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Abstract
Biogenic amines (BAs) are low molecular weight nitrogenous organic compounds with dif-

ferent biological activities. Putrescine, spermidine and spermine are essential for the devel-

opment of the gut and immune system of newborns, and are all found in human milk. Little is

known, however, about the role of histamine, tyramine or cadaverine in breast milk. Nor is it

known whether mastitis alters the BA composition of milk. The BA profile of human milk,

and the influence of mastitis on BA concentrations, were therefore investigated. Putrescine,

spermidine and spermine were the main BAs detected. In mastitis-affected milk, the con-

centrations of putrescine, spermine and histamine were higher.

Introduction
Breast milk is thought to be the optimum nutritional choice for newborns since it satisfies all
the requirements for successful infant growth and development. Human milk contains many
biologically active agents (including maternal immune cells, immunoglobulins, microRNAs,
fatty acids, oligosaccharides, antimicrobial peptides, and some biogenic amines [BAs]) that
provide protection against infectious disease, or which have functions in the development of
the immune system [1]. It also contains bacteria [2] that may also be important in immune sys-
tem development as well as in the formation of the gut microbiota.

BAs are low molecular weight organic bases which include monoamines such as tyra-
mine, diamines such as histamine and cadaverine, and polyamines (PA) such as putrescine,
spermidine and spermine [3]. PA play a role in cell proliferation and are essential for cell
division and a range of metabolic functions, including macromolecule synthesis and struc-
tural integrity of nucleic acids. Due to its polycationic nature, polyamines can bind nega-
tively charged molecules such as nucleic acids, proteins or phospholipids. Many cellular
processes varying from gene expression modulation to regulation of enzymatic activity, and
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the modification of the fluidity and permeability of the biological membranes depend on
such interactions. Due to this important physiological role, the PA content of cells is finely
regulated by biosynthesis, degradation, uptake and excretion. PA from food significantly
contribute to the total PA pool in the body and the dietary intake of PA exerts various direct
and indirect trophic effects on the immature intestine, thus contributing to gut maturation.
[4,5]. Despite their important physiological functions, BAs can pose health threats: consum-
ing food in which they have accumulated (via the metabolic activity of certain microorgan-
isms) may elicit toxic reactions [6]. In fermented foods in particular, these compounds can
reach high concentrations.

Although human breast milk may be the primary source of BAs for newborns, little is
known about its content in these compounds. The scant information that is available relates
only to PAs, but indicates human milk to contain substantial amounts of spermidine and sper-
mine, and lower concentrations of putrescine [7]. PA concentrations are influenced by a num-
ber of factors including the mother’s age, her genetic background, ethnicity, nutritional status,
diet, how long she has been lactating, and whether her child was born at term or was premature
[8,9,10]. In infants, putrescine, spermidine and spermine are essential in cell growth and prolif-
eration, particularly in the gut [11,12].

Mastitis, an inflammation of the mammary gland, affects up to 33% of lactating women and
is the main cause of unwanted early weaning. It involves the increased presence in the milk of
certain species of staphylococci, streptococci and/or corynebacteria [13]. However, little infor-
mation exists about the changes this may induce in the biochemical composition of human
milk. In contrast, it is well known that, in bovine mastitis, the metabolism of the infecting bac-
teria changes the volatile compound profile [14].

The aim of the present work was to examine the concentrations of the most important die-
tary BAs in human milk, and to compare the BA compositions of that from healthy women
and those with mastitis.

Materials and Methods

Milk samples
Milk samples were obtained from 40 healthy women, and from a further 30 with mastitis. The
nipple and areola were first cleaned with soap and sterile water, and then with chlorhexidine.
Milk samples were then collected in sterile tubes, applying manual pressure (wearing sterile-
gloves) to the breast. The first drops (approximately 250 μL) were discarded to avoid chlorhexi-
dine contamination.

Ethical statements
All volunteers gave written informed consent to the protocol (reference 10/017E) which had
been approved by the Ethical Committee of Clinical Research of Hospital Clinica San Carlos
(Madrid, Spain).

