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Abstract 18 

The idea of analysing the general favourability for the occurrence of an event was 19 

presented in 2006 through a mathematical function. However, even when favourability 20 

has been used in species distribution modelling, the conceptual framework of this 21 

function is not yet well perceived among many researchers. The present paper is 22 

conceived for providing a wider and more in-depth presentation of the idea of 23 

favourability; concretely we aimed to clarify both the concept and the main distinctive 24 

characteristics of the favourability function, especially in relation to probability and 25 
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 2 

suitability, the most common outputs in species distribution modelling. As the 26 

capabilities of the favourability function go beyond species distribution modelling, we 27 

also illustrate its usefulness for different research disciplines for which this function 28 

remains unknown. In particular, we stressed that the favourability function has potential 29 

to be applied in all the cases where the probability of occurrence of an event is 30 

analyzed, such as, for example, habitat-selection or epidemiological studies. 31 

Keywords: epidemiology, favourability function, habitat selection, habitat suitability, 32 

probability of occurrence, species distribution modelling.  33 
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Brief introduction 35 

The favourability function – defined in Real et al. (2006) – assesses the variation in the 36 

probability of occurrence of an event in certain conditions with respect to the overall 37 

prevalence of the event. Consequently, it has potential to be applied in the cases where 38 

the probability of occurrence of an event is analyzed, such as species distribution 39 

modelling (Franklin 2009) or, among others, habitat-selection and epidemiological 40 

studies (Manly et al. 2002; Pfeiffer et al. 2008). In addition, it can be applied to all 41 

methods able to produce probability; although favourability was usually calculated from 42 

probabilities yielded by logistic regressions (Hosmer and Lemeshow 2000), 43 

favourability values can be derived, for example, from probabilities obtained using 44 

additive or Bayesian models (Hastie and Tibshirani 1990; Bernardo and Smith 2000). 45 

So far the concept and the main distinctive characteristics of favourability are not well 46 

perceived among many researchers, especially for disciplines different from species 47 

distribution modelling. The main aim of this study was to carry out a broader 48 

presentation of the favourability concept and to illustrate the usefulness of the 49 

favourability function to the scientific community. 50 

 51 

Defining the favourability idea and function 52 

Pierre-Simon Laplace defined probability in his first general principle about probability 53 

calculation as the ratio of the number of favourable cases to the whole number of 54 

possible cases (Laplace 1825, page 12). In this way, the concept of favourability was 55 

implicit from the beginning in that of probability. If all cases are equally, and totally, 56 

favourable – or unfavourable – then this ratio depends on the prevalence of the event. In 57 

his second principle Laplace stated that different cases could differ in possibility, 58 

conferring gradualness to the denominator in the probability ratio. However, it can be 59 
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argued that the concept of possibility is not appropriate to be given a continuous and 60 

gradual value, as an event is completely possible even when it is highly unlikely, i.e., 61 

the event is completely possible if it is not completely impossible. Laplace's second 62 

principle makes sense, however, if it is applied instead to the numerator of the 63 

probability ratio, so pointing to a quality of each case which may be appropriately called 64 

favourability and may take continuous values that can be constrained to range between 65 

0 and 1. Thus, the probability of an event occurring in certain conditions combines the 66 

general prevalence of the event and the local favourability for that event occurring 67 

precisely in those conditions. Favourability may thus be obtained as a function of 68 

probability and prevalence. 69 

The favourability function was conceptually conceived in this context to assess and 70 

remove the effect of prevalence on each probability value. With the favourability 71 

function, output values for different events are levelled in relation to each event’s 72 

prevalence in the dataset. That is, a favourability value of 0.5 for an event in certain 73 

locality or conditions indicates that the probability for the event’s occurrence in that 74 

locality or condition is the same as the overall prevalence of the event in the dataset, i.e., 75 

local conditions neither increase nor decrease the probability of occurrence with respect 76 

to what could be expected according to mere prevalence, thus denoting neutral local 77 

favourability. Consequently, local favourability values higher than 0.5 indicate 78 

characteristics that favour the event’s occurrence and values below 0.5 denote 79 

detrimental conditions for the event, regardless of the event prevalence.  80 

The mathematical rationale for the favourability function is presented in Real et al. 81 

