	Palumbi, S., Martin, A., Romano, S., McMillan, W.O., Stice, L., Grabowski, G., 1991. The
643	Simple Fool's Guide to PCR. Version 2. Department of Zoology and Kewalo Marine
644	Laboratory, University of Hawaii, Hawaii, USA.
645	Pisanets, E.M., 2001. Taxonomic relationships of the common toads (<i>Bufo bufo</i> complex) and
646	some theoretical and practical problems of systematics. Communication 1. Vestn. Zool.
647	Kiev 35, 37-44.
648	Pisanets, E.M., 2002. Taxonomic relationships of the common toads (<i>Bufo bufo</i> complex) and
649	some theoretical and practical problems of systematics. Communication 2. Vestn. Zool.
650	Kiev 36, 61-68.
651	Pisanets, Y.M., Litvinchuk, S.N., Rosanov, Yu.M., Reminniy, V.Yu., Pasinkova, R.A.,
652	Suryadnaya, N.N., Matvyeyev, A.S., 2009. Common toads (Amphibia, Bufonidae, <i>Bufo</i>
653	<i>bufo</i> complex) from the Ciscaucasia and North Caucasus: the new analysis of the
654	problem. Sbornik Prats Zologichnogo Muzeyu (Kiev) 40, 87-129.
655	Plaziat, JC., 1981. Late Cretaceous to Late Eocene palaeogeographic evolution of southwest
656	Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 36, 263-320.
657	Popov, S.V., Ilyina, L.B., Paramonova, N.P., Goncharova, I.A., et al., 2004. Lithological-
658	paleogeographic maps of Paratethys. Cour. Forsch.Inst. Senckenb. 250, 1-46.
659	Posada, D., 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253-
660	1256.
661	Rambaut, A., Drummond, A.J., 2007. Tracer v1.4. Available from:
662	http://beast.bio.ed.ac.uk/Tracer
663	Ratnikov, Y.V., 2001. Osteology of Russian toads and frogs for paleontological researches.
664	Acta Zoologica cracoviensia 44, 1-23.
665 666 667	Recuero, E., García-París, M., 2011. Evolutionary history of <i>Lissotriton helveticus</i> : multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula. Mol. Phylogenet. Evol. 60, 170-182.

668	Rosenberg, N.A., Feldman, M.W., 2002. The relationship between coalescence times and
669	population divergence times, in: Slatkin, M., Veuille, M. (Eds.), Modern Developments
670	in Theoretical Population Genetics. Oxford University Press, Oxford, pp 130-164.
671	Salicini, I., Ibáñez, C., Juste, J., in press. Multilocus phylogeny and species delimitation
672	within the Natterer's bat species complex in the Western Palearctic. Mol. Phylogenet.
673	Evol.
674	Sanguila, M.B., Siler, C.D., Diesmos, A.C., Nuñeza, O., Brown, R., in press. Phylogeography
675	and conservation implications of geographic structure, genetic variation, and potential
676	species boundaries in Philippine slender toads. Mol. Phylogenet. Evol.
677	Sinsch, U., Schneider, H., Tarkhnishvili, D., 2009. Bufo bufo Superspezies - Erdkröten-
678	Artenkreis, in: Grossenbacher, K. (Ed.), Handbuch der Reptilien und Amphibien
679	Europas vol. 5. Aula Verlag, Wiesbaden, pp. 187-337.
680	Sotiropoulos, K., Eleftherakos, K., Džuki, G., Kalezi, M., Legakis, A., Polymeni, R., 2007.
681	Phylogeny and biogeography of the alpine newt Mesotriton alpestris (Salamandridae,
682	Caudata), inferred from mtDNA sequences. Mol. Phylogenet. Evol. 45, 211-226.
683	Stöck, M., Moritz C., Hickerson, M., Frynta, D., Dujsebayeva, T., Eremchenko, V., Macey,
684	J.R., Papenfuss, T.J., Wake, D.B., 2006. Evolution of mitochondrial relationships and
685	biogeography of Palearctic green toads (Bufo viridis subgroup) with insights in their
686	genomic plasticity. Mol. Phylogenet. Evol. 41, 663-689.
687	Stöck, M., Sicilia, A., Belfiore, N.M., Buckley, D., Lo Brutto, S., Lo Valvo, M., Arculeo, M.,
688	2008. Post-Messinian evolutionary relationships across the Sicilian channel:
689	Mitochondrial and nuclear markers link a new green toad from Sicily to African
690	relatives. BMC Evol Biol 8, 56.
691	Swenson, N.G., Howard, D.J., 2005. Clustering of contact zones, hybrid zones, and
692	phylogeographic breaks in North America. Am. Nat. 166, 581-591.
693	Swofford, D.L., 2001. PAUP*4.0b: Phylogenetic Analysis Using Parsimony. Sinauer
694	Associates, Sunderland.
695	Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA
696	polymorphism. Genetics 123, 585-595.
697	Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5:
698	molecular evolutionary genetics analysis using maximum likelihood, evolutionary
699	distance and maximum parsimony methods. Mol. Biol. Evol. (in press).

700	Tuniyev, B., 1999 (1998). A systematic list of amphibians from the Alpides of the Caucasus
701	and Middle Asia, with comments on their taxonomy. Adv. Amphibian Res. Former
702	Soviet Union 3, 43-75.
703	Veith, M., Steinfartz, S., Zardoya, R., Seitz, A., Meyer, A., 1998. A molecular phylogeny of
704	"true" salamanders (family Salamandridae) and the evolution of terrestriality of
705	reproductive modes. J. Zool. Syst. Evol. Research 36, 7-16.
706	Veith, M., Fromhage, L., Kosuch, J., Vences, M., 2006. Historical biogeography of Western
707	Palaearctic pelobatid and pelodytid frogs: a molecular phylogenetic perspective. Contr.
708	Zool. 75, 109-120.
709	Vieites, D.R., Min, M., Wake, D.B., 2007. Rapid diversification and dispersal during periods
710	of global warming by plethodontid salamanders. Proc. Natl. Acad. Sci. USA 104,
711	19903-19907.
712	Wielstra, B., Themudo, G.E., Güçlü, O., Olgun, K., Poyarkov, N.A., Arntzen, J.W., 2010.
713	Cryptic crested newt diversity at the Eurasian transition: The mitochondrial DNA
714	phylogeography of Near Eastern Triturus newts. Mol. Phylogenet. Evol. 56, 888-896.
715	Wielstra, B., Arntzen, J.W., 2011. Unraveling the rapid radiation of crested newts (Triturus
716	cristatus superspecies) using complete mitogenomic sequences. BMC Evol. Biol. 11,
717	162.
718	Zeisset, I., Beebee, T.J.C., 2008. Amphibian phylogeography: a model for understanding
719	historical aspects of species distributions. Heredity 101, 109-119.
720	Zhang, P., Papenfuss, T.J., Wake, M.H., Qu, L., Wake, D.B., 2008. Phylogeny and
721	biogeography of the family Salamandridae (Amphibia: Caudata) inferred from
722	complete mitochondrial genomes. Mol. Phylogenet. Evol. 49, 586-597.
723	Zwickl, D.J., 2006. Genetic algorithm approaches for the phylogenetic analysis of large
724	biological sequence datasets under the maximum likelihood criterion. Ph. D.
725	Dissertation, The University of Texas at Austin.
V	

Figure 1. Sampling localities (see also Table 1). Blue dots represent samples of *Bufo bufo*, and red dots, *B. spinosus*. The distribution of *B. bufo* and *B.*

- 727 *spinosus* is shown in the inset, which shows also the location of the three easternmost samples in our dataset. The distributions of *B. verrucosissimus* (orange
- 728 dots) and *B. eichwaldi* (green dots) are shaded.