Extraction of biogenic amines
BAs were extracted from the milk samples by acid treatment [15]. Briefly, 500 μL of milk
were precipitated with 100 μL of trichloroacetic acid (12% v/v) for 1 h. After centrifugation
(12,500 ×g, 30 min) the supernatant was recovered for 1 h at 4500 ×g and passed through Ami-
con Ultra-0.5 filters (Millipore, Darmstadt, Germany). The filtrate was maintained at –20°C
until analysis.
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Detection of biogenic amines
BA concentrations in milk samples were determined by ultra high performance liquid chroma-
tography (UHPLC). For the detection of putrescine, spermidine and spermine, derivatization
reactions were performed using the AccQ-TagTM Ultra Derivatization Kit (Waters, Barcelona,
Spain), as indicated by the manufacturer with slight modifications. To maintain a pH of 8–10
(required for successful derivatization), 5N NaOH was added. Putrescine dihydrochloride
(Sigma, Madrid, Spain), spermidine (Acros Organics, Geel, Belgium) and spermine (Sigma)
standards were prepared in Milli-Q water, following the protocol indicated by Fiechter et al.,
[16]. The chromatographic conditions employed were those previously described [17]. Separa-
tion and the detection of fluorescence were performed using an UPLC1H-Class (Waters, Mil-
ford, MA, USA) coupled to a FLR module (Waters) (excitation and emission wavelengths 266
nm and 473 nm respectively).

Tyramine, histamine and cadaverine were determined following the derivatization, separa-
tion and quantification protocol of Redruello et al., [17]. Data were acquired and analyzed
using Empower 2 software (Waters).

All the chemicals used were of the highest available purity. Water of Milli-Q quality (Milli-
pore, Bedford, MA, USA) was used in all solutions. HPLC-grade acetonitrile (VWR, Barcelona,
Spain) and methanol (Merck, Darmstadt, Germany) were used as pure solvents.

Statistical analysis
The Chi-squared or Fisher test was used as required to examine the differences in the distribu-
tion of BA frequencies between the healthy-breast milk and mastitis-affected milk samples. BA
concentrations were represented by means or medians, the associated 95% confidence interval
(95% CI) or interquartile range (IQR), and maximum and minimum values (box and whiskers
plots). The normality of the data was examined by the Kolmogorov-Smirnov test. The non-
parametric Kruskal-Wallis test or one-way ANOVA was used to compare the BA concentra-
tions of the two types of milk. Significance was set at p<0.05. Spearman correlation coefficients
between different BAs were also determined. Calculations were made using either SPSS v.15.0
(SPSS Inc, USA) or StatGraphics Centurion XVII v.17.0.16 (Statpoint Technologies, Inc, Vir-
ginia, USA) software.

Results and Discussion
PAs were the main BAs found in the milk samples from the healthy mothers. Putrescine was
present in 37 (92.5%) of the 40 samples analyzed, spermidine was detected in all but one sam-
ple (97.5%), and spermine was detected in 29 (72.5%) (Fig 1). Wide interindividual variation in
the concentration of PAs was observed. The concentration of putrescine (0.39 [95%CI 0.28–
0.50] μM) was generally lower than those of spermidine (3.12 [2.56–3.67] μM) and spermine
(3.95 [3.09–4.82] μM) (Fig 2 and Table 1). This agrees with that reported by other authors
[18,19]. Factors such as the length of time a mother has been lactating, and her age, are known
to affect milk PA concentrations [15]. This might also explain the different PA concentrations
reported in previous studies [9,18,19].

In healthy-breast milk, histamine was detected in one sample only (2.5%), at a concentra-
tion of 19 μM (Figs 1 and 2; Table 1). Tyramine and cadaverine were not detected (Fig 1). His-
tamine, tyramine and cadaverine are synthesized via the decarboxylation of the amino acids
histidine, tyrosine and lysine respectively. It is well known that, in fermented foods, the pres-
ence of BA depends on that of BA-producing microorganisms, and on the availability of sub-
strate amino acids [3]. The low free amino acid content of human milk may explain the
absence of the above-mentioned BAs.
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With respect to mastitis-affected milk, putrescine and spermidine were detected in all sam-
ples (Fig 1 and Table 1). Spermine was detected in all but one sample, a frequency significantly
higher than that recorded for healthy-breast milk (97% vs. 72.5%; p = 0.008, χ2 test; Fig 1 and
Table 1). The protective effect of spermine against inflammation may explain this difference
[20].