(2006). Basically, the favourability function may take a form similar to the logistic 82 

probability in which the effect of the event’s prevalence is mathematically eliminated in 83 

the logit of a logistic regression equation. Among other forms, favourabilities (F) may 84 
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be directly derived from probabilities (P) yielded by any mathematical method in the 85 

following way:  86 
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where e is the basis of the natural logarithm, and y is a regression equation of the form:  89 

y= α + β1x1 + β2x2 + . . . + βnxn; where α is a constant and β1, β2, . . . , βn are the 90 

coefficients of the n predictor variables x1, x2, . . . , xn (Tabachnick and Fidell 1996, page 91 

127).  92 

It must be stressed that the favourability function does not provide a probability output 93 

independent of the sample prevalence, but a measure of the degree to which local 94 

conditions lead to a local probability higher or lower than that expected at random, 95 

being this random probability defined by the overall prevalence of the event, which in 96 

turn is what must be expected if maximum entropy is assumed (Real et al. 2006). Local 97 

probability depends both on the response of the dependent variable to the predictors and 98 

on the overall prevalence of the event (e.g. Cramer 1999), whereas favourability values 99 

depend only on the response of the dependent variable to the predictors in the study area 100 

(see below). Thus, favourability is not aimed at replacing probability but at 101 

complementing it, by providing, for example, a comparable measure of the response of 102 

each event to the predictors for events differing in prevalence. In this way, favourability 103 

may be used to detect, for example, conditions that favour in the same degree the 104 

occurrence of a rare disease and a common seasonal flu, even when the probability of 105 

suffering them differs due to their different prevalence. However, this concept was 106 
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recently misunderstood as a way to obtain the probability of occurrence when event 107 

prevalence differs from 50% (Albert and Thuiller 2008).  108 

 109 

Sample prevalence dependence: a statistical assessment for probability, 110 

favourability and suitability outputs 111 

To bring to light the sample prevalence dependence in the probability, favourability and 112 

suitability outputs, we built a virtual species with a prevalence of 20% which was 113 

designed to logistically respond to an environment defined by only one environmental 114 

variable on a virtual landscape composed of 1000 units (i.e. 200 presences). From the 115 

species distribution, two samples of 125 territorial units with contrasted prevalences – 116 

one with 20% and another with 80% (see Figure 1) – were randomly extracted. Each 117 

sample was modelled using different procedures.  118 

We compared the output of the favourability function (Real et al. 2006) with those 119 

resulting from probability and suitability obtained with Ecological Niche Factor 120 

Analysis (ENFA; Hirzel et al. 2002) and Maximum Entropy approach (MaxEnt; Phillips 121 

et al. 2006). Probabilities were obtained using logistic regression (Hosmer and 122 

Lemeshow 2000), and they were included as inputs into the favourability function (Real 123 

et al. 2006). ENFA was run in Biomapper 4.0 (freely available at 124 

http://www.unil.ch/biomapper/) with the median algorithm (Hirzel et al. 2008). MaxEnt 125 

version 3.1 (freely available at http://www.cs.princeton.edu/~schapire/maxent/) was run 126 

with default parameter values and the logistic output format (Elith et al. 2011).  127 

Results of all models were projected to the whole landscape (Figure 2) and outputs 128 

obtained from samples with a prevalence of 20% and those with a prevalence of 80% 129 

were graphically compared (Figure 3), so that outputs independent from prevalence 130 

should yield a line close to the identity line. Figures 2 and 3 illustrate how the 131 
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favourability function was the method most independent of prevalence, since quite 132 

similar results were obtained from samples with contrasted prevalences. But this did not 133 

occur for probability or the suitability outputs obtained from ENFA and MaxEnt. Slight 134 

mismatches observed with respect to the diagonal for the favourability function in 135 