- Figure 2. Bayesian consensus phylograms based on mtDNA data (A) and the concatenated nuclear
- dataset (B). Support values in relevant branches are Bayesian posterior probabilities (only those >0.9 are
- shown), maximum likelihood (ML) and maximum parsimony (MP) bootstrap values, respectively.
- 733 Estimated times to most recent common ancestor (TMRCA) for selected clades are shown in parentheses
- 734 (median, 95% highest posterior density interval).

A) mtDNA data

B) Concatenated nDNA data

- 736 Figure 3. Bayesian consensus phylogram based on concatenated analysis of mitochondrial and nuclear
- 737 DNA (A), and species tree based on the multispecies coalescent implemented in *BEAST (B). Support
- values in relevant branches are Bayesian posterior probabilities (only those >0.9 are shown), and, where
- applicable (Fig. 3A), maximum likelihood (ML) and maximum parsimony (MP) bootstrap values,
- respectively.

A) Concatenated mtDNA + nDNA

B) Multispecies coalescent (*BEAST)

742 Figure 4. Paleogeographic reconstructions and major cladogenetic events in Bufo bufo (modified from Popov et al. (2004) and Wielstra et al. (2010)).

743 Phylogenetic splits (see Fig. 2A) are marked with letters (a-g); range colors as in Figs. 1-3; inferred ancestor ranges in black. A) Late-Middle Miocene: the

744 movement of African and Arabian plates towards the European archipelago leads to extensive orogenesis (shaded light brown) in the Near and Middle East

745 and the uplift of the Armenian Plateau. B) Mid-Late Miocene: extensive orogenesis and formation of the Neo-Pyrenees. C) Late Miocene: the Messinian

746 Salinity Crisis led to dramatic sea level drop in the Mediterranean Basin (exposed parts of sea bottom shaded in light gray), including a land bridge between

- 747 Iberia and N Africa; Caucasia gradually becomes connected with Anatolian land. D) Middle-Late Pliocene: the marine connection between the Atlantic
- 748 ocean, Mediterranean and Ponto-Caspian basins is re-established, Caucasia gradually becomes an isthmus between the Black and Caspian seas; intensification

749 of orogenesis, periodical drops in global sea level and climatic oscillations during the Pleistocene. Abbreviations: WMB - West Mediterranean Basin; EMB -

750 East Mediterranean Basin; BS - Black Sea; CS - Caspian Sea.

COR

751 752

Table 1. Sampling localities: species, sample codes, latitude, longitude, and GenBank Accession numbers for the sequences generated in this study. 753

Species	Sample code	Country	Locality	Latitude	Longitude	mtDNA haplotype	168	cytb	РОМС	CXCR4	BDNF	RPL3
Bufo bufo	BB194	Albania	near Tepelena	40°17'25.20"N	20°01'30.30"E	25	JN647155	JN647341				
Bufo bufo	BB188	Belgium	Liege prov: Solwaster	50°31'23.00"N	5°58'32.00"E	2	JN647153	JN647339				
Bufo bufo	BB189	Belgium	Liege prov: Marche- en-Famenne	50°15'49.00"N	5°22'7.00"E	2	JN647154	JN647340				
Bufo bufo	BB157	Croatia	Svika	44°52'20.73"N	15°10'56.39"E	17	JN647136	JN647319				
Bufo bufo	BB158	Croatia	Zutica	45°37'51.68"N	16°26'43.62"E	77	JN647137	JN647320				
Bufo bufo	BB141	France	Erloy, Foret de Regnaval	49°54'60.00"N	3°50'30.00"E	71	JN647129	JN647313	JN646935	JN646884	JN646979	JN647505
Bufo bufo	BB142	France	Bruyéres et Montbérault	49°32'6.00"N	3°40'40.00"E	2	JN647130	JN647314				
Bufo bufo	BB143	France	Le Boujon	49°56'55.00"N	3°50'15.00"E	2	JN647131	JN647315				
Bufo bufo	BB144	France	Le Chevalet	50°1'0.00"N	3°52'30.00"E	2	JN647132	JN647316				
Bufo bufo	BB145	France	Nouvion	50°0'20.00"N	3°46'45.00"E	23	JN647133	JN647317				
Bufo bufo	BB146	France	Vorges	49°31'0.84"N	3°38'49.08"E	23	JN647134	JN647318				
Bufo bufo	BB149	France	Chigny	49°17'57.75"N	3°46'30.00"E	2	JN647135	JN647329				
Bufo bufo	BB164	France	Audresselles, dept. Pas-de-Calais, France	50°49'16.10"N	1°36'8.30"E	2	JN647143	JN647326				
Bufo bufo	OBYX12	France	Saint Bonnet en Champsaur	44°40'58.42"N	6°4'34.13"E	106	JN647224	JN647419				
Bufo bufo	BB001	Germany	Eberswalde, Bad Freienwald, ~50 km NE Berlin	52°49'32.52"N	13°48'58.32"E	1	JN647011	JN647247				
Bufo bufo	BB170	Germany	Bonn, W Rhine	50°41'52.00"N	7°7'42.00"E	2	JN647147	JN647333				
Bufo bufo	BB171	Germany	Bonn, W Rhine	50°41'52.00"N	7°7'42.00"E	2	JN647148	JN647334				
Bufo bufo	BB026	Greece	3 km W Nea Zoi	39°43'28.40"N	21°45'14.44"E	20	JN647026	JN647262				
Bufo bufo	BB107	Greece	Thessalia, Desi	39°33'37.51"N	21°22'18.70"E	54	JN647117	JN647301	JN646932	JN646881	JN646977	JN647503
Bufo bufo	BB108	Greece	Thessalia, Desi	39°33'37.51"N	21°22'18.70"E	55	JN647118	JN647302				
Bufo bufo	BB109	Greece	Thraki, Sofiko	41°26'21.95"N	26°36'30.96"E	56	JN647119	JN647303				
Bufo bufo	BB111	Greece	Makedonia, Lepida timberyard	41°23'22.52"N	24°38'15.43"E	57	JN647120	JN647304				
Bufo bufo	BB112	Greece	Makedonia, Lepida timberyard	41°23'22.52"N	24°38'15.43"E	58	JN647121	JN647305				
Bufo bufo	BB114	Greece	Sterea Ellada, Gkiona mt., at stream by Agios Nikolaos church, on the road	38°33'51.77"N	22°20'56.69"E	59	JN647122	JN647306	JN646933	JN646882	JN646978	
27									27			