In mastitis-affected breast milk, histamine was detected at concentrations ranging from 1 to
139 μM (media 2 [IQR 1–3] μM) (Fig 2 and Table 1), and much more frequently than in the
healthy-breast samples (93% compared to 2.5%) (Fig 1). This vasoactive BA is a potent media-
tor of anaphylactic reactions, allergic responses, the recruitment of leukocytes following patho-
gen invasion, the activation of innate immune processes, and inflammatory responses [21]. It
is produced and stored mainly in mast cells. As the key effector cells involved in the initial
inflammatory response, these cells release histamine and other effectors when activated by
infectious and other stimuli (they are not involved only in IgE-mediated allergic reactions)
[21,22]. The presence of histamine in the mastitis-affected milk samples might be due to the
inflammatory processes underway [23]. High histamine concentrations in milk have been also
been reported in induced bovine mastitis [24,25].

Tyramine (at a concentration of 10 μM) was detected in only one sample of mastitis-affected
milk. Interestingly, this same sample also had the highest histamine concentration (139 μM),
the lowest spermidine concentration (0.204 μM), and was devoid of spermine (Figs 1 and 2
and Table 1). Cadaverine was detected in no sample of mastitis-affected milk (Fig 1 and
Table 1).

Fig 1. Frequency of detection of BAs in healthy-breast milk (n = 40) andmastitis-affected milk (n = 30). The results of Chi-squared tests to
examine the differences in the presence of BAs between the two types of milk are shown by asterisks. *p = 0.0082; **p<0.0001.

doi:10.1371/journal.pone.0162426.g001

Biogenic Amines in Healthy and Mastitis Human Milk

PLOS ONE | DOI:10.1371/journal.pone.0162426 September 1, 2016 4 / 10



Biogenic Amines in Healthy and Mastitis Human Milk

PLOS ONE | DOI:10.1371/journal.pone.0162426 September 1, 2016 5 / 10



The total milk BA concentration showed wide variation, ranging from 0.01 to 27.74 μM in
healthy-breast milk, and from 3.05 to 149.83 μM in mastitis-affected milk (Fig 2 and Table 1).
Mastitis is therefore associated with a significant increase in total BA (p<0.0001, Kruskal-Wal-
lis test) (Fig 2 and Table 1). Although the impact on nutritional quality is negligible, the milk of
women showing signs of mastitis has higher sodium, protein, IL-8 and free fatty acid concen-
trations, and a lower lactose concentration, than the milk of healthy women—a consequence of
the opening of the mammary tight junctions [26,27,28]. These mastitis-associated changes do
not, however, seem to reduce the amount of milk taken in by the infant [29].

Although differences were observed in the PA concentration of the two types of milk, their
PA profiles were similar in that the concentration of putrescine was always lower than those of
spermidine and spermine. The putrescine concentration of the mastitis-affected milk (0.39
[95%CI 0.28–0.50] μM) was approximately twice that of the healthy-breast milk (0.75 [95%CI
0.62–0.87] μM) (p = 0.002, Kruskal-Wallis test) (Fig 2 and Table 1). The spermidine concentra-
tion between the two groups of analysed samples was not significant (p = 0.253, one-way
ANOVA) (Fig 2 and Table 1), although the concentration in the mastitis-affected milk was
slightly higher (3.80 [95%CI 3.17‒4.43] μM compared to 3.12 [95%CI 2.56‒3.67] μM). A simi-
lar trend was observed for spermine, for which the concentration difference was 0.05 μM
(p = 0.323, Kruskal-Wallis test) (Fig 2 and Table 1). DNA-PA interaction protects DNA from

Fig 2. BA concentrations in healthy-breast milk andmastitis-affectedmilk, as determined by UHPLC.
The box and whiskers plots represents means (the cross within each plot), medians (the horizontal line within
the plot), interquartile ranges (total extension of the plot) and minimum and maximum values (the whiskers);
outliers are represented as dots. The results of Kruskal-Wallis tests to compare the median concentration of
individual biogenic amines in the two types of milk are shown by asterisks. *p = 0.002; **p<0.0001.

doi:10.1371/journal.pone.0162426.g002

Table 1. Biogenic amine concentrations in milk of healthy andmastitis-suffering women quantified by UHPLC.