Figure 3 are due to slightly different detected responses to the variable in each randomly 136 

selected sample. Our results contradicted those reported by Albert and Thuiller (2008) 137 

in which favourability was suggested to be biased by sample prevalence, but they are 138 

consistent with previous studies and with the conceptual framework behind 139 

favourability (see Real et al. 2006).  140 

The modelled response of the virtual species to the variable was the same (and correct) 141 

for the probability and favourability functions, being the differences in the results only 142 

due to the effect of sample prevalence on the probability outputs. Two different 143 

responses of the species were obtained for ENFA and MaxEnt. ENFA was not able to 144 

detect the subjacent monotonic response of the species to the environment. With both 145 

samples, ENFA identified Gaussian responses (e.g. Acevedo et al. 2007) and the 146 

maximum response value was obtained in both cases because in this procedure 147 

suitability values are rescaled (Hirzel et al. 2002). For these reasons, two different 148 

relationships were established between suitability values derived from the different 149 

samples (one in each tail of the curve), but none of them was close to the identity line. 150 

The results obtained for MaxEnt show that quite different responses were modelled on 151 

each sample, which may be related to the fact that MaxEnt produces a number of 152 

indices that are not directly related to the probability of occurrence (Royle et al. 2012). 153 

Thus, with ENFA and MaxEnt the response of the species to the environment cannot be 154 

segregated from the effect of sample prevalence on the suitability output. The results 155 

here provided show that probability and suitability are biased in their outputs when 156 
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working with samples – of the same species – differing in prevalence, which is not the 157 

case with favourability. 158 

 159 

The concept of favourability for biogeographers 160 

Many researchers working with species distribution models produce maps showing 161 

continuous gradients of how environmental characteristics are appropriate – in a broad 162 

sense – for a target species (Guisan and Thuiller 2005). Model’s predictions can be 163 

either considered as gradients or used only to classify localities as appropriate on 164 

inappropriate, but the latter option limits the informative capacity of the model. Thus, 165 

when models are aimed to guide conservation strategies they are more useful as 166 

continuous gradients (Barbosa et al. 2010).  167 

Nevertheless, the continuous model’s predictions should be levelled in order to 168 

determine those characteristics in the study area which actually favour the species 169 

presence. That is what the favourability function does. So, using the favourability 170 

function those localities with environmental conditions that favour the presence of the 171 

species (F>0.5) can be easily distinguished from those with detrimental characteristics 172 

(F<0.5) for its presence. This makes the favourability function particularly useful in 173 

conservation biology, for example, to identify expansion routes of invasive species 174 

(Muñoz and Real 2006; Nielsen et al. 2008), or to identify areas where a species may be 175 

more vulnerable to habitat or climate changes (e.g. Guitiérrez-Illán et al. 2010). 176 

The concept behind the favourability function was also raised by biogeographers 177 

working with probability (Liu et al. 2005; Jiménez-Valverde and Lobo 2007) and 178 

profile methods (see Hirzel et al. 2006). A rationale conceptually close to favourability 179 

was used to reclassify the suitability scores obtained with the ENFA (Hirzel et al. 2002). 180 

The suitability score over which the model predicts more presences than expected by 181 
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chance can be used as a threshold to identify the localities that actually are favourable 182 

for the target species. Liu et al. (2005) and Jiménez-Valverde and Lobo (2007), for 183 

example, proposed several methods to obtain the best threshold to split the localities 184 

into two categories, which tend to locate the threshold near the point where probability 185 

equals prevalence. These categories could appropriately be called favourable and 186 

unfavourable, as they represent probabilities higher or lower than prevalence, 187 

respectively. So, the determination of those conditions enhancing the probability of 188 

species presence over the probability expected by chance – the concept behind the 189 

favourability function – is widely considered sound in biogeography. The favourability 190 

function not only provides the favourability threshold more easily (F=0.5) but also 191 

provides information about the degree to which every locality is favourable. 192 

In addition, the favourability function has other distinctive characteristics that make it 193 

especially applicable in conservation biogeography and other research disciplines. 194 