			from Ptrosilio to									
			Amfissa									
Bufo bufo	BB032	Hungary	Öcs	47°0'34.10"N	17°37'49.21"E	23	JN647032	JN647268				
Bufo bufo	BB033	Hungary	Öcs	47°0'34.10"N	17°37'49.21"E	9	JN647033	JN647269				
Bufo bufo	BB034	Hungary	Pécs, Jakab-Hill, Mecsek Mts.	46°5'35.34"N	18°8'28.98"E	9	JN647034	JN647270				
Bufo bufo	BB179	Hungary	Vinye, Bakony Mts.	47°21'11.28"N	17°46'44.64"E	88	JN647158	JN647344	JN646930	JN646886	JN646988	JN647492
Bufo bufo	BB180	Hungary	Erd bénye, Zemplén Mts.	48°18'50.70"N	21°20'4.96"E	9	JN647159	JN647345	JN646931	JN646887	JN646981	JN647493
Bufo bufo	BB181	Hungary	Bakonybél, Bakony Mts.	47°16'7.38"N	17°41'41.28"E	9	JN647160	JN647346	5			
Bufo bufo	BB182	Hungary	Szendr	48°23'44.88"N	20°44'27.84"E	89	JN647161	JN647347				
Bufo bufo	BB183	Hungary	Csákánydoroszló	46°58'1.50"N	16°30'29.40"E	88	JN647162	JN647348				
Bufo bufo	BB184	Hungary	rség, Bárkás-lake	46°53'59.40"N	16°27'53.29"E	90	JN647163	JN647349				
Bufo bufo	BB185	Hungary	Tihany	46°54'33.12"N	17°50'57.26"E	9	JN647164	JN647350				
Bufo bufo	BB186	Hungary	Bátaapáti	46°12'54.12"N	18°36'41.25"E	2	JN647165	JN647351				
Bufo bufo	BB187	Hungary	Bátaapáti	46°12'54.12"N	18°36'41.25"E	91	JN647166	JN647352				
Bufo bufo	OALB4	Italy	Alberobello	40°47'10.59"N	17°14'14.84"E	100	JN647175	JN647361				
Bufo bufo	OANG10	Italy	Lago dell' Antigola	38°44'22.41"N	16°14'9.51"E	101	JN647176	JN647362				
Bufo bufo	OANG8	Italy	Lago dell' Antigola	38°44'22.41"N	16°14'9.51"E	102	JN647177	JN647363				
Bufo bufo	OBEL2	Italy	Bel Monte Calabro Marina	39°10'2.52"N	16°4'44.87"E	103	JN647178	JN647364				
Bufo bufo	OBRB15	Italy	Barbarano	42°16'11.63"N	12°3'38.28"E	104	JN647179	JN647365				
Bufo bufo	OBRB2	Italy	Barbarano	42°16'11.63"N	12°3'38.28"E	104	JN647180	JN647366				
Bufo bufo	ODOG10	Italy	Doganella	41°45'00.35"N	12°45'39.60"E	107	JN647054	JN647367				
Bufo bufo	ODOG5	Italy	Doganella	41°45'00.35"N	12°45'39.60"E	107	JN647055	JN647368				
Bufo bufo	ODOG8	Italy	Doganella	41°45'00.35"N	12°45'39.60"E	107	JN647056	JN647369				
Bufo bufo	ODOG9	Italy	Doganella	41°45'00.35"N	12°45'39.60"E	107	JN647057	JN647370				
Bufo bufo	OFAG2	Italy	Fagnano Castello- Lago Paglia	39°33'57.59"N	16°3'15.42"E	108	JN647058	JN647371				
Bufo bufo	OFAG5	Italy	Fagnano Castello- Lago Paglia	39°33'57.59"N	16°3'15.42"E	109	JN647059	JN647372				
Bufo bufo	OFIUB1	Italy	Fiumefreddo Bruzio	39°15'28.62"N	16°5'44.61"E	103	JN647060	JN647373				
Bufo bufo	OFIUB2	Italy	Fiumefreddo Bruzio	39°15'28.62"N	16°5'44.61"E	103	JN647061	JN647374	JN646917	JN646869		JN647483
Bufo bufo	OFIUB3	Italy	Fiumefreddo Bruzio	39°15'28.62"N	16°5'44.61"E	103	JN647062	JN647375	JN646918			
Bufo bufo	OFIUB4	Italy	Fiumefreddo Bruzio	39°15'28.62"N	16°5'44.61"E	103	JN647063	JN647376				
Bufo bufo	OFOG4	Italy	Bosco del Foglino	41°28'14.95"N	12°43'6.02"E	110	JN647064	JN647377				
Bufo bufo	OFOG5	Italy	Bosco del Foglino	41°28'14.95"N	12°43'6.02"E	107	JN647065	JN647378				
Bufo bufo	OFOG9	Italy	Bosco del Foglino	41°28'14.95"N	12°43'6.02"E	111	JN647066	JN647379				
Bufo bufo	OGAM2	Italy	Gambarie	38°10'51.59"N	15°50'45.32"E	101	JN647068	JN647381	JN646919	JN646870	JN646967	JN647485
Bufo bufo	OGAM22	Italy	Gambarie	38°10'51.59"N	15°50'45.32"E	112	JN647067	JN647380	JN646920	JN646871	JN646968	
Bufo bufo	OGHI2	Italy	Monghidoro	44°14'53.89"N	11°20'46.43"E	107	JN647069	JN647382		JN646872	JN646969	JN647484
		C										28