Healthy (n = 40) Mastitis (n = 30) Comparison of

Median(IQR)a Range(min/
max)

Median(IQR) Range(min/
max)

Frequency of
detection

Mean
concentration

n (%) (μM) n (%) (μM) p valueb p valuec

Tyramine 0 (0) n.d.d 1 (3.3) n.d.

Histamine 1 (2.5) 19.00 28
(93.3)

2.00 (1.00‒3.00) 1.00/139.00 <0.0001

Cadaverine 0 (0) n.d. 0 (0) n.d.

Putrescine 37
(92.5)

0.28 (0.15‒
0.44)

0.02/2.21 30 (100) 0.60 (0.31‒1.13) 0.09/1.94 0.254 0.002

Spermidine 39
(97.5)

3.12 (2.56‒
3.67)e

0.01/9.53 30 (100) 3.80 (3.17‒
4.43)e

0.20/8.06 1 0.253f

Spermine 29
(72.5)

3.16 (0.93‒
4.69)

0.23/16.58 29
(96.7)

3.21 (2.07‒5.44) 1.22/9.94 0.0082 0.323

Total BA 40 (100) 4.47 (1.45‒
9.04)

0.01/27.74 30 (100) 4.47 (7.56‒
19.03)

3.05/149.83 <0.0001

a Biogenic amine concentrations are expressed as the median and the interquartile range (IQR) because data were not normally distributed, except for

spermidine.
b Chi square test.
c Kruskal‒Wallis test.
d n.d. = not detected.
e Mean (95% confidence interval).
f One‒way ANOVA test.

doi:10.1371/journal.pone.0162426.t001

Biogenic Amines in Healthy and Mastitis Human Milk

PLOS ONE | DOI:10.1371/journal.pone.0162426 September 1, 2016 6 / 10



Biogenic Amines in Healthy and Mastitis Human Milk

PLOS ONE | DOI:10.1371/journal.pone.0162426 September 1, 2016 7 / 10



damage, stabilize the double helical structures and preserve its structural elasticity [5,30,31].
The binding of PA with serum proteins can enhance their stability in the blood stream and bio-
availability at target tissues [5,32,33]. However, an increase in the concentration of single poly-
amines, is not only ineffective in DNA protection, but even detrimental, D’Agotino et al.,
demonstrated that 600 μM of spermine, induced the almost complete degradation of DNA
[30].

No correlation could be established between the concentration of histamine and those of
putrescine, spermidine or spermine (Fig 3) in mastitis-affected milk. However, the production
of these PAs may respond to factors other than infection alone. Nonetheless, moderate correla-
tions were detected between the concentrations of putrescine and spermidine (r = 0.507,
p = 0.321), and putrescine and spermine (r = 0.457, p = 0.014), as well as a strong correlation
between spermidine and spermine (r = 0.956, p = 0.000), in both types of milk (Fig 3); the close
relationship in the biosynthesis of these PAs may explain these findings [20].

Some bacteria isolated from human milk have been identified as putrescine producers [34].
However, to our knowledge the contribution of the milk microbiota towards the BA content
has been little examined in any mammal. It may be that the variations in the BA concentration
observed in the present work are linked to mastitis-related changes in the milk microbiota [35].
The bacteria associated with the infection might contribute towards the higher BA concentra-
tions detected in mastitis-affected milk through the synthesis of these compounds (Fig 2).

Conclusions
To our knowledge this is the first work to report on the possible presence of tyramine and
cadaverine in human breast milk, and to report mastitis-affected milk to contain higher con-
centrations of histamine, spermine and putrescine.

Putrescine, spermidine and spermine were the main BAs present in the milk of healthy
human mothers. Mastitis-affected milk more commonly contained histamine and spermine,
and had a higher putrescine concentration. Further studies are required to determine whether
these differences in the BA pool may be used as indicators of mastitis and thus of possible prob-
lems in infant development.
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