 195 

Main distinctive characteristics of favourability values 196 

The main distinctive characteristics of the favourability function in relation to common 197 

outputs in other modelling techniques (probability and/or suitability) are summarised in 198 

the following five points: 199 

1- Given the definition of favourability as the assessment (between 0 and 1) of the 200 

variation in the probability of occurrence of an event in certain conditions with respect 201 

to the overall prevalence of the event, there is only one way of obtaining favourability 202 

values from probabilities and prevalences. In this aspect favourability differs from 203 

suitability, as for each modelling method, suitability is an idiosyncratic way of ranking 204 

local sites according to their capacity to hold the species that is not directly related to 205 

probability (e.g. Guisan and Zimmermann 2000). This is why different modelling 206 
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techniques produce differing suitability values with the same dataset, but all ways of 207 

obtaining favourability should yield the same favourability values from the same 208 

dataset. 209 

2- Favourability values – like probability values and unlike suitability – are 210 

interpretable in absolute terms, as they indicate how local presence’s probability differs 211 

from that expected by chance in the whole sample. However, suitability values, such as, 212 

for example, those derived from ENFA, ensemble forecasting approaches (Araújo and 213 

New 2007) or some of the outputs from MaxEnt (Phillips et al. 2006), are only relative 214 

and therefore uninformative in absolute terms. For example, the suitability value 215 

assigned to each focal locality in ENFA for each factor axis is based on a count of all 216 

localities with species presence that lay as far or farther apart from the median than the 217 

focal locality (Hirzel et al. 2002). This count is normalized in such a way that the 218 

suitability index always ranges from zero to one (see Figure 3). In ensemble forecasting 219 

suitability values are the result of merging, in some occasions, methods generating 220 

probability with others that yield suitability scores (e.g. Thuiller et al. 2009). 221 

Consequently, the suitability values obtained by these kinds of methods cannot be easily 222 

interpreted, especially when comparing different models, even if they are calibrated 223 

against a dataset with equal species prevalence. 224 

3- Favourability values – like suitability values and unlike well calibrated probability – 225 

are dependent on the extent of the study area if modifying the extent entails a 226 

modification of the species prevalence. Conceptually, a locality where the probability of 227 

finding a species is intermediate should be considered unfavourable for the species in 228 

the context of the core of the species range, but highly favourable in the context of a 229 

huge area where the species range represents a small portion. The favourability function 230 

quantifies this difference of consideration of a same probability value according to the 231 
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differing prevalence of the species in – and normally due to the different extent of – the 232 

background area. This implies that favourability (and suitability) values obtained from 233 

models built in different study areas should be compared with these characteristics in 234 

mind, as each favourability is relative to its own study area (Barbosa et al. 2009).  235 

4- The inherent quality of the favourability function of being expressed in relation to the 236 

event’s prevalence in the study area enables direct comparison and combination when 237 

several species are involved in the analytical design. For example, this is needed when 238 

using models for multiple species as a basis for defining relevant areas for conservation 239 

(Estrada et al. 2008), which cannot be built based on probability values because these 240 

are higher in common than in rare species, so the values for the former would prevail 241 

over those for the latter.  242 

5- In addition, but closely related to point 4, favourability values  – unlike probability or 243 

suitability values – can be regarded as the degree of membership of the localities to the 244 

fuzzy set of sites with conditions that are favourable for the species, which enables the 245 

easy application of fuzzy logic operations to distribution modelling (e.g. Robertson et 246 

al. 2004). Fuzzy logic operations expand the potential of the favourability function for 247 

comparison between models. For example, this function and the fuzzy indices derived 248 

from it were successfully used to study the biogeographical relationships in predator-249 

prey systems (Real et al. 2009) and also between native and exotic sympatric species 250 

(Acevedo et al. 2010). Similarly, the transferability of models to other times, for 251 

example in climate change scenarios (Real et al. 2010; Acevedo et al. 2012) or land use 252 

changes (Acevedo et al. 2011), or to different resolution scales (Barbosa et al. 2010), 253 

can be better assessed with the combined use of the favourability function and fuzzy 254 

logic. For instance, an overall assessment of expected modification in species’ 255 

distribution in climate change scenarios can be obtained using fuzzy logic, since the 256 
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favourability forecasted for a given species in the future can be deconstructed into the 257 

percentage that is expected to increase, overlap, be maintained and shift in relation to its 258 

favourability in the present (Real et al. 2010). On this point, it is worth mentioning that 259 

the spatial-temporal transference of models is risky and invites caution and careful 260 

considerations (e.g. Jiménez-Valverde et al. 2011). There have been increasing concerns 261 

about the use of correlative models for projecting species distribution into novel 262 

situations such as new territories or future climate change scenarios (e.g. Sutherst and 263 