Bufo bufo	OGHI4	Italy	Monghidoro	44°14'53.89"N	11°20'46.43"E	107	JN647070	JN647383				
Bufo bufo	OJEN1	Italy	Jenne	41°53'23.47"N	13°10'14.33"E	113	JN647071	JN647384	JN646921	JN646873		JN647486
Bufo bufo	OJEN2	Italy	Jenne	41°53'23.47"N	13°10'14.33"E	107	JN647072	JN647385				
Bufo bufo	OJEN3	Italy	Jenne	41°53'23.47"N	13°10'14.33"E	114	JN647073	JN647386				
Bufo bufo	OMAS2	Italy	Tortora -C.da Massadita-	39°56'30.93"N	15°48'21.54"E	115	JN647074	JN647387				
Bufo bufo	OMAS3	Italy	Tortora -C.da Massadita-	39°56'30.93"N	15°48'21.54"E	116	JN647075	JN647388				
Bufo bufo	OMAS4	Italy	Tortora -C.da Massadita-	39°56'30.93"N	15°48'21.54"E	100	JN647076	JN647389				
Bufo bufo	OMAS5	Italy	Tortora -C.da Massadita-	39°56'30.93"N	15°48'21.54"E	100	JN647077	JN647390				
Bufo bufo	OMOL1	Italy	Molella- Fonti di Locullo	41°16'5.09"N	13°2'44.20"E	107	JN647078	JN647391				
Bufo bufo	OMOL2	Italy	Molella- Fonti di Locullo	41°16'5.09"N	13°2'44.20"E	107	JN647079	JN647392				
Bufo bufo	OMOL4	Italy	Molella- Fonti di Locullo	41°16'5.09"N	13°2'44.20"E	117	JN647080	JN647393				
Bufo bufo	OMOL6	Italy	Molella- Fonti di Locullo	41°16'5.09"N	13°2'44.20"E	107	JN647081	JN647394				
Bufo bufo	OMON1	Italy	Canale Monterano	42°8'25.68"N	12°5'49.46"E	107	JN647083	JN647396	JN646922	JN646874	JN646970	
Bufo bufo	OMON16	Italy	Canale Monterano	42°8'25.68"N	12°5'49.46"E	107	JN647082	JN647395				
Bufo bufo	OMON4	Italy	Canale Monterano	42°8'25.68"N	12°5'49.46"E	118	JN647084	JN647397	JN646923	JN646875	JN646971	
Bufo bufo	OMON5	Italy	Canale Monterano	42°8'25.68"N	12°5'49.46"E	107	JN647085	JN647398	JN646924	JN646876	JN646972	JN647487
Bufo bufo	OORS10	Italy	Orsomarso	39°48'1.37"N	15°54'28.58"E	100	JN647086	JN647399				
Bufo bufo	OORS2	Italy	Orsomarso	39°48'1.37"N	15°54'28.58"E	100	JN647087	JN647400				
Bufo bufo	OORS6	Italy	Orsomarso	39°48'1.37"N	15°54'28.58"E	100	JN647088	JN647401				
Bufo bufo	ORAG3	Italy	Fiume Irminio	36°55'44.01"N	14°40'25.03"E	101	JN647089	JN647402	JN646925	JN646877	JN646973	JN647488
Bufo bufo	ORAG5	Italy	Fiume Irminio	36°55'44.01"N	14°40'25.03"E	119	JN647090	JN647403	JN646926	JN646878	JN646974	JN647489
Bufo bufo	ORAG8	Italy	Fiume Irminio	36°55'44.01"N	14°40'25.03"E	119	JN647091	JN647404	JN646927	JN646879	JN646975	
Bufo bufo	ORAG9	Italy	Fiume Irminio	36°55'44.01"N	14°40'25.03"E	101	JN647092	JN647405		JN646880	JN646976	JN647490
Bufo bufo	OSTI1	Italy	Stilo	38°28'41.27"N	16°28'9.20"E	101	JN647093	JN647406				
Bufo bufo	OSUB2	Italy	Subiaco	41°50'28.12"N	13°2'20.36"E	120	JN647094	JN647407				·
Bufo bufo	OSUB5	Italy	Subiaco	41°50'28.12"N	13°2'20.36"E	107	JN647095	JN647408				
Bufo bufo	011Z2	Italy	Campo Tizzoro	44°2'19.22"N	10°51'42.19"E	121	JN647096	JN647409				
Bufo bufo	01123	Italy	Campo Tizzoro	44°2'19.22'N	10°51'42.19"E	122	JN647097	JN64/410				
вијо вијо	01125	Italy	Campo Tizzoro	44°2′19.22″N	10°51'42.19"E	122	JN647098	JN64/411				
Bufo bufo	OTUR3	Italy	Rocca Sinibalda-flume Turano	42°16'29.47"N	12°55'32.25"E	107	JN647099	JN647412				
Bufo bufo	OTUR4	Italy	Rocca Sinibalda-fiume Turano	42°16'29.47"N	12°55'32.25"E	107	JN647100	JN647413				
Bufo bufo	OTUR5	Italy	Rocca Sinibalda-fiume	42°16'29.47"N	12°55'32.25"E	107	JN647101	JN647414				
		C										29

			Turano									
Bufo bufo	OVER1	Italy	Piani di Verteglia	41°1'10.64"N	15°0'23.11"E	100	JN647102	JN647415				
Bufo bufo	OVER2	Italy	Piani di Verteglia	41°1'10.64"N	15°0'23.11"E	123	JN647103	JN647416				
Bufo bufo	OVER3	Italy	Piani di Verteglia	41°1'10.64"N	15°0'23.11"E	100	JN647104	JN647417				
Bufo bufo	OVER4	Italy	Piani di Verteglia	41°1'10.64"N	15°0'23.11"E	100	JN647105	JN647418				
Bufo bufo	BB196	Macedonia	Prilep - Dunje	41°20'13.00"N	21°42'1.50"E	25	JN647157	JN647343				
Bufo bufo	BB019	Montenegro	Bjelasica mt- Biogradsko jezero	42°54'5.60"N	19°35'49.20"E	14	JN647019	JN647255				
Bufo bufo	BB029	Montenegro	Bjelasica mt-Dolovi	42°53'55.20"N	19°38'1.80"E	21	JN647029	JN647265				
Bufo bufo	BB030	Montenegro	Bjelasica mt- Svatovsko Groblje	42°53'46.80"N	19°38'38.16"E	22	JN647030	JN647266				
Bufo bufo	BB195	Montenegro	Bjelosi	42°22'10.40"N	18°53'26.60"E	25	JN647156	JN647342				
Bufo bufo	BB002	Netherlands	Elspeet	52°18'15.35"N	5°49'31.22"E	2	JN647012	JN647248	JN646916	JN646866	JN646964	JN647500
Bufo bufo	BB174	Poland	Zgorzelec	51°8'12.70"N	15°1'3.80"E	82	JN647149	JN647335				
Bufo bufo	BB176	Poland	Stara Wies	51°47'20.76"N	15°43'41.52"E	83	JN647150	JN647336				
Bufo bufo	BB177	Poland	Szubin	53°0'5.35"N	17°44'13.26"E	84	JN647151	JN647337				
Bufo bufo	BB178	Poland	Wroclen - Pruszowice	50°12'0.46"N	20°47'37.76"E	85	JN647152	JN647338				
Bufo bufo	BB105	Romania	M cin Mountains National Park	45°13'59.90"N	28°18'31.30"E	9	JN647116	JN647300				
Bufo bufo	BB122	Romania	C l ra i-Chiciu	44°51'48.60"N	27°52'33.24"E	13	JN647123	JN647307				
Bufo bufo	BB123	Romania	Co nea	47°52'0.85"N	24°30'55.44"E	9	JN647124	JN647308				
Bufo bufo	BB125	Romania	Insula Mic a Br ilei	44°51'48.60"N	27°52'33.24"E	64	JN647125	JN647309				
Bufo bufo	BB126	Romania	Lacul Ro u	46°46'57.72"N	25°47'1.68"E	9	JN647126	JN647310				
Bufo bufo	BB127	Romania	Motru Sec Clo ani	45°7'36.48"N	22°48'29.52"E	9	JN647127	JN647311				
Bufo bufo	BB128	Romania	Vidraru Reservoir, F g ra Mts.	45°26'32.65"N	24°36'21.96"E	9	JN647128	JN647312	JN646934	JN646883	JN646963	JN647504
Bufo bufo	BBUINSULA_B	Romania	Insula Mic a Br ilei	44°51'48.60"N	27°52'33.24"E	18	JN647171	JN647357				
Bufo bufo	RO1	Romania	Luncavi a	45°14'20.51"N	28°17'49.19"E	9	JN647168	JN647354				
Bufo bufo	RO2	Romania	Luncavi a	45°14'20.51"N	28°17'49.19"E	96	JN647169	JN647355				
Bufo bufo	RO3	Romania	Luncavi a	45°14'20.51"N	28°17'49.19"E	9	JN647170	JN647356				
Bufo bufo	BB053	Russia	Russia, Moscow province, Zvenigorod	55°42'39.20"N	36°46'16.40"E	9	JN647050	JN647286				
Bufo bufo	BB054	Russia	Russia, Krasnoyarsk territory, Mirnyi	62°16'55.50"N	89°2'2.20"E	31	JN647051	JN647287				
Bufo bufo	BB055	Russia	Russia, Sverdlovsk prov., Ekaterinburg	56°50'25.40"N	60°33'20.30"E	31	JN647052	JN647288	JN646939	JN646890	JN646984	JN647496
Bufo bufo	BB056	Russia	Russia, Novosibirsk	55°3'41.30"N	82°52'31.40"E	31	JN647053	JN647289				
Bufo bufo	BB074	Russia	Russia, Tver province, Toropets	56°31'48.00"N	31°32'6.50"E	9	JN647108	JN647292				
Bufo bufo	BB075	Russia	Russia, Yaroslavl province, Yaroslavl	57°35'54.50"N	39°53'17.40"E	9	JN647109	JN647293				
		6										30
	1											