Bourne 2009; Webber et al. 2011). Nevertheless, it should be noted that the concepts of 264 

favourability, probability and suitability are equally applicable to mechanistic and 265 

correlative modelling approaches, as they refer to the output which is produced by the 266 

models, and not to the inference method used to obtain these outputs.  267 

 268 

The potential of the favourability function 269 

To date, applications of the favourability function are nearly restricted to species 270 

distribution modelling , which is likely because the main research discipline of the 271 

developers was biogeography. Taking into account the concept behind this function and 272 

the distinctive characteristics of favourability values previously described, and similarly 273 

to other logistic models (e.g. Keating and Cherry 2004 and references therein), the 274 

potential of the favourability function in other research disciplines is high. The concept 275 

of favourability is quite relevant, for instance, in habitat-selection studies for 276 

determining the sampling units in which the process under study, e.g., nesting success, 277 

is favoured, i.e., those sampling units with a higher probability of event occurrence than 278 

expected by chance. For processes differing in prevalence favourability values provide 279 

comparable measures of the response of each process to the predictors; for example, 280 

with the favourability function it is possible to quantify in the same terms the degree to 281 
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which the local environmental characteristic are favouring bird nesting occurrence and 282 

nesting success for each sampling unit (see Amici et al. 2009). In another example, Real 283 

et al. (2009) used the favourability function to identify areas autoecologically 284 

favourable for the rare Iberian lynx (Lynx pardinus) but autoecologically unfavourable 285 

for its common staple prey the wild rabbit (Oryctolagus cuniculus), so highlighting the 286 

lack of trophic resources in parts of the potential range for a critically endangered 287 

species. This would be unattainable with probabilities, as the very common, and 288 

prevalent, rabbit tend to yield higher values of probability of occurrence than the scarce 289 

lynx, even in localities where rabbit densities are unable to support lynx populations. 290 

The concept of favourability and its distinctive characteristics are also promising in 291 

epidemiology. Epidemiological studies in wildlife try to identify risk factors that 292 

increase the frequency of pathogens (e.g. Vicente et al. 2007) and to create risk maps in 293 

which the probability of their transmission is shown (e.g. Rochlin et al. 2011). Including 294 

the concept of favourability in these studies entails two main advantages. First, those 295 

populations (or individuals, it depends on the sampling unit used in the study) in which 296 

the probability of presence of the pathogen is higher than expected by chance (F>0.5) in 297 

the study area can be identified. These are key populations for disease control and 298 

monitoring (Mörner et al. 2002). Similarly, those values of a given risk factor over 299 

which the probability for the presence of a pathologic condition is higher than expected 300 

by chance can also be identified. For example, Fernández et al. (2000) studied the 301 

relationships between coronary artery anomalies and aortic valve morphology obtaining 302 

that the probability of occurrence of anomalous coronary artery patterns increases 303 

continuously according to the degree of deviation of the aortic valve from its normal 304 

(tricuspid) design according, for example, to the following logit expression: y= -2.0976 305 

+ 0.3136*group (where group referred to six groups of valve conditions into which the 306 
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continuous spectrum of aortic valve morphology was divided, from 0=tricuspide to 307 

5=bicuspide). By including the favourability concept in this study, the authors could 308 

have determined over which aortic valve morphotype (from 0 to 5) the probability of 309 

occurrence of the anomalous coronary pattern was higher than expected by chance, and 310 

therefore, the anomalies were being promoted. So, given the expression previously 311 

reported and considering that 220 out of 968 of the coronary artery patterns were 312 

anomalous, a favourability value higher than 0.5 is obtained for valve morphotype value 313 

higher than 2.7, so these are the values that actually favour the anomalous coronary 314 

pattern.  315 

Secondly, favourability is also a promising function for biogeography of diseases  316 

where interactions among – hosts and vectors – species differing in prevalence are 317 

relevant (Peterson 2008) and where time series are usually available (e.g. Boadella et al. 318 

in press). As previously stated , the use of the favourability function and fuzzy logic 319 

allows direct comparisons and/or combinations between more than one model (host, 320 

vector and pathogen), which enables a more complete assessment of the distribution of 321 

the disease transmission risks (see Estrada-Peña et al. 2008) by obtaining reliable multi-322 

host, multi-pathogen and/or multi-scenario risk maps. In this context, Boadella et al. (in 323 

press) analyzed the factors associated to the detection of a group of parasites – 324 