Bufo bufo	BB076	Russia	Russia, Orel province, Orlovskiye Zaseki NP	53°20'57.50"N	35°33'30.50"E	9	JN647110	JN647294		JN646892		JN647498
Bufo bufo	BB077	Russia	Russia, Krasnoyarsk territory, Kryuchkovo	56°5'42.50"N	92°8'10.50"E	38	JN647111	JN647295			JN646986	
Bufo bufo	BB079	Russia	Russia, Karelia, Kindo peninsula	66°32'8.40"N	33°9'41.00"E	39	JN647112	JN647296				
Bufo bufo	BB080	Russia	Russia, Arkhangelsk province, Arkhangelsk environs	64°32'39.50"N	40°41'22.50"E	39	JN647113	JN647297	JN646941	JN646893	JN646987	JN647499
Bufo bufo	BB081	Russia	Russia, Tatarstan, Kazan environs	55°52'9.30"N	49°8'40.60"E	39	JN647114	JN647298				
Bufo bufo	BB014	Serbia	Avala mt - Tresnja	44°36'26.60"N	20°34'14.00"E	9	JN647014	JN647250				
Bufo bufo	BB015	Serbia	Avala mt - Tresnja	44°36'26.60"N	20°34'14.00"E	10	JN647015	JN647251				
Bufo bufo	BB016	Serbia	Avala mt - Zuce	44°40'55.90"N	20°33'55.90"E	11	JN647016	JN647252				
Bufo bufo	BB017	Serbia	Avala mt - Zuce	44°40'55.90"N	20°33'55.90"E	12	JN647017	JN647253	JN646936	JN646885	JN646980	JN647491
Bufo bufo	BB018	Serbia	Avala mt - Zuce	44°40'55.90"N	20°33'55.90"E	13	JN647018	JN647254				
Bufo bufo	BB020	Serbia	Pozega-Rupeljevo 1	43°46'44.58"N	19°59'49.74"E	15	JN647020	JN647256				
Bufo bufo	BB021	Serbia	Pozega-Rupeljevo 1	43°46'44.58"N	19°59'49.74"E	15	JN647021	JN647257				
Bufo bufo	BB022	Serbia	Pozega-Rupelievo 1	43°46'44.58"N	19°59'49.74"E	16	JN647022	JN647258				
Bufo bufo	BB023	Serbia	Pozega-Rupelievo 2	43°46'48.30"N	19°59'21.90"E	17	JN647023	JN647259				
Bufo bufo	BB024	Serbia	Pozega-Rupeljevo 2	43°46'48.30"N	19°59'21.90"E	18	JN647024	JN647260				
Bufo bufo	BB025	Serbia	Valievo-Petnica	44°14'50.00"N	19°55'51.00"E	19	IN647025	IN647261				
Bufo bufo	BB027	Serbia	Leskovac-Pasina Cesma	43°2'36.30"N	21°52'10.20"E	14	JN647027	JN647263				
Bufo bufo	BB028	Serbia	Golija mt-Devici	43°25'18.84"N	20°22'47.16"E	15	JN647028	JN647264				
Bufo bufo	BB031	Serbia	Avala mt - Tresnia	44°36'26.60"N	20°34'14.00"E	21	JN647031	JN647267				
Bufo bufo	BB038	Serbia	Vranie - Bustranie (1)	42°26'3.00"N	21°54'13.00"E	17	IN647037	IN647273				
Bufo bufo	BB039	Serbia	Vranje - Bustranje (2)	42°25'60.00"N	21°54'17 00"E	17	IN647038	IN647274				
Bufo bufo	BB040	Serbia	Vranje-Rusce	42°24'50.00"N	21°56'48.00"E	13	JN647039	IN647275				
Bufo bufo	BB041	Serbia	Vranje-Gornie Zupsko	42°27'3 00"N	21°53'21 00"E	25	IN647040	IN647276				
Bufo bufo Bufo bufo	BB042	Serbia	Bosilegrad	42°29'58 40"N	22°28'23 30"E	25	IN647041	IN647277				
Bufo bufo	BB043	Serbia	Pozega-Rupelievo 1	43°46'44 58"N	19°59'49 74"F	15	IN647042	IN647278				
Bufo bufo	BB036	Serbia- Kosovo	Novo Brdo-Prekovce	42°36'58.00"N	21°26'6.40"E	24	JN647036	JN647272	JN646937	JN646888	JN646982	JN647494
Bufo bufo	BB035	Slovakia	Bratislava - Zelezna studnicka	48°10'60.00"N	17°4'60.00"E	9	JN647035	JN647271				
Bufo bufo	BB044	Slovakia	Donovaly	48°52'0.00"N	19°13'60.00"E	9	JN647043	JN647279				
Bufo bufo	BBUSLO5	Slovakia	Sastin-Straze	48°37'60.00"N	17°7'60.00"E	92	JN647167	JN647353				
Bufo bufo	BB046	Sweden	Umea - Frederika	64°5'59.99"N	18°22'59.88"E	26	JN647044	JN647280	JN646938	JN646889	JN646983	JN647495
Bufo bufo	BB048	Sweden	Skane-Stensoffa (Lund)	55°40'59.88"N	13°26'60.00"E	27	JN647045	JN647281				
Bufo bufo	BB049	Sweden	Umea - Frederika	64°5'59.99"N	18°22'59.88"E	28	JN647046	JN647282				
		6										31