Trichinella spp. – infecting wild boar (Sus scrofa). The inclusion of the idea of 325 

favourability in this study (first time in spatial epidemiology) was needed to combine 326 

the risks obtained for each of the 12 years included in the study in order to obtain two 327 

proxies of the risk for Trichinella spp. infection for the study period. One index was 328 

defined to identify areas where the conditions for Trichinella spp. infection were 329 

favourable during the study period (endemic areas for the parasites), and another was 330 

designed to determine the global distribution of these parasites during the study period. 331 
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So, the combined used of the favourability function and fuzzy logic operations enabled 332 

a more-in-depth assessment of the risks for a given parasite group in a multi-scenario 333 

context. 334 

 335 

Concluding remarks 336 

The main aim of this study was to carry out a broad presentation of the favourability 337 

concept and the favourability function to the scientific community. In addition to the 338 

studies in conservation biogeography, here we highlighted the usefulness of this 339 

function in two other disciplines (habitat-selection and epidemiology). We think that its 340 

capabilities go beyond these examples, and that the examination of the concept and the 341 

exploration of its usefulness for other disciplines will prove to be helpful in all cases 342 

where the probability of occurrence of an event is analyzed. 343 

 344 

Acknowledgements 345 

The authors acknowledge funding from Spanish Plan Nacional de Investigación and 346 

FEDER CGL2009-11316/BOS. P. A. was supported by the Vicerrectorado de 347 

Investigación of the University of Malaga and currently by a Beatriu de Pinós 348 

fellowship funded by Comissionat per a Universitats i Recerca del Departament 349 

d’Innovació, Universitats i Empresa, of the Generalitat de Catalunya, and the COFUND 350 

Programme - Marie Curie Actions under 7th Marc Programme of the European 351 

Community. 352 

 353 

References 354 



 16 

Acevedo P, Cassinello J, Hortal J, Gortázar C (2007) Invasive exotic aoudad 355 

(Ammotragus lervia) as a major threat to native Iberian ibex (Capra pyrenaica): a 356 

habitat suitability model approach. Divers Distrib 13:587-597. 357 

Acevedo P, Farfán MA, Márquez AL, Delibes-Mateos M, Real R, Vargas JM (2011) 358 

Past, present and future of wild ungulates in relation to changes in land use. 359 

Landscape Ecol 26:19-31. 360 

Acevedo P, Jiménez-Valverde A, Melo-Ferreira J, Real R, Alves PC (2012) Parapatric 361 

species and the implications for climate change studies: a case study on hares in 362 

Europe. Global Change Biol doi: 10.1111/j.1365-2486.2012.02655.x 363 

Acevedo P, Ward AI, Real R, Smith GC (2010) Assessing the biogeographical 364 

relationships of ecologically related species using favourability functions: a case 365 

study on British deer. Divers Distrib 16:515-528. 366 

Albert CH, Thuiller W (2008) Favourability functions versus probability of presence: 367 

advantages and misuses. Ecography 31:417-422. 368 

Amici A, Pelorosso R, Serrani F, Boccia L (2009) A nesting site suitability model for 369 

rock partridge (Alectoris graeca) in the Apennine Mountains using logistic 370 

regression. Ital J Anim Sci  8:751-753. 371 

Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol 372 

Evol 22:42-47.  373 

Barbosa AM, Real R, Vargas JM (2009) Transferability of environmental favourability 374 

models in geographic space: The case of the Iberian desman (Galemys 375 

pyrenaicus) in Portugal and Spain. Ecol Model 220:747-754. 376 

Barbosa AM, Real R, Vargas JM (2010) Use of Coarse-Resolution Models of Species' 377 