			Skane-Stensoffa									
Bufo bufo	BB050	Sweden	(Lund)	55°40'59.88"N	13°26'60.00"E	29	JN647047	JN647283				
Bufo bufo	BB051	Sweden	Umea - Frederika	64°5'59.99"N	18°22'59.88"E	30	JN647048	JN647284				
Bufo bufo	BB167	Sweden	Vastra Götaland, Göteborg,Slätta damm	57°43'60.00"N	11°55'0.00"E	79	JN647144	JN647330				
Bufo bufo	BB168	Sweden	Vastra Götaland, Göteborg,Slätta damm	57°43'60.00"N	11°55'0.00"E	80	JN647145	JN647331				
Bufo bufo	BB169	Sweden	Vastra Götaland, Göteborg,Slätta damm	57°43'60.00"N	11°55'0.00"E	81	JN647146	JN647332				
Bufo bufo	BB070	Turkey	Belalankoyu - Havza	41°10'50.50"N	35°46'26.60"E	36	JN647106	JN647290	JN646940	JN646891	JN646985	JN647497
Bufo bufo	BB071	Turkey	Erbaa	40°49'41.40"N	36°36'5.80"E	37	JN647107	JN647291				
Bufo bufo	BBUTURK2A	Turkey	Kiriklar-Eflani (loc. 2)	41°23'27.90"N	32°49'3.80"E	97	JN647172	JN647358				
Bufo bufo	BBUTURK3A	Turkey	Belalankoyu - Havza	41°10'50.50"N	35°46'26.60"E	98	JN647173	JN647359				
Bufo bufo	BBUTURK4A	Turkey	Erbaa	40°49'41.40"N	36°36'5.80"E	99	JN647174	JN647360				
Bufo bufo	BB004	UK	Wymeswold "C"	52°48'20.00"N	1°6'24.00"W	4	JN647013	JN647249	JN646928	JN646867	JN646965	JN647501
Bufo bufo	BB008	UK	Holly Hayes	52°40'17.00"N	1°6'52.00"W	-	Х		JN646929	JN646868	JN646966	JN647502
Bufo bufo	BB052	Ukraine	Ukraine, Zakarpatska prov., Perechin district, polonina Runa	48°47'21.00"N	22°47'51.50"E	9	JN647049	JN647285				
Bufo bufo	BB092	Ukraine	Ukraine, Zakarpatska prov., Perechin district, Lumshory environs	48°48'36.50"N	22°45'10.30"E	45	JN647115	JN647299				
Bufo bufo	BB159	Ukraine	Iskiv pond	49°37'33.97"N	36°17'7.89"E	9	JN647138	JN647321				
Bufo bufo	BB160	Ukraine	Iskiv pond	49°37'33.97"N	36°17'7.89"E	9	JN647139	JN647322				
Bufo bufo	BB161	Ukraine	Koryakin pond	49°37'10.94"N	36°18'50.04"E	9	JN647140	JN647323				
Bufo bufo	BB162	Ukraine	Koryakin pond	49°37'10.94"N	36°18'50.04"E	9	JN647141	JN647324				
Bufo bufo	BB163	Ukraine	Koryakin pond	49°37'10.94"N	36°18'50.04"E	9	JN647142	JN647325				
Bufo eichwaldi	BB062	Azerbaijan	Azerbaijan, Lerik district, Agoshapeshta env., Talysh mts.	38°39'34.20"N	48°38'9.30"E	34	JN647240	JN647476	JN646953	JN646908	JN647002	
			A A -to									
Bufo eichwaldi	BB084	Azerbaijan	district, Kizhaba environs, Talysh mts.	38°33'55.50"N	48°47'51.50"E	41	JN647239	JN647475	JN646955	JN646906	JN647003	JN647518
Bufo eichwaldi Bufo eichwaldi	BB084 BB086	Azerbaijan Azerbaijan	Azeroaijan, Astara district, Kizhaba environs, Talysh mts. Azerbaijan, Lerik district, Tankevan, Shovu and Zarikiumandjo environs, Talysh mts.	38°33'55.50"N 38°41'44.50"N	48°47'51.50"E 48°35'22.30"E	41	JN647239 JN647241	JN647475 JN647474	JN646955 JN646954	JN646906 JN646909	JN647003 JN647005	JN647518
Bufo eichwaldi Bufo eichwaldi Bufo eichwaldi	BB084 BB086 BB091	Azerbaijan Azerbaijan Azerbaijan	Azeroaijan, Astara district, Kizhaba environs, Talysh mts. Azerbaijan, Lerik district, Tankevan, Shovu and Zarikiumandjo environs, Talysh mts. Azerbaijan, Lerik district, Agoshapeshta env., Talysh mts.	38°33'55.50"N 38°41'44.50"N 38°39'34.20"N	48°47'51.50"E 48°35'22.30"E 48°38'9.30"E	41 42 44	JN647239 JN647241 JN647238	JN647475 JN647474 JN647477	JN646955 JN646954	JN646906 JN646909	JN647003 JN647005	JN647518
Bufo eichwaldi Bufo eichwaldi Bufo eichwaldi Bufo eichwaldi	BB084 BB086 BB091 BB140	Azerbaijan Azerbaijan Azerbaijan Azerbaijan	Azerbaijan, Astara district, Kizhaba environs, Talysh mts. Azerbaijan, Lerik district, Tankevan, Shovu and Zarikiumandjo environs, Talysh mts. Azerbaijan, Lerik district, Agoshapeshta env., Talysh mts. Azerbaijan, Astara	38°33'55.50"N 38°41'44.50"N 38°39'34.20"N 38°33'55.50"N	48°47'51.50"E 48°35'22.30"E 48°38'9.30"E 48°47'51.50"E	41 42 44 70	JN647239 JN647241 JN647238 JN647242	JN647475 JN647474 JN647477 JN647477	JN646955 JN646954	JN646906 JN646909 JN646907	JN647003 JN647005 JN647004	JN647518
Bufo eichwaldi Bufo eichwaldi Bufo eichwaldi Bufo eichwaldi	BB084 BB086 BB091 BB140	Azerbaijan Azerbaijan Azerbaijan Azerbaijan	Azeroaijan, Astara district, Kizhaba environs, Talysh mts. Azerbaijan, Lerik district, Tankevan, Shovu and Zarikiumandjo environs, Talysh mts. Azerbaijan, Lerik district, Agoshapeshta env., Talysh mts. Azerbaijan, Astara	38°33'55.50"N 38°41'44.50"N 38°39'34.20"N 38°33'55.50"N	48°47'51.50"E 48°35'22.30"E 48°38'9.30"E 48°47'51.50"E	41 42 44 70	JN647239 JN647241 JN647238 JN647242	JN647475 JN647474 JN647477 JN647478	JN646955 JN646954	JN646906 JN646909 JN646907	JN647003 JN647005 JN647004	JN647518 32