Distributions to Guide Local Conservation Inferences. Conserv Biol 24: 1378-378 

1387. 379 



 17 

Bernardo JM, Smith AFM (2000) Bayesian Theory. Wiley Series in Probability and 380 

Statistics. John Wiley & Sons, Hoboken. 381 

Boadella M,  Barasona JA, Pozio E, Montoro V, Vicente J, Gortázar C, Acevedo P (in 382 

press) Spatial-temporal trend and risk factors for Trichinella sp. infection in wild 383 

boar (Sus scrofa) populations of central Spain: a long-term study. Int J Parasitol 384 

Cramer JS (1999) Predictive performance of binary logit model in unbalanced samples. 385 

J R Stat Soc D 48:85-94. 386 

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical 387 

explanation of MaxEnt for ecologist. Divers Distrib 17:43-57. 388 

Estrada A, Real R, Vargas JM (2008) Using crisp and fuzzy modelling to identify 389 

favourability hotspots useful to perform gap analysis. Biodivers Conserv 17:857-390 

871. 391 

Estrada-Peña A, Acevedo P, Ruiz-Fons F, Gortázar C, de la Fuente J (2008) Evidence 392 

of the Importance of Host Habitat Use in Predicting the Dilution Effect of Wild 393 

Boar for Deer Exposure to Anaplasma spp. PLoS ONE 3(8): e2999. 394 

doi:10.1371/journal.pone.0002999. 395 

Fernández MC, Durán AC, Real R, López D, Fernández B, de Andrés AV, Arqué JM, 396 

Gallego A, Sans-Coma V (2000) Coronary artery anomalies and aortic valve 397 

morphology in the Syrian hamster. Lab Ani-UK 34:145-154. 398 

Franklin J (2009) Mapping species distributions. Spatial inference and prediction. 399 

Cambridge University Press, Cambridge. 400 

Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple 401 

habitat models. Ecol Lett 8:993-1009. 402 

Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. 403 

Ecol Model 135:147-186.  404 



 18 

Gutiérrez-Illán J, Gutiérrez D, Wilson RW (2010) The contributions of topoclimate and 405 

land cover to species distributions and abundance: fine-resolution tests for a 406 

mountain butterfly fauna. Global Ecol Biogeogr 19:15-173. 407 

Hastie TJ, Tibshirani RJ (1990) Generalized Additive Models. Chapman & Hall/CRC 408 

Hirzel AH, Braunisch V, Le Lay G. Hausser J, Perrin N (2008) BIOMAPPER 4.0. 409 

Laboratoy of Conservation Biology, Department of Ecology and Evolution, 410 

University of Lausanne, Lausanne, Switzerland. Available from 411 

http://www.unil.ch/biomapper. 412 

Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: 413 

How to compute habitat-suitability maps without absence data? Ecology 83:2027-414 

2036. 415 

Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of 416 

habitat suitability models to predict species presences. Ecol Model 199:142-152. 417 

Hosmer DW, Lemeshow S (2000) Applied Logistic Regression. Wiley Interscience, 418 

New York. 419 

Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability 420 

of species presence to either- or presence-absence. Acta Oecol 31:361-369. 421 

Jiménez-Valverde A, Peterson AT, Soberón J, Overton J, Aragón P, Lobo J M (2011) 422 

Use of niche models in invasive species risk assessments. Biol Invasions 13:2785-423 

2797.  424 

Keating KA, Cherry S (2004) Use and interpretations of logistic regression in habitat-425 

selection studies. J Wildlife Manage 68:774-789. 426 

Laplace PS (1825) Essai philosophique sur les probabilités. Bachelier, Paris. 427 

Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in 428 

the prediction of species distributions. Ecography 28:385-393. 429 

http://www.unil.ch/biomapper


 19 

Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson W (2002) Resource 430 

selection by animals: statistical design and analysis for field studies. Second 431 

edition. Kluwer Press, New York. 432 

Mörner T, Obendorf D, Artois M, Woodford M (2002) Surveillance and monitoring of 433 

wildlife diseases. Rev Sci Tech Off Int Epiz 21:67-76. 434 

Muñoz AR, Real R (2006) Assessing the potential range expansion of the exotic monk 435 

parakeet in Spain. Divers Distrib12:656-665. 436 

Nielsen C, Hartvig P, Kollmann J (2008) Predicting the distribution of the invasive alien 437 