			district, Kizhaba environs, Talysh mts									
Bufo spinosus	BB005	France	Beauzelle	43°39'56.70"N	1°23'39.50"E	5	JN647219	JN647420	JN646943	JN646895	JN646990	JN647507
Bufo spinosus	BB006	France	Mount Canigou	42°33'56.20"N	2°25'11.00"E	6	IN647220	IN647421	011010310	011010020	011010330	011011001
Bufo spinosus	BB116	France	Juigny	46°58'24.95"N	0°19'50.56"W	60	IN647212	IN647426				
Bufo spinosus	BB117	France	Embrun	44°33'18.72"N	6°30'26.50"E	6	JN647213	JN647427		JN646897	JN646992	JN647509
Bufo spinosus	BB118	France	La Manouesse	43°29'17.88"N	5°26'3.08"E	6	JN647214	JN647428	JN646945	JN646898	JN647001	JN647510
Bufo spinosus	BB132	France	French Pyrenees (near Arguenos)	42°58'14.48"N	0°43'26.29"E	67	JN647207	JN647435				
Bufo spinosus	BB147	France	Fougerolles de Plessis	48°28'31.70"N	0°58'5.10"W	6	JN647197	JN647327				
Bufo spinosus	BB148	France	St. Mars sur la Futane	48°25'56.10"N	1°1'4.60"W	72	JN647198	JN647328				
Bufo spinosus	BB165	France	St Pierre des Nids near Pre-en-Pail, dept. Mayenne, France	48°23'54.57"N	0°6'0.82"W	78	JN647195	JN647445				
Bufo spinosus	BB166	France	In between Vautorte and St Denis de Gastines, dept. Mayenne, France	48°18'42.00"N	0°50'40.08"W	6	JN647196	JN647446				
Bufo spinosus	BB190	France	Moulin ouest	43°53'20.23"N	3°23'50.39"E	86	JN647191	JN647447				
Bufo spinosus	BB191	France	Bergerie Hôpital	43°51'38.06"N	3°22'44.75"E	6	JN647192	JN647448				
Bufo spinosus	BB192	France	Sorbs (Ville Vieille)	43°53'56.04"N	3°24'19.81"E	87	JN647193	JN647449				
Bufo spinosus	BB193	France	Sotch de Caylus	43°53'21.11"N	3°23'13.24"E	6	JN647194	JN647450				
Bufo spinosus	OBYX19	France	Saint Bonnet en Champsaur	44°40'58.42"N	6°4'34.13"E	6	JN647181	JN647457				
Bufo spinosus	OBYX6	France	Saint Bonnet en Champsaur	44°40'58.42"N	6°4'34.13"E	6	JN647182	JN647458				
Bufo spinosus	OBYX8	France	Saint Bonnet en Champsaur	44°40'58.42"N	6°4'34.13"E	105	JN647183	JN647459				
Bufo spinosus	OBYX9	France	Saint Bonnet en Champsaur	44°40'58.42"N	6°4'34.13"E	6	JN647184	JN647460				
Bufo spinosus	BB119	Morocco	Ifrane	33°31'51.74"N	5°6'19.58"W	61	JN647215	JN647429	JN646946	JN646899	JN646993	JN647511
Bufo spinosus	BB120	Morocco	Ifrane	33°31'51.74"N	5°6'19.58"W	62	JN647216	JN647430	JN646948	JN646900	JN646995	JN647512
Bufo spinosus	BB121	Portugal	Portalegre	39°19'52.68"N	7°19'23.81"W	63	JN647217	JN647431	JN646949	JN646901	JN646996	
Bufo spinosus	BB150	Portugal	Portalegre	39°19'52.68"N	7°19'23.81"W	73	JN647199	JN647440			JN646998	JN647515
Bufo spinosus	BB003	Spain	35 km NE Capileira	36°58'26.20"N	3°19'21.30"W	3	JN647218	JN647425	JN646942	JN646894	JN646989	JN647506
Bufo spinosus	BB010	Spain	A Pobra do Caramiñal	42°36'26.01"N	8°57'39.18"W	7	JN647221	JN647422	JN646944	JN646905	JN646991	JN647508
Bufo spinosus	BB012	Spain	Sadernes	42°16'43.30"N	2°35'24.60"E	6	JN647222	JN647423	JN646947	JN646896	JN646994	JN647513
Bufo spinosus	BB013	Spain	Laguna Grande de Gredos	40°15'11.00"N	5°16'33.00"W	8	JN647223	JN647424	JN646950	JN646902	JN646997	JN647514
Bufo spinosus	BB129	Spain	Plá dels Corrals (Simat de la Valldigna)	39°2'36.77"N	0°18'38.16"W	65	JN647204	JN647432				
Bufo spinosus	BB130	Spain	A Coruña	43°22'17.37"N	8°23'45.49"W	60	JN647205	JN647433				
		6										33

Bufo spinosus	BB131	Spain	Laguna de los Peces (Parque de Sanabria). San Martín de los Gallegos	42°10'26.91"N	6°43'47.73''W	66	JN647206	JN647434				
Bufo spinosus	BB133	Spain	Majaelrayo a Cantalojas	41°9'39.70"N	3°18'53.90"W	68	JN647208	JN647436				
Bufo spinosus	BB134	Spain	Hecho	42°44'11.10"N	0°45'37.40"W	69	JN647209	JN647437				
Bufo spinosus	BB135	Spain	Fanlo a Escalona	42°35'15.40"N	0°0'47.30"W	60	JN647210	JN647438				
Bufo spinosus	BB137	Spain	Laújar	37°5'6.60"N	2°54'17.00"W	3	JN647211	JN647439				
Bufo spinosus	MNCN_10071	Spain	Pelahustán. Carretera de Cenicientos	40°10'34.56"N	4°35'48.97"W	93	JN647186	JN647452				
Bufo spinosus	MNCN_15574	Spain	San Esteve ses Rovires	41°29'40.38"N	1°52'22.08"E	94	JN647187	JN647453				
Bufo spinosus	MNCN_15581	Spain	Lago Enol. Covadonga	43°16'20.68"N	4°59'28.21"W	60	JN647188	JN647454				
Bufo spinosus	MNCN_15600	Spain	Mougás, Pontevedra	42°3'4.46"N	8°52'21.41"W	95	JN647189	JN647455	7			
Bufo spinosus	MNCN_15622	Spain	Río Madera. Orcera	38°19'2.58"N	2°39'53.68"W	3	JN647190	JN647456				
Bufo spinosus	MNCN_8003	Spain	Valdemanco	40°52'21.09"N	3°39'46.64"W	93	JN647185	JN647451				
Bufo spinosus	BB152	Tunisia	Beni M'Tir (loc. 2)	36°44'13.30"N	8°43'3.70"E	74	JN647200	JN647441	JN646951	JN646903	JN646999	JN647516
Bufo spinosus	BB153	Tunisia	Beni M'Tir (loc. 4)	36°44'27.10"N	8°42'54.30"E	75	JN647201	JN647442	JN646952	JN646904	JN646000	JN647517
Bufo spinosus	BB154	Tunisia	Feija N. P. (loc. 1)	36°29'11.60"N	8°18'28.50"E	75	JN647202	JN647443				
Bufo spinosus	BB155	Tunisia	Feija N. P. (loc. 3)	36°29'51.10"N	8°18'19.20"E	76	JN647203	JN647444				
Bufo verrucosissimus circassicus	BB083	Russia	Russia, Krasnodar territory, Gelenjik district Aderbiyeyka	44°36'4.50"N	38°7'15.50"E	40	JN647233	JN647469	JN646956			
Bufo verrucosissimus circassicus	BB089	Russia	Russia, Krasnodar territory, Gelenjik, environs of Vozrozhdeniye, Zhene gorge	44°32'48.00"N	38°14'35.00"E	32	JN647236	JN647472				
Bufo verrucosissimus circassicus	BB090	Russia	Russia, Krasnodar territory, Gelenjik, Dzhankot environs	44°28'1.30"N	38°9'0.90"E	32	JN647237	JN647473				
Bufo verrucosissimus tertyschnikovi	BB058	Russia	Russia, Stavropol territory, Shpakovskiy district, Strizhament mt., environs	44°38'44.20"N	41°32'36.30"E	32	JN647226	JN647462	JN646959	JN646912	JN647008	JN647520
Bufo verrucosissimus tertyschnikovi	BB085	Russia	Russia, Stavropol territory, Shpakovskiy district, Novoyekaterinovskaya environs	44°45'58.50"N	42°2'4.50"E	32	JN647234	JN647470				
Bufo	BB057	Russia	Russia, Krasnodar	43°55'59.40"N	40°39'45.30"E	32	JN647225	JN647461	JN646958	JN646911	JN647010	JN647519
		0										34