Heracleum mantegazzianum at two different spatial scales. Divers Distrib 14:307-438 

317. 439 

Peterson AT (2008) Biogeography of diseases: a framework for analysis. 440 

Naturwissenschaften 95:483-491. 441 

Pfeiffer D, Robinson T, Stevenson M, Stevens K, Rogers D, Clements A (2008) Spatial 442 

analysis in epidemiology. Oxford University Press, New York. 443 

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species 444 

geographic distributions. Ecol Model 190:231-259. 445 

Real R, Barbosa AM, Rodríguez A, García FJ, Vargas JM, Palomo LJ, Delibes M 446 

(2009) Conservation biogeography of ecologically interacting species: the case of 447 

the Iberian lynx and the European Rabbit. Divers Distrib 15:390-400. 448 

Real R, Barbosa AM, Vargas JM (2006) Obtaining environmental favourability 449 

functions from logistic regression. Environ Ecol Stat 13:237-245. 450 

Real R, Márquez AL, Olivero J, Estrada A (2010) Are species distribution models in 451 

climate warming scenarios useful for informing emission policy planning? An 452 

uncertainty assessment using fuzzy logic. Ecography 33:304-314. 453 



 20 

Robertson MP, Villet MH, Palmer AR (2004) A fuzzy classification technique for 454 

predicting species’ distributions: applications using invasive alien plants and 455 

indigenous insects. Divers Distrib 10:461-474. 456 

Rochlin I, Turbow D, Gomez F, Ninivaggi DV, Campbell SR (2011) Predictive 457 

Mapping of Human Risk for West Nile Virus (WNV) Based on Environmental 458 

and Socioeconomic Factors. PLoS ONE 6(8): e23280.doi:10.1371/journal.pone. 459 

0023280. 460 

Royle JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species 461 

occurrence probability from presence-only data for modelling species 462 

distributions. Methods in Ecology & Evolution doi: 10.1111/j.2041-463 

210X.2011.00182.x 464 

Sutherst RW, Bourne AS (2009) Modelling non-equilibrium distributions of invasive 465 

species: a tale of two modelling paradigms. Biol Invasions 11:1231-1237. 466 

Tabachnick BG, Fidell LS (1996) Using multivariate analysis, 3rd edn. HarperCollins 467 

College Publishers, Northridge, California. 468 

Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD - a platform for 469 

ensemble forecasting of species distributions. Ecography 32:369-373. 470 

Vicente J, Hofle U, Garrido JM, Fernandez-de-Mera IG, Acevedo P, Juste R, Barral M, 471 

Gortázar C (2007) Risk factors associated with the prevalence of tuberculosis-like 472 

lesions in fenced wild boar and red deer in south central Spain. Vet Res 38:451-473 

464.  474 

Webber BL, Yates CJ, Le Maitre DC, Scott JK, Kriticos DJ, Ota N, McNeill A, Le 475 

Roux JJ, Midgley GF (2011) Modelling horses for novel climate courses: insights 476 

from projecting potential distributions of native and alien Australian acacias with 477 

correlative and mechanistic models. Divers Distrib 17:978-1000. 478 

479 



 21 

Figure 1. Virtual landscape composed of 1000 units with (a) an environmental variable 480 

ranging from 0 (white) to 1000 (black); (b) a virtual species distribution (black circles 481 

show presences and white ones absences); and random samples of the species with 482 

prevalence of 20% (c) or 80% (d). 483 
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Figure 2. Predictions obtained for each sample (20% or 80%) and modelling 487 

procedure (probability, favourability, and suitability from ENFA and MaxEnt). 488 
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491 
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Figure 3. Comparison between outputs of models developed from a sample with 492 

prevalence of 20% against others from a sample with 80%. Lines are representing 493 

outputs of favourability (black-thick), probability (grey-thick), and MaxEnt (grey 494 

thin). Results from ENFA are represented with grey circles. The black-thin line 495 

represents de identity. 496 
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