verrucosissimus turowi			territory, Caucasian Nature Reserve, environs of Chernorechye									
Bufo verrucosissimus turowi	BB061	Russia	Russia, Krasnodar territory, Caucasian Nature Reserve, environs of Chernorechye	43°55'59.40"N	40°39'45.30"E	32	JN647229	JN647465		•		
Bufo verrucosissimus verrucosissimus	BB059	Georgia	Georgia, Abkhazia, Bzypi gorge, Malaya Ritza lake	43°28'34.30"N	40°28'21.40"E	32	JN647227	JN647463	0	JN646914		JN647521
Bufo verrucosissimus verrucosissimus	BB060	Georgia	Georgia, Adjaria, Charnali gorge, env. of Charnali	41°31'52.30"N	41°37'27.40"E	33	JN647228	JN647464	JN646960			JN647522
Bufo verrucosissimus verrucosissimus	BB063	Georgia	Georgia, Borjomi valley, Bakuriani, Jagoras-Veli	41°43'30.20"N	43°31'8.20"E	33	JN647230	JN647466				
Bufo verrucosissimus verrucosissimus	BB064	Georgia	Georgia, Borjomi valley, Akhaldaba river	41°52'56.50"N	43°21'30.50"E	35	JN647231	JN647467	JN646957	JN646910	JN647006	JN647523
Bufo verrucosissimus verrucosissimus	BB088	Russia	Russia, Krasnodar territory, Sochi district, Agura environs	43°46'20.50"N	39°37'22.70"E	43	JN647235	JN647471	JN646961	JN646915	JN647009	JN647524
Bufo verrucosissimus verrucosissimus	BB073	Turkey	Turkey, Karagol	41°18'25.60"N	42°28'56.00"E	33	JN647232	JN647468	JN646962	JN646913	JN647007	JN647525
Outgroups Bufo bankorensis	BB098	China	China, Taiwan, Taipei environs, Fu Yang Shan N.P.	25°01'14.50"N	121°33'36.50"E	49	X	X	Х	Х	Х	Х
Bufo bankorensis	BB099	China	China, Taiwan, Taipei environs, Fu Yang Shan N.P.	25°01'14.50"N	121°33'36.50"E	50	Х	Х	Х		Х	Х
Bufo gargarizans gargarizans	BB096	China	China, Jilin province, SongJiangHe river, 50 km W from BaiTouShan (PekTuSan) volcano	42°9'3.50"N	127°30'44.50"E	47	JN647245	JN647481	Х			Х
Bufo gargarizans gargarizans	BB095	Russia	Russia, Jewish autonomous region, Bastak Nature Reserve, sq. 140	47°59'55.60"N	132°4'36.50"E	46	JN647244	JN647480	Х	Х	Х	Х
		6										35
	1											

Bufo gargarizans gargarizans	BB097	Russia	Russia, Primorskiy (Maritime) territory, Partizansk district, Tigrovoy environs	43°9'17.30"N	132°53'0.30"E	48	JN647246	JN647482				
Bufo gargarizans sachalinensis	BB094	Russia	Russia, Sakhalin province, Sakhalin island, Tymovskiy district, Tym river, environs of Tymovskoye settlement	50°52'32.70"N	142°37'30.70"E	46	JN647243	JN647479				
Bufo japonicus formosus	BB101	Japan	Japan, Tokyo prefecture, Tokyo city, Sendagi	35°43'15.40"N	139°45'37.50"E	52	Х	X	X	х	Х	Х
Bufo japonicus formosus	BB102	Japan	Japan, Aomori prefecture, Hirosaki city environs, Hirakawa	40°34'41.50"N	140°34'43.50"E	53	х	x	х	Х	Х	
Bufo torrenticola	BB100	Japan	Japan, Nara prefecture, Tenkawa environs	34°14'16.50"N	135°51'4.50"E	51	x	x	Х	х	Х	Х
					MA							36
	1											

755 Table 2. Primer sequences used in this study.

Primer name	Sequence	Reference	
16S-ar	CGC CTG TTT ATC AAA AAC AT	Palumbi et al. 1991	
16S-br	CCG GTC TGA ACT CAG ATC ACG T	Palumbi et al. 1991	
Cyt Bufo F	ATC TAC CTT CAC ATC GGA CGA G	This study	Q
Cyt Bufo R	AGT TTR TTT TCT GTG AGT CC	This study	
POMC_DRV_F1	ATA TGT CAT GAS CCA YTT YCG CTG GAA	Vieites et al. 2007	
POMC_DRV_R1	GGC RTT YTT GAA WAG AGT CAT TAG WGG	Vieites et al. 2007	G [*]
BUFO_CXCR4F	TTC TGG TCT GTG GAY GCY GCC ATT	This study	2
BUFO_CXCR4_R	TTG AGG CAG CAG TGG AAG AAG GCC	This study	
BDNF_F1	ACC ATC CTT TTC CTK ACT ATG	This study	
BDNF_R1	CTA TCT TCC CCT TTT AAT GGT	This study	
RPL3buF1	AGG TGG CAG TGT CTG GAG TAT T	This study	
RPL3buR1	GTC ACC TTA CTA CAG CTT GTT CTC A	This study	

Table 3. Estimates of evolutionary divergence over sequence pairs between species as estimated by MEGA5. Mean values of p-uncorrected genetic distancesand the corresponding standard errors are shown.

762

Species 1	Species 2	mean p- uncorrected	std. error
B. bufo	B. spinosus	7.0%	0.6%
B. bufo	B. verrucosissimus	1.6%	0.3%
B. spinosus	B. verrucosissimus	6.3%	0.6%
B. bufo	B. eichwaldi	7.3%	0.7%
B. spinosus	B. eichwaldi	7.7%	0.7%
B. verrucosissimus	B. eichwaldi	6.9%	0.7%
		.0	NA

A) mt-DNA data

A) Concatenated mt-DNA + n DNA

B) Multispecies coalescent (*BEAST)

Bufo eichwaldi

Bufo spinosus

Bufo bufo

Bufo verrucosissimus

769	
770	
771	Highlights
772	
773	Species tree analyses resolve phylogenetic relationships in Bufo bufo species group
774	
775	Overall agreement between mtDNA and nDNA markers
776	
777	The evolutionary history of <i>B. bufo</i> dates back to the Miocene
778	
779	Bufo spinosus is distributed in N Africa, Iberian Peninsula and France
780	